University of Wisconsin
Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

SAC-1A FOR PAGING: AN ADAPTATION OF SAC-1
FOR ALPHANUMERIC STRING LIST PROCESSING
AND FOR A PAGING MACHINE,

by

William Fabens

Technical Report #83

March 2, 1970






SAC~-1A FOR PAGING: AN ADAPTATION OF SAC-1 FOR ALPHANU MERIC
STRING LIST PROCESSING AND FOR A PAGING MACHINE
by

William Fabens

Introduction
The collection of Algol routines I am about to describe represents a version
of the SAC-1 List Processing systems with the following three additions.
(1) It is programmed in Algol instead of FORTRAN*,
(2) it adds conceptually two new types of lists: the character string and
the compact alphanumeric word list; and
(3) the space used for representation of lists is paged, and algorithm for
allocating space within this data area is implemented within the frame-

work of the SAC-1 system.

The Base System: SAC-1

The SAC-1 List Processing system currently forms the foundation of the SAC-1
algebraic symbol manipulation system, which is being developed by G. E. Collins
[1]. The List processing part is similar to the more well known SLIP system
developed by Weizenbaum [2] in that it is an embedded list processing system

which uses reference counts. SAC-1, however, is a descendant of REFCO 1 [3],

The string processing routines but not the others are also programmed in
FORTRAN (most of them in A, S. A. Fortran); system being described has
been used on the Univac 1108 in FORTRAN, and on the Burroughs B5500

in Algol.



one of the first reference count systems. In SAC-1, a list is any set of cells
addressed in the data area, the members of which are determined by following
successor links. Each cell contains 4 fields: the successor field, the type
field, the count field and the element field. The type field can have two
values, 1 and 0. One indicates that the element field contains a pointer to a
sublist, zero indicates that the element field contains an atomic element. The
count field indicates how many pointers address the particular cell. A cell is
put on available space list if and only if its count field becomes zero. Table
1 shows all of the SAC~1 list processing routines as they are used in SAC-la.
The table demonstrates them all translated into Algol. I/O routines are not

shown.




Table 1: SAC-1 List Processing Routines

This chart shows examples of calls of a
usaed indicate the contents of variables
with each routine.
1 defines 1st arg., changes

For their meaning see the chart at the bottom.
2nd; 2 defines all arguments.

11 list processing routines, the variables
or expressions that are used or expectied
Notes:

e: = first (c) yield value element
f ccessor
P: = tail () © 54 S50
type
t: = type (c) field of ref. count
n: = count (c) cell c.
m: = length (#) counts number of first-

order cells on list £.

delivers element field
of cell ¢ as e, and
successor field as c.

adv(e, c)}L

Storage increasing routines: routines
which generally use some of available
space.

Storage modifying routines which do not
increase or decrease amount of storage

b e o st o o - — 7 " _— 1" ] e otg T A S o e RS o7 ot ot S i e e s o T S

alter (e, c) change | element field
ssuce (£,c¢) successor
type
stype {t,c) ref. count
of cell c.

scount (n,c)

£1:=inv(£2) makes each cellin £2 point to
preceding cell, returns this in-
verted list as /1

£1:=conc(f2, £3) makes lastcell of £2 point
to £3, returns this concatenated
list as /1

£1: =borrow (£2)if £2 is non-zero, increase
increases its ref. countby
1. Returns value of f2to fl.
Storage decreasing routines: routines
which generally return some of available
space.

PLl:=rpfa(a, f2) creates new cellwith
7 = Y «@ /g
L1:=pfl(£3, £2) type

a
, element

1 37

count 1 and successor
£2, calls this cell /1.

Thus is prefixed

a
23
list f2:

Pl:=cinv (42) creates (length({/2))
new cells in reverse
using pfa or pf/,
whose elementfields
are the same as those
of £2. If their typeis

1, borrow them.

stack2(el,e2) pushes (e3 then)
stack3(el,e2,e3) e2 then el ontolist

yields element field of ¢
as e, and the successor
field as ¢. Then returns
this cell to available
space. Ref. count of the
cell must have been 1.

erase(f) If 7 is not zero, reduces
its ref. count by 1. Ifthat
makes the ref. count 0, re~
turn the cell to available
space, and use erase onthe
successor cell, if cell had
type 1, also erase the sub~-
list.

f is a list where no cell
has type 1, erase algorithm
(simplified) is applied.

t;msth(e',l,eZ)Z pops el then e2 (then e3)
unstk3(el, el ,e3)2 off of list called

erla(f)

called stack.

stack.

¢ =any non-zero address
n=any non-negative integer

A T A P YN NP Y 2 s Bt ey b vy ey e Y Y & W ]

a =any computer word (atom) e=any a or £ (atomor
f=any c,

or 0 (list) list



4

SAC-la: Additions for Alphanumeric-String List Processing

The list processing system just described provides an efficient base for
handling general lists. SAC-la builds on it a basis for alphanumeric string
processing. SAC-la adds conceptually two new types of lists to SAC-1: packed
and unpacked a-lists ('a' for alphanumeric). A-lists are handled using new
SAC-1a routines programmed in SAC-1. These routines handle the basic operations
of 1I/0, conversion, comparison and pattern~match replacement. The resulting

set of routines is the SAC-1la system.

Packed and Unpacked a-lists

I will refer to both lists and strings in this discussion of the new routines.
In doing so, I use ‘siring’ to refer to the contents of a 'list,' the terms are

complementary, not contrasting. An unpacked a-list is a first-order SAC-1 list

where each cell contains one character. This method of storing strings is
efficient only when it is used for character-by-character pattern matching. The

packed a~list is the usual form of string storage. Each a-word, composed of

non-blank, non-parenthesis alphanumeric characters, is stored 5 or 6% symbols
per cell with special symbols to indicate continuation. This format can be used
for word-by-word pattern matching. Blanks never appear in packed lists since
they are what were used to delimit words; parentheses never appear either - they

are represented by sublisting.

sk
5 or 6: depends on whether one is using 36 or 48 bits for SAC-1 atoms.




Input/Qutput

Each type of list has its associated reading and writing routines. Aread
causes as many cards (or records) to be read as it takes to come to matching
parentheses. Words are delimited by blanks and are packed 6 (or 5)* letters
per SAC-1 cell in packed a-list form. Parentheses causes sub-a-lists to be
inserted in the a-list which Aread creates. Awrite causes a packed a-list to be
written in parenthesized notation (such that it could be read in as an equivalent

list if one used Aread on Awrite's output). Cread causes the reading in of an

unpacked (character) list. Reading continues until a special end-of-string
symbol is found; each character encountered before the end~of-string is placed
in a single SAC-1 cell. Cwrite causes character lists to be written (in a com-
patible format - followed by the end-of-string symbol). The two reading routines
can fail due to lack of input (end-of-file}. If so, they return -1 instead of a

list.

Conversion

Lists can be packed and unpacked using the two conversion routines:
S1toS6 (or S1toS5)* and S6toS1 (or S5toS1)*. Sbé6toS1 converts packed a-lists to
unpacked a-lists. It inserts parentheses to surround sublists, and blanks to
separate words. It is parallel to Awrite in operation. S1toS6 converts from
unpacked to packed except that parentheses do not cause sublists to be created

since (1) the parentheses may not match, and {2) there are no outside parentheses

T
sk

on 36-bit machines



6
to delimit shows the end of the list. Otherwise it is like Aread. This absence
of conceptual symmetry due to parenthesization may be reprogrammed and designed

out in later versions.

Comparison.

Two comparison routines have been programmed. The first, streql (for
'string equal'), can be used to compare two unpacked strings or two packed
strings. It simply scans down both strings, testing for equality. 1f each atomic
cell agrees with each corresponding cell, it returns true, otherwise false. The
scan stops when the scan encounters either the end of a string or the beginning
of a sublist. With packed lists, which may contain sublists, the comparison
is thus restricted to the left-most cells - this way one can compare a simple
packed string with the the beginning of a complicated a-list.

The other routine is called treeql (for 'tree-equal’). This routine scans
the complete list structure of each of its two arguments. If the two structures are
equivalent and the corresponding atoms within these are equal, the value is
true, otherwise false.

These routines are of type boolean and neither one of them alters its

arguments.

Pattern-Match Replacement

There are two boolean routines, replst (for 'replace string') and repltr
(for 'replace tree') of three list arguments which look through the first list for an

instance of match with the second and if it is found, replace that matched part by




the third argument. They differ from each other in where they look and what kind
of cquality they are looking for. These routines are similar to the basic statement
types of COMIT [4] and SNOBOL [5]. Using replst with the other SAC-1a routines,
one can achieve a rough equivalence of the SNOBOL pattern match except for the
matching of variable-length unknown strings and all that that entails.

Replst (A,B,C) searches along string A, trying to find a sequence of words
in it which match the sequence B. If it finds them, it replaces that sequence
with a copy of string C, and returns true. Otherwise nothing is modified and the
value is false. A and B (and usually C) ought to be all packed or all unpacked.

Repltr (A,B,C) tries to find a match of B in the treeql sense, first with A,
then each of A's sublists (if any) going down then across, left-most first. If
it finds a match, C is borrowed and put in the place of the match. In that case
the value will be true, otherwise nothing changes and the value is false.

Fither of these routines, if successful, will modify the list A. If their

matches include the first cell of A, the address A itself will be changed.



SAC-1a Adaptation to a paging machine.

Paging Problems

The SAC-1a system is implemented on a computer, the B5500, which
handles arrays using disk pages. A particular page in general does not reside in
memory unless it has recently been referenced, but list processing usually makes
references to words located randomly in a large, multi-page array. Without
some arrangement to control the randomness of such references, time consuming

page fluttering could easily result.

List Entropy

Looking at the problem a little more closely, the reason that systems can
start to flutter pages is mainly attributable to the handling of available space. The
list of available cells is initialized linearly throughout memory. When a new
cell is needed, it is taken off the top of this list. In the beginning this causes
no problem. The problem begins either when cells become cross-referenced, or
more commonly when cells are returned to that list of available cells. If cells
which had occurred in the middle of the list are returned to one end of it, available
space can double back across page boundaries. As more cells are returned, the
available space list can cross more and more page boundaries. Then when new
cells are needed their locations can become more and more haphazard simply
because of the increasing randomness of available space, this is the problem of
list entropy.

The solution to list entropy is simple: maintain a list of available space

on each page. SAC-la does this in its three cell-returning procedures.




Page Links
l.ot us call any two pages in which a cell of one references a cell of

the other, 'linked pages.' Inevitably with any list processing system, there
will be linked pages. One can only hope to keep this number to a minimum.
With most list processing applications, programmers can create page links by
putting references on one list to a sublist on another page. This type of natural
page links cannot be prevented.* The artificial kind, caused by overflowing
page space when building a list, can.

The method this program uses to overcome artificial page links along
with the rationale for it, follows: The only time for prevention of artificial
page links comes when a new cell is being prefixed to a list (since remapping
is not allowable). Thus the method becomes one of deciding which page should
be used for the new cell in the prefixing routines pfa and pifl.

Same Page. One would like to choose to take a cell from the same page
as the cell being prefixed to. ‘But complications can develop: (1} no such page
address is given (e.g. when prefixing to a null list), or (2) the indicated page

has no more cells. Last-used page. In the first case, one can choose, say,

the last page which was referenced (since this is the most likely page toactually

be in storage), but even after that, one may run into problem 2.

o,

"\except through a remapping process - in SAC-1 unlike Slip, any cell is
referencible not only through programmed variables but from any number of
other cells. So with SAC-1 remapping is not feasible.



10

List of Available Pages

This system, on encountering case 2, chooses its page from one of two
sources: a list of available pages and if none exists, creates and initializes a
new page. The list of available pages is maintained through the erasure routines.
A page becomes available if some cells have been erased and that makes the
page empty.

Succesgsor Page

Now, if after case 2 has arisen because page a was desired but full and
page b was used for the rest of the list, it would be a good idea to remember that
‘_}3 follows a so if case 2 would arise with respect to page a again one could try
b again. To implement this each page contains a pointer to its successor page
(if any). Before trying a new page the successor page is tried. If that page is
found full it is removed as successor to page &, and a new (available) page is
used and called a's successor. Otherwise it is used and the number of page

links stays the same.

Page Cushions

If cases 1 occurs but the latest page is almost full, it makes no sense
to begin a fresh list on it. If this happens, a new (available) page is taken.
The other way around, if a page becomes nearly empty it can be uneconomical to
tie it up as the successor page of some other page. Thus when erasing causés
a page to become nearly empty it is split off from the predecessor and put on the
available page list. What 'nearly full' and 'nearly en'lpty‘ mean is programmable

by means of two variables 'PAGEMEPTY' and 'PAGEFULL.' Tables 2-8 show the




11

effects of various setting of PAGEFULL and PAGEEMPTY on a list application
which is notatypical. Figure 1 shows an example of the arrangement of pages
in the running of the system. The size and number of pages can also be de-

termined by the programmer.

Summary and Discussion

This paper deals with two essentially unrelated topics: strihg manipula-
tion in a list processing system, and storage maintenance for un-remappable
list storage.

As with Collins' SAC-1 system the string manipulation routines given
here are a minimal rather than an exhaustive set of routines upon which one can
build his own type of system. One can build other routines around this set to
achieve some of the advantages other string manipulation languages like SNOBOL
offer, without carrying the overhead of unwanted generality.

The storage maintenance part seems to run well. Actual experience
running the system shows it to be viable in a virtual paging system, and it seems
to be closely competitive with non-list processing programs written for similar

problems.



12

Appendix:
SAC-la I/0 for the B5500 - extensions of SAC-1 I/O.

The B5500 offers essentially two features of I/0 which are not always
found or necessary on non-interactive machines: teletype I/0O and run-—time
assignment of disk files. To take advantages of these, the I/O routines were
augmented and a new routine was added.

Each SAC-1 I/0 routine is given a unit number (which represents printer,
card reader, etc.) as one of its arguments. Since the B5500 refers to all its
I/O units as files (with names, not numbers), and since some of these files
have different attributes (e.g. not backspacable, random addressibility, etc.).
much more information about a file must be given and used than just a Unit
Number.

To supply this information with as little inconvenience to the pro-
grammer as possible, an new routine was added. It is called DECLARE and does
all file assigning, releasing and status and presence checking. If its arguments
are (la) a number saying what type of file is being declared, and (1b) the name
(if any) to be given to the file or that the file should have, DECLARE returns =
either a Unit Word (coded with bits telling the 1/0 procedures how to handle
I/O on that unit) or a negative number indicating that the file has bad priority
doesn't exist or is doubly defined. If its argument is (2) the negative of a Unit
Word, DECLARE either releases, disconnects or purges the file. It is the 'Unit
Word' that corresponds to SAC-1's 'Unit Number', so once a file's Unit Word

has been defined, one uses it just as one would in SAC-1 .




13

Variables exist in the system whereby a user can find out where his record
pointer is on each randomly accessible file. The user can have his read or write
command use a particular record by setting a bit and an address field in the Unit
Word, otherwise serial operation is agssumed. To rewind a file the user calls
readl with a negative unit number,

All I/O, not just list processing I/O can be done using DECLARED
Unit Words: there are procedures, which use the basic SAC-1a routines, which
are given lists and formats.

Teletype 1/O

Teletype files need not be declared - such declaration is done auto-
matically when reading or writing. There are two ways of doing teletype I/0:
multiple user round-robin input and selected input (they converge when only
one teletype is connected).. For multiple teletypes, the Unit Word equals 0 and
need not be explicitly DECLARED. If more that one teletype is attached, reading
is done from the next one inputting in the round-robin circle. A global variable
keeps track of the number of the referenced teletype. Writing on Unit 0 causes
output on the last-~read teletype. (If 0 teletypes are connected, I/O goes to
file "printer" and comes from file "cards.")} Individual teletypes are addressed

using their teletype number as the Unit Word.



14

References

1. Collins, G. E., "The SAC-1 List Processing System, " Computer Sciences
Department and Computing Center, University of Wisconsin, Madison,
Wisconsin, (July 11, 1967).

2. Weizenbaum, J., "Symmetric List Processor," Comm. ACM, Vol. 6, No. 9.
(September 1963), pages 524-544,

1

3. Collins, G. E., "A Method for Overlapping and Erasure of Lists." Comm.
ACM, Vol. 3, No. 12. (December 1960).

4, Sammet, Jean E., "COMIT" in Programming lLanguages: History and

Fundamentals Prentice-Hall, Inc. Englewood Cliffs, N. J. (1969), pages

416-436.
5. Farber, D. J., Griswold, P. E., and Polonsky, I. P., "SNOBOL, A String
Manipulation Language," J. ACM., Vol. 11, No. 1. (Januarly 1964)

pages 21-30.




Tables 2~-8.

Table

2

W

o Ut

15

Various settings of PAGEFULL and PAGEEMPTY were tested by doing

a certain amount of processing, stopping and recording various statistics

on the state of the system, then restarting and doing the same exact pro-

cessing with different settings. The statistics are described below. In

each case the other variable, page size, was kept at 99 cells per page. N

Number of cells in use was always 2236,

Statistic
Links

Pages
Cells per Page &6

Full

Partial
Density of links

Empty

Explanation

number of pairs of pages, one of which refers to
the other
number of pages with cells in use on them
average number of cells in use per page, androot-mean-
square of cells per page minus the average
number of pages with no more available space on them
number of pages with some cells in use, some not
the percent the number of page links is
to the number of possible page links
_n(n-1)
=77
number of pages created at one time but not now
containing data

, n=number of pages).



16
IlNigures 1 and 2:
These pictures show the arrangement of pages under two of the 66 settings
where statistics were collected in tables 2-8.
The numbers between dots are the numbers of page-linking references.

Arrows show the current successor pages of each page. The dots are pages.

o (Do

©— @.,o-:.@meg-;%_ @ @—»@ o—
\@w@—-—@ ——@—9@ @

o - (-

PAGEFULL =99, PAGEEMPTY = 0

Figure 1

e—-(1)ve o—(4)>e - 3@ — @ @fm
oo o-@De-@Dro-O @@@~»©»

/

— - .. - —® ®

e-(3)e-(1 )@ @9 o _m-‘—a
:M/ /

@-—-—)’|

3, oN
; N4

PAGEFULL = 95, PAGEEMPTY = 50

Figure 2




PAGEFULL =

R/

PAGEFULL

AGEFULL=

P

99
90
80
70
60
50

6

99
90
80
70
60
50

99
90
80
70
60
50

17

PAGE EMPTY =

01020 30 40 50 60 70 80 90 99
26 27 27 27 27 26 27 27 28 31 33
29 28 28 28 29 28 28 28 2929 29
31 30 31 30 30 3029 30 30 31 31
292929292929 29 32 32 32 32
34 34 34 34 34 33 33 33 33 34 34
36 38 38 35 35 34 35 35 36 36 36

LINKS
Table 2

H
=]

L

PAGEFU

PAGE EMPTY =

01020 30 40 50
99 28 27 27 27 27 26

80 302929 29 28 28
7027 2727 27 27 27
50 37 35 35 34 34 32
PAGES
Table 3

PAGE EMPTY =

0 10 20 30 40
80 28 8324 8324 8325 8325
7731 8027 8027 8027 8028
74 31 7728 7728 7728 80 28
8319 8319 8319 8319 8319
68 33 7229 7229 7229 7229
60 31 6429 6429 6629 6629

50
86 22
83 26
80 28
8319
77 23
70 24

60 70 80
86 22 86 22 86 23
83 26 8326 8327
80 28 8028 80 29
8319 7728 77 28
7723 7723 7723
7024 7024 70 24

Cells per page &6

Table 4

PAGE EMPTY

01020 30 40 50 60 70 80 90 99

15151515151515 1516 16 18

13
12

11
11

B o e e O

60 70 80 90 99
26 26 26 27 28
90 29 28 28 28 28 27 27 27 27 27 27
28 28 28 28 28
27292929 29
60 33 31 31 31 31 292929292929
32 32 32 32 32

90
83 26
83 27
80 29
77 28
7723
70 24

PAGE EMPTY =

01020 30 40 50 60 70 80 90 99
961312121212 1111111011

1313131313131314 14 14 =1 9016 1515 15 15 14 14 14 13 13
1212121212 12 12 1313 13 > 8018 17 17 17 16 16 16 16 15 15
9 9 9 9 9 9 912121212 il 7018 18 18 18 1818 18 17 17 17
11111111 9 9 9 9 9 9 © 602220202020 202020202020
11111111 8 8 8 8 8 8 A 50 26 24 24 23 23 24 24 24 24 24 24
FULL PARTIAL
Table 5 Table 6
PAGEEMPTY = PAGE EMPTY =
10 20 30 40 50 60 70 80 90 99 01020 3040 50 60 70
7.77.77.7 7.78.08.38.38.68.88.7 499 333322 22
7.47.47.47.78.08.08.08.38.38.3 390 1 1 1 0 0 0 0 0
7.47.67.47.97.97.77.97.98.28.2 58 0 0 0 0 0 0 0 0
8.38.38.38.38.38.37.97.97.97.9 70 0 0 0 0 0 0 0 0
7.37.37.37.38.18.18.18.18.48.4 60 0 0 0 0 0 0 0 0
6.46.46.26.26.97.17.17.37.37.3 50 0 0 000 0 0 O
DENSITY OF LINKS EMPTY
Table 7 Table 8

OO oo oo
S OO oNO
el olNeNeNe N






