The University of Wisconsin
Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

A GENERATIVE CAI PROGRAM THAT
TEACHES ALGEBRA

by

Carol Peplinski

Technical Report #90

April 1970

A GENERATIVE CAI PROGRAM THAT TEACHES ALGEBRA!
by

Carol Peplinski2

Introduction

Computer-assisted instruction is a field with many and varied possibilities,
several of which are only gradually becoming apparent. One of these is a system
which generates questions to be asked of a student, then compares the student's
answer with its own and tells him whether he is right or wrong. This sort of system
allows the student to do as many problems as necessary to master the subject
matter in question and further gives him immediate knowledge of results. Pé‘rticular
problems, answers, and branches do not have to be pre-programmed. Instead, the
computer computes the problem, and computes its answer., Thus a far greater
number of problems, and of branches, are potentially available.

A generation program can be built most easily when the subject is rather
basic, with obvious logical connections. Uhr1 2 describes a program which gen-
erates elementary arithmetic problems as well as problems involving simple
transformations, e.qg., from one language to another. Suppes3 gives a good example
of the more traditional approach, describing a system giving elementary school
children practice in basic relationships between numbers.

This paper describes a drill and practice system which generates problems
at a somewhat different level, first year algebra. It does not attempt to teach the

student from the beginning, but rather assumes that he has heard an explanation of

1'I’Irnls research was supported in part by NSF grants GP-7069 and GJ-583.
Now at Bell Telephone Laboratories, Chicago.

how to do the problems in question. It offers its own explanation only when the
student has given a wrong answer. If he never answers incorrectly, the student
will be given no explanations. .The program aims to give its users practice in
working algebra problems with explanation when necessary, but does not present
an entire algebra course.

Program Description

Qverview

The system begins by asking the student for his name, then follows with
questions regarding the type of problem the student desires to work. He replies by
typing either one of several designations of type or the word OPTION, which results
in a description of kinds of problems generated and their respective calls. When
the student has made his choice, the computer generates an algebra problem to
which it expects an answer. As soon as it has received one, or in the case of
quadratic equations, two, it compares the student's answer to that generated along
with the equation. If they agree, another problem is generated; if they disagree, the
program explains a method of solution and generates another problem. After a pre-
determined number of problems (five at present) have been worked, the program
compares the number right to the total number generated. If eighty per cent or more
of the problems have been solved correctly, the program generates more difficult
problems, degree of difficulty being determined by the size of numbers in the equa-
tions. This continues until eighty per cent of the most difficult problems of the
specified class have been answered correctly. The student is then asked whether
he would like to do more problems; if so, he can type the appropriate call and

continue.

The teacher supervising the use of the program has the option of writing
his own explanation for any given type of problem and inserting it into the running
system at any time. The system then presents this instead of the built-in explana-
tion.

An internal record is automatically kept of each student's success with each
kind of problem. The number done correctly is stored under each student's name,
so that the information is available for the teacher's scrutiny at any time upon
reception by the computer of the proper calling word, RESULTS.

Detailed Description

The system as it now stands generates either linear or quadratic equations.
The linear equations can be divided roughly into two groups: those with x-térms
on one side of the equals sign and those with x-terms on both sides. When there
are x~-terms on only one side, there is also an option of having the answers
limited to integers. In all types of linear equations, the student determines how
many x-terms will appear on each side of the equals sign. 1f the number chosen
is greater than 1, the student will gain experience in combining terms. If the
number is 1, the problem will be of form ax+ b =corax + b = ¢cx + d, depending
on the option chosen. In any case the program begins by generating problems with
only one x-term on each side and gradually adds more as the student solves the
easier ones, until finally the specified maximum has been reached.

All of the guadratic equations now being generated by the system are solved
by factoring into a form specified by the call. Options include equations to be

solved by taking the square root of both sides or by completing the square on the

4
left and then taking the square root, equations which are the difference of two
squared terms, and basic factoring problems of the form ax2 +bx+ c¢c=0. Ineach
case, the coefficient of the x2 term may be specified to be 1, or the equation may
require combination of terms to be reduced to one of the above forms.

As soon as the program has identified which type of problem it has been
asked to generate, it branches to the appropriate section of code. If it is to generate
linear equations, it sets the maximum size of coefficients, then calls the function
GENERATE, which returns a combination of x-terms and constants obtained from the
random number generator together with the sum of the x-terms and constants. Each
output of GENERATE may be used as one side of an equation, so the function is
called twice if the student has specified x-terms on both sides of the equation,
once if on only one side. If there are x-terms on only one side, a random number
is generated for the other side. The program keeps track of how many x-terms there
are to be on each side, beginning with one and gradually adding them until the
specified number has been reached.

The returned totals of x-terms and constants are then used to compute the
answer to the problem. This is stored in four separate variables, one each for the
sign, the integer answer, the numerator, and the denominator of a fraction. After
the answer has been computed, the problem appears before the student on an output
device. When the student's answer has been read, it too is broken into four
variables, each of which is then compared to those calculated by the computer.

If all agree, the student is told he has obtained the correct answer (the actual

wording of this varies from problem to problem in a random manner) and the program

branches to generate the next problem. If either the sign or the integer portion of
the answers disagree, the program branches to an explanation immediately with
the function comparing the answers returning the value of the correct answer in a
form suitable for use in the explanation. Disagreement between the fractional
portions of the answers requires further tests since the computer often arrives

at answers which are not in lowest terms.

The explanation given is basically the same no matter what kind of linear
equation has been generated. Tests are made, however, so that sections irrelevant
to the specific problem are omitted. For example, if there is only one x-term on
each side, the instruction to combine terms on each side of the equation is bypassed.

The section of code which generates quadratic equations begins by sétting
a series of indicators which tell the system which combination of options has been
chosen. For example, if the call is DIFFSQSIM, problems which are the difference
of two squares with the coefficient of the x2 term not necessarily 1 and require
simplification before they can be solved, an indicator is set to show that the
problem is to require simplification. Another, the "square" indicator, says that
both answers are to have the same absolute value. Others indicate that the equation
is to factor into a sum and a difference and that the coefficient of x2 need not be 1.

After all indicators have been set, the program begins generating the equation
itself. It chooses numbers a,b,c, and d at random within the constraints of the
indicators so that the equation is of form (ax + b) (cx + d) = 0, then multiplies out
the left side. In the example DIFFSQSIM, it would choose a at random (absolute

value less than the upper limit placed on coefficients). Then, since the "square"

indicator shows that the answers are to have the same absolute value, c is set
to equal a. Next b is generated, and since another indicator shows that the
answers are to have opposite signs, d is set to equal -b, and the numbers are
multiplied to give the left side of a quadratic equation, a?‘x2 - bz. The variable
holding the right side of the equation is set to 0 and both answers are calculated
by a function called for the purpose. They are returned in the same four variable
form as the answers to the linear equations.

Then, since an indicator shows that the equations are to require simplifica-
tion before factoring, the program branches to a section which adds random amounts
to each term on both sides of the equation, leaving the answer unchanged.

Any one of the calls would be treated in a manner similar to DIFFSQSIM.
SIMPLIFY does not require that both answers have the same absolute value, so b and
d would be chosen independently of one another. Also, a would be chosen at random
with ¢ equaling 1. Later ¢ would also be chosen at random. SQSIM would be
identical to DIFFSQSIM except that both answers have the same sign as well as the
same absolute value COMPLSQSIM would involve the subtraction of the square of a
number randomly chosen from the left side of the equation with appropriate adjust~
ments to the stored answers.

When the equation has been placed in the form necessary for output, it is
compared to the last equation presented to the student and replaced by another equa-
tion generated in its place if it is the same. This process is necessary mainly in
the case of simple equations where both roots have the same absolute value since

they require only one random number and the random number generator may easily

produce the same number twice in succession. After the equation has passed this
test it is presented to the student.

The process of checking to see whether the student's answers are correct
is identical with the one used for linear equations. If a wrong answer is given,
however, there are several possible explanations, depending on which kind of
problem is being worked. After like terms have been combined, the program
branches to explain what kind of problem is in question and how it can be recognized.
The equation is factored, answers are given, and another problem of the same
type is generated.

An explanation for each sort of problem generated is written into the system
and will be used in response to an incorrect answer in the absence of other s‘peci—-
fication. If the teacher supervising the drill and practice is unhappy with a par-
ticular explanation, he may input a new one for any given type or types of problem.
The revised explanation consists of several lines, each of which may be labeled or
unlabeled, and may consist of a combination of literals, which will be printed
exactly as they are read, and certain specified variables depending on the type
of problem with which the explanation is to be used. These variables consist
mainly of the various values of terms in the generated equations and the answers
to them. It is also possible to erase an explanation, reverting to that written into
the system, by reading in a null explanation.

To enter a new explanation, e.g., a new explanation for FACTOR, equations
of the form a:x:2 + bx + ¢ = 0, one first types "#*FACTOR" when the machine asks for

the name of the type of equation to be generated. The "*" tells the system that

what follows is to be a changed explanation rather than a call for it to generate
problems. "#FACTOR" must be followed by at least two spaces. The asterisk
must be found in column one and no intervening spaces should occur. The
desired new explanation then follows.

If a line of the new explanation is to be labeled, "++label++", where label
is some name, precedes the explanation proper. The label must contain at least
one alphabetic character. Whether a label is used or not, the main body of the
line of explanation follows, the end being marked by "//". Each line consists
of a combination of literals and variables with the literals enclosed by quotes,
e.g., 'THE ANSWER IS' SIDE1 (SIDE! is a variable name.) Anything inside the
quote marks is printed later exactly as read. Literals and variables may be fnixed
in any order within a line. Literals may be broken across cards but not across
lines. Each line must be a complete unit. Variables must be followed by a space
to mark their ending, but there is no real need for them to be preceded by one.

The variables allowed depend on the type of equation the input is to explain.

In any sort of quadratic equation, variables to be used are

A
B where the equation is
C (Ax + B)(Cx + D)
D
FNT equal to A-C, the coefficient of xZ
MID equal to B-C A.D, the middle term
ENDI equal to B* D, the last term
NI1 value POSI for MID = 0
NEGA for MID < 0
SIDE1

SIDE2 the two solutions to the equation.

9

In a linear equation allowed variables are

XLTOT total of x-terms on the left side

TOT total of constants on the left

XRTOT total of x-terms on the right side
RTOT total of constants on the right

XTOT total of all x-terms

CONTOT total of all constant terms

SIDE1 the answer

OUTI1 left and right sides of the equation as
ouT2 originally generated.

In both sorts of equation, the variable QUOTE is also allowed, providing a means
of inserting a quote mark in a literal. The functions SIGN and MAKNUL may i)e
called, with SIGN putting a + or - sign as appropriate in front of a constant or
variable and MAKNUL returning a null value if its argument is 1, the value of its
argument otherwise. (MANKUL is used to suppress the 1 in "1x").

A line to be printed, if read in on cards, may extend over as many cards
as necessary. Also, as many lines as desired may be punched on one card. The
end of the entire explanation is specified by "#%%" starting in the first column
of the last card.

To eliminate an explanation which has been read in and return to that
supplied by the system "#%%" should occur immediately following the two spaces

required after the name of the equation type.

10
Results

The system as so far described seems to handle the problems inherent in
generating correct answers for its problems and then distinguishing right and wrong
answers given it quite well. In simple problems where the answer is an integer,
recognizing the correct solution presents no great difficulty. However when the
answer is a fraction the situation may become more complicated. If the answer
generated by the machine is not in lowest terms, several tests beyond simple
comparison are necessary. The two answers required in a quadratic equation also
complicate the situation since the program must be prepared to recognize them in
either order and must not be confused if one answer is correct and the other is not,
Figure 1 gives a partial listing of kinds of problems available as they are described
to the student. Figure 2 presents interactions with simulated students, Figure 3
illustrates the use of the explanation revision option, and Figure 4 gives an example
of the form in which results are presented to the teacher.

Possible Improvements and Extensions

Several improvements to the system as now written are apparent. Something
should be done to make sure that no equation reaches the student with all of its
coefficients divisible by the same number. For example, the equation generated
by FACTOR, 5x2—5x—-30=0, should be reduced to xz-x—6=0. It may be desirable to
have a few equations of this sort left unchanged, but in that case the explanation
should begin by instructing the student to divide both sides by 5. At present, all
explanations factor the equations into the form in which they were generated. The

example would thus be factored to (5x+10)(x~-3) rather than (x+2)(x-3).

11

The need for another similar improvement becomes apparent in many cases
when the correct answers are fractions. While the program recognizes fractions
in lowest terms as correct, it does not reduce its own answers. Some routine
should be added to make sure that all fractions handled have been reduced, thus
forcing the student to reduce his answers.

Shortcomings also exist in the explanation revision routine. At the present
time, the system does not allow branching within the explanations read in. Thus
no use is made of the label. The explanations are stored line by line in a manner
which should make branching easy to implement, but the tests necessary to recog-
nize branching statements have not been programmed. This will have to include
some sort of conditional branching, at least testing of equality, less than, a}ld
greater than.

It is possible to write explanations for the equations generated without
branching without much difficulty. It is, however, more efficient to use part of
the same explanation for several different kinds of equations. TFor example, once
a quadratic equation has been factored, solving for the answers is the same no
matter what the equation originally looked like, and has much in common with
solving linear equations once their terms have been collected.

Another useful improvement would be a check for syntax errors in the users'
explanations. At the moment, if a user were to break a literal across a line the
program would go into an infinite loop. Most errors in demarkation of labels or
lines will eventually lead to some sort of error message, but mistakes within a
line may not stop the program at all, The addition of branching would open pos-
sibilities for many more kinds of errors and probably make some sort of checking

routine a necessity.

12

The system at present assumes that a student will be able to work up to a
level of doing eighty per cent of his problems correctly in one sitting. It might be
a good idea to add a provision for the student to stop when he is tired and then
restart at a later time, the level of difficulty, type, and number of problems yet to
be done being stored by the computer. Something similar to the system described
by Suppes, in which a student who is successful in less than sixty per cent of the
problems he attempts moves down a level, might also be incorporated. This would
call for an ordering of levels of difficulty among the different types of quadratic
equations beyond what is now operational.

The descriptions of problems stored for the teacher's reference need improve-
ment, since all levels of difficulty are stored under the same title. This is e;specially
true of the linear equations.

Discussion

The program described in this paper has its main similarities to those des-
cribed by Uhr in the basic idea of generating questions and their answers rather than
presenting pre-stored problems. Both Suppes and Uhr offer the student a second
chance when he has once given a wrong answer. The described system does not, on
the theory that a failure with an algebra problem is likely to be due either to an
arithmetic error in combining terms or a lack of understanding of the method to be
used. In the first case the error is not fundamental, should not often recur, and will
probably take the student longer to find by checking back in his calculations than it
merits. In the latter case any second answer will be nothing but guessing. The
present system also makes no effort to store problems the student has been unable

to work, as does Uhr's.

13

Summar

The system described above presents algebra problems of various types,
individual problems within each type becoming more difficult as more and more are
done successfully. It reads the student's answers and tells him if they are cor-
rect, then generates another problem or explains the problem answered incorrectly,
whichever is appropriate. It keeps a record of each student's successes and
failures available for the teacher's reference upon demand, and allows the student
to progress to the next level of difficulty when he has done eighty per cent of the
problems presented on his level correctly.

The supervising teacher also has the option of revising or replacing explana-
tions.

Suggested extensions include a wide range of problem types and an increased
flexibility in the changes the supervising teacher is allowed to make in explanations.
Increased possibilities of switching students from one level to another are also

suggested.

14

References

Uhr, L., The Automatic Generation of Teaching Machine Programs Center

for Teaching and Learning Report, Ann Arbor, 1965,

Uhr, L., Teaching machine programs that generate problems as a function

of interaction with students. Proc. 1969 Annual Meeting of the ACM,

San Francisco, 1969, pp. 125-133,

Suppes, P., "The Uses of Computers in Education, " Scientific American,

215 (September 1966) pp. 207-220.

C3ATI0S UL FHIT UINOM NUA wamoda 40 UND AWML 504 17vD 3HL 3dAL MON

WISUSTdwe J Cuud = (F=xV) {H=XV)

tn LSuUSIdivud . Cand = (Y=X) (He=X)
ST 0L BOIOVA HOIRF (E0H + X(2)H + caar(ldy = (£)V ¢ X(2)V ¢ ZCanX(1)V

USIdw-J Sued = (BexV) (H=XV)

’ TS Tawnd - Zand = (H=x) {H=X)

U] BOLOVI MOLIHM 0 = (£l + (2)V ¢ Caax(D)V

wd0d4 40 IHVNUS 3HL aN113dw0Dd A" 03AT0S 3 ok;mzcybqaum;wwwuunMwallz

—— % P B o P SRS

nwlstSH4414 (HeXV) (H=XV)

......... TwlSGSI3TT - TTT(BAX) (HaX)
wlses (H=XV) (H=XV)

i T~ TSCS (F=X) (5=X)

) A410dwiS , (U=x9) (8=XxV)
IFETRETE] (d=%) (8=¥)
e 0L HOLOVA4 HOIMM (€)W + X(2)6 + CanX(1)g = (E€)Vv + X(2)V ¢ ZaaX()V

LS44iu (ti+XV) (g=xV)
15533710] (8+X) (8=X)
. (H=x V) (H=XV)
T TTTUES o T T T T T g= XY (B=X) -
duidv 4 (U=x2) (8=xv)
N T O R RO (U=X) (d=¥)

OL 2049V wILlMM 0 & (E)V ¢ X(Z)V + Zaax(l)V

1

wHU4 40 SNOLLiVNO3 J1LVHQAVND

Al 4Sv4'd o W31808d 40U 3dAl

NOT1dO

*NOILdO QHOM 3MY
. AdAl *S53cAl IMMiSLuUc

=1 3¢ mulluvigxd vy 3¥1T UAnem NoA 41 00 oL MSIm NUA W3THOHG 40 ONIY 3HL 40 dWUN JH]L umvwommm

oMyt ldMAdAL dHl NU 3wUN HNOA HdAL LSHMI4 *SwauOud vHa491Y 4nw0S 0Q S#1371 °*0714H

*sedfq warqoad yo uwotgqeue(dxs 8y} JO a8l T 23T T

16

1179 = x (OnY *1l- At S30GIS W1I08 3CQIAIQ MON
e = Y Ta
R ONINIVLIHU *gH(C1S HMIUB wOHd 9 LOVHIENS
T - e 0 2 9¢ X{1= n
S3NC0Bd SIHL *S3UIS HIOY WoHd X8 LIvH18NS
Xg+ = Ge¢ XEw
SI w380dd 3HL *y0du3d Ny 3Qvw 3AVH NOA

11/9 u S1 &a3mSNV 031vdaN39
¢i/11 S1 w3MSNV dNOA
Xg* = Q¢ Xf=

*1935409
87% U="ST Y3IMSNV G3IIVHINID
¢/1= SI H3INSNY HNOA

Y= Xhe = Xbhe

9« = x1
- ONINIVIHO. *g301s HIOH WOodd4 € 12VHi8NS

€= = €+ X1
SI Sikd 1437 3WL N SINYISNOD IV ONY #xz ONINIVINOD Swy3L 1V 1237709 iSHIA

€= = 9+ xS+ = x¥=
ST wATHOHd Iud *youH3 NY 30V 3AYH NQA

1/0 9= S1 H3IMSNV Q3LVHINID

179= S1 Y3MSNY HNOA
— — . g = _be XG¢ = Xbp=

*suotgenbs aesuty
‘wexdoxd syj £Aq psjeseuss suworqeuerTdXs PUB SW8TqO0Id *g °andtg

17

g = X6 = ¥

SNOT LYNRT MY ANTT ONTLTING AN JH1 O IATIOS

4 = G= X

v = Y9e ¥

o ey 17 (1] et HOLOvd4 HOVY L3S
(= "y) (G= ¥) DINT HIWIHT 1 4797 urh.xﬁbu<m;

= = ¥ ¢{ = X $iv SHIMSNV HNOOA

g o= rese XTT= 2aaX

*1234409 .

Xx S%/€ 0 = X 38V SUIMSNV Q3LVH3INID
/€ = ¥ St= = X _3nV SHIMGNV HNOA

0 = 6= Xp+ Z2aaX¥d

/0 €=

sguotTqenba oT3eIPEND

371 6 = x ONV %2 Ad S3U1S H1OS uoHnmc mON
= X¢

gNLIn1VLIHO #SAUIS H10H WOHd4 H= L0VHLIHENS

S9oNUoud SIHL °S301S HiLE wWoud x11 10vu18ns
te X111 =2 8= X€1

Ha Y94+ he XE+ L@ Xee = g=- Xﬂrl.

Sl S1IML 1437 3HL NO SANVLISNOD 7TV ONV Y # NINLIVINOY swydL 1V 1231100 L1syld
B= YYe¢ He XE+)+ X2+ = Qe G- XS+ 2+ XBe

o] w37goyd 3uL *uOuu3 NV 30VW 3AVH NOA

. e UG 6T @3IMGNY 03LVHINTO
w/¢ S S1 HIAMSNY MOQA

W™ XYt He Xb+ }* Xg+ = b= §-= XGe 2¢ X8+

18

X ¢37N70S 01 ONIQIAIQ

< o= = X #0 E£/1 =

X1 GNY 01= = XE N3HL
0 =" (8+ X1)(01+ XE)

Yo

ONINIVLIB0 *h0JSS3Idaxd JA0HY 3HL H0120Vv4

0 = 08+ X97E+ ZawXE

nl

$1NSdy Simi

*SILIS HLIOH wpod 2= UNV exi $Z#axc ON1LIVHLIANS »m‘m:awk 12371709 1syld
2= XL+ CanXe = 8L+ X1ve ZaaxX$

S1 w3lgudd 4HL ‘dHOued NV 3AVW 3AVH NOA

/0 6= = X *e/(E= = X 34V SHAMSNY WEREREED)
E/7 €= = x %€/l £= = X 3Jyv SHIMSNV dNOA

2= X)* cawXe = gL+ X19e+ ZaaXS

271 2 = x 40 2/1 ¢= = X ¢*4AT0S 04 ONIAIAIQ
G = xZ UNV G= = X2 N3H1
0 = (S= X2)(5+ X}

‘x SMo1104 SV *S100d 34VNDS
Il 40 39n3IVII410 UNY wNS 3L OLn1 SHOLIVA SAHL

One *S38YNHS oML 30 3On3Iy3441U Vsl 31dnVX3 3HL
0 = G2= Caaxy -

S] w~algldd HHl *y0uu3d Ny 3QYW 3AVH NOA

5/1 2 = X s2/1 é= = X 38y SO3IMSNYV Q3Lvy¥3INIO
g/1 2= = x tg/1 ¢ = X 44V SHIMSNY HN0A
0 = G2= 2anXy

* 1334402

/76 € = x ¢9/1 T= = x 38V SH3IMSNV (3LVHINIDO
/1 1= = X *2 = X 34V SH3IMSNV HNOA

U = 01= XE= CanXy

L= X Ny 2 o= X NIML
1 M00Hd H3d0Md
COBRE SEIATO ([-X) (2=X) A INOTIVHL SROHS [ONY 2 40 SHOL[IVS TINTSENd IH1 40 NGTLVHIOTENDD
*IALIVOAN 39 HI0A NSV LSNW € ONY D
SHATIVOIN =1 WHIL HY3INTT AH] FONIC °SNOTc FWVG M) FAYH S OMY U S ¢HAT1IS0d ST Sab
S = 8 a4 b
F= = Q4 ¥ HD NAML
2+ YE= ZanX
- T TSN FYISAERMFIERXYTHAY E(SEFYHT (B Y)

*OM]1 3AM] IHVLWOD

(S+X¥) (Civ¥Yd) JINAOHd FHL 1VH] HIAWIAWIH ¢NOTSSIMAXYH FA0HY JH| A€CLIVY OL
G = 2+ YE= Zna¥

§2uaaXfE OMIINUYMIANS AH SWHAL 12377103 1S¥I4
SHOMHT NY 30wwW JAVH NOA

19

SAIVIWONIHYL YVIIWIS V >T
NI $17nS3d STkl °SH0IS HLI0H WOMA Ze ONV 6X¥-

e S pa= Y POTS =CXUHY GHINCNY GNOK
Pm Xbhe= Zunsa¥XE = X)= Zau¥Xb

20

#HH
/77 (AINDTS 2 X2 (D)INNMYLE # = # (HINOTS # ¥ (b)) INNMYW
/77 # *14377 33Ul No FWVS FHL 00 NIAHL2 /7 (GINSIS 2 x£ (DM IneYe 2 = ¢ {(LNO 7/

+ ST SIHL *lHOTH 3HL NO S2 I[0NE ¢y oWINIVINOD Sws3| 1v 1037700 # NTTIL TN
*HILTAMAdAL FHL NN FWYN HNOA 3dAL ISHTI *SWITAOMA YHAROTY Jrios 00 §# 137 *07713H

= XGe = X
*NOTLIYABT MYANIT ONILTING3AM FHL JFATI0S
N = G+ X
g = 2s°Y
exd7 0] Tvndd HMOEdv4 HIOVI |38
S e s YPSETYY O OINT TEIHEAN T3 TIHLTH0IOVA
G =y T = X 3IMY SHIAMGNY HNOA
G = 07% YE* Zuaa¥X

tdo10v4

. . LR Ty
NMDHW% = ¥#¢ 1301IS # = X2 // ZONOTLvNmI Hy3IMITT ornI NS IH1 IAT0SE.

oo e e A EINOTS X (Y IS YT 77 R T E T YO TS T E Y E T (Y INNYYR
// #°0¥37 01 VND3 HOLOY4 HOVI L3IS# // 2(2 (MMNOTS # Yz () INNMYW
dHY SHIWSNY HNOA # HOLOV 44
*HILTHMAAL FHL NO FWYN HNOA FdAL LSHIA *SWIAT90Hd wHaI9TY IW0S 00 $S2147 *0T713IH

sguotseuerdxs Jurusyp ‘¢ sIn3Td

21

L/g = X ONV $/= Af S30IS mine JUIAIO MON
= XY=

CorTmnomm T T ,aZmZ%dﬁﬂdiiﬂﬂﬁ4ﬁWAﬂHQﬂ:ﬁﬂﬁuém;uudﬁHﬁjwit

U= Ee Al=
S3AINAOYA STHL *eJATS HIOF LIOH4 YXT=- [IVH18AS

Ye = £+ Y8Hw

._LLJ ML MG Ferg ad)l 00 NIML
LAt T & Taar s € T
ST SIHL °LlHATY 3IHL NO S£Y GNINTVINOD SWH3AL v 13711109
Fe ¥f= (% X/ 2 Gi YHe Zm YHae

ST WITIAOHA Gl *HOMMY Ny J0vil JATH NOA

G/2 ST HIANGNY HMNOA

ST T e e e TFFTYEE S OXY T GEF XHE 2T YHw

22

t

s/9 _ BS .

- -
g/y US

Ve
v

s/v 108
YA 108
o/v_ AJ1JdnWIS
o G/% AdIdwWIS
os% A417gRIS
o o/5 Ad10dWIS
/% 1A3INdWIS
- a/y TA31VdnWIS

e =

G/ WOLOV4

el AL AN e

CYZ HOLJov4
G/y W0oLIvd B

et A At

....... u/4 yoLovs
G76 1u012Y4:

egyoy TMOUS U0 U asnf gou ¢q7 peosn IAEU ouM S4ULPNIS
Tle JI0JF qdey spaooad eyq 3NOo gqutad mexfoad eyl °PUEESD
g,I9u0®BR% Yy uo 4no pagqutad saTussd J0 pxoosy Y oanITH

