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RECURSIVE PROPERTIES OF ABSTRACT COMPLEXITY CLASSES

ABSTRACT

It is proven that complexity classes of abstract measures of com-
plexity need not be recursively enumerable. However, the complement
of each class is shown to be r.e. The results are extended to complexity
classes determined by partial functions, and the properties of these classes
are investigated.

Properties of effective enumerations of complexity classes are
studied. For each measure another measure with the same complexity
classes is constructed such that almost every class admits an effective
enumeration of efficient devices.

Finally complexity classes are shown not to be closed under inter-

section.






INTRODUCTION

The study of abstract complexity measures began (Blum [1]) with
general answers, unfortunately largely negative, to questions which had
arisen in the study of specific models of computation. Although occasionally
too inclusive, the appealing generality of the axiomatic approach has
created a field significant in its own right.

One of the most investigated aspects of abstract complexity theory
involves classes of functions which may be computed within a given bound
on complexity. These complexity classes were initially studied by Hartmanis
and Stearns [4] for the number of steps taken by a specific Turing machine
model. Almost all the investigations of complexity classes have centered
on their order structure under set-theoretic inclusion [1,2,6]. A notable
exception is a result of Borodin [2] generalizing one of Hartmanis and
Stearns [4] concerning the recursive enumerability of functions in a class.
We answer negatively an open question about the total generality of Borodin's
result, but give other characterizations for classes which hold for all measures
and bounding functions. In particular we show that while complexity classes
need not be recursively enumerable, they are, with respect to several definitions,
no more complicated than complements of r.e. sets.,

Borodin's method for presenting (enumerating indices for) a class of
functions, when this is possible, does not enumerate algorithms which are
within the desired complexity bound. In Section 3, we show that this must

be the case, and further investigate the "quality" of presentations of classes.



A surprising result is that all measures "almost" have "good" presentations,
That is, for any measure of complexity, there is another measure, having
almost the same complexity classes such that if the class of functions com-
putable within any complexity g is recursively enumerable, then there is
an enumeration of the class in the new measure such that all algorithms
enumerated operate within complexity g . The proof involves a detailed
consideration of complexity classes of partial functions as discussed in
Section 2.
Finally, we disprove a widely held assumption about the closure of the

family of classes under intersection.
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1. Basic Definitions and Notations

Notation:

# and @ are the classes of recursive and partial recursive functions
respectively. We use i, g, h ... to denote functions known to be total
and lower case Greek (q, T,7Y) for arbitrary partial functions (with the
exception of p defined below). 7y(n)i (1) means that ¥ is defined
(undefined) at n . If a, ¥V € 67 "o < vy almost everywhere (a.e.)"
means (3x) (Vy > %) [aly) £ v(¥) v ¥Y(¥) 1] and "a = v infinitely
often (i.0.)" means (¥x) 3y > x) [aly) s Y(y) v Y(y)1 ]. “For sufficiently
(arbitrarily) large f € &, A(f)" means (g eR)WfeR)[f= g a.e. =
Af)] (Vg eR)TFfeR)[fzga.e. & AH]D). s® is the complement of S .

A measure of computational complexity is a pair <@, pr; Q= {cpi] a
Godel numbering of the partial precursive functions (Rogers [9]) and

o = {@i} satisfying Blum's [1] axioms

B o n)y <=> o)

ii) the predicate CDi(n) = m is recursive (decidable).

Definition: For t e &, let

R (FlfeR N[, =t NO st ae]]

®
RJC is the < ¢, ®> - computational complexity class of t .




Definition: For 1€ &, let

® .
P = {v|V e@ N (3.1)[cpi=’y N & < Ta.e.]\

i

(vx)[tx) 4 => v(x)4]]

D )
PT is the partial <@, ®> -complexity class of 1.

Fact (Blum [1]). For any measure <o,®> there is a unique

function P e &R such that, for all i q'Di. Although this

© Pp) T

is an exception to the convention above, it will be used throughout

(written [3@ if ambiguities arise).

Definition: B is a presentation of C ¢ # it

c = {g]i eB}.

C < @ is recursively enumerable (r.e.) if there is a presentation of it
which is r.e. (as a subsetof N ). C is recursively presentable (r.p.) if
it has an r.e. presentation.

Observe that, by padding the indices of an r.e. presentation, a
recursive presentation may be obtained which preserves most interesting

properties of the r.e. presentation.




Definition: <®, ¢ > has the parallel computation property if there is

a recursive function h(x,y) such that for any cpi, cpj, q)h(i i) satisfies:

Cpi(n) if @i(n) < CID]_(n)
e, in™ =
cpj(n) 0.W,

@ - ,
h(i,j)(n) = min (@i(n), @j(n))

Definition: <@, ¢ > is proper if for all total cpi, CIDi € RZ . <, o>
i
is effectively proper if it is proper and there is a recursive h such

that for cpi total, =® and & (n) = <I>i(n) a.e.n.

Phiy =5 h (i)

Definition: [gi] is class determining for <g,&> if:

1. gie@ forall i.

2. (YfeR )(3g) RE =1r%.
i gi f
3. {gi} is r.e.
4, "gi(x) = y" is decidable for all i,x,vy,

In [6] it is shown that:

Fact: For any measure <o@,d>, there is a class determining {gi] o



2. Recursive Properties of Complexity Classes

Properties of (r.e.) classes (of sets) have béen extensively studied
(Rice [7,8], Dekker and Myhill [3]). Various authors have investigated the
recursive properties of complexity classes (Young [10], Hartmanis and
Stearns [4], Borodin [2]). In particular, for any <¢,®> and t, Rff has
been shown r.e. if it contains all almost everywhere zero functions or all
finite invariants of one of its members. We display a measure containing a
non-r.e, complexity class, indicating that some restriction is necessary to
insure the recursive enumerability of complexity classes. This result was
independently obtained by Forbes Lewis [5]. This measure is proper and
has the parallel computation property, both of which have been suggested
as candidates for axioms. Consequently, the recursive enumerability of
complexity classes is independent of both these properties. (The standard tape
measure, where inputs are always scanned, has r.e. complexity classes,
the parallel computation property and is proper.) Since it seems reasonable
to expect classes to be r.,e., the determination of suitable axioms which
imply this is an important open problem. The remainder of the section is

devoted to proving that the 'recursive complexity' of classes is at most Hl

(complement of r.e.) and to a discussion of partial classes.




Ly : A >
lheorem 2,1, Forany r.e. S < N, there is a measure <p,&> and a recursive

t such that

1. <9, > is effectively proper.
2. <@, ®> has the parallel computation property.
3 Rf) is r.e. iff S% is r.e.
3 c
4, Rt has no infinite r.p. subset iff S~ is immune.”

Proof:

Let <@, ®> be the standard tape measure for Turing machines.
This measure is effectively proper and has the parallel computation
property. Furthermore given any cpi we may effectively find a cpj such
that cpi = cp], and cbj(n) = max (cbi(n), 5). Let 8 beany r.e. set, say
the domain of cpz.

We define a new measure <@, ®> which satisfies 1. - 4.

A recursive function g enumerating certain classes of functions

is required. <-, -> denotes a standard 1-1 pairing function: NXN — N.

2 if n=<,0>
A(n) = 1 if n=<4,i>, j=1 ® (i} € n
q)g(l)( ) 32y ] Z()
0 otherwise

Also let iO be an index of the identically zero function. Now define

CDi(n) = max (@i(n), 5) otherwise

A,
)

S is immune if it is infinite but has no infinite r.e. subset.



We now show that <o, ®> satisfies 1. - 4.

1. = , D). i
Let cPh(i) max (5 i) Define
i if i€ {io U Rng(g)}
f(i) =
h(i) otherwise

(Rng(f) is the range of function f{)

Clearly this f is as required for d to be effectively proper.

2. @ has the parallel computation capability say via h, and

-

define, by cases, h(i,j) such that<gp, ®> has this capability.

i
\ i £ Rng(g)u{ig} | e Rnglg) | J=1g

i £ Rng(g) U {io) h(i, j) j i

i € Rng(g) i {.io i'f 1%3 io
i ifi=j

1 = lO lO 10 10

We leave to the reader the verification that this definition

works in all cases.

3.-4. These follow directly from the fact that

93]
[

(] @lo, R%X[O] A 9 (<i,0>) =2]]

i

. o
(] ogu) € R Q.E.D.
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Notice that it is not necessary in the above construction to begin
with the tape measure. Furthermore, any properties which hold for suffi-
ciently large functions (such as density) are true in <q>,('15> iff they are true
in <p,®>. The construction can be trivially modified to obtain, for any

'honest' t('t(x) = y' recursive), a measure in which R;I) is not r.e.

Corollary 2.2. There is no effective procedure for deciding whether an

arbitrary complexity class is r.e.

Corollary 2,3. There exists a measure <¢,®> such that every class RZD
is r.p., but there is no effective way of obtaining a presentation given an

index for g.

Proof; Let <¢,®> be any measure all of whose classes are r.p,, and such

that @i(n) > 1 and for some | , ®j = 1, Define f recursive by

1 if @ (i) >n
(n) = '
P (1)
0 if CIDi(i) <n ,
so that Rz = ¢ iff cpi(i) i, and the result follows easily.

f(1)

This construction can clearly be extended to classes not quite so trivial.
(]
Note that in case Rtb is r.e., it has a recursive presentation. This
follows directly from Rogers' proof that all Gd&del numberings are 'isomorphic'

to the standard numbering and hence permit 'padding' (forany i, a j> 1,

cPj =¢; can be effectively found).
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The next two theorems indicate that in some sense Theorem 2.1 gives

the best possible characterization of complexity classes.

Theorem 2. 4. For any measure <¢,d> and complexity class Rz , there is

0]
a presentation of Ré; whose complement is r.e.

Proof: let B.(1i=0,1,2,...) be arecursive, denumerable set of indices

for P, such that i #j implies Bi ﬂBJ, = ¢ and v Bi is recursive.
i

Fnumerate a set S in stages as follows:

Stage n. Set an<—- 0, For 0 <i<n
1. if ®.(a.) £ g(a,), set a, .
i 1( 1) g 1) e 1*—'61 + 1

2., if < o (8,)<n, s . ) 1
i g(al) ch(al)_n et al+—al+

and enumerate the next smallest unenumerated member of Bi .

3. if cbi(ai) > max (n,g(ai)) , enumerate the next smallest

unenumerated number of Bi .

let E = (UBi)C U S. E is r.e. Claim EC is a presentation of ng) .
To see this note that if ?; is total, then Bi is completely enumerated iff

<I>i >qg i.o. . If cpi is not total, Bi is completely enumerated.

Notation: Wi is the ith r.e. set, i.e., Wi is the domain of cpi .

Corollary 2.5, There is an f ¢ R such that, if (Pj is total, (Wf(j))c

is a presentation of Ri
J
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Theorem 2.6. For any measure <o,®> and complexity class RZ) , @ - RZ)
is r.e.
Proof: Define an effective enumeration IEAPYRRE of indices such that P

total implies there is an e],, Py =P, iff P Jf Ri LN (x) is defined as
v j i
follows:

1. If cpi(x) is defined go to 2 . else cpe (x) is undefined.
i

2. P (x) equals cpi(x) if for each 0 <k < x either a. or b. holds.
i
Otherwise Py (x) is undefined.
i

a. (Fm< x)[(@k(m) < max (x,g(m))A Cpk(m) £ CPi(m)) V (®, (m) >

k

max (x,g(m))]

b. (@m2x)[(e (m) < g(m) A @ (m) £ P,(m)) V (@ (m) > g(m))]

Now if P, € Rg claim that Py is not total. Let cpj = 9, such that
i 1
there is an ¢ satisfying: x> ¢ implies ci)]. (x) € g(x). Then

q)ei(max ((Dj (0) Je oo ,q)j (l) lj lﬂ))

is undefined so cp:i does not appear among {cpe }.
' j
Conversely if cpitotal Lo, : Ri, then one of a. or b. holds for

every ¢, X SO @, =9_ . To prove this, assume there are E, % such
‘ ' i
that neither a. nor b. holds. Then
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(Vm < x)[(cDE(m) < max (x,g(m)) => cp-E(m) = cpi(m))/\

¢p(m) < max(x,g(m))]
(Vm > §)[(<I>.E(m) < g(m) => pp(m) = @, (m)) A G(m) < g(m)]

Hence (V¥ m) cpk_(m) = cpi(m) and (Vm > X) @E(m) < g(m) so cpi € Rf; .

The proof is completed by enumerating ?-& together with (ei} .

Q.E.D,

Corollary 2,7, There is an £ ¢ & such that cpj total => Wf(],) is a

presentation of @ - R?; .

—

Of course & - R is never r.pP., since this would imply KR is r.P.

(enumerate ((R - Rf) U Rf):, where Rf) - Rf)- is r.p.). If R is any r.p.

=+ O

class of total functions, we may present @ - Rr by a construction similar
to that above.

It is possible to extend most of the above to partial classes PT , and
we feel it is valuable to exhibit some of these extensions at this point. Some
of the results, for example Theorem 2. 10, have been claimed but never proven
in the literature. Furthermore, the techniques developed have proven very
fruitful and are used later in the paper.

First we illustrate a technique making use of explicit knowledge about

when functions are undefined, in a simple extension of a result of Borodin.
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Proposition 2. 8. For any measure <o,d>, there is a function bq‘) such

that, forall y e@®.

[ =0 a.e.]=> (Ej)[cpj =Y A <DJ. < b7 oa.e.]
Proof: Let [di} be an effective enumeration of all finite functions.
Define h such that
0 if x £ domain (di)
q)h(i\(x\ = di(x) if x ¢ domain (di) A di(x) # 0
L 4 if x £ domain (di) A di(x) =0
Now b(b(x\ = max (0,max {@h(j)(x): j<x A (dj(x) Z 0V x £ domain (dj))})-
(SR .
Corollary 2.9, b’ is recursive.

Theorem 2.10, For any measure <@,d> and all sufficiently large cp]. e @

& d
(cpj >*b a.e.’, Pcp has an r.e. presentation.
J

Proof: Define f such that f is 1-1 and

cpi(x) if A(d,j,u,v,x)AB@,j,v,x)

0 otherwise
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‘Where
(x'<u=> CIDi(X') < V)
Ad,j,u,v,x) = (VYx'<x) 1. (x") < x = A
(x'>u => d)i(x') < CDJ.(X'))
B(i,j,v,x) = ¢, (x' < max(v, ¢,(x), 9,(x))*

1 ] ]

=,]

ol : . \ ° ° ‘L = => ’ i
Claim: 1) &, < 9 a.e A (CPJ. P, 4) (Ju,v) [CPf(lJlu,v) j

2 o > P i.o. => (Vu,v)(T2)(¥x) [x > z=>T7A(,j,u,Vv,x)]

=> (VYu,v) [cpf =0 a.e.].

3)  (Vuvx) [cpj(x) Vo=> Pe(

(i,j,u,v)
L. X
i,j,u,v)

Observe that Pe (x) is computed first by checking A , then

(iljlulv)

checking B: cI)j(x') < x guarantees that A can be checked. If cpj(x) is
defined, the truth or falsity of B will eventually be ascertained. If cpj (%)
is undefined, then cpi(xN eventually results in an answer to B. The only
problem arises if cpj(x) 4 and cpi(x) +: but then unless A is false,

(x) is undefined. But cpf (x) * does not disqualify

Peii,5,u,v) (i,5,u,v)

from Pcp , since we have assumed cpj (x) 4.
i
Assume @i < cp]. a.e. (cpj §o=> ?, {). Let u Dbe such that

PE1,5,u,v)

XxX>u => cbi(x) < cpj {x}. Then a v satisfying claim 1. is
max {cbi(x) | x<ua cpj(x) 1},

Assume @i > cpj i.o. Then for any u , there is 2z > u such that
there is an x', u< x'< z, for which CDJ. (x'Y <z and cIDi(x') > cpj(x')., This
z satisfies claim 2 . Claim 3 follows directly from the method described
above for computing cpf( e

B3
B is defined in this manner for use later.
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Hence, {f(i,j,u,v)]i,u,v e N} is an r.e. presentation of Pf; .
j
Q.E.D.
An analogous result to Theorem 2.4 may be proved for partial
classes PCD if the stage construction is done in a "zig-zag" manner,
so as to avoid getting stuck if -y(n) is undefined. The proof requires more
bookkeeping details but involves the same basic approach. By a much more

intricate argument than Theorem 2.6, it is possible to present 6')- Pi .
i

Theorem 2.11l., For any measure <p,®d> and any T € @ @ - Pf has an

r.e. presentation.

Proof: The following is a sketch of a stage in the operation of a device which

enumerates a presentation of & - Pf . Say T = cpj .

Stage n ,

1) If (Vx)[x<n=> cDj(x) > n], go to stage n+1

2) Enumerate functions diverging at some value where 7 converges.
This requires listing the domain of 7 , which is done in stages
corresponding to the stages of the larger device.

3) Enumerate the index of an algorithm which is equal to P if
, @_ P , . ,
indeed cpn € - PT , and which is almost everywhere undefined
otherwise. A device for listing the domain of © appears again,

now built into this algorithm.



17

Observe that the above is effective as in Corollary 2.6, except that
the enumerating function is not necessarily total. For example, if cpi is
everywhere undefined, & - Pf = ¢ and thus the enumerating function

cannot be defined at any value,

The last clause of the definition of Pf (i.e. T(X)¥ => cpi(x) ) requires
that the domain of each function if Pf be at least the domain of 1 . Since
functions that are undefined at certain places are not necessarily excluded from
PZ_D , it is natural to wonder why cpi € Pcf may not diverge at a finite number of
values where 1 converges. First of all, under the present definition
R =P if t is total, which would not be the case otherwise. But more
significantly, the analogue to Corollary 2.7 does not hold for the weakened
definition of a partial class, although Theorem 2.6 may be shown to hold
non-effectively. An effective procedure vielding devices to enumerate the
less restrictive partial classes would yield an effective enumeration of

(i | domain P, finite} which is known, not to be r.e.
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3. Quality of Presentations

Given that a complexity class is r.e., one may then ask questions
regarding the complexity of the devices enumerated. For example, if RZ)
is r.e., is there an enumeration eo,el, ... 0f it such that for all j,
q)e. < g a.e.? We believe that such questions pertaining to the quality
of Jpresentations are for more important than that of the existence of r.e.
presentations, which in any case is only relevant to classes at the lower end of
the hierarchy for somewhat artificial measures. The following results provide

a rather complete characterization of measures with respect to the complexity

of enumerations of their classes.

Definition. RZD is h-presentable if it has an r.e. presentation S

satisfying

i € S :> CD]'_ g h aa eo
Such a presentation is said to be h-bounded.

Perhaps the ideal result would be a theorem stating that every Ri has
a g-bounded presentation. Unfortunately this is not the case, although a weaker
version does hold. This theorem was stated in [6]. Their proof, which is valid

only for the tape measure, is given below for Proposition 3.6.

Theorem 3.1. For any <¢,d>, there is a recursive h such that for sufficiently

large g(x), Rg is hg-presentable.
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Proof. Let f(i,j,u,v) be as in Theorem 2.10. Then

{£(1,3,u,v)|i,v,u> 0}

o

is an r.e. presentation of R~ if (pj is total and Rf; contains all almost

j j
everywhere zero functions. Now let

h(y,x) = max (o )(X>li,j,u,vgx A @) <YV

fi,j,u,v

7A(,j,u,v,x)}

where
A(i,],u,v,x)= (Vw< X)[0 (W) < x => (W< uhd(w) <V V

w>u A D (w) < (pj(W))] .

First observe that h is recursive, This is true because:

(th(i,j uv) (x) figures in the computation of h(y,x) only if either <I>i(x) <vy

(so Cbi(x)i and hence (x) ¥) or 7A in which case cpf (x)

o
£, 5,u,v) (i,j,u,v)

is 0 (so (T)f(i,j,u,v)(x)”’

Now if cpj is total, (x) < h(cpj (x),x) almost everywhere because

Pe(i,5,u,v)

be(i,j 0,V (x) 1is included in the definition of h(cpj (x),x) for x> max(i,j,u,v).

The proof is completed by requiring cpj (x) > x a.e.

The proof can be generalized to yield

Corollary 3.2. For any <¢,d>, there is a recursive h such that for

sufficiently large p.r. 1(x), P(TD is hr-presentable (with obvious general-
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ization of hg-presentable to allow p.r. g).
The next theorem shows that Theorem 3.1 can not be strengthened to
provide a g-bounded presentation for sufficiently large R(I; . The proof

provides an interesting application of the method used to prove Theorem 2. 1.

Theorem 3. 3. There is a measure <@*,d¥> such that for arbitrarily large

g, Ri is not g-presentable,

Proof: Let <p,®> be a measure. Let {gi} .be a class determining set
for <¢,&>. For each gi obtain a recursive set of indices {eg,ell,elz, ces

satisfying

1. (Vk)(domain g, = domain cpl )
i ey

2. (Vi,k)(p, =9 =>d >g, a.e.)
] ek ] 1l

3. (Vk)kA g and g (001 => oL (0) £ 9L (0)).
k ;

Moreover the sets are chosen so that

4, U {el S } is recursive
i 0°1
and 5. @ (0)=¢ (0) <=> i=j and k=¢ or o (0)+ and ¢ (0) 1.
e e e e
k ! k ?
The sets of indices can be effectively chosen using a trivial variation

of the method of Blum [proof of Theorem 7 [1]]. Note that 5. can be

satisfied by requiring CP; (0) to be a different power of the ith prime for
k
all k , in case gi(O) !,
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Define <g*,d%> by

qa:fls =9 forall i

gi(X) if @k(k) >x

gi(x) + 1 if @k(k) <x
: i
o = & for j¢ {ek) .

<p™,®"> is a measure because {gj] is a measured set, g, and ¢_j have
{ k
the same domain forall i and k and, {ek} is recursive.

ale
=

_ o* .
For g:,l total cpel ¢ Rg iff cpk(k)'f., If gi is large enough so

sk k. j. sk
that Rf; contains all almost everywhere zero functions, then RZ) has
i i

an r.e, presentation S . But S cannot be gi-bounded because it would

then have to contain f{e: | cpk(k) %} since no other definition of such a P i

K k
can have a measure less than or equal to 9, a.e, . Hence S r.e. would
imply {k | cpk(k) 1} r.e.

The proof is completed by observing that {gi} contains arbitrarily
large total functions and that cpe]i((O) = cpe!%(O) ifandonlyif i=j, k=1¢

and gi(O) 4 so that at most one measure of any total function is changed.

QGE‘DO

The proof immediately yields
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Corollary 3,4, Let <9™,d™ be as above. Then for arbitrarily large g

2 A E

if R, = R, Rq) is not f-presentable.
f 95 f
(D* ®>}< - .
Proof, If Rf = Rg is to be f-presentable, then f> gi a.e. since

all other definitions of lfunctions in [cpeil([ cpk(k) +} have measures greater
than gi a.e,

But then {cpeji(} class is a subset of this, so that functions will
be included which are not in Rg* .

QUEDD.

On the other hand there is no hope that the previous construction can be
extended to obtain a measure containing no g such that Rg is g-presentable.
The proof of this uses the Union Theorem of [6]. A non-constructive proof

using properties of ordinals can also be given,

Theorem 3,5. For any measure <o@,d>, there are arbitrarily large functions

g such that RZ) is g-presentable,

Proof, Let <@, be a measure and 9, @ recursive function such that Rg
0
contains all almost everywhere zero functions. lLet SO be an r.e. present-
ation of Rg . Assume gi and Si have been defined and satisfy
0

D (¥x) 9,00 > g, (%) ;

1

2) Si is an r.e. presentation of Rg ;

3) S, D S

i i-1 ; and

Define gi+1’ Si+1 from 9y Si so that 1) - 4) are satisfied.
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The procedure can be effectively implemented. Given an index of a
sufficiently large recursive function gi , the method of Borodin yields an
index of a recursive function h whose range Si is a presentation of

1° 9

gi . A slight modification vieldsa presentation containing Si— i+l

is given by

9y, (%) = max ({&y , (x) |i<x}, g;x)N+1.

{gi] is an r.e. self bounded set of functions so by the Union Theorem [6],

there isa g such that

R = UR .
g i gi
Claim that S = L.JSi is a g~bounded r.e. presentation of Rg o
i

If ee S, then e ¢ SJ. for some j so cbe < gj+l a.€. From the proof
of the Union Theorem it follows that cDe < g a.e. so S is g=-bounded.
S is a presentation of Rg because each Si is a presentation of Rg

i

and R_=UR .

g i

9%

QoEo Do

After the above it is natural toask if the construction may be revised
to find for any <@,d>, arbitrarily large g such that RZ) is not g-presentable.
A straightforward proof shows that a strong result to the contrary holds for the
standard tape measure, presuming that the input is always read. The proof

is essentially that given in [6] of Theorem 3.8,
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Proposition 3.6, If <op,®> is the standard tape measure, (Vi,x)(@i(x) > x),

then for all g e ®, Ri is g - presentable.

Proof. Let g e ® and assume g(x) > x. We simply describe a Turing

machine algorithm for computing (Ph(i u such that, as is usual in these
14

)

arguments, the double enumeration of {h(i,u)} is a g-bounded presenta-
tion of Rq) .
g

(x):

Evaluation of cPh(i )

1. In a finite control, determine if (Di("x') < max (v,g(x')) for x'< u.
If this fails output 0 and halt,

2. If x<u, output cpi(x) and halt, otherwise let the "available
space" be the length of the input x .

3. For each x', u<x'<x: 1If it is possible to compute g(x') within
the available space, try to compute cpi(x') within g(x') squares and
if this fails halt with output O .

4. Compute cpi(x) until either;
4,.1. The computation halts, then output cpi(x) and halt,

or 4,2, More than the available space is required, then go to 5.

or 4,3, An infinite loop using only the available space is detected,

then halt with output 0 .

5. Compute g(x) until either;

5.1, The computation halts, then halt with 0 output.

or 5.2. More than the available space is required, then increase
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the available space by one square and return to 4.

The reader can easily verify that this procedure takes less than g(x)
squares almost everywhere, and that if cpi(x) takes less than g(x) squares
> = o :
for all x> u, then cPh(i,u) cpi (If cpi(x) takes more than g(x) squares

for some x> u, then eventually 3. results in cph being almost every-

(i,u)
where zero.,)

But a far stronger result is possible, holding that every measure may
be slightly modified, so that the above result holds.

The proof of Theorem 3.6 involves a rather intricate consideration of
a method for enumerating partial classes (complexity classes of partial

recursive functions)since it is not possible to effectively identify the total

functions.

Theorem 3.7, For any measure <o¢,®>, there is a measure <®,Zf>>, which

can be obtained effectively from <¢,®>, with the same complexity classes such

that for all sufficiently large g e R , R§ is g-presentable.

Proofi: Recall the technique used in the proof of Theorem 2.8 where
f{i,j,u,v) satisfies
{(f(i,3,u,v) | i,u,v> 0]

is an r.e. presentation of Pi for sufficiently large cpj . In particular
j




26

¢, (x) if A(l,J,u,v,x) AB(i,§,v,%)

i, 5,u,v) )

0 otherwise

where A= (Vx' < x) [(@J.(x') <R => ((x'<u=> cbi(x') < V)

A > u=> 0, (x') < cpj(X'))]

jes)
i

cbi(x) < max(v,(Dj (x) at (%))

As before note that in computing cpf (x), if no answer is received

(i,3,u,v)

for AAB, then it must be the case that goi(x) and q)j (x) are both undefined

so cpf( (x) *

i,j,u,v)

Define ' similarly

i) @i(x) if AAB
@f'(i,j,u,v)(x) = ii) max(v,d)j (x),cpj (x)) if AA(7B)
iil) b(x) if 7A

where b is as in Proposition 2. 8.

%6130, ™)

is undefined only in case both cpi(x) and cpj {(x) are undefined since then

no answer is received,

At last we are able to define a new measure <&, 3>

7 %t o), mmont somtoo)
% T Pt miea)  mhe)  mhc)

(ﬂg (<.x1, oo ,x4>) = xz , 'nj recursive 1-1, onto).
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Claim <c3,<1’3> is a measure. Tirst the enumeration {cpk} is clearly

effective [Rogers 9] since

Pay

®; =%, p(1),0,0>
(@i = ch (i)) and f provide the required mappings. The close similarity
between the definitions of f and ' make it bvious that @k(x) { if and only
if @k(x) ! (ii) in the definition of f' only can occur if 7B so that
max (V,®J. (%)) exists.).

We show how to decide whether

Il/*'\ (X) — t
<i,juwtt T
1. if 7a,, ., then if y=b(x) then T else F
(i,j,v,x) —— E—

2. else begin
3. if y< max(v,®j(X), cpj(x)> then
4, if y:cbi(x) then T else F
5. if yv= max(v,CDj(x),cpj(x)) then
6. if yS@i(X) then T else F;
7. if y>max(v,®j(x),cpj(x)) then F
8. end:

This algorithm is effective since testing A is a finite process, b

is recursive, vy < @i(x) and y < max(v,cbj (x),cpj (x)) are effectively decidable.

The algorithm is correct because of the following facts which the reader

may easily verify.
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a)  7A(,j,u,v,x) =>8& (x) = b(x)

<i,j,u,v>

b) AN () <max () =>(B => 3_ (x) = 2, (x))
c) AA c?><>(x) = max ( ) => [BA€><>(x) = 0, (x) V

JBA(® _(xX) = max () > CDi(X))]

3
<>

d)  7(ANG_ (x) > max ()))

a) - d) verify lines 1, 3-4, 5-6 and 7 respectively.

A\
The proof is completed by showing that for all j Pi = Pf; and for

J j
cpj >b a.e. {<i,j,u,v>} isa cpj-bounded presentation of Pi .
J

@
1. A . i =
ssume cpie P(Pj Then there is a k, Py = Py @ké cpj a.e. and
cpj(x) I => cpk(x) {. Let u,v be such for x> u, @k(x) < cpj(x) and for x< u,

A A
fremed ° \ = = N S . o To
cpk(x) ! ><bk(x)gv Then q)<k,3,u,v> cpk and ch ®<k‘,J,u,v> q)J 8,6
a
Hence o, ¢ PCp .
i o,
]
)
2. Assume 6 L e P . Without loss of generality assume that
<i,j,u,v> @

A
[4

N oL <o, a.e, ThereJare two cases. Firstlet ¢, > b a.e. Then
<1i,j,u,v> ] ]

. A _ o _ ~ )
either a) P = i and ®<> = @i , SO @i < q)j a.e, and cp<> € P(Pj or
by § =0 a.e. so 6 € P(D because it contains all almost everywhere

<> <> P
zero functions whose domain includes that of cpj (see definition of b).

:q).

The second case occurs if ¢, <b i.e. Then & < b i.o. so o)
j <> <> i

o>

A
and d><> —CIi. But then cbig CPJ. a.e, and by € P .

e
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Py
1. and 2. imply Pcb :Pm .
P 9

j J

3. By Theorem 2.10, {f(i,j,u,v)} is an r.e. presentation of Pi if cpj 2
J

:(Pf(i,j,u,V) so 1., and 2. imply

b a.e. Butforall i,j,u,v, $

<i,j,u,v>

{<i,j,u,v>} is an r.e. presentation of Pq‘) . It is easily to see that it
j
is also q)j-bounded.

The proofof Theorem 3.7 also vields

Corollary 3,8, For any measure <¢,d>, there is a measure <$,é>, with

the same complexity classes, except that each class contains all finite

o~

invariants of Ax[0] such that, for all g ¢ R , RC; is g-presentable.
Proof: Change all occurrences of b(x) in the above to 0 .

Corollary 3.9. For any measure <g,d>, there is a measure <c’§,§>>
. @ & - s
such that forall j , P = Pcp and for cpj > b a.e., Pcp is cpj—-presentable.

MRS j
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4, Closure Properties of Complexity Classes

Complexity classes are not closed under complementation. Indeed
@-— R;b can never be a class., It is also easy to show that classes are
not necessarily closed under finite unions. However, to date, the situation
with respect to intersection has been generally misstated. While restrictions
such as parallel computation imply closure under intersection the next theorem

ale

proves that this is not a measure theoretic property.

Theorem 4.1, There is a measure clﬁ such that for arbitrarily large

o)

Rq) n RCD is not a complexity class,
91 9%

g..9

1'72

Proof: Let <¢,®> be any measure. Let {t} be a class determining set

for <9, and choose an increasing recursive h gatisfying

o _ 0
) R, g R,

: forall te {t}; 2) foreach te {t}, thereis a

"We are indebted to A. Borodin for the suggestion that our original
counterexample was valid for arbitrarily large t.
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. o & -
recursive @, € Rht Rt for which @i < ht a.e. and for all P =P

®k> t a.e. The existence of h is given by the compression theorem [1].

For notational convenience let

hf(n) n
F_(E)(n) =

f(n) m

f(n) n
F_(f)(n) =
© hf(n) n

Define a new acceptable enumeration of the p.r.

even

odd

evern

odd

functions by

3., 0) j= O(mod 4) or j = l(mod 4
cp[J/4]( ) ( ) or ] ( )
A0) = 30, 0)+1 j= 2{mod 4
9,(0) Dp; 470+ 1§ = 2(mod 4)
3¢, . 0)+ 2 j = 3(mod 4
CAPJ.(H) = CP[J,/4](n) for n> 0, j=0,1,2,...([a/b] indicates integer
division.).
® is given by
Oy = Cyypp T Fel®y)
Phe1 T Payez T Fo®y)
Now for any recursive g thereisa t> g, te {t}. We prove that

-~

o

n R
F_(ht)

d
R
F(ht)

is not a complexity class of<®, & >
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ol o . -
Let cpi € Rht Rt , satisfy @i‘ = ht a.e., forall k, cpk = cpi
implies q;k> t a.e.

- -~

- | )
Lo Py "% € RFe(ht) ARE by -
(@]
. & . &
M3 Gy, f RFO(ht) P P43 £ Re_ny
III S = Ré n Ré is not a complexity class of <@, &>
: F_(ht) F_(ht) plexity L oo, .

Proof of III.

-~

Assume S = R(gb . Because by II, @ % S we have for

4i+2° T4i+3

ANY J 3P0 = Pyiy OF Pyypz = Py

-~ -~

®4j+2’ ®4j+3 > g i.o.
BUb @iy T Pyyys UE Pyyun T 000 HE 0py =0 =000 = Py
Also for all j ©4j = CI>4J.+2, ®4j+1 = ®4j+3' Hence for any CP4j = CP4]-+1 =0
(p4i we have

<I>4j, ®4j+1 > g i.o.

&
) tradicti I.
so @4i<e Rg contradicting

Q.E.D.
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5. CONCLUSION

One of the major problems facing Workers in axiomatic complexity
theory is to determine axioms which, together with Blum's axioms, restrict
the class of measures to the standard examples (time, tape, reversals, etc.).
Of the properties considered in this paper, all except g~presentability of
classes hold for suitable moficiations of the standard measures (i.e., strong
properness, closure under intersection, parallel computation, recursive
enumerability of complexity classes.). The situation with respect to g-
presentability is not yet clear. We do not know whether the proof for the
tape measure (Proposition 3.6) can be modified to work for all standard
measures.

None of the above properties is ne asure theoretic (true of all measures).
Those axioms which are eventually accepted should probably imply these
properties (except possibly g-presentability) as well as some important deep

characteristics of the standard measures.
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