Computer Sciences Department
University of Wisconsin
1210 West Dayton Street

Madison, Wisconsin 53706

THE LIST SET GENERATOR:
A CONSTRUCT FOR EVALUATING
SET EXPRESSIONS

Stuart C. Shapiro
Technical Report #86

March 1970

THE LIST SET GENERATOR:

A CONSTRUCT FOR EVALUATING SET EXPRESSIONS |

by

Stuart C. Shapiro

ABSTRACT

The list set generator is defined and algorithms for its use are given.,
The list set generator is a construct which may be added to a list pro-
cessing system or any system that handles sets. It efficiently generates
the set which results from any expression involving sets and set operators.
The efficiency derives from evaluating the expression as a whole and in
parallel, rather than evaluating subexpressions and then using those sets

to arrive at the final result.

Key words and phrases: set manipulating, list processing, set generation,

sets, lists, file processing.

CR Catagories: 4.22, 3.74, 3.73,

“The research reported herein was partially supported by a grant from the
National Science Foundation (GP-7069) and partially by USAF Proj. RAND (project
#1116\, Use of the University Computing Center was made possible through support,
in part, from the National Science Foundation and the Wisconsin Alumni Research
Foundation (WARF) through the University of Wisconsin Research Committee.

TThis paper is a version of a section of the author's Ph.D. thesis [4].

\

In designing and implementing an associational net structure to be
used as the data structure for a natural language question answering
system [4], it became obvious that the operations of intersecting and union-
ing arbitrary numbers of sets would be performed frequently. It was, there-
fore, necessary to discover a very efficient method for doing this. This
paper describes a gener@lization of the method which was found, which
generalization allows for the very efficient evaluation of set expressions of
arbitrary length and complexity. The techniques described below would be
useful in language systems that have a set data type and in systems for
manipulating ordered files as well as in associative data systems., Various
versions of these algorithms have been programmed in Extended ALGOL for
the Burroughs B5500 and in PL/I for IBM's System/1360.

Unordered sets may be represented as lists which do not contain duplicate
elements. The set operations will be performed more efficiently if the lists
are ordered on some internal code (see, for example [2]). The set operations
difference (relative complement), union and intersection, which could be
performed only very inefficiently on unordered lists representing sets can be
done efficiently on these ordered lists. For example to intersect two unordered
lists takes an amount of time proportional to the product of their lengths while
to intersect two ordered lists takes an amount of time proportional to the sum
of lengths. When intersecting more than two lists, even more time could be

saved by reading all the lists in parallel rather than intersecting them by pairs,

If three lists were to be intersected of lengths m, n and r and the first
two had s elements in common, intersecting them two at a time as unordered
lists would take an amount of time proportional to mn+sr, the time to inter-
sect them as ordered lists two at a time would be proportional to m+n+s+r,
but the time to intersect them by comparing all three at once would be
proportional to m+n+r . The same results would hold for the other set
operations.

In this paper, I will define a generalization of the list reader (see
Weizenbaum's reader [5] and Knowlton's "bug" [3]) which, as it is incre-
mented, produces the new set determined by set operations on given sets.
The algorithms for incrementing the generalized reader embody the efficient
parallel methods for performing the set operations on ordered lists.

We first introduce some basic terminology.

D1. A list setis an ordered, finite list no two of whose elements are equal.

The ordering relation used in list sets is immaterial. In fact, different
orderings may be used on different lists and any equivalence relation may be
used for equating elements of different lists., The restriction is that if two
elements are equivalent, then no element that appears after one of them on some
list set shall be equivalent to any element that appears on any list set before
the other. If we let = be the equivalence relation, G(x,y,z) be a pre-

dicate that is true if and only if x and y are elements on the list set =z

with x appearing after y on 2z, el, 0o ,e4 be variables over elements and

L1 . LZ be variables over list sets, this restriction may be expressed as:

= - 1 3 =
) => e, e43L13LZ(e e &

‘\7’e1‘v‘ez[(c~31 = 3 4

€2

L) & G(ez,e4.L2>) v (G(e

1 'GS'Ll) & G(e

1 4:'eZILZ))])]"

This restriction, of course, induces a common ordering relation on all elements
of all lists in any operation, but this might not be one that is easily applied
directly to some of the sets in question.

In any implementation of these algorithms, it would be possible to re-
present ordered sets by having the user provide a function which, given two
elements, returns one of three codes depending on whether the first element
is greater than, equivalent to, or less than the second and using this function
whenever two elements are to be compared. It would also be possible to use
these algorithms on ordered attribute - value lists (or any list where the ordering

)JCh through the (Zn—l)th elements always

is on every n)Ch element with the (n+l
following the nth), For the purposes of this discussion, we will assume that
all lists are ordered on an internal numeric code, smallest number first, and
we will use identity as the equivalence relation.,

Since, in the algorithms given below, a list is often searched for the

smallest element equal to or greater than a given element, even more speed can be

achieved if the lists are organized hierarchically. By this is meant that the list

is divided into sublists each containing n elements, for some n , and a
higher level list is used each of whose elements points to the beginning of
a sublist and either also points to the end of the sublist or contains the value
of the last element/on the sublist. This higher list can then be divided into sub-
lists similarly. Then, when a given element is to be found, a search is done
from higher levels to lower levels as the proper sublists are located., There
are no changes reguired in the algorithms given below to accommodate normal
ordered lists or hierarchical lists since the only changes needed are in the
design of the reader and the routine to manipulate the reader.

A reader, as used in this discussion, may contain only a pointer to a
list element or additional information as well, The essential requirements
are that the reader identify a unique element of some list (which we will refer
to as the element currently pointed at by the reader), and that it be possible
to retrieve the datum of that element, to increment the reader so that it points
to the next element in the list, and to recognize when the element it is pointing
at is the last in the list set.

We can consider a reader as a generator of the set represented by the

list it reads. We will define three other list set generators. A difference

list set generator is used to generate a set which is the difference between
the sets generated by two list set generators., A union list set generator is
used to generate a set which is the union of the sets generated by a number

of list set generators. An intersect list set generator is used to generate a

set which is the intersection of the sets generated by a number of list set
generators. Figures 1-3 and the sample problem demonstrate the use of these

generators. The algorithms used are given below,

D2. A list set generator (LSG) is defined recursively as follows:

la) A primitive LSG (PLSG) is a reader.

Ib) A PLSG is an LSG.

2a) A difference LSG (DLSG) is an ordered pair of LSG's.

2b) A DLSG is an LSG.

3a) A union LSG (ULSG) is an ordered, finite list of LSG's, no
two of which have equal data (see below). The list is
ordered so that if Ll and L2 are on the list and have

data d1 and d2 respectively, then d1< d_. if and only

2

if L1 is before LZ in the list,

3b) A ULSG is an LSG.

sk

4a) An intersect LSG (ILSG) is an arbitrarily ordered; finite

list of LSG's,
4b)y An ILSG is an LSG.
5) The only LS8G's are those defined by (1) - (4).

For various purposes, an LSG at any given time will be considered to be

identifying a unique datum,

:‘:If the ILSG is ordered on the size of the sets to be generated by the component
L8G's, smallest first, all operations on the ILSG will be significantly faster than
otherwise.

D3. The datum of a SG is defined recursively as follows:

1) The datum of a PLSG is the datum of the list set element
currently pointed at by the reader,
2) The datum of a DLSG, ULSG or ILSG is the datum of the

first LSG of which it is composed.

The datum of a DLSG or an ILSG may or may not be an element of the
list set the LSG is generating. It will be, if the last operation performed on

the LSG was initializing, incrementing, incrementing to or past a datum, or

incrementing past a datum as these operations are described below., It may

not be if the last operation was checking a datum against the LLSG or some

operation not defined here. The datum of a PLSG or a ULSG will always be
an element of the list set being generated.

The operations described below, except initialization, may be per-
formed repeatedly on an LSG in order to consider successive elements in a
list set. The elements will be generated in the order used for ordering the
list sets and once passed, an element will not again be the datum of the LSG.
Thus, eventually, an LSG will have been moved past all the elements of the
list set it generates., When this occurs, we say the LSG is finished. An
LSG may finish during any of the operations described below, in which case
the operation concludes, returning an appropriate flag. Instead of giving
the finishing conditions in every algorithm below, we give them here once,

since they are the same for all,

D4, 1) A PLSG finishes when an attempt is made to increment it
when it already points at the last element of its list set,
2) A DLSG finishes when its first LSG finishes.
3) A ULSG finishes when it is composed of one LSG and that
LSG finishes.,

4) An ILSG finishes when any of its LSG's finishes.

In two cases an LSG may be discarded in favor of a component LSG:
1) If the second LSG of a DLSG finishes, the first LSG replaces the DLSG,
2) When a ULSG is composed of only one LSG, that LSG is used in place of
the ULSG. These cases may also arise during any of the algorithms des-

cribed below, but we will not mention them again.,

The first algorithm to be described is initializing an 1.5G. When an
LSG is initialized, its datum will be the first element of the list set the 1LSG

generates, If that list set is null, the LSG will finish during the initialization

process,

Al, Initializing an LSG

1) PLSG: Initialize the reader so that it points at the
first element of its list.
2) DLSG (See Figure 1 steps 1-8):

a) Initialize the first 1LSG.

Initialize the second LSG at or past the datum
of the first (i.e., its datum will be equal to

or larger than the datum of the first LSG).

If the data of the two LSG's are equal,

increment the DLSG.

3) ULSG (see Figure 2 steps 1-4): Initialize each LSG in turn,

placing them in the ULSG in the proper order (but
not placing one that finishes)., If an LSG is
initialized with a datum equal to the datum of an
LSG already in the ULSG, increment it until it
has a datum not already represented. ‘Then place

it in the ULSG in the proper order.

4) ILSG (see Figure 3 steps 1-6):

a)

b)

Initialize one LSG and place it in the ILSG.
Initialize each successive LSG (in any order)
at or past the datum of the previous LSG and
place it as the first LSG of the ILSG.

When all L8G's have been initialized and
inserted, if their data are not all equal,
increment the ILSG to or past the datum of

its first LSG.

10

Once an LSG is initialized, it can be repeatedly incremented, and

after each step its datum will be the next greatest element of the list set it

generates (see Figures 1-3).

If some operation was performed on an LSG so

that its datum is not an element of the set it generates, and the 1LSG is then

incremented, its datum after being incremented will be the smallest element

of the set it generates which is larger than the datum of the L.SG before it

was incremented.

A2, Incrementing an LSG

1) PLSG: The reader is incremented so that it points at the

next element in its list,

2y DLSG: a) Increment the first LSG.

b) Check the current datum of the first LSG

against the second LSG. If the check fails,

the increment is done. If the check succeeds,

go back to step (a).

3) ULSG: a) Remove the first 1.SG from the ULSG.

b) Increment the LSG removed in step (a).

If it finishes, the increment is done.

c) If the datum of the LSG incremented in

step (b) is equal to the datum of any other

LSG in the ULSG, go to step (b).

11

d) Return the LSG to the ULSG in its proper
order according to its current datum.
4) ILSG: a) Increment the first LSG of the ILSG.
b) Let D be the datum of the first L.SG and i be 1.
c) Let i-= i>+ 1.
d) If there is no ith LSG the increment is done.
e) Increment the ith LSG to or past D .,
1) If the datum of the ith LSG equals D, go
to step (c).
g) Let D be the datum of the ith LSG and i be 0.

h) Go to step (c).

There are times when we are not interested in the next element to be
generated by an LSG, but in the next element equal to or greater than a give;l
one (e.g. A2 (4e)) or the next element strictly greater than a given one. Such
an element could be found by repeatedly incrementing the LSG, but it would
be more efficient to make full use of the information of what datum we wish

to equal or exceed and increment the LSG to or past (or just past) the datum

in one operation,

12

A3. Incrementing an LSG (to or) past a datum, D

1)

2)

3)

PLSG:

DLSG:

ULSG:

Increment the reader (zero or more times) until

it points to an element whose datum is (equal

to or) greater than D.

a)

b)

Increment the first LSG (to or) pasf D.
Check the datum of the first L.SG against
the second LSG. If the check is successful
increment the DLSG. If the check is not
successful, the increment is done.

Remove the first LSG from the list.
Increment the LSG removed in step (a) (to
or) past D, If it is finished, go to step (e).
If the datum of the LSG incremented in step
(b) is equal to the datum of any other LSG
in the ULSG, increment it. If this finishes the
LSG, go to (e).

Return the LSG to its proper place in the
ULSG according to its current datum.

If the datum of the LSG which is now first
in the ULSG is not (equal to or) larger than
D, go to step (a), otherwise the increment

is done.

i3

4y ILSG: This is exactly the same as incrementing an
ISLG (A2 (4)), except that in step (a), the first

LSG is incremented (to or) past D.

If it is desired to determine if a given element is a member of the \set
generated by an LSG, this can, in most cases, be done more quickly than
by incrementing the LSG to or past the element and then lobking at the datum
of the LSG if it is acceptable that when the check is finished, the datum of
the LSG might not be a member of the set it generates. To subsequently produce
an unknown member of the set generated by the LSG, it would be necessary

to perform one of the incrementing operations on it.

A4, Checking a datum, D, against an LSG

1) PLSG: Increment the reader to or past D. If the reader
finishes or it ends up with a datum which is
larger than D, the check is unsuccessful. If
the PLSG ends up with a datum equal to D,
the check is successful.

2) DLSG: a) Check D against the first L.SG. If this

check is unsuccessful, the check against

the DLSG is unsuccessful,

3) ULSGe

14

If the check against the first LSG was
successful, check D against the second
LSG. 1If this check is successful, the check
against the DLSG is unsuccessful and vice
verse,

If the datum of any LSG in the ULSG equals
D, the check is successful.

Remove the first LSG from the ULSG.

Increment the LSG removed in step (b) to

or past D. If it finishes, go to step (f).

If the datum of the LSG incremented in step
(c) is equal to the datum of any other LSG

in the ULSG, increment it. If this finishes
the LSG, go to step (f).

Return the LSG to its proper place in the ULSG
according to its current datum.

If the datum of the LSG incremented in step
(c) was equal to D after it was incremented,
the check is successful. Otherwise, if the
datum of the LSG which is now first in the ULSG
is larger than D, the check is unsuccessful.
If neither of the above two cases hold, go to

step (b).

i5

4) ILSG: Check D against each LSG that makes up the
ILSG in turn. As soon as one is found for which
the check is unsuccessful, the check against
the ILSG is unsuccessful. If all checks are
successful, the check against the ILSG is

successiul,

It should be remembered that the list sets are ordered and the LSG's
generate them in order. The only way to generate all the members of a set is
by successive incrementing with no other operations interposed. An LSG
cannot be "backed up" to an element it has already passed. If several
elements are to be checked against an LSG, this must be done in the proper
order to avoid the necessity of initializing several LSG's.,

The sample problem below shows how LSG's are used to evaluate a set
expression, Because of their generality, LSG's would be extremely useful
as part of a language system allowing sets as a data type. Moreover, since
any ordered, sequential file fits the definition of list set given above, LSG'S
may be used for traditional file handling and will lead to great efficiency
when arbitrary numbers of files a‘re to be handled simultaneously. For these
purposes, the DLSG is used for purging records from a file, the ULSG is used

for merging files’s and all the LSG's may be used for information retrieval.,

“The ULSG merges in the manner described as "m~way merge with ranking
sort" [1].

16

ACKNOWLEDGEMENT

The author expresses his thanks to Professor Larry E. Travis of the

Computer Sciences Department, University of Wisconsin for his continuing

help and guidance.

REFERENCES

Brooks, F. P., Jr. and Iverson, K. E. Automatic Data Processing:
System/360 Edition. Wiley, New York, 1969,

Feldman, J. A. and Rovner, P, D. An ALGOL-based associative
language. Comm., ACM 12, 8 (Aug. 1969), 439-449,

Knowlton, K. C. A programmer's description of L6° Comm, ACM
9, 8 (Aug., 1966), 616-625,

Shapiro, S. C. A data structure for semantic information processing.
Ph.D. Thesis, Computer Sciences Department, Univ. of Wis.,
Madison, Wisconsin, 1970 (in preparation).

Weizenbaum, J. Symmetric list processor. Comm. ACM 6, 9
(Sept., 1963), 524~544,

17

Lo L,

L, = (0,1,2,5,6,8,9]}
L, = {0,1,2,3,7,9)
Step DLSG Generated Set
1 G 1:07) {3}

2 (D 1:0,2:0) : {1}

3 (o 1:1,2:0) {}

4 (o 11,201 (3

5 (p 1:2,2:1) {3}

6 (1:2,2:2) {]

7 (5 1:5,2:2) {3}

8 (D 1:5,2:7) {5}

9 (.D 1:6,2:7) (5,6}
10 (H 1:8,2:7) (5,6}
11 (H 1:8,2:9) {5,6,8)
12 (h 1:9,2:9) (5,6,8}
13 The PLSG for L1 finishes

Figure 1: Example of a DLSG being used to generate a set which is the
difference between two sets,

A PLSG will be represented as a list set identifier followed by ":"
followed by the datum of the PLSG.

18

L1UL2UL3UL

4
Ll - {0,1,2,5,6,8,9]

L, = {0,2,3,4,5}

L, = (2,3,6,8,9}
L, = (0,1,2,3,7,9}

Step ULSG Generated Set

1 (g 10 (]}

2 (y 1:0,2:2) {3

3 (y 1:0,2:2,3:3) (]

4 (U 1:0,4:1,2:2,3:3) {0}

5 (y 4:1,2:2,3:3,1:5) {o,1}

6 (y 2:2,3:3,1:5,47) {o,1,2)

7 (3:3,2:4,1:5,47) {0,1,2,3)}

8 (y 2:4,1:5,3:6,4:7) {0,1,2,3,4)

9 (y 1:5,3:6,4:7) {0,1,2,3,4,5)

10 (y 3:6,4:7,1:8) {0,1,2,3,4,5,6}
11 (y 4:7,1:8,3:9) {0,1,2,3,4,5,6,7}
12 (y 1:8,3:9) (0,1,2,3,4,5,6,7,8)
13 (y 3:9) {0,1,2,3,4,5,6,7,8,9)
14 finishes
Figure 2: Example of a ULSG being used to generate a >set which is the

union of four sets.

19

L, = {0,1,2,5,6,8,9}

L, = (0,2,3,4,5)

L, = (2,3,6,8,9)

L, = {0,1,2,3,7,9)

Step ILSG Generated Set
1 (; 1:0) {}
2 (I 2:0,1:0) (]
3 (I 3:2,2:0,1:0) ()
4 (; 4:2,3:2,2:0,1:0) {]
5 (4:2,3:2,2:2,1:0) {3
6 ([4:2,3:2,2:2,1:2) {2}
7 ([4:3,3:2,2:2,1:2) {2}
8 (I 4:3,3:3,2:2,1:2) {2}
9 ([4:3,3:3,2:3,1:2) {2}
10 (; 4:3,3:3,2:3,1:5) {2}
11 (14:7,3:3,2:3,1:5> {2}
12 | (I 4:7,3:8,2:3,1:5) {2}
13 (;4:9,3:8,2:3, 1:5) {2}
14 ([4:9,3:9,2:3,1:5) {2}
15 The PLSG for 'L2 finishes

Figure 3: Example of an ILSG being used to generate a set which is the
intersection of four sets,

Example Problem

20

We will step through setting up and using an LSG to evaluate the

expression:
\ 4
((L1 U L2 n (L3 U L4U L5) N (l6
where:
L1 = {2}
LZ = {3,4}
L3 = {0,1,2,5,6,8,9]
L4: {_012‘:3'415}
LS = {2l3161819}
= 4
L, = (4)
L7: {0,1,2,3,7,9}
L8: {4}
L. = 1,7,8
o= (1.7,8)
LIO = {3,7}
L11 = {0,2,4,5,8}
lez {2,3,5,6}
1. Initialize DLSG
1.1 Initialize ILSG

U (L7 n L8) U Lg)) - (L

10 Y

(L

11

I

12

)

1.1.3.1

1.1.3.2

1.1.3.3

1.1.3.4

1.1.3.4.1

1.1.3.4.2

1.1.3.5

1.1.3.6

1.1.3.6.1

1.1.3.6.2

1.1.3.6.3

1.1.3.6.4

1.1.4

1.1.5

21

Initialize ULSG for (L, U L_)

1 2
Initialize PLSG for Ll , getting 1:2

Put in ULSG, getting (.. 1:2)

U
Initialize PLSG for LZ' getting 2:3

Put in ULSG, getting (U 1:2,2:3)

Put ULSG in ILSG, getting (_(

1:2,2:
‘v 2,2:3))

Initialize next ULSG at or past 2

Initialize PLSG for L3 at or past 2, getting 3:2

Put in ULSG, getting (U 3:2)

Initialize PLSG for L4 at or past 2, getting 4:2

Put in ULSG -- but equal to datum already there
Increment 4:2, getting 4:3

Now put in ULSG, gefting (__ 3:2,4:3)

U
Initialize PLSG for L5 at or past 2, getting 5:2
Put in ULSG -- but equal to datum already there
Increment 5:2, getting 5:3

Still equal to datum already in ULSG

Increment 5:3, getting 5:6

Put in ULSG, getting (_. 3:2,4:3,5:6)

U

Put ULSG in ILSG, getting (_(

‘y 3:2,4:3,5:6)(U 1:2,2:3))

Initialize next ULSG at or past 2

1.1.5.1

1.1.5.2

1.1.5.3

1.1.5.3.1

1.1.5.3.2

1.1.5.3.3

1.1.5.3.4

1.1.5.3.5

1.1.5.3.5.1

1.1.5.3.5.2

22

Initialize PLSG for L6 at or past 2, getting 6:4

Put in ULSG, getting (U 6:4)

Initialize ILSG for (L7 n L)) at or past 2

8
Initialize PLSG for L7 at or past 2, getting 7:2

Put in ILSG, getting (. 7:2)

I

Initialize PLSG for L8 at or past 2, getting 8:4

Put in ILSG, getting (. 8:4,7:2)

I

Increment the ILSG to or past 4, so datum is a member
of the set it generates

Increment 7:2 to or past 4, getting 7:7 and

(I 8:4,7:7) for the ILSG

Increment 8:4 to or past 7, finishing the PLSG for L8’
which finishes the ILSG -- the intersection was null
The ILSG was finished before being initialized so
initialize an PLSG for L9 at or past 2, getting 9:7
Put in ULSG, getting (U 6:4,9:7)

Put the ULSG in the ILSG, getting

(4

iy 6:4,9:7)(

U 3:2,4:3,5:6)(U 1:2,2:3))
The ILSG is now built, but its datum is not in the

set it generates, so increment it to or past 4, the

datum of its first sub-~-LSG

23

1,1.7.1 Increment the an ULSG to or past 4

1.1.7.1.1 Increment 3:2 to or past 4, getting 3:5

1.1.7.1.2 Replace it in the ULSG, getting (U 4:3,3:5,5:6)

1.1.7.1.3 Increment 4:3 to or past 4, getting 4:4

1.1.7.1.4 Replace it in the ULSG, getting (U 4:4,3:5,5:6)

i.1.7.2 The ILSG is now (I(U 6:4,9:'7)(U 4:4,3:5,5:6)(U 1:2,2:3))
so increment the 3rd ULSG to or past 4

1.1.7.2.1 Increment 1:2 to or past 4, finishing the PLSG for L1 ,
so the ULSG is now (U 2:3)

1,1.7.2.2 Increment 2:3 to or past 4, getting 2:4

1.1.7.2.3 Note the ULSG is just (U 2:4), so change it to the
PLSG 2:4

1.1.7.3 The ILSG is now (I(U 6:4,9:7)(U 4:4,3:5,5:6) 2:4) so

it is initialized and its datum is 4

1.2 Initialize the 29 LSG of the DLSG to or past 4
1.2.1 Initialize PLSG for L10 at or past 4, getting 10:7
1.2.2 Put it in the ULSG, getting (U 10:7)

1.2.3 Initialize DLSG for (L11 - le) at or past 4
1.2.3.1 Initialize PLSG for L11 at or past 4, getting 11:4
1.2.3.2 Initialize PLSG for le at or past 4, getting 12:5
1.2.3.3 The DLSG is now initialized as (D 11:4,12:5)

1.2.4 Put the DLSG in the ULSG, getting (U(D 11:4,12:5) 10:7)

24

1.3 The DLSG is now
(D(I(U 6:4,9:7)(U 4:4,3:5,5:6) 2:4)(U(D 11:4,12:5) 10: 7))
so0 4 is the datum of both LSG's in the DLSG and

therefore not an element of the set generated by the

DLSG, so the DLSG must be incremented past 4

1.3.1 Increment the ISLG past 4

i.3.1.1 Increment (U 6:4,9:7) past 4

1.3.1.1.1 Increment 6:4 past 4, finishing the PLSG for ‘L6
1.3.1.1.2 The ULSG is now (U 9:7) and the ILSG is

(I(U 9:7)(U 4:4,3:5,5:6) 2:4)

i.3.1.2 Increment (U 4:4,3:5,5:6) to or past 7

1.3.1.2.1 Increment 4:4 to or past 7, finishing the PLSG for L4
1.3.1.2.2 Increment 3:5 to or past 7, getting 3:8

1.3.1.2.3 Replace it in the ULSG, getting (U 5:6,3:8)

1.3.1.2.4 Increment 5:6 to or past 7, getting 5:8

1.3.1.2.5 Replace it in the ULSG -- but datum already there
1.3.1.2.5.1 Increment 5:8, getting 5:9

1.3.1.2.5.2 Now replace it in the ULSG, getting (U 3:8,5:9)
1.3.1.3 The ILSG is now (I(U 9:7)(U 3:8,5:9) 2:4) so increment

(U 9:7) to or past 8

1.3.1.3.1 Increment 9:7 to or past 8, getting 9:8

1.3.1.3.2

1.3.1.4

25

The ULSG is now just the PLSG 9:8

The ILSG is now (I 9:8(1 3:8,5:9) 2:4) so increment

J
2:4 to or past 8, finishing the PLSG for LZ' which
finishes the ILSG, which is the first L.8G of the DLSG
so that is now finished.

The DLSG was finished while being initialized.

The value of the expression is the null set,

