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1. INTRODUCTION

This paper is a sequel to [13], where we began our study of the approxi-
mate controllability of the higher dimensional wave equation with boundary
value controls, There, and here, we let O be a bounded, open, connected
domain in Rn whose boundary, I, is an analytic (or c” and piecewise
analytic) (n ~ 1)~dimensional surface in Rn, We parametrize ' with an
(n - 1)-dimensional vector variable s and indicate points on ' by x(s).
Integrals over 0 are written as [ ( )dx while integrals over I are
written [ { )ds. Taking T to %e a relatively open subsetof I" and T a
positive ﬁgmber, we define an admissible control to be a function f: TS [0,T]—
Rl such that fe " (I'd[0,T]) and £ vanishes identically outside a
compact subset of F@(O,T).

For all such admissible controls f we let Wf(x,’c) solve the linear

hyperbolic mixed initial-boundary value problem

n
f £ .
(1.1) p(x) Wiy i,EJ;:l (aij(x)wi)j =0 in Q% ][0,T],
(1.2) Wi (x(s),t) A(x(s))n(x(s)) = f(s,t), on I'Y[0,T],
f i B
(1.3) W(X,O):Wt(x,O):O,er.,

The subscripts t and i denote partial differentiation with respect to t and
% (the i-th component of x ¢ R') respectively. The subscript x indicates

the gradient vector of the vector function to which it is applied. The vector

n(x(s)) is the outward unit normal to T at x(s) e T'. The real analytic



functions p(x), aij(x), i,j=1,2,...,n, are such that

%5 (x) = Obji(X) /

p(x) 2 py > 0,

VARV s flv]®, 6> 0,

0
in some open set which includes Q U T'. Here A(x) is the nx n symmetric

matrix whose entries are o, (x).
1]

From [3] and [8] we learn that (1.1),(1,2), (1.3) has a unique C- solution

in Q®[0,T]. Thus we may let RT denote the set of all terminal states

f

(wi{-,1), wi(- ,T)). The set RT is a subspace of the Hilbert space HE(Q) of

finite energy states with inner product

<(u,ut); (V’Vt)>E = f [ P(x)u(x)v(x) + ux(x)A(x)vX(x)‘] dx

)
(here ' denotes the transpose of a vector) and norm
1
H(vv)” = (<(vv)'(vv)>)'2 .
" IE A A A

The gradients u . vX are defined in the sense of the theory of distributions.
To avoid an indefinite innner product, two states which differ by (c,0), where
c is a constant function on Q , are identified. However, we will continue
to speak of elements of HE(Q) as "states" rather "equivalence classes of

states".




The control system (1.1), (1.2) is said to be approximately controllable

in time T if KT is cense in HE(Q) , i.e., if the validity of the equation

A

forall fe¢ RT implies that (v,x’?t) = {(c,0), a zero energy state in H_() .

E
In [13] we showed that Q, I, p and A determine a positive number
TO s 1ch that:
(i) if 1< 27 5 the systm (1.1), (1.2), (1.3) is not approximately
L
conirollal ie in time [}
(iiy if T > Z'J‘O and n < 3 then the system is approximately con-

trollable in time T .

We will refer to ZTO as the critical time. When n =1 it is known (see [5],

[14], [15], e.g.) that approximate controllability continues to hold for T = ZTOQ
The purpose of the present paper is two-fold. First, we show in Section

2 thatif T > ZTO approximate controllability holds without any restriction on

the dimension n . Second, we show in the remaining sections that if n> 2

approximate controllability may or may not hold for T = ZTO, the critical

time, depending on certain relationships between I', p and A . Because the

proofs for T = zTO are very detailed, they are given only for special examples.

In the concluding remarks we describe the form which a general theory of critical

time approximate controllability would take.



2. A NEW PROOF OF APPROXIMATE CONTROLIABILITY FOR_T > 2Ty

The theorem which we will prove in this section replaces Theorem 4 in
[13]. The new result has the advantage of being valid for all positive integers
n ., Many of the details of the proof are the same as in the earlier result.
Therefore we will concentrate on the essential differences, referring the reader

to [13] for complete treatment of parts common to both proofs.

Let (\’},\'}t) be a finite energy state, i.e., | (G,\?t) I . < « , and assume
that (G,Gt) is orthogonal to all states (Wf(~ ,T), Wi(- ,T) ) in RT relative to

the energy inner product, Thus

2.1 <1y, wyie D)) 8,5 >y :—.fﬂ[mx)wi(x,mx?t(x) bW (x, TIAGO! ()] dx

=0

for ail admissible controls f. We let v(x,t) be the generalized solution of

the mixed problem

i

n
(2.2) PV, - R (Oﬂij(X)Vi)j 0 in Q& [0,T],

i,j=1

(2.3) v (x(s),1) A(x(s) ) n(x(s) ) 0, (x(s),t) e T ® [0,T],

(2.4) v(x,T) = v(x), vt(x,T) vt(x) .

The existence of such a solution s proved, e.g., in [8] and [10], where it
is likewise shown that wv(.,t) ard vt(= ,1) define continuous functions from

[0,T] into Hl(Q) and HO(Q) =L (), respectively. (Recall thatif m is a




(S

non-negative integer, then Hm(Q) consists of functions u(x) whose derivatives
of order < m, taken in the sensc of the theory of distributions, lie in LZ(Q) .

Hm(Q) is a Hilbert space with inner product

(u, Q) = X f D u(x) Dpﬁ(x)]dx,

Here p is an n-vector with non-negative integer components p1 ,pz, oo ,pn,
sl el

D on )
Z.,. (ox™) n

b
“ p“ =p, +p,+-..0o4+p , and 1D denotes D
1T n (o)) (9x2)

As in [13] we smooth the solution v(x,t) by a process of antidifferentiation
and iormation of finite difference ;. The innovation lies in the way in which the

antiderivatives are defined., We consider the elliptic operator

1 n
Bu = T 1,3=1 %)

which is defined on functions u ¢ GZ@) (ﬁ = U T satisfying the boundary

conditions
u(x(s) ) A(x(s) ) nix(s)) =0, x(s)el.

This unbounded symmetric operator has an unbounded self-adjoint extension,
2
which we will still call B, defiied on a domain D dense in L (). (See

e.g., [4], [6]). Moreover, if u,1) 0, then there is a positive

L2(Q)
number )O, the smallest eigen ralue of B except 0, such that

IBull = g ull -
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From this it follows that if we let B denote the restriction of B to

Dnf{u ¢ LZ(O,)|(L1, 1) , = 0} then éml is defined, bounded and self
L=

adjoint on {u ¢ LZ(Q)l (u,1) , =0}, which we will call D.
L)

From the work of Lions-Magenes ([9], p. 165 ff.) it is known that

if g e D n Hm(Q), m > 0, then ﬁ—l g e 15 N Hm+2(9) and the mapping

A m A= n m+2 . . .
geDNH Q) - B geDnH () is continuous with respect to the

norms , ) .
H “ Hm(Q) H ]I Hm+2(m

We return to (\?,Gt) and let c. and CZ be real constants such that

, ! t 2
0 Q
Then
Vix,t) = (v(x,t) - ¢ - c,(t=T)
satisfies (2.2) and (2.3) Aand ;fJ(e 1) € ]S n Hl(Q), t € [0,T]. Likewise
vt(x,t) = vt(x,t) - CZ
0

>

is such that ?;t(o 1) e n H), te[0,T]. We define, for each non-negative

integer k ,

-2k ~ Ak~ -2k+1 k
v v

=B , D :én

<!

b t

and conclude from the above cited work in [9] that for a non-negative integer
m ,

-m ~

D vie,t) € 15 N Hm+l(

Q), te[0,T],




~J

~

-m
and that D v(s,t) is a continuous function of t relative to the norm

. Since ;/le,t is a generalized solution of v - BV (i.e. (2.2
Il gmen gy - 8 (+ 1) g " (i.e. (2.2)

one can verify without difficulty that D MY satisfies the same equation (in

the strict sense if m > 0) and that

m -m ~ ~
d . (D V(' It) ) = V(" It) °
dt
Next we define
m m+1
-m T =17 a=T)
(2.6) D vie,t) =D vie,t) + cy i + c, (mt1) 1
and verify that
m -
d v,y = Ve,
dtm
It is not in general true that D_m v(. ,t) is a solution of vft = Bv. But since
c:1 and c‘2 are constants it is clear that we still have
(2.7) D™ vty e BV, te[0,T], m> 0.

We now refer to the theorem of Sobolev (see, e.g., [ 1], p. 32) which
states that if v ¢ Hm(Q) and if ¢ is a positive integer strictly less than
m - n/2 then ve Cﬁ (). Moreover, there is a constant K, independent of w,

such that

2.8 <K .
2.8 ol ez < K1Vl o

()} Q)



&

We choose m = 2k to be a positive integer such that m - n/2> 1, Then

from (2.7) and the Sobolev theorem we have

“-m ~m+] -m 1 -
v

2 —
D vi-,t) e C (), D (. ,t) = D Vt(o,t) e C() .
The continuity of p ™ v ,t), D—m+l v(-,t), as functions of 1t , with
respect to || || 41 I m , respectively, combined with (2.8),
) H (@)

then shows that D vie,t) € ce@ ) [0,T71).

Now, for § > 0, we define

- M m

A v, t)) =D v, t48) -D " w(e,t), te [0,T-8],

AT(D wvie,t)) =ALT (D T v(e,t))), tel0,T-ks].

o~

i T BV , and the fact that

Noting (2.6), the fact that D ™Y solves
2 - m,_—m . ; o)
ve CT(Q ® [0,T]), we see that o (D = v(.,t)), which we will call v"(-,t),
is such that vi(x,t) is a C° solution of (2.2), (2.3) in 0 ® [0,T].
The rest of the proof proceeds much as in [13] and we will give an outline
only. The interested reader should consult the earlier paper for details, noting
that there T of this paper was called Fl .

Using the divergence theorem orie shows that (2. 1) implies (with D

o
denoting 'a‘;; )

(2.9) [ D™ vex(s), ) DM (s, p)]dx dt = 0
T [0,1]
~m+1 ~—m
v

for all admissible controls f . This implies that D (x(s),t) = (D vi{x(s),t)). .

1
is a polynomial in t of degree at most m - 1 whose coefficients are C functions




D M vix(s), 1)), = A (D v(x(s),1),) =0, (x(s),t) e T Q[0,T-ms].

This, combined with the fact that Am(Dﬂmv) satisfies the boundary condition
(2.3), enables us to use the Holmgren-Fritz John uniqueness theorem [ 7] to

show that (Am(D.~m V) )t must vanish identically for (x,t) ¢ K(F,O,T—mé),

the intersection of the forward cone of influence of T attime 0 with the

backward cone of influence of T attime T - m§., If T > ZTO the set K(F,O,T-—mé)
includes a set Q R [@/2-¢,(1/2)+ €] for some e > 0, provided &> 0 is

sufficiently small. (See figures in [13].) Thus,

m _ ~m

(WO v, 1)), =0, () e ® /2 e, (/D €]

which clearly implies

WO vix,0)), = 0, (x,0) € QR /- e, @/2) + el

Since Am(D_m v) is a Cz solution of (2.2), (2.3) we conclude that

vix,t) = v(x), (x,t)eQ® [/2)-¢e, (T/2) + €]

where v(x) is a GZ solution of the elliptic boundary value problem

(2.10) S (@, (x)u), = 0, xeQ
ij=1 2 1)

(2.11) uX(X(S)) A(x(s)) n(x(s)) =0, =x(s) eT.

But the only solutions of (2.10), (2.11) have the form
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u(x) = ¢, aconstant, x ¢ Q.

Thus

m -m

ATD " vix,Y)) =c, (1) e QR [@/2)- &, (T/2)+ €]

so that D”Jm v(x,t) is a polynomial in t of degree at most m whose
L Z . m,_-m
coefficients are C” functions of x for x e . Then vix,t) = D (D vix,t))

is a constant in O R [[/2)- ¢, (T/2)+ ¢]. In particular,
(V(’ IT/Z)I Vt(° IT/Z)) = (C,O) 7

a zero energy state. Applying to conservation of energy principle, which is

valid for generalized solutions of (2.2), (2.3), we infer that
(V("IT)I V(°IT)) = (Vlv) = <C10)°

We see therefore that if (2.1) holds for all admissible controls f , SO
that (V’Vt) is orthogonal, relative to the energy inner product <; >E' to every
state in RT’ then ” <V’Vt) ”E = 0 and (V’Vt) is the null element in HE(Q), We
have proved this without making any special assumptions on n , the dimension
of the space in which  lies. Thus Theorem 4 of [ 13] can be replaced by the

stronger,

Theorem 4(a) The system (1.1), (1.2) is approximately controllable in time T

i >
if T> 2T,

Combined with Theorem 2 of [13], which states that the system (1.1), (1.2)

is not approximately controllable in time T if T < ZTO, we see that we are
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justified in referring to ZTO as the critical time. We will see in the sequel
that, if n > 2, critical time approximate controllability is a rather delicate

question.



e
j e

3. THE CRITICAL TIME CONTROL PROBLEM

We are going to study the problem for a particular partial differenticl
equation in certain special domains. In Section 6 we will indicate a more
general theory.

In Rn, n2> 2, we consider "rectangles"” }lr, r=1,2,...,n, of dimension

n - r, defined by
N .
o= {x=(x,x",...,x) eR ]x:O,i:l,.,..,r,ngjgl,j:r‘Jrl,.“,nL

n ,
Of course, Zn is just the origin in R~ . For all real ¢ we define

.

58 = exp (l--)

€
and for all x = (xl,xz,° - ,xn) € Rn we put

~ 2 ~ n

plx) = B+ B 4+ DY .

n
We define domains Qrf:‘_ R as follows:
n . ]
Qr = {x «R | inf p(x-y)< 1].
yez,
Then Qr is an open, bounded, simply connected region in Rn whose boundary
n \
r. = {(x e R7| inf p(x-y) = 1)
Y € AI_
is an n-dimensional surface of class C  which is piecewise analytic,
In Qr we consider a boundary value control problem for the ordinary

wave equation:
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| S S A
(3.1) Wy T B ow, =0 in ‘Qr &) [0,T],
i=1

f
(3.2) w  (x(s),t)n(x(s) 0 = f(s,t), (x(s),t) e r.® [0,T],

f _ f
(3.3) w (x,0) = wt(x,O) =0, x eQr.
We take T' = I, i.e., admissible controls are C functions whose supports

r

are compact subsets of the interior of I‘r@ [0,T]. Thus control forces operate
over the whole boundary of Qr .
For (3.1) there is a universal wave propagation speed, 1. Thus, given
an instant tO' the forward cone of influence of I"r at time to is given by
(3. 4) KN t) = (e [t +w]] inf |x-y|<t-t )
r° 0 r 0 0
ye I’r

and the backward cone of influence of I“r at time tO is

— ) +
KTtg) = L=t e 0 (-t ]] (x, 2t -t) e K (T t,)]) .

0

(In (3. 4) ” | denotes the Euclidean norm in Rn.) We define, for T> 0,

+ -
r = N o
K.0,T) = K'(T,0)nk (r,T)

As shown in [13], Section 3, the critical time T_ has the property that

0
Qr &) {TO} c K(Fr,O,ZTO)

but Q’r R {T/2} is not a subset of K(r’r,O,T) if T< ZTO. In the present case

it follows that TO = 1, and hence the critical time is T = 2, because

sup { inf  (Jx-y[)} = 1.
err yel
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We will prove two theorems regarding approximate controllability of
(3.1), (3.2) in the critical time T = 2, We give these theorems the numbers
5 and 6 since they complement the four theorems proved in [13] and Section

2 of the present paper.

Theorem 5 If r=1, the system (3.1), (3. 2) is not approximately controllable

in the critical time T = 2,

Theorem 6 If 2<r<n, the system (3.1), (3.2) is approximately controllable

in the critical time T = 2.

The reader should be aware that these theorems apply for n> 2 only.
When n =1 the analog of Theorem 5 is not true, for it has already been shown
in [5], [14], [15] that we do have critical time approximate controllability in
this case.

In order to prove Theorems 5 and 6 we need certain results from the

theory of distributions.




4. _DISTRIBUTIONS IN H'I(Qr) _WITH SUPPORT IN %

As in Sect.on 2, we denote by Hl(ﬁr) real valued functions v(x)

defined on Qr which lie in HO(QI‘) = LZ(QI) and have first order partial

derivatives, defined in the sense of the theory of distributions, which also

lie in HO(Qr), With the inner product

n

i) :f [WGvE) +2 u (x) v ()] dx

i=1 i
QT

(u, v)

(again the subscript i referg to partial differentiation with respect to x*

)
HI(QT) is a Hilbert sSpace. We have

1 0
H@Q)csH @)

and for each v € Hl(Qr)

HVHHl(Qr) = [lv]] HO@ )

which shows that the injection mapping of Hl(Qr) into HO(Qr) 1s continuous,
We will now indicate the constru

ction of a third Hilbert space H‘I(Qr)

0 |
Fe)em ) o),

and the injection of HO(QT) into H“I(Qr) is likewise continuous, To begin,
let u ¢ HO(Qr). We define a continuous linear functional on HO(Qr

):
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(4.1 (v) = (u,v \% HO(Q )
. 1) Eu = (u, )HO(Q X € e

1
Now if ve H (Qr)

<y [v])
) 1) =)

[, ] < [ull v
" o) H@
T T r r

and we conclude that (4. 1) also defined eu as a continuous linear functional

on Hl(Qr). It follows that there is a unique element T ¢ Hl(Qr) such that

u 7o)
We define
(4.3) el o = -
H (@) H @)
Now for all u e HO(Qr)
[(ﬁlv) l i
[ u]] -1 = sui) H (Qr)
H ) ve HEQ)
Do vERE
H ()
r
| (u,v) 0 o] | (U, V)0 o ]
_ sy H (Qr) < sup H <Qr)
verl@) v veH@©Q) v
vA£0 " Hl(O,r) vZo © HO ;
[ @ )50 |
B AR [
ve HY@Q) v H (Q
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the second last equality being true because Hl(Qr) is dense in HO(Qr) relative

to the topology induced by the norm | || 0 .

H @)

We define H—I(Qr) to be the completion of HO(QI_) relative to the norm
b, - Now Ju _, = [

H ’(Qr) H (Qr) H (Qr)

clearly dense in H-I(\Qr) , and this relationship extends (see [12]) to an isometry

holds for u ¢ HO(QT), which is

u++{ between Hal(\Qr) and Hl(Qr). The space H_l(Qr) is a Hilbert space with

(4. 4) (u,v) _ = (4,4

The elements ¢ of H*l(Qr) correspond to distributions gd) of order at most 1
(see [16]) on Qr .
We are now ready to prove two lemmas which will be of great importance in

the proofs of Theorems 5 and 6,

-1
Lemma 1. If n> 2 there exists a non-trivial element ¢ ¢ H (0.) such that:

1
(1) the support of £¢ is a subset of %
(ii) if ¢ is a constant function on then ¢ (¢) = ($,c) = 0,
= - I — ¢ 1
H (Ql)

Lemma 2. If 2<r<n there is no non-trivial distribution in H “(Q ) with
LCMMa o, SeIe 15 No n ) With

support in “1 .

The reader uninterested in the proofs of these lemmas may proceed to

Section 5 without any loss of continuity.
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Proof of Lemma 1. Let y denote a real valued function of n -1 variables

x&,xs, oo ,xn such that, with ?jl defined by
I~ o~ 2 -1 ~
zl:{x:(x ,M.,,xn)eRrl I(O;X)€Zl},

2 o~ ~

Y e C (Zl), vanishes outside a compact subset of the interior of 1’ and
r ~ ~ 2~

(4. 5) [ p(x)dx =0, [ (px)"dx £ 0.
F"l Zl

For positive integers k = 4,5,6 ... define

(4.6) 6, (9 = 0 . ml<g< -
k 5 4
1 3 3 1
- 2 - & -
1 1 1 1
e - =
2 4 ' 4_€£k !
k2 1 1 _1 1
45 YTy TRSESL
~ 1
K ek("'@, ‘]Zgggl ©
Then, for x ¢ Ql, put
(4.7) 0 (x) =0 (k%) =/ 0 if RS
- S "SR A 1’

~ 1 o~ ~
6, (x)Yx), x e Zy -

Then ek is defined as a function of class CZ in Ql for k =4,5,6, «o. &




Now compute, for any v ¢ Hl(ﬂl) ,

I
i
H
=
x
=
k)
Q.
w
+
t %
=N
=
X
=
X
[o N
i

Thus

k  ~ ~ ~
[E Y(x) v(x) dx = L/ﬁz,z;(x) v(x) dx + \‘/qglj(x) v{x) dx
1 1 3

~ 1, o= 1 3.~
[ 11 2 [~ 5~ Z1P= 42l

_ /“ aek(x) ov(x)
‘JQI oxl axl

dx

and, for k=4,5,6,...,j=4,5,6,...,



5 060 vio ax - [L 9@ v ax
L1, o= 1 Lo
[.—k' k] ?) < [ ]. 7 ﬁ%y
/ (89 (x) BQK(X)) Dv(x) .
Q ol oxl

Applying the Schwartz inequality

(4. 8) E»/ﬁ%‘l//(ﬁ}z)v dx - fi
FeRlRE 0 FE I9E
06 86
It 5;;—“ oo Ioil s
ARG TN
l 1

An inspection of (4.6), (4.7) readily shows that

lo, -0l | =
Rt
where
llm E]k =0,
Jor o0
¥k~ oo

Let us put




21

1~ k 1 ~ 1 1 ~
4 € . - Eacy i A i
(1: )) (1)]( (X) e 4)k (X IX) o 24 w(x) I3 (X IX) 5:, [ k I3 k ]® 2 1
0 otherwise .
Then (4.8) shows that the continuous linear functionals ¢, , defined on H1 (Ql)

k
as in (4.1), (4.2) have the property that

e, (V) -0 W] < e, V]
by \ T TH @)

which implies (c.f. (4.2)) that

and therefore, from (4. 3),

fo, = ,  <eyp -
k ]Hl(Ql) ik

1

Thus, in H (Ql), {q>k} is a Cauchy sequence and has a limit ¢ ¢ H—l(Ql).

It remains only to show that ¢ has properties (i) and (ii) stated in Lemma l.

Let v e COO(Ql) have support K which is a compact subset of Ql 5_‘,1.

1& E) is empty and

A

Then, for all sufficiently large k , K n ([~ i,

¢ W) = (4 ,V) = ($, ,v) -0,
cpk k HO (91) k Hl (Ql)

Since ¢k converges to ¢ in Hﬁl(Ql), $k converges to $ in Hl(Ql), by virtue

of the isometry discussed just prior to (4.4). Therefore
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¢ (V) = (§,v) = lim ($ ,v)= 0.
H(Q) k= k

Thus e} vanishes when applied to v ¢ Coo(Ql) with support K not meeting
(6]

'\J"l and we have shown that the support of z¢ must be a subset of Z,l .

Similarly, for k = 4,5,6,..., ¢ constant,

2, (€)= 1o ,e) ¢ = /P“.};‘ v(X)c dxt dX
K H (@) YL L
e

=c / Y(x) dx = 0,

o~

%)

from (4.5). Thus part (ii) of Lemma 1 is proved. The second part of (4.5) readily

shows that ¢ is non-trivial and the proof of Lemma 1 is complete,

Proof of Lemma 2.

For p > 0 we define

1
I ‘ : 2P
(4.10) 2 r 1.2 2.2 . 1 1

We compute

2 2.
r ‘ . 5
(4.11) <ah“i?‘) - ‘4‘2 [(xl)a + (xz)Z oot (Xr)2]
i=1 0x P

Integrating (4.11) over the unit ball in Rr we obtain the integral 4(Dr__l/(4p +
2
(r-2)p ), where w._y is the integral of 1 over the (r-1) dimensional sphere
1

of radius 1. Thus we see that if B is any bounded open set in Rr then hp e H (B)

for p> 0 and
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(4.12) lim
P + oo

th“Hl(B) = 0.

(Note that r> 2 is necessary for these conclusions.)
1 rr+l n n 1 r

Given x = (X ,¢¢0,X , X ,ee.,X ) e R, letus set v = (X ,ce..,%),

r+l n -7
z = (X * ,ee0.,% ). Each distribution ¢ defined on Rn has a natural

extension to a distribution ¢ defined on Rn., it v (= G(y,z)) € Cm(Rn) we let

¥ be defined on Rn r by v(z) = v(0,z). Then

defines the extension 1'2\ of ¢ .
A result in [9] (p. 78) shows that if ¢ ¢ H~l(§2r) then the distribution ¢

associated with ¢ can be expressed in the form

n du

LU € cw(nr) ,
i=1 H Q)

where gl € LZ(Qr), i=0,1,...,n. This shows that gq) is a distribution of order

1
at most 1 (i.e. if Vk are Goo functions converging to zero in C (Qr) as

k— o, then lim ¢ (v,) = 0.)
k
k — oo -1
Thus if we take ¢ ¢ H (), ¢, has order at most 1. A theorem in [16]

¢

(p. 99, ff.) then shows that if the support of 'e<1> is a subset of Zr’ there are
distributions ZO' ll’ ’QZ’”' ’ﬂr defined on Rn—r with support in Er = {z] (0,2) Er)

such that
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Let y¥(z) € CQO(Rn r) have support K contained in some small neighborhood
of \:r in R°". Define v(=v(y,z)) in Qr by

(4.13) v(x) = viy,z) = h4(Y)?l/(Z)

where h4 is given by (4.10). Then v ¢ Hl(Qr)° Since ¢ ¢ H—l(Qr), the linear

functional qq) can be defined on all of Hl(Qr) and we have

Let & = (0,...0, 1 0,...,0) in R, the 1 being in the jth position. Define

VE(X) = va(y,z) = vy + eej,z) .

One verifies without difficulty that
' - = 0.
(4.14) lim || v VEH ]
e— 0 HEQ)

On the other hand

hy

5
Py (0 + eej)lzi(w)

1
=
N
o
+
™M
0]
 S—.
faY
o
€

1]

\ dhy
h4(eej/£0(‘z//) =y (eej)lj(w)
1

1
" I T2
(1-edg w+ye 2 0.

il
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Thus if zj(v//) is different from zero

lim 2 (V) = +
ge— 0 L

and then (4. 14) shows that zd) cannot be a continuous linear functional on

1 -
H (‘Qr)' contrary to our assumption that ¢ ¢ H l(Qr)., We conclude that ej(z,//) =0,

Since this is true for all such ¥ and the support of ¢ is a subset of E“,Jl , we
j "

conclude that QJ_ = 0. We can do this for j =1,2,...,r and conclude that

¢ 0

Now, for p > 0, define vp(x) as in (4.13), replacing 4 by p . Compute

zq)(vP) = hp(O)ﬂo(w) = ¢ _(y)

for all p> 0, since hp(O) = 1. But (4.12) is easily seen to imply that

lim ||v_| = 0
pht_ 1
p~—+ oo H @)
and thus ed) cannot be a continuous linear functional on Hl(Qr) unless go(zp) = 0.
Therefore, since 114) is a continuous linear functional on Hl(Qr), / O(z//) = 0 for

all y of the form prescribed above., Then the fact that ¢ 0 has support in gr

shows that ¢ 0° 0. We have now shown that

and Lemma 2 has been proved.
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Remarks Some readers may find the dual role of z@ , as a distribution of
order <. 1 and as a linear functional on Hl(Qr), slightly confusing. Given

¢ e H“l(ﬂr} there is associated with it a unique element $ € Hl(Qr) and for

all v e Hl(QI_)

v = @,V .
¢ H@)

r
This also defines ¢ o as a continuous linear functional on COO(Qr), since con-
vergence in COO(Qr) impiies convergence in Hl(Qr). Thus gq} is also a distri-
bution in the sense of Schwartz [l6].

One can easily see that Lemma 1, part (i) continues to hold for n = 1.
(Just put ¢ = 6, the Dirac distribution.) But (ii) cannot hold for n=1. The
function ¢ cannot be constructed as in (4.5). This explains why Theorem 5

is true for n> 2 butnotfor n=1.




5. PROOI OF THEOREM 5,

A result in Lions-Magenes [9] (p. 202) states that if ?p’ € I—I“l(\Q) satisfies

(i) of Lemma 1, then there is a unique function Ve Hl(Q) withf :\\/:(X) dx =0
0
such that, in the sense of the theory of distributions,

n ~ ~
(5.1) .2, Vii = ¢ in Ql .
i=1
(5.2) E}X (x(s)) n(x(s)) = 0, x(s)eTy.

(The sense in which (5.2) holds is also explained in [9]. In our applications
Vv is harmonic outside a compact subset of Q] and (5.2) holds in the classical

sence. Moreover, there is a constant M > 0 such that

(5. 3) V]| ) < el 4
H (@) H @)

Let the functions (bk be defined on . as in (4.9) and let n\}'k be the

1
corresponding solutions of (5. 1), (5.2) with E; replaced by ¢k° Also, let v

satisfy (5.1), (5.2) with $ replaced by the element ¢ ¢ H_l(Q

l) constructed in
Lemma 1. Since lim | ¢ - q)k“ 1 = 0, (5.3) implies that
wm V-, = 0.
k — 0 H (Ql)

It is clear that ¥ cannot be a constant on (,, therefore ('\\7’,0) is a non-zero

ll

k
energy state. We let v(x,t), v (x,t), k =4,5,6, ... be generalized solutions

in Q; ® [0,2] of



¥

(bo4) Vtt - 121 Vii =0,
(5.5) VX(X(S),t)ﬂ(X(S)) =0, (x(s)t) e I 2 [0,2]
satisfying

v(e,1) = V(x), vy, 1) 2 0, V00,0 = Vo, vt = 0

By the principle of conservation of energy, (v(.,2), vt(- ,2)) is also a non-zero

energy state.

Let f be an admissible control. Then the support of f lies in a set

I‘l R [6,2=-8] for some &> 0. Since the support of Py is [~ i, i—] %) }:1 , '\7}{

1 1 ~
is harmonic in Ql - ([_E’ E] %) %,). Then, by a familiar uniqueness result in

the theory of hyperbolic partial differential equations (see e.g. [2])

k ~k ;
vk, 1) V(%) |t-1] < in (x-v])-
el 19 E
k k'k 1
v, (x,t) =0
t
Thus, for sufficiently large k , V]E;(X(S),t) =0, (x(s),t) ¢ I‘l®[6,2~5] and an

application of the divergence theorem (c.f. Theorem 1 in [13]) shows that

N n
(5.6) / [Wi(X,Z)V]f((X,Z)-F 5 wjif(x,Z)vlz(x,Z)]dx

o i=1
k
= f v, (x(s),t) f(s,t)ds = 0 .
r, 2100.2]
. I e : L o k 2,41 ,
(The solution w e C (ng[o,zj) and it is proved in [10] that v e H (2 ®[0,2]).

This enables one to use the divergence theorem without difficulty.)
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Noting that

. k
lim [v,(-,2 -vi(.2] o =0
k— H (Ql)
. k ,
lim “V,(-,Z)~Vi (»,Z)H 0 =0,i=1,2,...,n,
k—roo H (9)
we conclude from (5.6) that
n f nof
/ [wt(x,Z) vt(x,Z) + 3 Wi(x,z) vi(x,Z)]dx =0.
' Q]. l=l '

Since f is an arbitrary admissible control we have shown that the non-zero

energy state (v(-,2), vt(- ,2)) lies in R'g and thus that RZ is not dense in

H_©

. l‘) relative to the norm ||

| e Thus Theorem 5 is proved.
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6. PROOF OF THEOREM 6.

Much of the work necessary to prove Theorem 6 has already been done
in Section 2 in the proof of Theorem 4a, We again assume that (v,vt) is a
finite energy state which satisfies (2.1) (with p=1, A=1 and Q = Qr') and
we let v(x,t) be the generalized solution of (5.4), (5.5) satisfying the terminal
conditions (2.4). The solution v is smoothed by the same process of forming
antiderivatives and finite time differences as described in (2.5) - (2. 8) ff.

The divergence theorem can again be used to obtain (2.9) (with T replaced by

Tr) , and thus, via the Holmgren-Fritz John uniqueness theorem [7] to prove that

(A m(D_mv) )t must vanish identically for (x,t) e K(Tr, 0, T - méd), the intersection
of the forward cone of influence of ]“r at time 0 with the backward cone of in-
fluence of Fr at time T - mé,

The essential difference between the proof of Theorem 6 and that of Theorem
4a lies in the fact that when T = 2, the critical time, K(I"r_,O,Z—m(S) does not in-
clude any set 61* “y[l- ¢, L+¢] forany e > 0, no matter how small we take
5> 0 to be.

If &> 0 is small, the functions Am(D_m v(x, 1)) are defined and twice

continuously differentiable for x ¢ 51”' Now the operator A depends on 0 ,

and we define

vé(x) = Ef_mAm(D“m vix, 1)), x ¢ ar o

1, 1
The continuity of v(-,t) as a mapping from R into H (Qr) enables one to

show by elementary means that
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(6.1) lim l[vﬁ(x) - v(x,l)“ o) ~ 0.

&= 0 Y

- m, _-m
Now & mA (D vix,t)) = vé(x,t) is twice continuously differentiable in

0, ®[0,2-m¢] and there satisfies

I ™Mo
<
n

and boundary conditions of the form (5.5). Thus the functions

are, for & > 0, continuous in Qf and we have

n
izl V¥ =g (%), x e .

Now vf(x,t) (=6 A (D v)t (x,t)) has been shown to vanish in

K(Fr,o,z'- 8), which implies that vé (x,t) vanishes there also. We conclude

tt

therefore that

(6. 2) %) = Vi, T) =0, xeQ
where
(6.3) Q- (xea|(x,D) KT ,0,2-m5) n © R (1)) .

The sets Qré are monotone increasing as &-— 0 with the property

(6.4) n @ "Qr&) =
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Let uce¢ Hl(Qr) < HO(Qr). Since gO € CO@—T) < HO(Qr) we can form the
L),u)

inner product (g Integrating by parts we find that

HC(Q )
T
& B
(g7 W oy = ]02 v, W.0n ]
H (Qr) j-p H H (Qt)
s 5
= - 2 vu)g0a0,] < vl [ ull
=g ¢ TH@) vo) 5o

I r

0 , a continuous

Thus g(“) is an element of HO(Qr) which defines, via (gé,u)
H (‘Qr)

linear functional i 5 on Hl(f,‘zr) for which

g

< vé .
Ilfgéll_ I ”Hl@)

r
) Co o 1
There is an element § ¢ H (Qr) such that
5 1
Caw o= (G L u e H@)
9 H Q)

Similarly for 61 > 0, 62 > 0,

Now if we take a sequence {61’} of positive numbers with lim ék = 0, we

k w00

have
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lim  ||v 7 = v( )| | = 0

k = o H Q)
r
from (6.1). Thus
5 5, 5 )

) ()k .

lim ||g «gJ“ -1 = lim v '"VJ” 1 =0
k= o H () k= o0 H(@©Q)
je—> o0 r j oo r

“k
and we see that {g "} is Cauchy in H (Qr), converging to an element

Let /zg be the distribution (also linear functional on Hl(Qr) ) associated
with g . We claim that the support of g is contained in Ejr . For, if u ¢ Cm(Qr)

has support K which does not meet Zr,then(6.4) shows that K is a subset

of QS for sufficiently small &> 0., Then

6
bg(u) = Lim £ (W) = (g ¥,u) =0,
koo 9 HO(Qr)

as we see from (6.2). Thus ag(u) vanishes whenever the support of u ¢ C‘”(Qr)

does not meet Ejr and we conclude that the support of lg lies in Zr .

In Section 4 we showed that if g ¢ H—I(Qr) and ¢ has support in §3r,

g

2<r<n, then g= 0., Thus

I
st
[
3
«Q

ol _,
H (Qr) K = o0 H (Qr)

and for every u ¢ Hl(Qr)
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O
(6.5) lim {5 (uy = (g ,u) 0 = 0.
k— o gk H (Qr)
Set u = ~v(-,1) in (6.5) and we have
6]{ n ék
0= lim (g 7, - v(-,1)) 0 = lim (% (v, ,Vi(",l)) 0 )
K — oo H Q) k= i=l ! H(©Q)
Since v‘ converges to v(-,1) in Hl(Qr) we have
n ék n
0= lim (3 (v, , v.(°,1)) ) = 2 (vo(-,1), vi(e, 1)) 0
k—w i=1] 1 HO(Qr) =l H (@)

and we conclude that there is a constant ¢ such that

0
Since vt(' ,t) is a continuous mapping from [0,2] into H (Qr) one can

show by elementary means that

(6. 6) lmo Vo, 1) - v, 1) = 0.
t t 0
5= 0 HO(@)

But vf’(x, 1)=0 for x ¢ Q;S as we see from (6.3) and the fact that vf(x,t) =0
K(Tr,0,2~m(5). Combined with (6. 4) this shows that
lim V(S(X,l) = 0, a.e. in Q

5= 0 r

and then (6.6) shows that
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in HO(Qr)' Thus (v(-,T.), v.(+,T)) = (c,0) is a zero energy state. The
conservation of energy principle then shows that (v(. . 2), vt(~ ,2)) 1is likewise

a zero energy state and, reasoning as in the proof of Theorem 4a, (3.1), (3.2)

is approximately controllable in time T = 2. Thus Theorem 6 is proved.

Remark:  The Holmgren-Fritz John uniqueness theorem [7] cited here and in
Section 2, was originally proved under the assumption that the boundary I' of
0 is analytic. The boundaries I‘r of the sets Qr constructed in Section 3 do
not have this property - they are c” and piecewise analytic. However, the

results of [7] can be extended to such boundaries with very little difficulty.

It r = Fl Uoeoe U FS, where the I“k are relatively closed in I with disjoint

r r T T r

, ) , "k , Ok |, , m, —-m _
relative interiors I“r and if each Fr is an analytic surface then (A (D = v) )t =z 0on

e} O ‘
I'rk implies, via [7], that this identity continues to hold in K(Frk,O,Z-mcS). But

o) o)
the interior of K(I“rk,O,Z—m(S) is included in the set U K(rf, 0, 2-mé) and thus
k

—-m . .
the continuous function (Am(d V) )t also vanishes in K(Fr,O,Z-—mf)), as we

need for our proof,



36

7. CONCLUDING REMARKS,

While Theorems 5 and 6 are stated for special domains Qr and a
special hyperbolic partial differential equation, it is not difficult to extrapolate
these results to systems of the form (1.1), (1.2) in more general domains {
with boundary I which includes a relatively open subset F whereon control
is exercised,

Given the critical time T = 2T. one forms sets K(Fl,O,ZT -mé) as in

0 0

the proof of Theorem 6. (See [13] for complete description). Then we form the sets

0o - {x[(x,TO) e K(I,0,2T ~-mé) n [Q@{TO}]].

ll

&
As & tends to zero the sets Qé increase. The complementary sets O - Q

decrease and we put

<

The dimension of is what is critical., If ¥ contains a smooth manifold of

dimension n - 1 the system will not be controllable in time T = ZTO. For cne

can construct a distribution ¢ ¢ H~1(Q) with properties (i) and (ii) of Lemma

1, solve

set
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~

(7. 1) vix, T ) = v(x), Vt(X’TO) = 0

and then let v(x,t) be the generalized solution of (2.2), (2.3) satisfying

(7.1). The state (v(-,2T ), v,(+,2T )) will then lie in R‘;T relative to

0 0

the energy inner product in HE(Q). If ¥ has dimension n - 2 or less one can

t

show, as in Lemma 2, that 3 cannot be the support of a non-trivial distribution
in H_I(Q) and prove critical time controllability as in Theorem 6.

It is clear that in the "typical" case 3 will have dimension less than
n-1. Infact 3 will be a single point in many instances. It seems reasonable
to conjecture that 7 cannot have dimension greater than n - 2 if T is an
analytic surface. Thus critical time approximate controllability is the rule, not
the exception,

The results of [13] and the present paper leave the theory of approximate
boundary value controllability of systems (1.1), (1,2) in a fairly satisfactory
state. However, much remains to be done. Perhaps the most important task is
that of characterizing all finite energy states which can be reached (from a zero
initial state) in a time T > ZTO using controls f ¢ LZ(F1 & [0,T]. A first step
is to consider f ¢ COO(I“l ®[0,T]) as in the present paper and try to bound

Hf“ ‘ in terms of wf(- ,T) and its derivatives. This work has already
LA, R [0, T])

been done in [5], [15] for the wave equation in one space dimension. Results
in this direction would enable one to undertake a systematic study of the applica-
bility of the quadratic criterion to hyperbolic boundary value control problems, as

has been done, e.qg., in [11] for the case of spatially distributed controls.



[10]

[11]
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