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ABSTRACT
, . , i+1 i
Given the iterative scheme x =BT x 4+ r where B, T are
fixed nxn real matrices, r a fixed real n-vector and x' a real

n-vector we investigate the convergence and monotonicity of schemes

of the type
i+l i
v ) B 0 Sll —S12 v , r
i+l - i
w 0 B —SZl S22 w r

where Sij are nxn real matrices related to T. The n-vector
iterates vi,wjL bracket in a certain sense solutions x of x = BTx+r.
We also give necessary and sufficient conditions for the monotonicity
of the original iterative scheme itself xi+l = B’i[‘xi +r. This leads to
monotonicity results for classical iterative schemes such as the

Jacobi, Gauss~-Seidel and successive overrelaxation methods.
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1. INTRODUCTION

Many classical iterative schemes for finding an n-vector X that
satisfies the system
1.1 Ax =D
where A and b are a given nxn real matrix and an n-vector
respectively, consist of splitting the matrix A into the difference
of two real nxn matrices, that is A = M - N, and using the iteration

Ml l —

1.2 X =M Nx 4+ M b.
The Jacobi, Gauss-Seidel and successive overrelaxation methods
[3, Chap. 3]fallintothis cateogry. If we make the identifications

._.l —
B=M ,T=N,r=M lb we obtain the iterative scheme

(11 ,

1.3 Xl+ =BTxl+ r
which is the subject of this work.

With the iterative scheme 1.3 we shall associate the scheme

i1 !
v

B O S11 —S12 v r

i+1 i
w 0 B —821 822 w r

where Sij are some nxn real matrices related to T, and the n-vector
) i i . . ,

iterates v ,w will bracket, in a certain sense, solutions x of

x = BTx + r. In particular we will show when the scheme 1.4 is

. , , , -1
monotonic with respect to a cone which is dual to the rows of B ,
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and when the iterates of 1.4 converge to a solution of x = BTx+r.
(Theorem 2.1). We will also give some additional sufficient and
necessary conditions for monotonicity of the iterates of 1.4
(Theorem 2.7). Finally we give monotonicity results for the original
iteration 1.3 itself (Theorem 3.3). The conditions for the mono-
tonicity of 1.3 in that TB 2 0 and that spectral radius p(BT) = 1.
This immediately shows that such classical schemes as the
Jacobi, Gauss-Seidel and successive overrelaxation are indeed
monotonic under the standard assumptions of T2 0, B Z 0 and
p(TB) < 1 provided that we start with appropriate starting vectors.
(Theorem 3.4).

The monotonicity results for 1.4 are generalizations of the
results of Collatz-Schroder [1] and Tal [2] where B=1, S, ., = S

11 227
3

1

12 =8, and T =8, -8,,.

&
2. MONOTONICITY OF 1.4

In this section we give various conditions related to the

monotonicity of the proposed scheme 1.4.

2.1 Montonicity Theorem Let SijB z0,1,3=1,2, and let

[P

11 " 512 78,2 78,

0 0
i) If there exist v ,w  such that



b

22 Bl -v9zo B ew s whz oo, 3wl -v0) 2

where vl, w1 are computed from 1.4 then

-— 1 j — i i - 1 ]
2 3 Bl(vH —vl)zO,B 1(—W1+1+Wl),.>—_ 0. B 1 (Wl_vl)iol

i=20,1, or equivalently

2a st stvls < tvis L. splwls
..... s lwl =87t W’
ii) If in addition to the assumption 2.2 of i)

T=25 - S =3 _ - 8., then the system x = BTx + r has a

11 12 22 21

solution x such that for all i

25 p itz tesntw
vi + Wi
and x = lim 2“" if
i—-—-)—OO
a) Sll = S22 and S]2 = 821, or

b) 1 1is not an eigenvalue of B(S11 + 821) = B(S12 + SZZ)’ or
c) There exists a real n-vector z such that

z(BS, + BS, -1)> 0

11

In cases a) and b) we have in addition that x = lim vt

i»—u— o

) i
= Jim w

i->0(l
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Proof i) We will prove this part by induction on i. By assumption
the inequalities hold for i = 0. Assume now that they hold for i

and show that they hold for i + 1.

_ i
- 2 i+1 - i
B 1 0 Vk% "vb¥1 Sll Slz Vl B 1 0 _\ﬁ+1}
. + | (byla)
-1 it2 i+l i+1 ~1 +1
0 B —-W +w S21 SZZ - 0 B -r + W }
- — A -
5.8, A (Bd B i
< S S‘ - * 0 -1 -r + wi'H
P21 P22 W L
=0 (hyl.4

where the inequality above follows by premultiplying the induction

hypothesis inequality

871 o
z 0
o B!
by
‘ 0
511 812 B 1
> 0,
S,, 55, 0 BJ
Hence
-1 it2 i - i i
B M - MY 20 ana BT (Wi Wit 2 o,

We also have that



by

1, i b1, i i i i _
B (v -w )= (S11 v 812 w') + (S21 v SZZW) by (1.4)

= - l i ~ - Qg oo
= (5., 4+ S, (v w) {since Sll + S21 515 - SZZ)

-1, 1 i
(S”B+821B) B "{vi-w)

(by induction hypothesis
B“l (Wl - Vl)

3 =
S“B + SZlB £ 0)

HA
(]

0 and

v

Hence the inequalities of 2.3 hold for i + 1 and the induction is

complete.
ii) Because of 2.4 the bounded monotone sequences of real numbers
-1 i -1 1 - i th
{Bk v’} and {Bk w }, where Bk v denotes the k component
_.l 1
of n-vector B vl, have limits ay and bk’ k=1,...,n. Hence

_1 1 - i
the vector sequences {B vl} and (B 1wl} have limits a and bD.
From the continuity of the linear operator B we also have that the
vector sequences {vl} and {wl} converge to v = Ba and w = Bb.
Hence by 1.4
v = lel\] - BSlZW +r

:"‘BS
w v+ BSZZW +r

21
. Vi w
a) Define X =5 Then
o vitw viw viw _ viw _ ,
X = > —BS11 5 BS12 5 +1r = BT > +r=BTx +r.

viw | . A
Hence x = —5 s a solution of x = BTx + r.
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b) V- W= ]B(S11 + SZI)V - B(SLZ + SZZ)W = B(Sll + SZI)(V - W).

But since 1 is not an eigenvalue of B(S11 + SZI)’ v=-w=0

and so v = B(Sll - SP)V +r = BTv+r. Hence x =v =wis
a solution of x = BTx + r.

c) If such 2z exists then (v - w) = B(S11 + SZI)(V - w) implies that

v - w = 0, otherwise we have the contradiction

0= z(BS11 + BS21 - Iv-w)<O0

where the equality follows from (BS11 + BS21 = I v -w) =0

and the inequality follows from z(BS11 + BS21 -1)> 0,

v-ws0 andv-w#0. Sov-w=0, v= B(S1 --Slz)v-—kr:

1

BTv +r, and x= v = w is a solution of x = BTx + r.

. i i
lim v +w and

1= €O

In all cases a) b) and ¢) we have x = y__é__ = —12-

hence 2.5 follows from 2.4. This completes the proof.
The above theorem is a generalization of results of Collatz~-
Schroder [1, pp. 352-353, 361-362] where B =1, S11 =8

22

5., =85 andT—*—Sll-S

12 21 12°

2.6 Remark Condition b) of Theorem 2.1 above is implied by

the condition that 1 is not an eigenvalue of Egll BSlZ

21 BSZZ
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Proof: It is sufficient to show that if A is an eigenvalue of

lel BSIZ
B(Sll + SZl) then it is also an eigenvalue of BSZI BSZZ . Let

A be an eigenvalue of B(S,, + 821) and let y be the corresponding

11

eigenvector of (lel + BSZl)rl. Then

BSll BSl 2

BS;) BS),

BS21 BSZZ

and hence X 1is an eigenvalue of

We observe that unlike the iteration 1.3, which under appropriate
assumptions converges from any initial xo, the iteration 1.4
s 0 © . , ,
must start from initial v ,w satisfying 2.2. Hence unless we can

0 O .
guarantee the existence of such v ,w , the iteration 1.4 may be

vacuous as far as producing monotonic vt,wl, that is v',w' satisfying

2.4. The following theorem which is a generalization of a theorem
of Tal [2] gives sufficient and necessary conditions for the existence

0
of v ,wO satisfying 2.2.

2.7 Theorem (Sufficient and Necessary Conditions) 1) Let Sij Bz O,

'1.:1121 - = - = 0. - S = ‘X -
i,] let T Sll SlZ SZZ 521, and let xx = BTx + r have a

golution x. If either




,.C).._

' - 1 - (; ; 1l - Y
a) 8, =8,,. 8, =5, p(BS; +BS, )71, or
BS BS
11 12
by p < 1
BS,, BS,,

where p(A) denotes the spectral radius of A, then there exist

v ,w satisfying 2.2, and the iterative scheme 1.4 is montonic,

i i
v +w

that is 2.4 and 2.5 hold, and x = lim >

i—-—-»OO

ii) 1f Theorem 2.1 holds and (S, . + SZI)B is irreducible,l)

11

0 0
then either v’ = w = x is a solution of x =BTx +r, or vo F4 WO

and
< D - S ) =
0< p (BS11 } BuZl) [ (BSlZ + BSZZ) 1

BS11 BS] ?

Remark Condition b) above, p - < 1, implies that
— BS BS
21 22

1)

An nxn irreducible matrix A is matrix such that there exist no

yiy A
axn permutation matrix P such that PAPT = 11 12 , where

A is an mxm submatrix, A

11 issan (n - m) x (n - m) submatrix,

22
and | ¥ m< n. A permutation matrix is a square matrix which con-

tains exactly one element which is 1 in each column and row and

31l other elements are zero.
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P (BSll + BS2 l) = p(BSl + B&ZZ) < 1. This follows from the fact,

2

established under Remark 2.6, that each eigenvalue of (BSll + BS2 1)

BS); BS),

BS2 1 BSZZ

is also an eigenvalue of

Proof We observe first that under the assumption that x is a

solution x = BTx + r, then the iterative scheme 1.4 is equivalent to

-X +wW BS BS.. -+ W1

and that condition 2.2 is equivalent to

S ' - 0 -1, 0 -1

B "(x-v) S S X~V B "(x-v) B (x—vo)

2.9 H

H

= and

-1 1 - -
B (-xt+w) S S —x+wO B l(~><:-!~w0) B l(“X—FWO)

21 22

We also observe that the eigenvalues of B(S

11 11 21

are equal because of the similarity transformation B—lB(SM + SZI)B =

(S,,+85

11 Zl)B'

ia) By the Frobenius theorem [3, p. 46], [4, p. 32] there exist an

eigenvector zO z 0, zo #0 of S, B+ S2 B 2 0 corresponding to a

11 1

real nonnegative eigenvalue p = p (Sl lB + SZIB) =p (BSll + BSZl)

That is

(SllBJrS B)zO: B+ SZZB)ZO: pz Tz

12 (821

+ 621) and (S,, + 5, )B

R
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0
where the last inequality holds because p £ 1 and z Z 0. Setnow

t=

vO:x-v Bzo, w0=x+ Bzo
Hence
B—l(x - VO) zO
= =
Bﬂl(—xfrw ) zO =0
and )
S,y 5,511 % - e slzéw 20 ) oz _ 20 ] B (x-vV)
S8 | |x+w? s B s, Bz’ 520 120 T ew?)

21 22 21 22
Hence 2.9 holds which implies 2.2.

i b) By the Frobenius theorem [3, p. 46] there exist an eignevector

S B S._B
(Yl YZ) £ 0, (Y1 YZ) #0 of S“B SIZ 2 0 corresponding to a real
21 ZZB
nonnegative eigenvalue '\;5
E__ 0 SllB SIZB = 0 BSll BSIZ ¢ 1
- = <
SZIB SZZB BSZI BSZZ
That is
1 1 1
S, B S _Bllvy y y
117 12 2 =] 2] 2] 2
B - =
510 S22P )Y v ¥

~ 1 2
where the last inequality holds because p <1 and (y y )2 0.
Set now

1 0 2
v0=x—By,w = x + By
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Hence
B—l(x - VO) yl
= z 0
- 0 2 =
B " (-xtw) Y
and
s s | x-v° S B S..B r 1 f“rf é”l( x~vo)W
11 12 111t P12 Y _ % vy |
0| 2| 2 T | 217 -1 0
Sy, Sy, ||k +w 8, B §,,B | | v v Ly J B (mackw )J‘
Hence 2.9 holds which implies 2.2.
The rest of part i) follows by making use of Theorem 2.1 and noting
that the assumptions of part ia) of this theorem imply the assumption of
part iia) of Theorem 2.1, and that the assumptions of part ib) of this
theorem and Remark 2.6 imply the assumptions of part iib) of theorem 2.1.
y 0 0 i+l i+l _ i 3 i
ii) Ifv w = 0, then v w = B(S11 Slz)v + B(S21 bzz)v =0
. i i 0 0 , ,
for i=0,1,...,andby2.4v =w =v =w fori=20,1,... and by
‘ 0_ 0, .
Theorem 2.1 x=v =w is a solution of x = BTx +r.
- 0 -1 0 0
Assume now that VO #WO, then B 1(w - VO) 20 and B (w ~v ) #O0,

1 . . e
because B = is nonsingular. By Theorem 2.1 then there exists a solution x such

that B‘lvo = Bnlx = B—lwo. Hence
- ) -
B 1(:x'—v() B 1(x-~vo)
2 z
10 ; o |20 | _, o | 20
B (-x + w ) B (-x+w)

-

for if equality held above then Bml(wO - VO) = 0, contrary to our assump-

tion. We also observe that condition 2.2 is equivalent to 2.9. Hence
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Bml(x - VO) S S rx ~ vo \

11 12
O}
~¥X+w

et

o
—
—
0y

-1 0
B {-xtw ) SZl 821

Let p = p(SllB + SZIB)Q Since (S“B + SZIB) is nonnegative and
irreducible it follows by the Frobenius theorem [3, p. 30] that 5> 0
and that 5 is an eigenvalue of (SllB + SZlB)T with a corresponding

eigenvector y > 0. Hence

Y(SllB 4 SZ}.B) =py

and
by v118,B 8,8 - -
= [py pvl= ply vl
S,1B 5,,B
So
- -1 0. ‘ 0
ply vl|B ~(x-v") (S“ Slj X -V
. o | = Iy vl
B T (-x%tw ) SZl S‘22 L—x—%‘w
2.12 Bnl(x -9
sly vl | (by 2.11)

B (-x + w)
From 2.10 and y > 0 it follows that
o [0
LBnl(wx + WO)

and hence from 2.12 we have that 5 =1, and

> 0

1A

0< p=p(BS; + BS, )= p(BS,, + BS L.

2 22)

This completes the proof.
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3. Monotonicity of xH-l = BT ' +r

We can obtain monotonicity results for the scheme 1.3 itself if

we observe that if we set S1 S = 0 and S1 = 3 = T in the

2~ °21 1 °22

iteration 1.4, then 1.4 uncouples into the iterative schemes

1l

le BTvl+ r, i=20,1,..
i+1
w

3.2 BTw +r, i=0,1,...

il

which are identical to 1.3 except that they are for the iterates vi and
Wi instead of xi. We can use the methods of proof and the results of
the previous section to obtain monotonicity results for 3.1 and 3.2. In
addition we can sharpen these results a bit because of the uncoupling
achieved above. We collect all these results in the following thecrem.

3.3 Monotonicity Theorem Let TB 2 0 and let Bwl exist.

i) If there exists a vo such that
B (v -v)z O

1
where v is computed from 3.1, then
B ettt vz 0, i=01,.
L , 0
ii) If there exists a w  such that
- 0 1
B l(w -w)z 0

where Wl is computed from 3.2, then

-1 i it+1
w

B "(w - Y2 0, i=20,1,..
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0 0
iii) 1f there exists v ,w such that

then

iv) 1f the assumptions of i) to iii) hold then

s il cp s s hwls Lz hwl s

~1.0
v

A
oe]

B

A

and the system x = BTx + r has a solution x given by

x=(1-7) lim vl+Y lim w'

where v is any real number. For 1l z y £ 0 we also have

i

that for all i

itz

A

V) Let x = BTx + r have a solution x. If p(BT) = 1 then there
. 0 0 . - . .
exist v ,w satisfying the assumptions of i) to iii) and
part iv) holds then.
vi) If iv) holds and TB is irreducible then either vo =W =X

is a solution of x = BTx +r or VO # WO and 0 p(BT) = 1.

-1, i+l i ,
Proof i) The proof is by induction. B 1(v1+ - vl) z 0 holds for i = O.
Suppose now it holds for i. Then
- 142 it i+1 -1 -1 i i - -1 i+l
B 1(vlAr - le) = TvH +B r-B lle Z Tv1 + B lr - B v]i~ =0

where the inequality above follows by multiplying the induction-hypothesis
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i+1

inequality B L(v't1 =+l 2 0 by TB 2 0, and the last inequality follows

from 3.1. Hence B—l(v -

ii)

iii)

iv)

i+2 it+1
v ) 2 0 and the induction is complete.

Replace v by w in the proof of i) above and reverse all
inequalities except TB 2 0.

The proof again is by induction. Bml(wiwvi) 2 0 holds fori = 0.
Assume now that it holds for i. Then

-1 i

B (W1+l v 1

0 —_1 + ‘l 1 4 - . .
Ty Wt e - TV oB T = Twt-vhy = BB T (wh-v)

where the last inequality follows from TB 2 0 and the induction-

hypothesis inequality Bml(wi—vi) £z 0. Hence B—'l(wi"H —viH)z
and the induction is complete.

By i), ii) and iii) above we have that

sl s lvls s e s s hwls L s w2 BT

Again as in proof of Theorem 2.1 ii) we have that the monontonicity

i i . o
of the v and w insure the existence of these limits v and w

that is v = lim v1 and w = lim wl. From 3.1 and 3.2 we get
j—c0 i~ 0
v= BT v+r w = RBTw+r

Hence for any real number 7y
(1 -vyyv+7vyYyw= BT (1 -VY)v+VYw)+ r.
and x= (1 - Y)v+ Yw is a solution of x = BT x + r.

We also have that for all i

v




w
<
A
o
<
A
o
g

w
<
A
w
s
IA
w
g

Hence for 12 ¥ Z 0 we have that
Bl =871 - v) veyw) = B ks BTN
V) From Theorem 2. 7ia) we have, by getting T = S11 = S22 and
S12 = S‘21 = 0, that there exist VO,WO satisfying 2.2. Hence
the assumptions of i) to iii) above hold and part iv) of this
theorem holds.
vi) From Theorem 2.7 ii) we have, by setting T = S11 = SZZ and
S]‘2 = SZI =0, that 0 < p(BT) = 1.
This completes the proof of the theorem.
As an interesting application of Theorem 3.3 we show that under
the standard assumptions for the regular splitting of matrices

[3, pp. 87-—90], such classical methods as the Jacobi, Gauss-Seidel

and successive overrelaxation methods are all monotonic schemes

‘e 0
provided that we start with appropriate. initial vectors v ,WO, the

existence of which is guaranteed by the standard assumptions. We

state this result as the following theorem.

3.4 Theorem (Monotonicity of Clasgical Schemes) Let A = M-N be

...1 -
a regular splitting of the nxn matrix A, thatis M exists, M L =0

and N Z 0. Consider the iterative scheme
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le = I\/I—lN xl + M—lb

for solving Ax = b

i)

3.5

ii)

0 0
For any v ,w such that

M(vl—vo)go, M(WO~W1) 0, M(Wo—vo)z 0

Y

) 1 1
where v ,w” are computed from

G ovT it s vl i=0,1,..
wi - M et + M7l i=o0,1,
we have
Mvls Mvls .. smvis ... s Mwls L. = Mw! s vwd

and the system Ax = b has a solution given by

x=(1l -7 lim v1+7 lim w

where VY is any real number. Forl g v 2 0 we also have
that for all i

1 _ -1 1
Blvl 1 i

A
w
<
A
o
g

1 0

If A =z 0, then p(M“lm) < 1 and the existence of 0w

satisfying 3.5 is assured,

Proof i) This follows from Theorem 3.3 iv) by making the identifications

371

=M, T=N,r=M"b
By Theorem 3.13[3 , p. 89] we have that p(M_lN) < 1. Hence
the system x = I\/[“le + M"lb has a solution x, and by Theorem

0
3.3v) there exist v ,WO satisfying 3.5. This completes the proof.
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