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NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS WITH
MULTIPLE SOLUTIONS

Seymour V. Parter* and Victor Pereyra+

1. INTRODUCTION.

In several earlier papers Parter [9],[10] studied numerical
methods for finding the "maximal'" solution u(t) of boundary value

problems of the form
(1.1) u+f(t,u)=0 , u(0)=u(l)=0.

In [10] Parter discussed certain pathological examples in
which U(t;h), the maximal solution of some naturally associated
finite difference equation, does not converge (when hb 0) to
u(t).

In 1855, I. Kolodner [6] considered the special problem

AU

(1.2) u'+ =
(t2euly 172

0 (0 <t<1) , wu(0)=u'(1)=0.

He proved the following remarkable theorem.

Let O<>\O<)\1

be the eigenvalues of the linear eigenvalue problem

AV

(1.3) V”+7T=O O<t<l , v (0)=v'(1)=0.
Let
(1.4) A ShsA
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Then there exist exactly (n+1) distinct solutions uo(t),
ul(t),...,un(t) of equation (1.2), normalized so that u'(0) 0.

These solutions are characterized by the fact that uj(t) has exact-

ly j nodal zeros in (0,1), and no other interior zeros.

Note that -u(t) is a solution whemever u(t) is a solution.

These results of Kolodner have been extended to more general
problems by G. Pimbley [13], (14], C.V. Coffman [3], and Parter

(11].

In this Report we consider the problems studied by Coffman
[3] and their numerical solution. Our basic tool is the construc-
tion of maximal solutions as discussed in [Q]f As we shall see,
these problems do not exhibit the pathologies mentioned earlier.
This nice behavior is then the basis for obtaining numerical ap-
proximations to the solution with a specified number of zeros.

The nonlinear boundary value problems we consider are then
of the form

(1.5 a) v'+Af(x,v)=0 0<x<bxgl.

The function v(x) is required to satisfy either the boundary

conditions
(1.5 b) v(0)=v(b)=0,
or
(1.5 ¢) v(0)=v'(b)=0.
The function f(x,v) satisfies
| £(x,v)[<L ,
and is of the form
(1.6 a) f(x,v)=g(x,v)v ,
where g(x,v) is positive and of class C2 in (x,v) on the strip

(1.6 b)  R={(x,v):x>0 , |v]|<=}

* A research announcement of Simpson [21] where a similar problem
is discussed has just come to our attention.



Moreover, the following conditions hold in R:
(1.6 ¢) fv(x,v)=g(x,v)+vgv(x,v)>0 ,
(1.6 d) vgv(x,v)<0 , VA0 ,
(1.6 e) for some § >0,
va(x,O)sM<°° , 0<x<8§
Finally,
(1.6 f) lim g(x,v)=0

IVI-)-oo
Coffman [3] proves that equation (1.5 a) with boundary conditions
(1.5 ¢), and with f satisfying (1.6 a) through (1.6 f) has at
least one solution with exactly n- nodal zeros in (0,1) if and

only if
(1.7) An<x R

where Al is the nth eigenvalue of the linear problem
(1.8 a) u"+ig (x,0)u=0 ,
(1.8 b) u(0)=u'(1)=0
In Section 2 we introduce some notation and preliminary results.

In Section 3 we obtain maximal, positive solutions for problem
(1.5), (1.6). A complete discussion is made in order to consider
the new difficulties associated with the singular behavior at the
origin. Also new proofs of old facts result in this case thanks to

the stronger hypotheses (1.6).

In Section 4 we introduce, without proofs, the notation and
results of Coffman which are relevant for the ensuing developments.
We include also there a few other results of our own that will be

used in the following sections.

In Sections 5 and 6 we study in detail two different procedur-
e¢s to approximate solutions of (1.5), (1.6) with a specified number
of zeros in (0,1). Convergence and order of convergence are establ-
ished. Finally, in Section 7, we present some numerical results
which clearly show the viability of these procedures,



2. PRELIMINARIES.

We consider two cases corresponding to the two possible

boundary conditions.

Case 1. Let N be a given integer and set

(2.1) h=h (N)=b/(N+1)

Let

(2.2 a)  Gy(h)={jh; j=1,2,...,N},

(2.2 b) éo(h)s{jh; j=0,1,...,N+1} .

Let PO=PO(h) be set of all piecewise linear functions ¢(t,h)

defined on [O,b] which are determined by their values at the points
of Go(h) and which satisfy

(2.3) $(0;h)=¢(b;h)=0

Case 2. Let N be a given integer and set

(2.4) h=h(N)=N:%77 .

Let
(2.5 a) G, (h)={jh; j=1,...,N},
(2.5 b) El(h)s{jh; j=0,1,...,N+1}

&

Let P1=Pl(h) be the set of all piecewise linear functions ¢(t,h)

defined on [O,b+%h] which are determined by their values at the

points of Cl(h) and which satisfy
¢(0;h)=0
(2.6)
1.0y 1.,
(b(b"z—hsh)"cb(b""é’h’h)
Definition: Let Ah be the linear operator mapping Pk into Pk
(k=0,1) given by
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(2.7) [Ah¢](jh)=¢((j+1)h;h)~2§§jh;h)+¢((j-l)h;h) , JheG, (h).

For the sake of completeness we restate the fundamental

Maximum Principle:

Lemma 2.1 Let ¢(t;h)ePk. If
(2.8a)  [a,9] (£)20 teG, (h)

then

(2.8b) ¢(t;h)<0

Proof: See [8], [10], .(15].

As an immediatg consequence of this lemma and the '"consis-
tency' of Ah with D7, the second derivative operator, we obtain
some basic estimates.

Lemma 2.2: Let ¢(t;h)ePk. Then

(2.9a) o (t;h) |<EO max  [a ], eeP |
0

(2.9b) |6 (t;he SEBE) Max |a0l, ¢ep,
1 () |

Proof: See [9}.

We will also make use of "Energy'" estimates. Thus we intro-
duce the standard notation and some basic facts.
u(x+h)-u(x)

h

(2.10a) ux(X)=

‘ _u(x)-u(x-h)
(210b) ui(x)— T

(2.10c)  [a,u] ()=u g (x)=ug (x)

A simple summation by parts shows that, if ¢(t;h)ePk, then
N N+1 2
(2.11) b £ (48] (@Gh).¢ (jh)=-h I KLY
j=1 j=1
Let M>0 be a given constant.



Lemma 2.3. Let ¢(t;h)ePk and satisfy

N+1

(2.12a) |h £ o2(5h) |<m?
j=1
Then
(2.12) |8 (t;h)-0(s3h) [<M[e-s[M/2
(2.12¢c) llo]] <M

Proof: See [1], [8].

Lemma 2.4. Let ¢(t;h)€Pk Vand satisfy

N
(2.13) h I [[Ah¢](jh)[5M .

j=1
Let 0<j<rgN+1. Then

o r-1

(2.14a) ¢icrh)—¢§(3h)=hsfj[Ah¢}csh)
Moreover
(2.14b) |9 (Gh) <M,
(2.14c¢) l#(jh)|<jhM .

Proof: Equation (2.14a) follows from equation (2.10c). When
k=1 we observe that ¢¥((N+l)h)=0 . Thus, in that case, ine-
quality (2.14b) follows from (2.14a) and (2.13 ).

When k=0 we observe that it is impossible for ¢i(jh) to be of
constant sign unless it is identically zero. Hence, given an
integer j there is an integer r so that -

I¢i(jh)-¢i(rh)I=I¢K(jh)l+1¢i(rh)lsM .

Thus, we have established (2.14b). 1In order to obtain inequality
(2.14c) we merely observe that




J
|¢ (Gh)[=|h Z ¢-(sh)[<jhM .
s=1
With these estimates we are able to prove a basic convergence
theorcm for the smallest eigenvalue of singular problems. The
method is essentially the method used in [7]. We are not concerned
with the 'rate of convergence'". However, once one has the basic
convergence theorem, one can obtain rates as in [2], [4], orT using
some further estimates derive them from [20]. |
Lemma 2.5. Let A(t)>0 for te(0,b). Consider the eigenvalue

problem
- (2.15) Ah¢+uA(t).¢=O, ¢epy .

Then, all the eigenvalues u.(j=1,2,...,N) are positive, and the
smallest eigenvalue, ul(A;h , is characterized by

N+1 9
h ¢i(jh)
(2.16) u. (Ajh)=min I31 , ¢eP, .
1 0F0 . N a2 k
h 2 AGGRYG® (3h)
J.':

. . . 1 . .
Moreover, the associated eigenfunction ¢ (t;h) is simple, of one

sign, and may be chosen so that

(2.17) o7 (t;h) >0, teGy (h)
Proof: These are standard results, see [4], [7], [15].

Corollary: If A(t)2B(t), then either

A(t)=B(t), teGy (h)

Ql"
ul(A;h)<u1(B;h)
Let
(2.18) ul(h)zul(g(t,O);h),

where g(x,v) is as in (1.6), and let ¢%t;h) be the associated
eigenfunction normalized so that (2.17) holds and



N
(2.19) wy (B){h T g(3h,0) [81 (Ghsh)) P3a1
=1

Let AO denote the smallest eigenvalue of the differential equation
(2.20) V'+Ag (t,0)V=0 ,

subject to the appropriate boundary conditions.

then,

Lemma 2.6. There is a constant h0>0 such that if h<h0

(2.21) O<pl(h)<2AO
Proof: Let V(t) be the eigenfunction associated with AO. Let
Q(t;h)ePk(h) be determined by

¥(t;h)=v(t), teG, (h)

Then, an elementary argument shows that

N+1 2
h_>: (Vsz(jh”
u, (h)g i=1 -\ as h=0.
1 N . AZ 0
h Z g(ih,0)V"(jh;h)
j=1

Lemma 2.7. There is a constant M1<oo such that, for all h<hO

(2.22) o (t;h) <M t , Ost<h

Proof: Since ¢1(t;h) satisfies Ah¢l+u1(h)g(t,0)¢l=0 and the

normalization (2.19) it follows, from (2.11) and (2.12b) (with
s=0) that

(2.23) loh (t5h) [<VE .
Using (1.6e), (2.21) and the basic equation (2.15) we see that
| 1 | ZAOM
(2.24) A o7 (jh)|< .
h /ﬂ;




An elementary computation based on the "integral test'" of ad-
vanced calculus shows that

N
h Z

|Ah¢l(jh)]<2xOM/E?i=M
;

1 1

The lemma follows from Lemma 2.4.

Lemma 2.8: Let h<hO and set

¥ (t;h)=/g (L, 076  (t;h)

Then the functions ¢l(t;h) and the functions Y (t;h) are uniformly

bounded and equicontinuous.

Proof: The uniformly boundedness and equicontinuity of ¢l(t;h)
follow from the estimates of the preceding Lemma and Lemmas 2.3,
2.4, The equicontinuity of ¢ (t;h) follows from Lemma 2.7 and B
the equicontinuity of ¢ (t;h).

Theorem 2.1. As h+0, we have

ul(h)*ko

¢1(t;h)—V(t), uniformly for te(0,b]

Proof: We may extract a subsequence h, so that

k
ul(hk)*u

and the functions ¢l(t;hk), w(t;hk) converge uniformly to func-
tions ¢(t), ¥Y(t).
Using the conclusions of Lemma 2.4 (or merely (2.24) and (2.14a))
we may even assume that '

N+1 . b

h £ oZGhsh) %> 1 |o' (6)|%at .

j=1 % 0

Thus, we have
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b , b )
Joler(t)]“dt=n S g(t,0)0°(t)dt=1.
0 0

A glance at the proof of Lemma 2.6 shows that

OSMSAO

We claim that p 0. For if not,
o(t)z¥Y(t)=0

However
b

oovd(t)de=1
0

But ®(t) satisfies the boundary conditions of the limiting eigen-
value problem. Thus, the variational characterization of A
shows that

0

Aogﬁ_.

The theorem follows at once.
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3. MAXIMAL SOLUTIONS

Consider the discrete analog of equation (1.5a). That is,
we seek a function U(t;h)ePk which satisfies

(3.1) A U+AE (t,U) =0

Lemma 3.1. Let

X<ul(h)

Then there does not exist a solution of equation (3.1).

Proof: Suppose U(t;h)ePk satisfies equation (3.1). Then, clearly
A is an eigenvalue and U(t;h) is an eigenfunction of the linear

eigenvlue problem

(3.2a) AhU+AA(t)U=O, UEPk ,

where .
(3.2b) A(t)=g(t,U(t;h))

Let

and let V(t;h)ePk be the associated eigenfunction. Applying

Lemma 2.5 we see that
(3.3) <A
But since
(3.4a) A(t)zg(t;0) ,
we see that

ul(h)sask

Thus the lemma is proven.

Corollary: Suppose A<A0. Then there is an h1>0 such that there

is no solution of equation 3.1 if hsh1

Proof: Apply Theorem 2.1 and Lemma 3.1.
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Lemma 3.2. Let M be a bound for f(t,u). That is,

0<f(t,u)<M, for O<u.
K be the solution of
(3.5) AhUO+AM=O

Let Un+1(t;h)aPk be the solution of

Let Uo(t;h)eP

(3.6) 2, UM eag (e, U™ =0

Then the functions Un(t;h) satisfy

(3.7) 0su™ L (t;h)<U™ (¢ ;h)

Proof: A direct induction argument establishes this lemma. See
(9], [10] for similar arguments.

Lemma 3.3. Let Z(t;h)ePk satisfy

(3.8) A Z*AE(E,2) 20

1

Let {Un(t;h)P:=O be the sequence of functions generated in Lemma
3.2,

\

Then

(3.9) Z(t;h)<U™(t;h)

Proof: Let
E"(t;h)= Z(t;h)-Un(t;h)EPk :
Then

AhEOZA(M-f(t,Z))go

Hence, using Lemma 2.1,
£%(t;h) <0, teG, (h)
Assume

E"(t;h)<0
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Then, using (1.6c),

AhEn+l=x[f(t,Un)—f(t,Z)JZO .

Hence

and the lemma is proven.

Lemma 3.4. Let ul(h)<k. Let Vo(t;h) be the eigenfunction as-
sociated with ul(h) normalized so that inequality (2.17) holds and

(3.10) [—ﬂl—%ﬁj—g(t,VO)-g(t,O)]=R(t;h)20

For n=1,2,... let Vn(t;h)epk be the solution of

(3.11) 8, Vg (e, v =0

Then for all n and r>0 we have

(3.12) 0<v™(t;h) <V L ey <ut (tsh)

Proof: Using inequality (3.10) we have

A VO 0

h
Assume that

(e, v0)= (o, v +ul(h)g(t,O)v°}+u1(h)R(t;h)vO(r;h)zo

(3.13a) AhVn+Af(t,Vn)20
Then
n+l_ n n

VTR nE (2, Vg8 VL
Thus, using Lemma 2.1,
(3.13b) vl e nyev®(tsh)
and furthermore
(3.13c) AhVn+l+Af(t,Vn+l)=A[f(t,Vn+1)-f(t,Vn)]20

The Lemma follows from Lemma 3.3 and (3.13b). The construction
of the sequence {Vn(t;h)} based on inequality (3.10) has been ins-
pired for a similar one that Picard [12] has used for the differ-
ential equation (1l.5a).



- 14 -

Theorem 3.1. Suppose
uy (h)<x

Then there exists a positive maximal solution U(t;h) of equation
(3.1).

That is
(3.14) U(t;h)>0, te(o,b) ,
and, if T(t;h) is any other solution, then

(3.15) T(t;h)<U(t;h)

Moreover, if T(t;h) is another solution and

(3.16a) 0<T(t;h) ,

then either

(3.16b) T(t;h)=0
or
(3.16c¢) T(t;h)szU(t;h)

Proof: The functions Un(t;h) generated in Lemma 3.2 converge
monotonically to a function U(t;h) which satisfies (3.14). 1Ine-
quality (3.15) follows from Lemma 3.3.

Suppose T(t;h) is a nontrivial solution which satisfies
(3.16a).

Then
(3.17) T(t;h)<U(t;h)
Moreover, if
A(t)=g(t,T(t;h)), B(t)=g(t,U(t;h))
we see that
A(t) 2B(t)
But, since
uy(Ash)=u  (Bsb)=h

equality (3.16c) follows from the corollary to Lemma 2.5.
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‘Theorem 3.2. Let u(t) be the unique positive solution of equation
(1.5) (see [3], [10], [13]). Let U(t;h) be the unique positive
solution of equation (3.1). Then,

(3.18) Lim |U(t;h)-u(t)|=0 , 0<t<b

h+0+
Proof: We observe that the functions Vn(t;h) also converge to
U(t;h). Moreover, the analogous iterations for the differential
equation generate two sequences un(t), vn(t), n=0,1,... . It is
an easy matter to show that, for every n

Lim]U" (t;h)-u"(¢)] =0 , ostshb .
h>0

(3.19)
Lim| V™ (t;h)-v™(e) =0 , o<t<b
h+0

The theorem now follows from Fatou's Lemma (see [9], {10]). -

Lemma 3.5. Let AO<A. Let u(t) be the unique positive solution

of equation (1.5). Let ao(u) denote the smallest eigenvalue of

the linear eigenvalue problem

(3.20) ¢”+afu(t,u)¢=0

subject to the appropriate boundary conditions. Then

A<o

Proof: This result follows from the fact that
(3.21) £ (tu)zg(t,u) , £ (t,u)dg(t,u) ,

and the monotonicity of the smallest eigenvalue, i.e. the con-
tinuous analog of the Corollary to Lemma 2.5, (see [11]).

Lemma 3.6. Let £(t;h) be any function which is between u(t) and
U(t;h). Then

Lim h Zlfu(jh.u(t))‘fu(jh,ﬁ(t;h)) | (jh)=0
h~+0




Proof: Note that
| £,(Gh,u(e))-£ (Gh,g(t;h)) [ (Gh) <2M; ,
and, for every te(O,b], we have

Lim |f (t,u(t)-£ (t,E(t;h))]|t=0
h-o+ U u

Thus, the lemma follows from the Dominated Convergence Theorem.

Theorem 3.3. Let AO<A and let u(t) be the unique positive
solution of equation (1.5). For h sufficiently small ul(h)<x.

Let U(t;h) be the unique positive solution of equation (3.1). Let

N
(3.22) h ¢ |[Ahu](jh)+kf(jh,u(jhﬂ|=r(h)

j=1
Then, there is a constant hl>0 and a constant L > such that for
all h<h1 -
(3.23) Max|U(jhs;h)-u(jh)|<Lt(h)

Proof: There is an h0>0 and a constant §>0 such that

(3.24) uy (£ (t,u)sh)2r+é , h<hy

This fact follows immediately form Lemma 3.5 and the proof of
Theorem 2.1. Let

W(t;h)=U(t;h)-u(t)

Then

(3.25a) AhW+Afu(t,u)W=A[fu(t,u)-fu(t,g(t;h))]w+r(t;h)
where

(3.25b) r(t;h)=—[Ahu+Af(t,u)]

Multiplying equation (3.25a) by W and sdmming by parts we obtain

N+1 N 2
(3.26) -h Z wi +Ah.z fu(jh,u)w (jh;h)=AO+A

2
J:l J=l 1
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where
N . 2
(3.26a)  Ag=h £ [f (jh,u)-£ (jh,&)]W (jh;h) ,
j=1
N
(3.26b) A;=h z 1(jh;h)W(jh;h)
j=1
Thus
N+1 2 N 2
(3.27) h 2 W="(jh;h)<Ah Z £ (Gh,u)W+|A |+]|A,]
j=1 X j=1 u 0 1

From (2.16) and (3.24) we obtain,

N 2 A Nrl 2y o (N1
(3.28) A[h.f £ (Gh,u)W JSE"T¥“THT[h.§ W= ]<X:g[h.§ W= ]
j=1 1% u j=1 j=1
Hence, (3.27) is transformed into
N+1
S 2.
(3.29) T [hjflwi (Jh;h)]<|A01+All :
J
Applying Schwartz's inequality to W(jh;h)= g Wi(sh;h)
s=1
we get
N+1
[W(3hsh) |</3Rlh £ w212
j=1
and therefore,
N N+1 2
(3.30) |Agl<h = (£ Ghsu)-£f (h;€)]) (jh).{h & W.%}
o u Lo, X
j=1 j=1
From (3.29), (3.30) follows immediately
N+1 : N+1
(3.31) h 2 W2 Ghs s e il re ) (0 2 W2 (Ghsn) )
j=1 j=1
where
N
e(h)=h I |£, (Gh,u(t)-£ (3B, &(t;h)) | (jh)
j=1 :
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Applying Lemma 3.6 we see that there is an h

1
A0 (h)s5 , hsh)

Thus, using Lemma 2.3 we finally have

(w228 (ny,  hen

S 1

1

>0 such that
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4. PROPERTIES OF ZEROS OF SOLUTIONS OF PROBLEM (1.5a), (1.5c).

We rewrite the boundary value problem studied by Coffman
(3):
(4.1a) v'+af(x,v)=0 , 0O<x<1 ,
(4.1b) v(0)=v'(1)=0 ,
where f satisfies all the hypotheses (1.6a)-(l.6f).

Let 0<>\0<A1<...<>\n ... be the eigenvalues of the linear-
ization at the origin (1.8), and let us only consider those
solutions of (4.1) that satisfies the normalization condition
v'(0) 0. Then, under an additional hypotheses that will be
explicited later (see (g) below or [3,p.757 Th.3.1]) Coffman
proves that there are exactly (n+l) nontrivial solutions to

problem (4.1): vo(x), vl(x),...,vn(x), provided that -

(4.2) Xn<A<An+l

Furthermore, as in Kolodner's special case, the j:th
solution has exactly j nodal zeros in (0,1).

Given any k,0<k<n, we will construct algorithms capable of
producing convergent approximations to vk(x).

The homotopy method is frequently used in the approximated
solution of bifurcation problems of which (4.1) is an instance.
The problem is immersed into a problem depending continuously
upon a parameter y. For y=0 (say) the resulting problem is
linear and can be readily solved. By moving Yy continuously it
is possible to recover the original problem and an iterative
procedure can be employed to approximate its solutions. Unfor-
tunately, and due to the character of the problem, it may be dif-
ficult to control to which of the many solutions of the problem
the procedure will converge. In fact, the homotopy method is
equivalent in this case to moving in function space on a branch
of solutions parametrized by Y. Jumping from one branch to
another in an unpredictable way and without any clear justification
is a common happening (see [16], [17], [19]).
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In the present case we have considerable information about
the structure of solutions and it will be possible to avoid
those difficulties by using a completely different approach,

As an additional feature our methods will be more economical

than the homotopy method.

We shall describe now, mostly without proofs, some proper-
ties which will be of use in the algorithms (for proofs see
Coffman's paper and also Kolodner [6D.

(a) For any a0 there exists a unique solution v(x,a) on
O¢<x<w, of the initial value problem:
v'+Aaf (x,v)=0 ,
(4.3)
v(0)=0, v'(0)=a
Let A(x,a) denote the solution of the variational equation
at v(x,a) (which exists uniquely)
_ A"+A (x,v(x,a))A=0 ,
(4.4) v
A(0,a)=0, A'(0,a)=1
(b) The zeros of v(x,a) separate those of A(x,a).

(c) A(x,a)=gev(x,a) , B'(x,a)=5ov' (x,a)

Let uo(x) be the solution of the initial value problem
u''+ig(x,0)u=0 ,
(4.5)
u(0)=0, u'(0)=1
(d) The zeros of uo(x) separate those of v(x,a).
(e) lim %v(x,a)=1imA(x,a)=u0(x) ,
alo0 alo
lim év'(x,a)=1imA'(x,a)=u6(x)
a0 alo

Let x
(4.6) w(x,a)=a+x [ gx(t,v(t,a))v(t,a)A(t,a)dt
0
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For any given a>0 we shall denote by yk(a) the kth positive
zero of v(x,a), and respectively by zk(a), ak(a), Bk(a), those

of v'(x,a), A(x,a), and A'(x,a).
If v(x,a) has m positive zeros then it follows that
(—l)kv(x,a) 20 on [yk , 0<k<m

b

Yie1]
105 (x,a)

A\
[w)

. on [zk , Zk+1] »  l<k<m ,
(4.7) k-1
(-1) A(x,a) 20 on [ak-l’ uk ] ,  l<kem ,

(-l)k‘lA'(x,a)ZO on [Bk-l’ By ] . 1l<kem

Let n be a positive integer and assume that v(x,a) has at
least n positive zeros.

(f) If w(x,a)>0 on (0,an_1(a)] then the following ordering
holds:

0=yy (a)=ug(a)<z, (a)<g) (a)<y, (a)<a  (a)<...<y, | (a)<

fak_l(a)<zk(a)<5k(a)<...<yn_l(a)<an_l(a)<zn(a)<

<g,(@)<y_(a)

(g) 1If gx(x,v(x,a)) has constant sign on (O,an_l(a)] then the
condition w(x,a)>0 is necessary and sufficient for the ordering
of the zeros.

We shall assume in the rest of this paper that w(x,a)>0.

This condition is fulfilled automatically in the autonomous
case f(x,v)=f(v), since then w(x,a)za>0. It is also fulfilled
in Kolodner's problem (1.2).

We shall prove now:

Lemma 4.1: The zeros (a), z,(a) are increasing functions of a.
Yk k 2

Proof: We have that
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vy, (a),a)s0 , O<a, 1gks<n ,

v'(zk(a),a)EO , O<a l<k<n .

Thus, total differentiation gives, with a selfexplanatory notation,

dv(y, (a),a) ' dy, (@) dv(y,(a),a)
da -V (yk(a),a) da " Ja =0

By using (c) it follows that

(4.8) dy, (a) =_A(yk(aJ,a)
da v! (yk(a)9a)

Similarly, and recalling that vi'=-Af (x,V)

dzk(a)“ A'(z, (a),a)
da  Af(z, (a),v(z (a],a))

(4.9)

From (4.7), (4.8), (4.9) and the ordering (f) it follows that

for O<a:

dy, (a) dz, (a)
Sigl’l——‘a-a—— =1 , sign—-——a—a—————-l ’

and the Lemma is proven.

Let us denote by a(t,yk) the mapping that assign to a given
number t in (0,1) the unique a such that v(x,a) has t as its
kth zero; also define a(t,zk) similarly.

Corollary 4.2: For each zero Yo 2k the inverse mappings a(t,yk),

a(t,zk) exist as differentiable functions, and moreover

da(t,yk) da(t,z, )
— >0 . >0
dt - dt
Proof: Obvious.

Furthermore,
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da(t,}’k)_ v! (t’a(t)yk))
dt 'A(t,a(t,yk)) ’

(4.10)

da(t,zk) Af(t,v(t,a(t,zk)))
dt - BTt alt,z )]

Corollary 4.2 implies then that every zero of v(x,a) is an in-
creasing function of any of them. The same is true of v'(x,a).

Lemma 4.3.
dv' (1,a(t,y;))

slgn Tt =sign A" (1,a(t,y,))
t
Proof: dv'(l,a(t,yk))_av (1,a(t,y,)) da(t,yk)_
dt oa * at
da(t,y,)
=A" (l,a(t,yk)) .——-—-—-—d—E——._.. ,
and the Lemma follows since TT >0

Remark: We can easily find the solution with k interior zeros
in the autonomous case f(x,v) =f(v), just by computing a
positive solution in an appropriate interval of length 4 < 1.
In fact, because of the uniqueness and the invariance under
translations we have that, by putting ? = 1/(2k+1), and calling
u;(t) to the solution of

v+ Af(t,v) = 0, v(0) =0, v'(ﬁ) =0 ,

we can obtain the solution with k interior zeros in (0,1) in
the following way:

First we extend uﬂ(t) to the interval [b,ZQ] by reflecting it:

u; (t) , 0 <t < Q
wz(t) = <
: us(21-t) , 1t < 22 .

A

Then we obtain the desired solution as:

u, (t) = (-1)5w€(t-252) ,2sd <t <2 (s+L)d, s =0,1,...,k.
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5. SHOOTING FROM THE ORIGIN (0O<k<n)

Shooting is a standard approach to the numerical solution
of two-point boundary value problems. By shooting is meant a
systematic procedure of finding the value of "a" in problem (4.3),

such that the corresponding v(x,a) satisfies (in this case)
(5.1) v'(1l,a)=0
We assume in what follows that X is as in (4.2).

As it is well known [5] » (5.1) is essentially a nonlinear
(algebraic) equation in one unknown of which we want to find the
roots. The trouble is that the mapping a»v'(l,a) includes the
solution of an initial value problem which, in general, will have
to be obtained by approximate means.

From now on we shall assume that the data is Cp(O,l),pZZ. -

Let O<a be given and let (4.3) be solved approximately by a
finite difference method of order p in h, the integration step.
Let V(x,h,é)‘be the discrete solution just obtained, defined on
the grid points

Xi=xi-l+hi (i=1,...,s), 0<hi5h, x0=0, xs=l

If a* is the root of (5.1) being approximated then the follow-
ing result holds [5]:

(5.2) [V(x;,h,a)-v(x,,a%) <K hP+K, [a-a*]
Kl’ K2 nonnegative constants.

In our case we want besides, not any root of (5.1), but that
one for which V(x,a*)Evk(x) has Og<ks<n interior zeros in (0,1). An
approximation V to vk(x) can be obtained by taking a value 0O<a<w
and computing an approximate solution (Vl(x,h,é) , Vz(x,h,é))to
the system

t =
Vl VZ 3




(5.3) vé=-xf(x,v1) ,
V1(0)=O , v2(0)=5 ,

(which is equivalent to (4.3)) by some stable, convergent method
of order p, with maximum step size h. Care should be taken in
order that x=1 be a grid point. 1In this way Vz(l,h,é) will be
an approximation to v'(l,a) of order P

Since f(x,v) may not be defined at the origin we must
remember to take f(O,V(O))=lim fix,v(x)).
x40

In what follows we describe a process for locating an ap-
propriate neighborhood in order to isolate the desired root and
to be in a good position to start an iterative procedure to ap-
proximate it accurately. The description refers to the continuous
solutions v(x,a) and it is understood that the numerical process
will replace, for h sufficiently small, v(x,a) by V(x,h,a), taking
care of preserving convergence throughout.

The first step consists of searching the interval 0<a<w
looking for two solutions v(x,al), v(x,az) of (4.3) such that:

(a) v(x,ai) (i=1,2) has exactly k interior zeros in (0,1).

(b) sign v'(l,al)# sign V'(l,az).

Solutions satisfying (a) exist since there is one value a*
for which v(x,a*) not only has exactly k interior zeros but even
satisfies the boundary conditions (4.1b). By continuity and the
monotonicity of the zeros of v(x,a) with respect to a it follows
that there is a whole interval around a* such that all the solu-
tions of (4.3) with a in that interval have exactly k zeros in
(0,1).

That (b) can be attained follows from the following lemma:

Lemma 5.1. For any k=0,1,...,n let us assume that a* corresponds

to the solution with exactly k zeros in (0,1).




(1) a* is a simple root.

.. . dv'(l,a*)_, ..k
(ii) sign i3 (‘1) .
Proof:

Because of the ordering of zeros ($4(f)) we have that
(5.4) Pk 2 ka1 ™ 1By
and therefore A'(1l,a*)#0

*
From the proof of Lemma 4.3 it follows that §1L§%4§~l#0 and a¥*
1s a simple root.

The sign pattern (4.7) shows that

dv'(1,a%*)
da

and the lemma is proven.

(5.5) sign =sign A'(l,a*)=(‘1)k ,

Since (5.5) will be valid by continuity on an interval

around a*, then property (b) can be attained if aj,a belong

to such an interval and al<a*<a2. ’
In short, by direct search we can find an interval [al,az]
around a* characterized by properties (a),(b). This interval
will contain (and isolate) the particular root we are seeking ,
and from (5.5) we know precisely the shape of the graph of
v'(l,a) in it. Therefore we are in an optimal condition to
start an iterative process like the chord method in order to

obtain a good approximation to a¥,

In Section 7 we shall explain briefly the automatic search-
ing procedure we have employed in our computer implementation.

For the approximation of the root a* we advocate the follow-
ing procedure which is a modification of the chord method, and
which is guaranteed to converge, giving besides computational
error bounds for lé-a*l, a being the last approximation to the

zero a¥®,




At the begining we have

(iy)

(iio)
(iiio)

(i)

(iiil)

v(x,al) , v(x,az) with k zeros in (0,1), but neither
v'(l,al) nor v'(l,az) are zero (otherwise we have
finished).

sign(v'(l,al))¥sign(v'(l,a2)).

Putting é=a1 (say)
Ié-a*l<(a2-a1)=error

We take now a chord step

) _V'(l,al)(az—al)
B! VT(T,a,)-v' (1,a7)

t

Since te(al,az) it follows that v(x,t) has also

k zeros in (0,1). If v'(1l,t)=0 then we are through
and a*=t. If not, we choose from a.,t,a2 the sub-
interval in whose endpoints there is a sign change,

and we call it (a ). This is not quite the

lnew’®2new
iterative version of the chord method, but preserves
for us properties (iio) and (iiio):

la_  -a*|<a -a =error
new 2new lnew new
If

(5.6) errornew>cl.error ,

where O<Cl<1 is a constant to be chosen experimen-
tally and probably fairly close to 1, we decide that
the situation is like in one of the graphs in Fig. 1
(or the similar ones changing the sign of the curva-
tures), i.e. the desired zero is close to one of the
endpoints and therefore the process described above
will not change, in general, -the other endpoint,
making our error bound too pesimistic. To improve
our estimate in this case we perform a chord step

chosing from a; » t, a, the pair a, , t for
old old old

which sign v'(l,ai ) = sign v'(1,t). The t,

old ew



v'(l,a)

vi(l,a)
[
I
|
!
|
l
]
I
!
'a
7 o~
aM az
Fig. 1
thus produced is checked for consistency, i.e. we take
it only if a; < tnew < a, . The rational here 1is
new new

that situation (5.6) will indicate, in general, that -
the standard chord method is converging monotonically
from one side of the desired root, and furthermore that
the latest approximations are fairly close. Thus we

can presume that vé(l,a)/véa(l,a) has constant sign

in the neighborhood in which our iterates are located
and that using for a chord step two iterates at the

same side of the root will produce a close approximation
from the other side. (See [22, p.lOO,(lS)]). This is
bear out by the behaviour of the algorithms.

This strategy does not affect the theoretical conver-
gence of the method but has an important effect in its
efficiency. Recall that each evaluation of v'(l,a) is

a costly affair.

The iteration ends when:

(5.7)

# iterations > max. number of iterations (data) .OR.

(Iv'(l,a )| < EPS1 (data) .AND. error < EPS2 (data)).

Observe that the approximate computation of t in (111 )
yields results of order hP when V (1,h,a. ) is used 1nstead of
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v'(l,ai). Observe also that the choice of the constant ¢y
is only important in what efficiency is concerned but that con-

vergence does not depend upon it.

This procedure has been implemented and tested. We shall
give some numerical results in §7,

The main difficulty with it is that an infinite interval
must be searched in order to find the basic interval [al, az]

having properties (iO, iio,

If solutions with an increasing number of zeros are computed

iiio).

in succession then bounds can be obtained which effectively reduce
the size of the interval to be initially searched.

In fact, again from the monotonicity, v!(0) < vi(O) if
0 <1< j &£n. Therefore, if we compute first Vo(x), the positive
solution, by the direct procedures of §3, then for any j, 1 < j

< n, the corresponding a* must belong to the interval (O,vb(O)),
and the amount of search will be significantly reduced.

A different approach that combine computation of positive
solutions to certain associated problems and shooting will be
given in the next Section. The main features of this procedure
is that no a priori information is required and that the compu-
tation of positive solutions (a very stable process in this case)
provides accurate starting values for the shooting part.



6. A CHANGE OF PARAMETER.

Some of the results of §4 suggest the use of Yy the first
zero of a solution of (4.3) for a given a, as a parameter ins-
tead of a itself.

In fact from Lemma 4.1 we see that this change of variable
is permissible. Furthermore, given a value 0 < yq < 1, the com-
putation of a solution with this prescribed first positive zero
is equivalent to finding the unique positive solution of the
two-point boundary value problem

v' + Af(x,V)

|
o
Al

(6.1)

v(0) = v(y;) o,

and then continuing this solution up to x = 1.

Problem (6.1) can be solved accurately by one of the algo-
rithms described in 83. Once a discrete solution V(x,h,yl) is
known in the interval [O,yIJ, on a mesh with step size h, we can
extend it to the whole interval [0,1] by using initial value

techniques.

Let € be a given positive number, and let us assume that we
have obtained V(x,h,yl) for 0 £ x ¢ 1 as explained above. Let
V'(l,h,yl) be obtained by numerical differentiation as an approxi-
mation to V'(l,yl). If V(x,h,yl) has the right number of changes
of sign in (0,1), and IV'(l,h,yl){ge then we have finished.
Otherwise, it is necessary to correct our estimate of the first
zero of the desired solution and repeat the process. The correc-
tions and, in general, the searching procedure, can be done in
the same way we described in §5, since we have for the new para-

meter all the necessary properties.

The main difference rests in the fact that the new parameter

y, must necessarily lie in the interval (0,1) for any solution
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with 1 < k £ n zeros, as compared with the infinite interval of
permissible values for a. The initial search is reduced in

scope and no a priori bounds or straneous computations are requir-
ed.

We shall state precisely now the steps of this process which
are different from the one we gave in §5.

We assume now that we are looking for that solution of (4.1)
with 1 < k < n zeros in (0,1).

Given a value 0 < Yy < 1 there is a unique function v(x,yl)
that satisfies

u" + Af(x,u) = 0 ,
(6.2) u(0) = ufy;) =0 ,
u(x) 20, 0 < x <y,
and
w' + Af(x,w) = 0 ,
| = -— 1
(6.3) Wy ) = 0, wily) = u'(y)),

y1<XS_l

If y, = yi is the first zero of the desired solution of
(4.1), then v(x,yi) will be that solution and reciprocally.
Thus problem (6.2), (6.3) is equivalent to (4.1) when Yy is
chosen to be the first zero of the solution of (4.1) with the
prescribed number of zeros.

We discretize (6.2) by putting b = Y1 and proceeding as in
case 1, §2,

If 0 < § Sy for a given y, then it is clear that h - 0
when N + <, uniformly in Yy We shall show below how to obtain
y. This will in fact diminish still more the interval to be
searched. On the net thus obtained we solve approximately (6.2)
by one of the methods described in §3 getting V(x,h,yl),a dis-
crete solution of order p = order in h of t(h):
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(6.4) IVeGh,yy) = vOGy D] < khP, xe 6, (h)

1
We discretize (6.3) by using a q-step method of order o)
for special equations of the second order (see Henrici [18,
Chapt. 6J), which does not employ first derivatives. Since
x(x,yl) extended to the left coincides with v(x,yl), then we
can take the values V(y1 - s.h,h,yl), s =0,1,...,9 - 1, as
the starting values, thus avoiding the need for an artificial
starting procedure. Of course, if we desire to have an automa-
tic step changing procedure then some restarting algorithm will
be required. In this case we should not allow the step to be
larger than h.

Since we shall have to compute v'(l,yl) numerically it is
not required that x = 1 be a mesh point. In fact, if the data
1s defined and smooth, we can integrate a few steps beyond 1
in order to use a better formula to compute V'(1 ,h,yl). Inte-
grating up to x > 1 we shall have now a discrete solution
V(x,h,yl) which will be accurate to order hP over the whole in-
terval [0,x] (see for instance [5,p-23]).

It is clear that using p points we can obtain a hp-l approxi-
mation to V'(l,yl). We lose one order in h because of the numer-
ical differentiation.

Therefore, given a value 0 < Yy < 1, we have a way of ob-
taining an O(hp) approximation to v(x;Yl), and an O(hp_l) approxi-
mation to v'(l,yl).

Computation of }. In order to calculate § it is necessary to

compute the first positive zero of the solution uo(x) to the
linear problem (4.5) with moderate accuracy.

Property (e) of §4, and the continuity of the zeros yS(a)
with respect to a imply immediately that

(6.5) lim y _ (a) l X.», s=1,...,n ,
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. t . L.
where Xg is the s h positive zero of uO(x).

In particular Xy = lim yl(a), and it does not exist a
solution to v" + Af£(x,v) = 0 with v'(0) > 0 and first zero
less than Xq - Thus Xl’ or a one figure approximation from

below can be used as ¥y, since nonnegative solutions with first
zero smaller than X must vanish identically.

From now on the process is identical to the one in §5, ex-
cept that the independent parameter is Y1 instead of a. Of
course, the form in which v'(l,yl) is approximated has also

changed.
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7. SEARCHING PROCEDURE AND NUMERICAL RESULTS.

We shall briefly explain now the searching procedure used
to obtain (a), (b) in Section 5. The one for the method of

Section 6 is similar, though restricted to (y,1).

The starting value a°® is either arbitrary, in case no a
priori bounds have been computed, or equal to an a priori
bound (i.e. Vé(O), for 0 < s < k; see p. 29). We start shooting
with a® and counting the number of sign changes. The integration
is interrupted if this number becomes greater than k. Since in
this case there are too many zeros ;,we know, because of the mono-
tonicity of the zeros with respect to a, that a® is an underesti-
mate and we increase it in Aa, a given quantity that we have
taken in our computations equal to a®. Observe that this can
only happen if a® was arbitrary and not an upper bound for a.

If we integrate accross (0,1) without finding too many zeros
there are two possibilities:

i) There were too few zeros, and therefore a® was an overestimate
and we have to decrease it. 1In this case, and since we con-
sider at the beginning that the direction of search is to the
right, we diminish Aa = a°® to Aa/3.

We do so whenever there is a change in the direction of search.

ii) We counted exactly k zeros, and a° is a candidate for an end-
point to an interval isolating a®*, the desired root. We check
the sign of v'(1l,a°), and according to Lemma 5.1, if sign
v'(l,a®) = (-1)k then a° is to the right of a*, otherwise is
to the left of a*.

We keep on the search in the way described aboved until we
have been able to find (al,az), the endpoints satisfying (a), (b).
Once this is achieved then we are ready to start the chord iteration
as explained in Section 5.
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We now present some numerical results obtained with FORTRAN
IV implementations of the procedures of Sections 5 and 6. They
were computed on a IBM 360/40 at the Departamento de Computacidn
of the Universidad Central de Venezuela. All the calculations
were performed using 360 long words (16 decimal digits).

The problem we considered was Kolodner's (1.2) for different
values of ).

For instance, for X = 70 and k = 1,2,3,4, we run both algo-

rithms and the CPU times necessary to obtain all four solutions,
-10
b

2 1
was for SHOOT, the algorithm of Section 5: 189.5 seconds. It took

an average of 10 evaluations of v' (l,a) to obtain this result.

reducing simultaneously: a, - a, < 108 and IVk(l,t)] < 10

For MAXSOL, the algorithm of Section 6, the CPU time was 122.3 se-
conds, and the average number of evaluations was 9. -

The run for SHOOT included the computation of the maximal solution
(k = 0), used to obtain a® for the case k = 1.

We preéent also a somewhat more extreme case: A = 930,
k = 15.

For this case we used an arbitrary starting value of 35 and
the performance of SHOOT was:

CPU Time: 65 sec.; search iterations: 5; # chord iterations: 8.
Final value of a = 15,56199.

For MAXSOL we had:

CPU Time: 60.6 sec.; # search iterations: 7; # chord iterations: 5;
average # of iterations for positive solutions: 4 (to decrease the
norm of the difference of two successive iterates below 5x10'7).
Starting value for t: 0.5,

Final value for t: 0.03166132..., error in t < 3.3x10 12,
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