Computer Sciences Department
The University of Wisconsin
Madison, Wisconsin 53706

AN IMPROVEMENT TO DOMELKI'S ALGORITHM
by

David S. Wise

Technical Report #94

August, 1970

*Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract Number: DA-31~124-ARO-D-462.

AN IMPROVEMENT TO DOMELKI'S ALGORITHM

by

David S. Wise

I. INTRODUCTION

Domelki (1) has given an algorithm for parsing sentences of a reduced
context free grammar which takes advantage of the commands on a binary
computer which extract logical functions on strings of bits (the computer
word) in parallel. Lynch (2) has applied it to his overlap resolvable grammars
(3) and it is his version of the algorithm which is improved here. The savings
can be as much as 50% for the parsing of ALGOL~-1like languages. An extension

efficiently parses the Simple LR(1) languages as described by DeRemer (4).

1. DEFINITIONS

We shall adopt much of the notation of Colmerauer (5) which is summarized
here for flavor rather than conciseness.,

For any binary relation p on a set, let p+ be the transitive completion
of p, and p* be the reflexive and transitive completion of p .

We can define the inverse of p, p_l, by apb <=> bp~1a; if p and
p~ are represented as Boolean matrices, then p_1 is represented by the
transpose (not the inverse) of n's matrix.

For a set of symbols V, called a vocabulary, let the set of all strings

over V be denoted V*, and let \/Jr be all of V* but the empty string, ¢ . If

and n are strings then the length of ¢ will be denoted |Fl and the

concatenation of £ and m by €£n.

A context free grammar is a quadruple: G = (V., V.., s, P) where

T N

vT is the terminal vocabulary; VN n VT =0,

VN is the non-terminal vocabulary;

. = V .
From VN and VT we get the vocabulary, V VN U T

s ¢ VN is the axiom.

Pc VN X Vi is the set of rules.

The projection of P along the first co-ordinate gives the set of phrases of G.
We denote the cardinality of P by p, and index P by 1 = n < p. (an'é’n) is
the nth rule; E’n the nth phrase.
Lower case Roman characters have been used for symbols and indices:
a,b,c,d,e,x, are symbols in V,
i,j,k,m,n,p are indices (or integers}),
and lower case Greek for strings and relations.

5,6,£,m,L are strings;

a,B,v,N,p are relations.

&
P yields a relation over V+ X V denoted by — where
n—-C(<> n=06a0c and ¢ =56tg where
6,0 ¢ V¥and (a,) e P.

ale

* +
This relation extends to — and -~ as noted above.

We assume that G is reduced; that is
* +
V a eVN 3€€VT 5 a—¢
%
VbeV 30,6 eV¥ 5 s S gp5.
x *
The language defined by G, L(G), is {be VT)" | s — b}. The set of sentential
forms of G is ({6 € V¥ | s % 0}. We shall define three relations, «,i, and p,onV

which are determined by P:

a
cad &> 3JaeV_ and 3o, beV* //\\
N cd
>a—>bcdo;
a
ard & 30 e V¥ 3a—-do; 4[\
a
cpa &> 35eV* >a-— bc, /\

Note the asymmetry of A and p . Itis possible that (a,e) e P. (This is an instance
of an e-rule.) Then we must extend @, A\ and p to allow for 'ghosts"

ca@d <> 3FaeVy, 3o,0eV¥, anevl\}*‘a

a—-bcndo and nﬁs;

ard & 30 V¥, EjneVl:;

W

Q

a-- ndo and nf—

w

cpa & 3J&eV¥, 37 €V§

a--0cn and nie.

4

Thence we define the relations P and E:

aPb &> ap*a A*p;

aBb &> ap¥a A¥p.
The relations «,X ,p, and B are read "adjacent to, " "leftderives, ""right derived
from! and "by" respectively. We assume that all these relations are extended
to the set V.U {+ , 4 } in the standard manner, where + and 4 are the left
and right endmarkers not in V introduced by an implicit 0th rule in P.

(€O=f—s—!). Let T = max ,gn,.

0<n=<p

From any string 71 and any integer 0 < i =]n[we adopt the notation
i:[n] for the prefix string of the first i characters of 1, and [n]:i for the suffix
string of the last i characters. Thus 0:[n]=e=[n]:0 and |n| :[n]l=mn. If i
is out of bounds the meaning is undefined (4), and we shall take relations on such
undefined arguments to be false.

Parsing is the mapping of a sentence 1 € L(G) onto the derivation tree whereby
S x 7. In all the following read "parse any sentence of a grammar" for "parse a
grammar. "

We redefine Lynch's overlap resolvable grammars (3) by considering members
of PX PX {0=<1i=< J}. Letthe triple (m,n,i) denote the element ((am,ﬁgm),
(an, é;n),i) from that set, and consider only those triples which satisfy one of the
four following conditions:

D oJE_[=1>0= | |;

2) |& | =i=0=]€ |

3D e |28 >i=0;

4)

Eql > 1> 0 JE |:
and the overall restriction (relevant to 2 and 3 only) thati = 0 A I&jm | = [En[implies

m < n.

Then we shall below define (m,n,i), meeting one of these conditions, to be an
overlap when "lining up" é‘n with &m, so that Em has i of its characters
extending to the right beyond the end of L‘in, causes the "overlapping" characters

to match.

M-

fn

Conditions 1 and 2 define overlaps completely; since Ejn = g the match
is vacuous. A triple satisfying condition 3 is defined to be an overlap when
[éj,m] :]én[= &n. A triple satisfying condition 4 is defined to be an overlap when
either

LNk [[&m]:(lﬁnl t] =€
or (e l-D:[€ T=1¢] (€ -1
(Note that one of these two disjuncts will be false because of an undefined
operand, unless]&m] = [&n[+ 1 in which case they are identical.)

We are interested in resolving every overlap of a grammar. An overlap is

resolved if it is resolvable on the right or resolvable on the left. Before defining

left resolvability we will further elaborate and illustrate the four conditions:

£
- “m —
la)]gm]>l £ & i — i
N Em .
1b) [€ | =i ' : A
m ISES 1 >
Z') m<n © ;

| em J
38) €| > g, ' Jlmuumgmummnm ?
n
! ﬁm o
3b) £ _[=]& [, m<n JiﬂﬂﬂUéﬂlJLUﬂﬂJﬂlLUlL ;
n
6l > 18] —
4a) & | > & | +i g S
m n J‘m‘[%lim“ﬂé————-l——%
1 E)m i
4b) € | =g | +1 IO, s 5
fn
€I'Tl
40) [E_| < [| +1 ; giHIIHHHIHH:é___i_____)’
n

Aselaborated above 1b, 2, 3b and 4b are even left overlaps, and will

be covered only by the first disjunct in the predicate in the definition below.
Conditions la, 3a, and 4a are one form of uneven left overlap to which only the
second disjunct applies; condition 4c is an uneven left overlap covered only by
the third disjunct.

An overlap (m,n,i) is defined to be resolvable on the left if

|+i A a A a " a)X a
n m n

— (& | = [€

vl]:

i A
gn| +i+1)] aA a
P
v . . - A)
Bfle T:()g | -1+ D] eXa)
Note that left resolvability is described without regard to the effect of &-rules;
i.e. @ and X are used rather than @ and A. In a left to right parse all

e-rules to the left of a phrase will have been parsed before the left resolvability

of the overlaps on that phrase are of interest.

Conditions 2 and 3 are even right overlaps; conditions 1 and 4 are uneven

right overlaps. Resolvability on the right may be concisely stated once we

describe a predicate:

R(m,n,i,j) = j:([&_J:i] e A

(=5 a BB ' a

1

m
va BETTH e Ta-n.

The interpretation of this predicate will be understood from the illustration

of the overlap (m,n,i) and the knowledge that @ =< j < i:

£
n
f,@ i @
e b '
4 j —5>
. — J C
where j:[[ﬁm]:i]fi E.

The character of interest in phrase im is ¢ = l:[[ém]:(i"j)]. Everything
between the end of the match with E‘n and ¢ could possible disappear (ii g) in
a sentential form, so that ¢ could appear adjacent to the end of the match. If
this uneven right overlap occurs we are interested in the validity of ag EX*"lc.
When i = j,c is undefined. This indicates an even-right overlap whose
resolvability will hinge upon anﬁ Bml am. For any one overlap, {(m,n,i), we shall
check R(m,n,i,j) forall j, 0 <j < i, because the various substrings of {;m

following the match with éj,n may each have potential to disappear in a sentential

form.

An overlap (m,n,i), is defined to be resolvable on the right if

= 3j(0=<j=i A R(m,n,i,j))

A grammar is generalized overlap resolvable (GOR) if all overlaps are

resolved. It is restricted overlap resolvable (ROR) iff it is GOR and has no

g -rules. Lynch's overlap resolvable grammars are the ROR. In testing for
ROR we can replace B and A by B and > in the above, and we note that
conditions 1 and 2 never arise and that the definition of right resolvability of
(m,n,i) collapses to -~ R(m,n,i,0).

In proposing languages to test for the GOR property, it is clear that over-

laps on e-rules (satisfying condition 1 above) occur "everywhere." Therefore,
inclusion of even one e-rule will generate many overlaps and decrease the

chances of resolving every one. It is known how to eliminate e-rules (6), but
semantic associations with rules may make this alternative undesirable compared to
more powerful parsing techniques. So the GOR definition might be useful, but in
practical situations we shall find the ROR easier to create.

The algorithm described below can be modified to parse much weaker (larger)
classes of grammars, but in its basic form it can parse any GOR grammar, and even
some non-GOR when the only unresolved overlaps satisfy condition 4c; e.q.

s — tra

s — pbhg

a — ig

b—ri.

I1I1. THE ALGORITHM
In describing the algorithm the naming conventions of Lynch (2), whose method

appears below as ALGORITHM 2, are emulated. We alter our previous view of the

rules of P. We had (an,gn) € P forl < n < p which we picture as

so we have

a — b lb

-..b
n n, 1"112 nllent

Now we shall reconstruct the phrases of P, padding with some e ¢ V on the

left of every phrase. Let

Thus, we now picture a new set of rules p' = {(a.n,nn) \ (an,{ﬁ) € P}. Then the

n

following three Boolean matrices are calculated for G.

R =1 S a Px
X,n n

for X€VTU[—4};15n<p.

. L =1 &= x aA*a and j=7- |£_|
J x,n n — n
for xe VU {FrH]};1<n=p 0= j<].
M =1 & c =X
J x,n n,Jj

for xeV;1 <n=<p; 1 <j<].

R contains information on right - compatability; L describes left compatibility and

phrage length; M containsg information for matching the phrase. In the following

X0 will refer to the next character on the Input stream which is ingpected bhul not

removed from that stream.

ALGORITHM 1 uses a stack indexed by i to store matrices S% , where
j :

1 <j=7J and 1 € n < p, defined at steps 1 or 5.

The algorithm follows.

1)

2)

3)

4)

10

Set i: = 0;
X = the left end marker;
o)
:= L for < j< < < p;
Sj,n ¥ —.n or 1<j<7Jand 1 =sn<p
= A
Tn ILG—IH RX n for 1 <nsop

If any Tn =1 goto 7.

Note: These elements of L are referenced nowhere else. Only OL .0
might be repeatedly accessed, at step 5. So space can be saved if these
unused elements of L indexed by - are not retained after this initializa-
tion.

Set i:=1+ 1, stacking Si”1 (and xi_1 it d»sired).

Let X4 be the next character on the input stream, which is removed from
that stream. If X, = — (right end marker), quit with (hopefully) i = 2 and
%. = s which indicate a successful parse.

1

Compute for 1 =n <p

1f, for all n, Tn =0 go to 5.
Let n be such that Tn = 1. We have identified a parse of

°n T T1-le 4 i~ °n

Perform any desired action associated with that parse.

5)

6)

11

H

Set i:=i+1- 1gni;

X, :=4a_;
1 n

Go to 3.

Compute for 1 <n <p and 2 < j <J-1

S PE A ;
Qn Sl,n o X, ,.,n IMX,,n v le,,n’
i-1 i i
_ i=-1 A
S + =38 M Y :
j.n j-1.,n i x,.n i"x,,n
i i
. = v gi |
Qn' Qn S]‘,n

if all Qn = 0 an error has been found, unlessi=1, x, =s, and x, = —3

1 2

in which case quit successfully.

For 1 < n< p set

T ::]L A R
n X, n X, g0

and if all Tn = 0 go to 2.
Let n be such that Tn = 1. We have identified a parse of a, - € between
x, and x, ..

i i+1
Perform any desired action associated with that parse.
Set i:=i+1;

X, s =a_ .
i n

Go to 3.

In the pathologies when J=0 or J=1, the computations at steps 3 and 5 may have

undefined operands and are taken to be 0.

In order to understand the algorithm and its use of the stack, it is only neces-

sary to interpret each bit in an S matrix:

L H -
S, o] if and only if lﬁn\ zJ-1

12

A
and xi_lén‘_l_I__j @ n

and the two strings

Birl-lg |47y Twe-le | 47—

b b
n,l n,2 bnllﬁn}‘l‘*“j

are identical.

It is possible that these two strings are identical and empty (Egnl =7 - j), in which

case S§ n indicates left compatability and that a match may just now begin. If
all of Si = 0 for any i, then all Qrl = 0 at step 5. This situation is an error because
no future phrase match could ever include the current X, so the parse tree can never
be completed. The algorithm will quit at step 2 when s)\+s and at step 5 otherwise,
where s is the axiom.

In the particular case when G is ROR several simplifications occur. The
relation E reduces to B and steps 6 and 7 are replaced by "Go to 2." Obvious
simplifications appear in step 1. These eliminate the need for]‘Lx,n for
xe V U{r}, 1 =ns=s p.

At steps 4 and 7 at most one of the Tn can be non-zero. Hence we get a
unique parse tree. However, we can make the algorithm more efficient (as Domelki

described) by adding more entries into M and sacrificing the uniqueness of n at

step 4.

Consider the strict partial ordering on V.. induced by the L relation:

N

-transitive (clearly)

—anti-symmeftric (if b *. a and a * b then the reduced grammar
is ambiguous and hence not GOR)

~irreflexive {similarly)

13

Now define

M = M vV (M Ay iy
] x,n j %X.,n iy } Y.
YeVN
=, v M Ay
11MX/1’1 \/ ('M Y X)

j Y
erN

If weuse M in place of M in the algorithm, there may be more than one value of
n such that Tn =1 at step 4. It is still true that each choice of ns Tn =1

identifies a valid parse, but the most powerful parse is chosen by selecting n

such that

£ [>1
n
or, if not possible, such that
%
a - a for all T =1
n m m

It can be seen that if any other value was chosen the algorithm would loop through

steps 4 and 3 until the described value of n was forced.

We, therefore, define a strict partial ordering on P which we shall call v :

(@, &)Y, E) & [E|>[¢

+
r = and a —a
o le 1= e | Ea
Then we pick the most powerful rule to parse on the basis of the extension of

to a total ordering.

1v. IMPROVEMENT
For comparison it is necessary to state Lynch's version (2) of the algorithm

in a manner parallel to that above.

14

He reconstructed the phases of P, "padding" with some e ¢ V on the right

of every phrase. Let C:n: g‘n ej_le‘n! = dn,l dn 2---dnlI. So d’n,]’ = bn,j for

1<j=< |£,] and d y=e for l&n!<5ST' Then

1

po= [(an’ Cn) | (an'e’n) €P}.

We then construct three matrices

R =1 & a PBx
x,n n

for erT U {—};1=n= pas before.

L =1 <& xara
x,n n
forxeVu {H—};1snsp
M =1 & d =x
] X,/ n,j
forerU[e};lsrlSp;lst]
Then ALGORITHM 2 proceeds
1) Set S;) =0 for 1<j<J] and 1<n =2 p;
I3 e
i:=0;
X, = .
i
2) Set i:=1+ 1.

Let X, be the next character on the input stream which we now remove from
that stream. If Xi = -1 (right endmarker) quit.

3) Let Xi+1 refer to the following character on the input stream, which we peek

at but do not remove.

4)

15

Compute for 1 <n<p and 2 <3i<7

= A % M ;
Sl,n Lx._l,n (1 Me,n 1 X, n)
i -1 i
= ~ vV 8. N M :
SJ,n S]—l,n j Mxi,n j-1.n J] o em
T P A M v s M| A R ;
n T"-l,n] Xiln .]-—‘lln]- e’nJ Xi+1’n

IfallTn=O go to 2.

Let n be such that Tn = 1. Perform any action associated with a parse of

an"gn
Set i:= i+1-|E |;
n
X, ¢+ = a -
1 n'
Go to 3.

The same comments about ROR grammars and the M matrix and Y relation

applies to this form of the algorithm--indeed, the latter antedate it.

The power of the improved ALGORITHM 1 lies in viewing the padding of

e as on the left of the phrases. This resultsin phrase matches for all rules ending

i

at the S & [OW so that no cascading to collect these indicators is necessary.

]

16

A M term in the second formula of

. . i
(This cascade is effected by the Sj—l,k iMe x

step 3 of ALGORITHM 2.) Since the core of the algorithm is computing the S
matrices, this improvement results in two significant time savings:
1) Since T can be computed for X, before Sl, we save the computation of

one S matrix (the last) for every non-& phrase parsed. In a language like

[N (93]

ALGOL where the average phrase parsed is of at most length 4, we have a
factor improvement or better.
2) In each computation within step 5 we save one logical operation (and indexing
associated with the operand). Depending on the computer we can save per-
haps a factor of % for every computation of S.
Hence we can expect around @ 50% time improvement, depending on the grammar
and machine.
However, there is a cost in space. While M is reduced by the elimination
of provision for e, L is expanded to be as large as M. This virtually doubles the
space requirements for constant tables. The stack of S matrices is one matrix shorter.
The entire value of the algorithm and its predecessors is that each matrix entry
in L,R,M,T or S is only one bit, and that in a binary computer word we have space
for many values as we let n wander 1 < n < p. The computations here are all done
in parallel with respect to n, so that this packing takes advantage of the parallel
logical operations (and and or) on full computer words. Further, if we order P as
suggested by v, the choice of the most powerful rule to parse becomes that of finding

the high order one-bit in the few words representing the T vector.

17

V. EXTENSION TO SLR(1)

If we sacrifice this parallelism with respect to n, the algorithm can be
easily modified to handle the weaker Simple LR(1) (denoted SLR(1)) grammars as
formally defined by DeRemer (4). For k > 0, LR(0) ;Z SLR(k) ? LR(k), where these
are the three classes of grammars satisfying Knuth's LR(0), DeRemer's SLR(k), and
Knuth's LR(k) conditions respectively (7). In terms of the parsing discussed here, in
SLR(k) the left compatibility check (effected by the L matrix in ALGORITHM 1) is
replaced by a verification that the string already scanned is a legitimate prefix
for some sentence in the language. This amounts to a test for the LR(0) property,
which is accomplished in the modification below by abandoning the @ relation as
part of the phrase-match starter in favor of a stronger "enabler" based on the string
already scanned. The independent right compatability check of k characters
beyond the end of a phrase match is precisely that effected by the R matrix of
ALGORITHM 1 when k = 1.

The following five Boolean matrices are claculated from G.

18

Hyn= ! =) =I-|€n|
for 0<js];1<n¢<p.
Nj,n:1 N cn,j+1 €VN

for 0< j<J;1<ns p.

R and M, identical to those of ALGORITHM 1, contain information on right
compatibility and matching. L has been redefined to describe left derivability;
H gives the lengths of phrases indicating the height of the row in S where a
match should begin: N gives information about the next character being sought
for matching.

The non-zero entries in the S matrices will have the same meaning as in
ALGORITHM 1 except that every entry indicates a match has started. The I‘; vector will

enable E’n to begin matching on Xi , rather that allowing an entry in

+1

to indicate a match may begin with x,

i
st i
j=1& l.n i+l

ALGORITHM 3, using a stack indexed by i for the Sl and E' matrices

proceeds as follows.

1) Set i:= 0;

Ei = LS n for 1 < n< p where s is the axiom of G;
SO =0 for 1 = j<J,1=<n¢< p;
i.n ' !

Go to 6.

2) Set i:= i+l stacking Sl_l and El—l.

if X, the next character from the input stream, is -4 (right end marker)

then quit.

19

3) Compute for1 sn < p

i-1 i-1
. H
To= @ >~ 0 Y 5o N My

1f, for all n, Tn =0 go to 5.

4) Same as step 4 of ALGORITHM 1.

5) Compute for 1 < n<s p and 2 < j <J-1

E° = 0:
n
0 =5 = gl am AM
n 1,n n o,n 1 Xi’n
st = @7 oAw v gl) A M .
j.n n j=1,n ji-1,n j xi,n
i
.= v
@n = O S.J‘,n'
Whenever S% A N, =1 thenfor 1 sm<p set B 1= B v oL
j. 0 N m m

c ,m’
n,jtl

If all Qn = 0 an error has occurred, unless Xi+1 =4 ,i=1 and X, =8 in which

case quit successfully.

6) For 1 < n< p set

and if all Tn =0 goto?2.
7) Same as step 7 of ALGORITHM 1.

The same comments about ROR, 1\7, and Y described for ALGORITHM 1 apply

to ALGORITHM 3 as well.

The parallelism disappears because of the information required to compute the

E vector at step 5. If, as suggested, we have designed the matrices so that

20
traversingarow, 1 < n< porl =< mc< p, traverses the bits of only a few computer

words, then finding ¢ requires precisely locating a bit within those worcs.

n,j+l

In ALGORITHM 1 it was necessary to locate a '1' bit (the high-order one if M

was used), but only after it was certain a parse had to occur. Because all
machines can trivially test an entire word to determine existence of 'l' bits (often
called a "jump on zero" instruction) that algorithm can run through all steps but

4 and 7, the parsing steps, without bothering where '1' bits exist. However,
ALGORITHM 3 must look up the precise position of many 'l' bits in each S matrix.
This intermediate work will slow it considerably, but since there is a much stronger
left test (for LR(0) property) we can hope that each Si matrix will remain sparse,
certainly much sparser than the Si of ALGORITHM 1 if it were run instead.

At least there is some space saving as L returns to about its size in
ALGORITHM 2 and N and H are not too cumbersome. For stack control we can
view Ei as but another row of Si.

DeRemer defined SLR(k) in terms ot the ability of his parsing techniques.
Therefore it is not startling to suggest, in light of the closing statement of section I

above, that ALGORITHM 3 is sufficient to parse a grammar if and only if it is SLR(1).

21

APPENDIX
An example of a GOR grammar and the calculations necessary to prepare
for ALGORITHM 1 with a sample parse traced.
Gl = ({+.-,%,(),2} , {(s,t,f} , s , P)

where P is the set of rules

0 - s =
1 [s , s + t] ,
2 [s , s -t .,
3 [t , t %= f] ,
4 (£ ., (sl
5 [s , t |
6 [t , f 1 .,
7 [f ., =z 1 .
8 £, e 1)

P is listed in the linearorderdetermined by Y . The O0th phrase is included for

completeness.’ For Gl p=8 and J= 3, G, is GOR; omitting rule 8

1
would make it ROR.
In the Boolean matrices below the following convention are adopted: If a

matrix is labelled ¢ , we will represent 6, 6%, 5, and 6% all in one matrix by

entering either 0,1,%,=, or # with meanings as below.

22

table of
interpretations
matrix
wanted
label appearing s o6* 6 6%
0 0 0 0O 0
1 1 1 1 1
* 0 1 0 1
= 0 0 1 1
0 0 0 1

With this table we can interpret each entry in one of the following tableaus

to get any one of the four matrices it may describe.

Matrix of «a

0

0

0

24

f + - (
= i
1 0 0 =
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Matrix of A, by ?*, and i:‘: for G1

0

25

3*

Matrix of p,

+ - : (
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

5, p¥, and p for G

1

26

+ - ' (
1 ! 0 0
1 1 1 0
1 1 1 0
= = = 1
= = = 1
= = = 1
= = = 1
1 1 1 0
1 1 1 0
= = = 1

Matrix of B and B for Gl

27

The (resolved) overlaps of Glz

Triple meets condition resolvable on
(1,5,0) 3a left
(2,5,0) 3a left
(3,6,0) 3a left
(1,8,3) 1b right
(1 18/2) la left
(1,8,1) la right
(2,8,3) 1b right
(2,8,2) la left
{2,8,1) la right
(3,8,3) 1b right
(3,8,2) la left
(3,8,1) la right
(4,8, 3) 1b right
(4,8,2) la right
(4,8,1) la left
(5,8,1) 1b right
(6,8,1) 1b right
(7,8,1) 1b right

28

2 3 4 5 6
1 1 1 1 1
! L 1 1 !
0 1 1 0 1
0 0 0 0 0
1 1 1 1 |
0 0 0 0 0

R matrix for Gl derived from é

29

xeV._ = L

N] x.,n

L matrix for C;‘x1

= 0 since G1 is an operator grammar.

L
X, N

j=20 i=1 j=2 j=3
n
X 12345678 12345678 12345678 1234567
S 000000C0C0O0 00000000 00000 0 000000C
t 00000000 000 000 0 000 0
f 0000 00 0] 000 000 0 0000000
+ 001‘10000 00000000 00000 0 0000000
- 00110000 00000000 00000 0 0000000
* 00010000 00000000 00000 0 000000CO0
(11110000 00000000 000601 . 0 0000000
) 000000C00O0 00000O0O0O 00000 0 0000000
Z 00000000 00000000 00000 0 0000000
(o 11110000 00000000 00001 0 0000000
Note: L = 0 since G, has no rules of length 2.

17%x,k 1

30

1

M
x,n
J:]_ J:Z J:3
n
X 12345678 12345678 123456178
S 11000000 0001000060 00000000
t ==100000 000=20 00 11001 0
f ===00000 000= 00 ==10=100
+ 00000000 10000000 00000000
- 00000000 01000000 00000000
% 00000O0O0O 00100000 00000000
(00010000C 00000000 0000000C0
) 00000000 00000000 00010000
Z ===00000 000=0000 ==00==120
M and M matrix for G, . M is used in the example.

31
Example sentence to be parsed by ALGORITHM 1 using M and Gl:

-k (- 2z) + A

The correct parse, and derivation tree appear below.

32

STUT]

0000 oooov

Aoooo 00TT

+

I

S

o

"1 WHIMODTIY 49 ﬁo 01 BUIpPIODOR +(Z~-)x S0UIUSS BY} JO 9sied

Ao:o oooHv
0000 0000

Aoooo oooov
0000 0011

= _S

HHm

‘5 61¢€

\\lll;l\wﬁ

Aoooo ﬁooov - g

0000 00IT ¥
mt

~¢ 1&/

1 63 @w osted uayj pue 3 01 ww osied sueaw® """

2

011
0 oo~ov - g

Aoooo 0000 S

0000 Hooov - g
0000 O01T 14

s g 18

(

AOH: oooov - g
0000 1000 €

Aoﬂoo o~oov - g
0000 0000 4

% = °x IndUT WOX 4 peal SURDW®**° " x

(0000 0000, _ ¢
0000 OTIT |

1918

0111 oooov

Aoooo 0000

-

o]

S

1)

2)

3)

5)

6)

7)

33

Bibliography

Domelki, B. Algorithms for the recognition of properties of sequences of

symbols. Zhurnal Vychislitel'noi Matematiki i matematicheskoi Fiziki

5,1 {1965), 77-97, translation: USSR Computational & Mathematical Physics

5,1, Pergammon Press, Oxford, 1967, 101-130.

Lynch, W. C. A high speed parsing algorithm for ICOR grammars. Andrew
Jennings Computer Center, Report No. 1097, Case Western Reserve University,
Cleveland, 1968.

Lynch, W. C. Ambiguities in Backus Normal Form Languages, Ph.D. Thesis,

University of Wisconsin, Madison, 1963.

DeRemer, Franklin Lewis. Practical translators for LR(k) languages. Project
MAC TR-65, Massachusetts Institute of Technology, Cambridge, 1969,

(U.S. Dept. of Commerce Clearinghouse, AD 699-501).

Colmerauer, Alain. Total precedence relations. J.ACM 17, 1 (January,
1970), 14-30.

Hopcroft, J. E. and Ullman, J. D. Formal Languages and their Relation to

Automata, Addison Wesley, Reading, Mass., 1969, 62-63.
Knuth, Donald E. On the translation of languages from left to right. Information

and Control 8, 6 (December, 1965), 607-639,

