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ABSTRACT

This paper describes methods for extracting pattern-synthesizing features.
A set of patterns is expressed as a Boolean matrix, allowing the problem of
feature extraction to be viewed as one of factoring this matrix. Feature extrac-
tion methods based on matrix factorization and pattern intersection are pre-
sented. Attribute inclusion is defined to be the implication of the presence of
one attribute by that of another, and an algorithm for obtaining features cor-

related by inclusion is discussed.






1. INTRODUCTION

The description of patterns in terms of the raw measurements obtained by
a transducer does not, in general, yield to simple recognition schemes, be-
cuase the number of measurements is large, and/or the classes are not linearly
separable. Encoding the patterns in terms of constituent features offers a more
economical description, and also tends to reduce the non-linearities in the
separation of pattern classes. As a result, most character recognition systems
employ feature detection to some extent. Since high dimensionality and non-
linearities account for most of the difficulties in pattern recognition, feature
extraction can be seen to be a central problem of this field. But, as pointed

(12)

out by Munson feature extraction techniques are poorly developed in com-
parison with classification methods. Most work done on this problem is of an
ad _hoc nature, and a reasonable theory is yet to be developed.

The word feature seems to have been used in the literature in at least
three related, but by no means identical, connotations: specialized measure-
ments, visual features, and pattern-synthesizing features. In the first meaning,
features are considered to be some particular sets of outstanding measurements
derived from the initial pattern measurements--outstanding in the sense that they
more strongly characterize and discriminate classes than the raw measurements
obtained by the receptor. Although such features may turn out to be similar to
the visual features described below, this is not obvious from the way they are

selected. The selection methods are based on statistical and information~

theoretical measures of the discriminating ability of these features.



Thus, each measurement in a pattern is allotted a "goodness" coefficient
by Lewis(g), so that a best set can be chosen. The goodness of a measurement
takes into account the probabilities with which it occurs: its overall a priori
probability, and its joint and conditional probabilities with all classes. An
information measure for the relative merit of an n-tuple of measurements (for
apriori equally probable classes) has been given by Kamentsky and Liu(7) .

This is based on the criterion that if the conditional probabilities of different
classes with respect to an n-tuple widely differ among themselves, then it is
a better feature than the one for which they are almost equal. Another similar
measure has been derived for the case of linear decision and uncorrelated
measurements by Bakis et al. (2),  Tests for best feature sets based on maxi-
mizing average class divergence are given by C]r1en<5). Correlation of the
pattern measurements with suitable filtering functions is used to derive features
by Meyer and Giutiano{10), A mathematical theory of features, based on
functional transformation of patterns, has been proposed by Iijima(g) . A
quasi-normal pattern, derived from the pattern image by means of certain
transformations, is expanded as a system of hyper-orthogonal functions. The
terms of this expansion are regarded as features.

Features in the second meaning are used to denote visual, i.e. topological
and geometrical characteristics of patterns; for example: closed curves, forks,

corners, straight segments, bays, etc. Such features are usually intuitively

chosen, and elaborate techniques are used to detect them in patterns. For




example, character edge slope computation is used by Sublette(w), and
multiple correlation with certain functions are used to detect these by Clowes(é).
Muchnik has given an algorithm to extract significant visual features
automatically by explorations for the local minima of certain functions of

pattern measurements{(11),

In the third sense, features are considered to be subpatterns whose super-
position results in a given pattern. Feature selection is then equivalent to
determining a minimal set of features which are sufficient to synthesize all
patterns.

Further conditions have been imposed by Block et al, (3); a feature must
be the intersection of all patterns containing it, and a pattern, the union of all
features that it contains. Two algorithms are proposed for feature extraction
under those conditions. The algorithm convergence as well as good resulis
are dependent on certain assumptions regarding feature sizes.

"Imperfect” features with possible errors in pattern reconstruction (taken
into account as a figure of merit) have been considered by Nagy {13) From the
pattern vectors in the measurement space, measurement vectors in the pattern
space are constructed. The distances are small between those measurements
(now treated as points in pattern space), which tend to be present or absent
together in many patterns. Since features are precisely comprised of such
measurements, they are sought as (possibly non-disjoint) clusters of measurement

points. Ternary features with present, absent or indifferent measurements are

also considered.



Pattern-synthezing features do not seem to have been applied to character
recognition. This paper attempts to study automatic extraction of such features,
for they might perform better as decision parameters than the ones selected
arbitrarily. Moreover, these may be especially useful in the recognition of
non-visual and multidimensional patterns, where intuition is of little help.

We represent a set of patiterns by a Boolean matrix, and find that the
feature extraction problem is equivalent to that of factorizing this matrix. A
duality is seen to exist between patterns and attributes, so that features can
be found by an analysis of attributes as well as of patierns. We discuss several
feature extraction methods. Next, we define attribute inclusion as the relation
that the presence of one attribute implies that of another, and seek features
which group together attributes correlated by inclusion. This additional con-
straint on features leads to a feature extraction algorithm which, though not

optimal, is quite simple and rapid.




2. PRELIMINARY CONSIDERATIONS

Patterns, Attributes and Features

The patterns considered here are xfepresented by a set of measurements
derived by a fransducer. Each of these measurements is considered to be the
value of a certain attribute. We restrict ourselves tc 2-valued attributes, with
values 1 and 0 (corresponding to black and white units of a visual pattern). A

pattern can thus be represented by a pattern vector of dimensionality equal to

the number of its attributes, and having atiribute values for its components.

For example the pattern P]; of Fig. 1 is represented by the 25~-dimensional

attribute space vector
(t,1,1,1,:,0,0,0,0,0,1,%,1,,1,0,0,0,0,0,0,0,0,0,0}.

Thé transducer collects whatever information is considered a priori rele-
vant to characterize a pattern. This information usually contains substantial
redundancies., The atiributes are interrelated and may not be equally significant
in characterizing patterns. It may be possible to construct simpler patterns,
called features, in the same attribute space, and to express the original pat-

terns as superposition of features. Fig. 1 illustrates this point. The feature

Fl can be represented by thé feature vector
(t,1,,1,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

It is clear that each pattern is formed by the superposition of two of the six

shown features. Thus, the patterns Pl and P, can be represented, respectively

by the reduced pattern vectors

(1,1,0,0,0,0) and (1,0,1,0,0,0)

in the 6-~dimensional feature space.
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A pattern vector contains the value of all atiributes in a given pattern.
We are often interested, however, in knowing the values of a particular at-

tribute in all patterns {of a given set). This information is given by the at-

tribute vector. For example, the atiribute Al , corresponding to the unit 1 of
the patterns in Fig. 1 is represented by the vector
(t,1,1,1,1,0,1,0,0,1,0,0,1,1,0)

in the 15-dimensional pattern space.

Definitions and Notations

In order to formalize the above concepts, we need some definitions and
notational cpnventions. The vectors and matrices considered here are all
comprised of Boolean elements, i.e. those admitting values 1 and 0 only. We
denote by a+b and ab the Boolean inclusive sum and product of a and b. We
define a < b when a=0 and b=1l, and a < b whenever a=b or a<b . The
above operations and relations are defined for vectors on element-by element
basis. Elements, vectors and mairices are denoted by lower case, upper case
and script capital letters, respectively. An element of a vector or matrix is
denoted by the corresponding lower case letter, suffixed to show its position;
€.g.,a, and bmn are the nth and (m,m)th components of vector A and matrix B,
respectively. The nth column of matrix ® is denoted Bn' A set of vectors

(A A

1By ,AN} is also considered a matrix, with An for its nth column, and

vice versa; this set and the matrix are both denoted by the same symbol L.



Let A,B be MxN and NxK matrices. Then the transpose Cl:t is the NxM
matrix & such that cnm = amn. The product ® is the MxK matrix D such

N

that d ., = 5 a_ b . Clearly, if ©=QB then $t=BtGLt. For a vector A,
mk n=1 mn nk

the modulus ||A| is the number of components of A with value 1. The null

vector O and identity vector I are vectors of any dimension with 0 and 1,

respectively, for components. The unit vector Um is of any dimension >m with
th
1 for m ~ component and 0 for all others.

Patterns are represented by pattern vectors, and a set of these vectors is

a pattern set. A set of vectors § = {PI’FZ’ - ,FK} is a feature set for a set
of vectors W= {PI,PZ, ... ,PM}, if for every m < M, there exists a set

k(m) c {1,2,...,K} suchthat P_ = X Fk' Members of § are called
k € kim)

feature vectors of .

For a set of N-dimensional pattern vectors ®= {P1 P . ,PM}, the

a0

attribute set is the M-dimensional vector set (= {AI'AZ’ “e ,AN} such that
UmzAn if and only if Un:Pm’ for m<M and n< N. Members of @ are

attribute vectors of ®.

According to an above stated convention, sets P, § and @ are also
treated as matrices, with their respective members as columns, and are called,

respectively, pattern, feature and attribute matrix.

We have not defined features uniquely. A pattern set ¥ is a feature set

for itself. Another feature set is U which consists of unit vectors for each




attribute. Other trivial feature sets can be obtained by adding arbitrary features
to Por QU. Itis not of much interest to find arbitrarily large feature sets. We
are mainly concerned with finding small feature sets for an economical description
of patterns, and the number of features should certainly not exceed the smaller

of the numbers of patterns and attributes; otherwise, P or 4L would be good
enough.

Two properties, independence and nonredundance are desirable in a feature

set. Independence ensures that each pattern can be reconstructed by a unique
combination of features. (That is, the set k(m) mentioned in the definition of
features is unique for each m.) Nonredundarnce means that each feature is

eventually utilized. Formally, a set § = {PI’F . ,FK} of vectors is inde-~

2'°

pendent if for any subsets s and t of {1,2,...,K}, 2 Fk = 3 Fk implies
kes ket

s = t. A feature set T of a given pattern set P is nonredundant if no proper

subset of ¥ is a feature set for .

Matrix Formulation of Feature Extraction Problem

A basic property of features is given by the following

THEOREM: P, % being sets of vectors, a necessary and sufficient condition for

U to be a feature set for P is that there exist a set of vectors ® such that

P= IR,

(We again regard a matrix equivalent to the set of its column vectors.)

The reader is referred toll) for proofs of results stated here.
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R is the set of reduced pattern vectors in the feature space. It is possible

to obtain different sets R from the same T and F. However, R is characterized
uniquely if the feature set ¥ is independent. This is stated in the

THEOREM: If ®,% and R are sets of vector, P=3R, and % is independent then

Fkg Pm if and only if rkm =1,

This result furnishes a simple method for computing R from ¥ and %,
given P= 3IR.
An important consequence of matrix relationships is the concept of duality

between patterns and attributes., From ¥= §® we conclude Q= Rt%t, as Pt

is just the attribute matrix . Hence, by the first theorem, Rt is a feature set
for @& . Thus, to determine ¥ from ¥ we can also set out with the attribute
matrix @, find its feature set iR,t, compute %t {using the rule given by the
second theorem), and take its transpose to get ¥ . We call this the indirect
method. As long as only heuristic methods of feature extraction are available,
this indirect route from patterns via atiributes to features may possibly yield
better features. Moreover, in most cases, T is not an end in itself: it is used
to obtain R, the reduced pattern set. In such cases, the indirect method actually
involves less computation.

A graph representation of the feature determination problem is as follows:
Patterns and atiributes are represented by nodes P1 ’PZ’ ...P A A ,...,A

M 1/ 2!
th

Nl

and arcs PmAn are drawn to indicate that the value of the n*" attribute in the

th

m pattern is 1. The problem is to place intermediate nodes F.,F ,F

prEp e be




11

corresponding to features, and draw new arcs from P's to F's and F's to A's

in such a way that An be reachable from Pm through some F, if, and only

k

if, there exists an arc PmAn in the initial graph.

(a) (b)

Fig. 2 Graph representation of patterns and features.

Fig. 2 illustrates a simple case: (a} shows two patterns Pl ={0,1,1)
and Pz =(1,0,1); (b) and (c) present the two trivial solutions mentioned pre-

viously.
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3. SOME FEATURE EXTRACTION METHODS

Boolean Matrix Factorization

Webhave seen that the problem of determining features is equivalent to
that of factorizing the pattern matrix. Although this result is interesting con-
ceptually, it does not offer a solution of the problem as such, since suitable
algorithms for factorizing a B-matrix are not available vyet.

A brute force approach is to attempt to solve the system of Boolean equations:

K .
B -5
(1) _ fnk rkm

We can try different values of K until the above set of MN equations
with K{M + N) unknowns is consistent. Then all solutions can be found. Of
course, for K > min (M, N) the system is always consistent.

The available methods for solving the system(l) become practically impos~-

sible to use for the dimensionality we consider. For example a classical method(4)

K{M+N) MN

requires use of 2 matrices of orders K(M+N) x 2 and MN x 2 to

K{M+N) 5 2MN

form another matrix of order 2~ , in order to solve the system. For

M= N =50, K= 8, the typical values for a modest size problem, these matrices
are of the orders 2500 X ZZSOOI 800 X 2800 and 22500 X 2800 ! Of course, this
method is very general, and considerable economies may be possible with short
cuts to tailor it to the special type of equations in (1).

A similar problem is encounted in trying to use another method for solving

(16)

Boolean equation Here, the size of rectangular maps of Boolean functions

becomes too large to make this method practical for our use.
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Modulo 2 Factorization

@

Using exculsive sum (@ ,2) rather than inclusive sum (+), we can rephrase
some of our previous definitions to obtain a different system of operation. In

this system, if ¥ is a feature set for ¥, then

®

P = > £, , for some k(m)c {1,2,...K}, and,
m =

k €k (m)

P=5R
K
1.€ an: Z@) fnk " km
k=1

The system ({0,1},@®,0,1) is the field "modulo 2," and the vectors over
this field form a vector space. Hence, the feature set can simply be taken to
be the basis for the pattern set over this vector space.

Since 1® 1 = 0, like attributes in two features cancel each other, and
thus, patterns are not obtained any more as a simple superimposition of features.
The "modulo 2, " features, therefore, have no direct visual interpretation.

Classical methods of linear algebra are available for determining the basis,
as well as for factorizing the pattern mairix. Fig. 3 shows a basis consisting of
13 vectors for the 15 patterns of Fig. 1. This basis was obtained by transforming
the set of pattern vectors in row form to its equivalent row-reduced echelon form.

In spite of the fact that no visual interpretation can be attached to the "modulo
2" features, there can still be useful as a mathematical transformation of a set of

patterns. However, the main objection to their use comes from the observation
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that the number of such features is rather large. It is generally the case that
the number of features needed to reconstruct the patterns using exclusive or is

larger than that needed with exculsive or.

Pattern Intersection Method

A feature which is included in each of two patterns is, evidently, also
included in their intersection. As a result, the patterns which share a common
feature can be expected to have larger intersections than the patterns that do not
share any feature. This is certainly true for the pattern and feature sets shown
in Fig. 1. (Here, each intersection of patterns having common features contains
at least 5 black points, while the intersections of patterns without common features
have at most 4 black points.) In case the above supposition is true for any given
pattern and feature sets, two patterns share a common feature if and only if their
intersection is larger than a certain threshold. This property has been called the

threshold condition by Block et al,(3)

If the threshold condition holds for a given pattern set, then a feature set
can, in principle, be obtained in the following way. First, all possible inter-
sections of the given patterns are generated. Then, from among these intersections,
the ones whose size is smaller than the threshold, as well as all repetitions of
the same intersection, are eliminated. The remaining intersections constitute a
feature set.

The above procedure is obviously impracticable, since it would require the

generation and examination of
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intersections.
Block et al. have presented two feature determination algorithms, which

make use of a threshold-raising scheme to avoid examining all patterns inter-

sections (3) . An algorithm will be proposed here, which does not employ

threshold-raising, and attempts to search through all pattern intersections for

potential features.

.. P

Suppose P are the given patterns satisfying the threshold

I'PZ'“ M

condition, and let 6 be the thresholid. Iet Q bea M X M matrix, whose

initial entries Qij(o) are given by
Qij (0) = P, - P]., (1<i<M;1<3§< M),

Then, the value of Qij at step k, Qij(k)' is given by
Y = -1) - - i -1) - - >
Q) = Q(k=1) - Qu tk-1), if Q) (k=1) - Q (k-1 > 6,

= Qij(k-—l), otherwise.
(1<i< M;1< i< M)
The above operations are performed in M steps, k=1,2,...,M.
Once the M steps have been performed, the entries of the final eatrix
Q(M) are sorted in the order of frequency of occurrence, and the more frequent
ones are selected as features.
The similarity of this method to the generalized Warshall algorithm is

(14)

apparent Unfortunately, however, the operations used on Qij's do not
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satisfy the requirement of a "Q-semiring”, so that it is not guaranteed that all
possible pattern intersections are taken into account. The selection of features
on the basis of the frequency of pattern intersections is, moreover, quite
arbitrary. Nevertheless, the algorithm provides useful results when the threshold
condition is satisfied, and its implementation as a computer program is very
simple.

The number of operations in this algorithm is proportional to 1\/[3, rather
than to the ZM operations, as required of an exhausive search through all
pattern intersections. Further, since the initial matrix Q , as well as all
subsequent operations, are symmetrical, it is sufficient to work with only a
triangular half of the matrix.

The threshold and the number of features chosen are arbitrary decided. Had
the threshold 6 been known, features could have been determined from those
final entries which are larger than 6 , by simply eliminating repetitions. How-
ever, 6 1is not known, so that the frequency count is arbitrarily used for ob-
taining features. In practice, it is found advantageous io repeatl the procedure
for several values of the threshold, and check if it is possible to discriminate
features from other intersections on the basis of prominent frequency differences.

The results obtained from the application of this algorithm to the patterns of
Fig. 1 are summarized in Table 1. This table lists the frequency of occurrence of
the 6 features of Fig. 1 in the final matrix Q, for the values 1 to 7 of the thres-

hold. The results for 6 > 7 are identical to those for 6 = 6,7. The labels
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“first" and "seventh" indicate, respecitvely, the most frequent intersection, and

the one next after F,,... 'Pé in the order of frequency. The most frequent

1
intersections for 6 = 3 is one of the features F1 PR ,Fé.
Threshold
: 1 2 3 4 5 6 7
AInteric_:“ctionm_ |
Fl 0 0 4 10 10 4 4
F, 0 0 4 10 10 4 4
FS 0 0 4 10 10 4 4
F4 1 0 7 10 10 4 4
FS 0 0 7 10 10 4 4
F6 1 1 7 10 10 4 4
First 36 15 7 10 10 4 4
Seventh 2 1 1 1 1
Table 1 Frequencies of final pattern intersections

for the pattern given in Fig. 1.

in the case of Table 1, it is seen that the number of features to be selected
is decided easily on the basis of changes in frequency of occurrence of patiemn
intersections, and that the results are stable over reasonably wide threshold

variations.

For patterns not satisfying the threshold condition, the results obtained
from the above algorithm are usually poor: The changes in the frequency of inter-
sections are gradual which makes the choice of features difficult, and the

features obtained are insufficient for pattern reconstruction.
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4, ATTRIBUTE INCLUSION ALGORITHM

Some Restrictions on Features

In the previous discussion, our emphasis has been mainly on features .being
sufficient for pattern reconstructions. Although, this property cf a feature set is
important, the intuitive connotation of features includes additional desirable
properties. Features, in the sense of traits, or syndromes, should bring out the
interrelation of attributes found in a given set of patterns. In other words, one
aim of feature extraction is to detect the presence of regularities or laws in a
non-random attribute value distribution, and to express them in individual
features.

The interrelation of attributes may reveal itself in several ways. A simple
case is that of a constant valued attribute in all or most patterns. In some cases,
several attributes may have similar value in many paiterns. Such relations are
best displayed by the pattern matrix. We consider, for example the patterns for
Fig. 1. The pattern matrix, with some of the rows permuted or omitted to empha-
size these relationships, is shown in Fig. 4. It is observed that the atiribute
pairs (2,4), (6,16) are equal valued, and the atiributes 7, 9, 17, 19 are always
zero. As a result, we expect that none of the features should include attributes
7, 9, 17, 19 with the value 1, and that at least one feature should contain each

of the related pairs (2,4), and (6,16).
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4 Pattern matrix for the patterns of Fig. 1

(Some rows have been omitted or interchanged).
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A more general type of relation among attributes, embracing equality as
a special case, is the dependence of an attribuie on another: two attributes may
be so related that, in whichever pattern the first one is present (i.e., has the
value 1), so is the second one. (For example, atiribute pairs (2,1), and (12,15)
in Fig. 4). In such a case, it is reasonable to require that any feature containing
the first attribute should also contain the second. Moreover, it is evident
that we need at least one feature containing both of these attributes.

The dependence of two atiributes is expressed by the relation of inclusion
(<) between the corresponding attribute vectors. Thus, ¥ being the feature
set for a pattern set P and attribute set &, we can state the above requirement

as

Sy If O%AisAj then dF e ¥, UiJ.-UjsP

It is primarily because of this property sought in features, that the feature
extraction algorithm, presented later in this section, is different from the
existing methods.

If we insist on perfect reconstructibility of patterns from features, then we
are in need of the provision that every atiribute with value 1 in any pattern should
also have the value 1 in a feature which falls in that pattern. We express this
relation as:

(ii) if Uis Pe¥® then HFe%anSFSP

Conditions (i) and (ii) seem to be a reasonably good description of what

one may expect from features.
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However, we cannot overlook the importance of economy of description,
so that the number of features should be as small as possible. We add another
condition consequently:

(iii) K is a minimum.

Here K is the number of features.

Unfortunately, these conditions are not altogether consistent. Thus,
(ii) and (iii) together have the upper bound min (M, N) for K, where M, N are
the numbers of patterns and attiributes, respectively. In some cases it turns out,

however, that we need K > min (M,N) in order to satisfy (i} as well.

Atiribute Inclusion Method

Condition (i) of the previous section shows that any two attributes, whose
corresponding vectors satisfy inclusion, belong together to a feature. Since
inclusion is transitive, we can go farther, and assemble all attributes, which
are related by successive inclusions, into a single feature. Thus the above
condition, in effect, suggests the following algorithm for obtaining features from
a given pattern set:

Test all non-zero attribute vectors for the ordering relation of inclusion,

and, from these vectors, form the largest (possibly non-disjoint) partially

ordered subsets which contain a single minimal vector. Then, the

attributes corresponding to the vectors of each subset constitute a

feature.
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We now present an example to illustrate the above method of feature
detection. Six patterns and the corresponding pattern matrix are shown in
Fig. 5 (a,b). Fig. 5 (c) shows the "attribute inclusion matrix, " in which all
rows and columns are labeled with attribute numbers. An entry (i,j) of this matrix
is 1, if Ai < Aj, and 0, otherwise.

To test the inclusion of attributes in an efficient way, we consider the
attributes in the ascending order of the moduli of the corresponding attribute
vectors; thus, a pair of atiributes is tested only once, in the order in which
inclusion may possibly hold. Consequently, all partially ordered subsets are
found from their "smallest" attribute vectors only, which ensures that the sub-
sets are the largest possible. For example, the attribute 4 is found to be in-
cluded in the attribute 1. Hence, all success;:»rs of 1 are necessarily those of
4; accordingly, we put a mark d (dependent) against the }ow for 1, and do not
consider it for further inclusion tests. At the end, the attribute inclusion matrix
shows that the attribute vector subsets (A4, Al, A7), (AZ’ A3, Al’ A9), (A5, A3, Ag)'
and (A8, A7, Ag) are the required largest partially ordered subsets. The features
are constructed, one from each subset, by setting corresponding attributes to 1.
(Thus, from the first of the above subsets, we construct the feature F. = U4 + U1 +U

1 7)'

The four features obtained in this way are shown in Fig. 5(d). it is clear that
these features are sufficient for reconstructing the original patterns.

A graph representation of the above method is as follows: We represent
each non-zero attribute vector by a node, and draw directed arcs ij between each

pairs of nodes i,j for which Ai < Aj . The loops at each node are omitted; also,




Fig. 6 Attribute inclusion graph for the patterns
of Fig. 5(a).
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whenever Ai = Aj, we draw only one arc ij, fori < j. We call the graph so
obtained the "attribute inclusion graph." Now, each source node (i.e., one
without incoming arcs) is grouped together with all nodes reachable from it. The
attributes corresponding to each such node group constitute a feature. Fig. 6
shows the attribute inclusion graph for the example we considered above (Fig. 5).
The source nodes are indicated in this graph by solid circles to distinguish them

from others. The features obtained from this graph are the same as in Fig. 5.

Supplementary Features

The feature set obtained in the previous section contains useful features; but,
in general, it is not sufficient for pattern reconstruction. For example, consider

the problem shown in Fig. 7. The features Pl ) e e ,P4, are obtained as a result

of using the attribute inclusion method. Clearly, however, the patterns P7, P8

cannol be reconstructed from the features F1 Je s e ,P4 only.

The reason for the insufficiency of the attribute inclusion method lies in
our ignoring the dependent attributes. We investigate this in some more detail:
Consider, for example the case of Fig. 7. In (c), the dependent attribute 3 is
seen to be included with 2,5 in two features: (2,3,1,9), and (5,3,9). These
features are included in all patterns in which the attributes 2 and 5 are present,

namely, in {Pl, Pz, P6}, and {Pl’ P P6}, respectively. Now, since the

3]

attribute 3 is present in precisely the same patterns, and in no others, we do not
need any other feature containing it. However, the case of the attribute 6 in Fig. 7
is different. Here, the only feature containing this attribute is (8,6,1), and

although the attribute 8 (and hence, this feature) is present in {Pl’ P,, P

4 Pel
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it is not present in P7, P8 which contain the attribute 6. Hence, in this particular

case, we need, in addition to the above feature, another one containing the attribute

6. Now A
ow A,

attribute 6 by itself forms a feature, F

is not included in any other feature attribute vector, so that the
5

From the above example, it would at first appear that the attribute in-
clusion matrix must be completed even for dependent attributes, and all rows of
this matrix, (which are the partially ordered subsets of attribute vectors), be con-
sidered as potential features. As we shall see in the next section, the set of all
such potential features is sufficient, (possibly, with redundance}, for pattern re-
construction.

We now describe a method for the selection of non-redundant feature from
among the potential features given by the rows of the attribute inclusion matrix.

As previously, the attributes are ordered in the increasing order of their
moduli, ignoring the zero attribute vectors. With each row of the attrik;ute inclusion
matrix, we associate two lists, B and C: B enumeraies all the patterns in which
the attribute, corresponding to that row, is present. (It is, actually, a list equiva-
lent of the attribute vector.) C is initially empty and will serve to enumerate the
patterns in which the presence of a particular atiribute has been taken care of by
some feature. In addition to the dependence indicator d, we use two other row
flags, e and s, for "equal" attributes, and "supplementary" features.

We enter 0's and 1's as previously, that is (i,j) is 1 if Ai < Aj.

However, we test the attribute i for inclusion, if there is no mark against it,
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1 0 0 O 1,4,6
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35536,7,:8
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1 0 1 1,2,%,5,8 "
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1,2,3,5,657,8 3,5,6,7,831,2;3

Complete solution for the patterans
in Fig. 7

Fig.

9 A minimal feature set for
the patterns in Fig. 3.4.



30

or in case of a mark d, only if the lists B and C do not have the same elements.
In the latter situation, we mark the corresponding row with s, to show that the
feature obtained from this row of dependent attributes is necessary to supplement
the features obtained by the basic attribute inclusion method. While testing the
attribute i for inclusion, the row j of the matrix is marked, (if it has not
already been done), with e or d, in accordance to whether Ai = Aj , or Ai < Aj’
respectively. In both of these cases, we add the elements of list Bi to list Cj‘
The features are constructed as before, after the matrix has been processed. To
obtain features, we use those rows which are either not marked at all, or else
contain s.

To illustrate the above procedure, the case of Fig. 7 is again worked
out in Fig. 8. The resulting features are as obtained before, with the addition of

F5 (Fig. 7 (d) ). The set of features F_,...,F. is easily seen to be sufficient

1 5

and non-redundant for the reconstruction of Pl fone ,P8.

The above feature set is not, however, minimal. Another feature set for
the same patterns is shown in Fig. 9. This latter set is clearly sufficient, while
containing only 4 features. Qur algorithm will not obtain this feature set directly,
for the attributes present in all individual features do not form partially ordered
subsets. Specifically, one of the features contains the attributes 1,2,4,5, and
6, while inclusion does not hold in either direction between Aé and any of
A1 , AZ’ A4, and A5. However, the above feature set can still be obtained using

the present algorithm, if the indirect method of first reducing the attribute set is used.




331

The Algorithm

A formal description of the complete attribute inclusion algorithm more

suitable for programming now follows.

let @ = {Al, A

U AN] be the attribute set of a given set of

patterns. For simplicity, we assume that the attributes are numbered in such
a way that

OF a =l = o= llagl.

For bookkeeping purposes we employ vectors Ci’ Gi and single
Boolean elements di’ Si' (Vectors Ci are the vector equivalents of lists C
used in the above discussion. Lists B are not needed as attribute vectors Ai
serve in their place.) Note that Ui are unit vectors, and O is the null vector.

I. Foreachi=1,2,...,N do:

II. TFor each i=1,2,...,N do:
1. If d.=1 and C.=A,, then s,=1 else s5,=0,
i 171 i i
2. If di:O or else if si=1, then Gi:Ui'
3. For each j=i+1,i+2,...,N such that Ais Aj do:

a. G.=G.+U, b. d.=I c. C.=C+A,

Then the feature set §= {F [F:‘Gi such that di:O or eise Si:1 1.

The proof that this algorithm generates a complete, nonrundant feature

set is given in("), where several properties of the generated features are also

derived. For example, the feature subset for which di=0 (primary features} is
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independent; if the feature set consists of primary features only, then it is a
minimal set. Another interesting relation between patterns and the features
found by the algorithm is

Fk = i Pm’
m3P =F
m k

a relation regarded as one of the defining properties of features by Block et al (3).,

This is an interesting dual of

P = 2 F

m .
kastPm

kl

which is equivalent to the relation used in our definition of features.

Comparison with Other Algorithms

The algorithm presented above requires a number of operations propor-
tional to NZ, where N is the number of attribuies in the given patterns. The
computations involved are obviously simple and straight-forward. In fact, the
algorithm is simple and rapid enough to allow problems with pattern and attribute
dimensionalities of the order of up to 20-25 to be easily performed by hand, which
certainly does not hold for other algorithms. Furthermore, it does not require
any arbitrary parameters, such as threshholds or number of features, to be set a
priori. Although the features set generated by the algorithm is nonredundant, it is
not guaranteed to be minimal: in the worst case, single attributes will be pro-
duced as features.

The algorithm was used on the examples given inB), and perfect

features were obtained in each case. For example, the feature set of Fig. 1 was
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{a} Patterns

{by TFeatures

Fig. 10 Patierns and Features (taken from (3
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found for the patterns in the same figure. An interesting case is that of the 24
patterns shown in Fig. 10. Clearly, the features in that figure form a sufficient
and nonredundant feature set. The results of the application of Block et al.'s
algorithm are shown in (3),  The best results are obtained with thresholds of
one and two. The sets of 15 and 18 features so obtained contain the 7 desirable
features along with other redundant ones. On applying the present algorithm,
exactly the shown nonredundant features of Fig. 10 were obtained.

The algorithm was also applied to the non-artificial case of hand-
printed characters, and interesting results were obtained. Some of this work is
reported in (1).,

The order in which the features are generated by the algorithm is also
the order of increasing frequency of appearance of the features in the patterns.
The features in the first part of the feature set are included in fewer patterns
than the features in the last part. Depending on the intended use of the features,
a general rule for the selection of a certain number of these from the whole set
can be stated as follows: The features from the initial part are more useful for
discriminating patterns, while those from the latter part are more suitable for
pattern reconstruction.

For example, the attributes contained in only single patterns give rise
to features, which will be quite similar to those patterns, and unlikely to be
part of other patterns. Similarly, the last features are likely to consist of

single attributes, common to several patterns.
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Another remark concerning the minimality of feature sets is in order.
As has been mentioned previously, the upper bound for the number of features in
a MxN pattern set is min (M, N}, where reconstructibility is the only criterion
for feature formation. In the present algorithm, however, features are further
constrained by the condition (i) , so that their number can exceed M (in case
M < N). For best results, both the direct and the indirect methods can be used,
and the smaller of the two feature sets selected. Better features are more fre-
quently found by treating the smaller sized vectors of the pattern-attribute matrix
as attributes: this is explained easily, because more dependencies can be

expected among a larger number of vectors of smaller dimension.
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5. CONCLUSION

Features have been so defined as to express significant correlations
between the attributes of a pattern set. These correlations are stated in terms
of relationships between attribute vectors, and an algorithm has been proposed
to form features by collecting the interdependent attributes. The features so
obtained are sufficient for the reconstruction of patterns. It has been found that
each feature is the common part of all the patterns containing it.

Although the feature set obtained by the algorithm is not, in general,
minimal (with respect to the number of features), it has been observed that:

(i) a feature set containing only the primary features is minimal, and (ii) of the
two feature sets found by the direct and the indirect method, one often constitutes
a minimal solution. Better solutions are normally obtained by using the direct
method where the number of attributes is larger than that of the patterns, and

vice versa.

In most practical cases, the data contain considerable noise and
measurement errors, so that perfect features are not necessary to find., It is
possible to obtain approximate features, by introducing tolerances in the tests
for inclusion and equality between attribute vectors. For example, two patterns
may be considered equal if they differ in fewer than a certain number of attributes.
The tolerances can also be used in pattern reconstruction. Thus, to decide
whether a certain feature is present in a pattern, a certain number of attributes
present in the former and absent in the latter may be ignored. A third type of

approximation is applicable to the size (modulus) of the smallest attribute vector
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considered in feature construction. Atiributes which are present in fewer than
an arbitrary number of patterns may be ignored in computing the attribute in-
clusion matrix. (In the algorithm, all non-—zefo attribute vectors are used in the
inclusion tests.)

A disadvantage of the pattern—-synthesizing features lies in ther
sensitivity to position and orientation changes. For example, different features
are needed to detect the same line segment, depending on whether it is in the
left or the right part of a pattern, and whether it is horizontally oriented or
vertically, etc. The tests for the inclusion of a feature should be extended to

incorporate its local translations and rotations.
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