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QVERVIEW

A. INTRODUCTION

1. The spirit of linguistic pattern recognition is to examine
the structures of interrelations in patterns.

Actual practice is to apply overly restrictive syntactic tech-
niques, in particular phrase structure grammars. This paper describes
a number of "flexible" extensions.

2. Phrase structure grammars generate and parse "grammatical”
sentences by the application of a suitable sequence of rewrite rules.
They operate on l-dimensional linear strings of concatenated
objects (words).

3. Phrase structure grammars can be used for linear connected
'strings in n dimensions so long as the beginning and the end is
designated for each object in the siring. Some patterns are such
strings, or can be reduced to one linear string (in particular, an area
can be reduced to its contour).

4. More elaborate pre-processing can often reduce a pattern

to a set or a graph of linear strings. Phrase structure grammars can



be extended, by adding new operators to the standard concatenation
operator, to handle connected graphs.

5. Techniques for describing graphs - the connection matrix
and linear description - seem simpler and more structurally meaning-
ful.

B. FLEXIBLE TECHNIQUES:

1. Objects can be connected at internal points and regions,

as well as at their ends.

2. Objects can be connected at a distance. Distance and
position can be an objective measure of the space, or the objects
found in the space; or a subjective measure; or a set of bounds.

3. Specifications of positions and connections, or other
relations, can be given loosely.

4. A technique is presented for successively more loosely
applied specifications of position and relative distance.

5. Areas can be specified, and compoundedinto larger wholes.

6. Rewrite rules can be modified so that they succeed with
less-than-perfect match, using a threshold, and counts or weights.

7. A rewrite rule can imply more than one replacement (which
can include names of subsequent rewrite rules as well as pattern
names), and a decision function can choose among multiple implica-

tions.



C. DISCUSSION

1. Real-world inputs are often defective and "ungrammatical®
vet can be recognized. We should judge recognizers on efficiency
and power.

2. We must relax the concept of a set of easily recognizable
and unambiguous things (the words) concatenated together into a
connected, bounded string (the sentence) that can be perfectly,
completely, unambiguously parsed if we expect to recognize real
world fields of objects in backgrounds.

3. Traditional syntactic pattern recognizers do poorly on
real patterns, and need extensive pre-processing and feature extrac-
tion before the syntactic section takes over.

4., An important aspect of the syntactic approach in linguistics
is to gain insight about the structure of language. Have we gained
such insight from linguistic pattern recognition? How heavily should
we rely upon phrase structure as opposed to transformational and
semantic techniques?

5. The syntactic approach re-emphasizes the importance of

structure. But it should be made more flexible, to handle the looser

and more complex structure of real-world patterns; and it should be



combined with the parallel-serial, multiple-characterizer, probabi-

listic structure of the typical pattern recognizer.

BACKGROUND INFORMATION

A large number of papers have been written during the past few
years on "linguistic" methods for pattern recognition. This work has
been unusually well reviewed by Miller and Shaw (1968), Evans
(1969), and Fu and Swain (1969). In almost all cases, "linguistic"

has mean "syntactic" structure, despite the fact that several other

things studied by linguists - notably the recognition and description
of basic units (e.g. phonemes, morphemes, words), transformational
grammars, and the study of semantics - are of central relevance

to pattern recognition. (When it comes to recognizing semantic
units, or even phonemes, linguists are confronted with deep problems
of perception and cognition and, I suspect, could benefit from an
examination of the research in pattern recognition and artificial
intelligence.)

The Flavor of a Linguistic Approach

The spirit of the linguistic approach is, I think, to bring the
idea of “"pattern" back into pattern recognition research. A pattern

is a complex structure of meaningfully interacting and interrelated




things, which in their turn are complex structures. Thus a "Boy"

is a structure of head, trunk, arms and legs; a "Head" has hair,

neck and face; a "Face" has eyes, ears, chin, mouth, cheeks: and

so on. A boy and a girl in a certain orientation are a dancing couple

and sometimes we might agree that the girl is "following" the boy.
Ultimately we want pattern recognizers to transform inputs into

meaningful descriptions of the sort indicated above. But the actual

situation today is one in which they classify, choosing and out-
putting one from a mutually exclusive set of names that might be
assigned to an input. The linguistic approach will play a vital role
in the move toward description.

We typically think of a pattern recognizer as A) Pre-processing
the input (e.g. smoothing and eliminating noise, translating and ro-
tating) B) Characterizing (e.g. finding contours, strikes, angles and
other information-rich features), and C) Deciding (choosing the
single most highly implied name). Most research has concentrated
on step C, looking for powerful decision procedures. And research
on B, to get and use good features, has tended to consider features
as independent things, each to be applied without respect to the

others. This is illustrated in Figure la, which shows the typical



structure of pattern recognizers.

shown in i1b, lc¢, and 1d.

But other structures are used, as

Figure 1. Some Pattern Recognizer Structures
a) Parallel Characterizers (e.qg. Bledsoe and Browning's, 1959,
N-Tuples
Pre- Characterize
Input  Process Imply Names D Decide
C. >3 N
1 1 L5
A A >
Nchosen
C = Characterizer
N = Pattern Name
D = Decision function
b) Characterizers that Successively Transform, then Imply Names
(e.g. Rosenblatt's, 1958,multi-layer, "perceptrons")
Transforml Transform 2 Decide
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c) Serial Characterizer Sort (e.g. Unger, 1959; Hunt, 1962; Towster's, 1969,
Concept Formers)

D ¢ < 1
C ,{ 47 N
2 D7 {Outputs Name at end

D r
C5 D C @i of path taken)
C ﬁ: 6
1 N3
D D C, DN

d) Parallel - Serial (eg. Selfridge's, 1959, “Pandemonium")

(Each CA’CB’ etc. is a whole get

of parallel characterizers, CA ,

1 7
c ,...C . Each DC is a Demon

A A

2 N

that Decides, sending its Character—-
ization to the next higher-level Demon.
DM is the Master Demon.)

The "linguistic" approach is an important corrective, since it
focuses interest on the structuring of features into meaningful higher—
level wholes. But it can easily become a straitjacket, if it insists

upon a complete and exact description of the input, in the spirit of



the linguist's insistence upon a "grammatical” sentence. As we will
see later, a good bit of non-linguistic pattern recognition research
also examines structure.

The letter of the linguistic approach, at least to date, has
been syntactic - applying and extending "phrase structure" gram-
mars (developed by Chomsky; see e.g. Chomsky, 1957, 1963, 1965;
Chomsky and Miller, 1965) to 2-dimensional patterns.

We will now examine phrase structure grammars, some of the
attempts that have been made to extend them to 2-dimensional pat-
terns, and some of the problems that arise. Then I will present some
data structures and some techniques for "flexible" "syntactic" recog-
nition that may overcome these problems. The syntactic approach is
a good corrective, but it should be blended smoothly with the rather
loosely structured probabilistic parallel structure that has given a
number of pattern recognition programs a surprising amount of power.

Phrase Structure Grammars

A "grammar" for (linear) languages consists of a set of "rewrite
rules" that indicate how one thing can be replaced by one or more
strings of things. There are three kinds of things: 1) one root,

2) classes, and 3) terminals.




Let's look at a simple example of a grammar;

Number Rewrite Rule Equivalent Shortened Version
R1 Sentence = Nounphrase+ = S = NP VP
Verbphrase
R2 Nounphrase = Article Adjective = NP = ARA N/A N
+Noun/Article+Noun
R3 Verbphrase = Intransitiveverb/ = V = IV/TV NP

Transitiveverb+Nounphrase

R4 Article = THE/A/THIS = AR = AR1/AR2/AR3

R5 Adjective = RED/BLUE/BIG/ = A = Al/A2/A3/A4
PRETTY

R6 Noun = BOY/GIRL/DOG/BONE = N = N1/N2/N3/N4

R7 Intransitiveverb = WALKS/RUNS= IV = IV1/IV2

R8 Transitiveverb = KISSES/PATS/ = TV = TVI1/TV2/TV3
EATS

The "=" indicates "what's to the left is equivalent to one of

the strings to the right", where the "/" denotes the end of each of the
possible strings. The "+" (which is often absent) indicates concatenate (join
together}. "Sentence" is the root. Words in caps (e.g., RED,BQOY)

are the terminals found in actual sentences. The following are a

few sentences this grammar will generate, or parse:

"THE BOY RUNS"

"A GIRL KISSES THE BOY"

"THE PRETTY BOY EATS THIS RED GIRL"
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To generate a sentence, we start with the root, "Sentence"”
Successive transforms are effected by finding a left side of & re-
write rule in the string being transformed, and replacing it by the
right side of that rewrite rule. When only terminals (that is, words)
remain, the sentence is done. Thus "THE BOY RUNS" is generated

in the following steps:

String Rules Applied
w1, Sentence A R1
( \ I g

© 2. Nounphrase Verbphrase P R2.b; R3.a
p ¥
po
&
8 3. Artlcle Noun Intxan31t1veverb R4.a; R6b.a; R7.b

,.£>

o® @

To parse a sentence, we start with the string of terminal words
that form the sentence. Now right sides of rewrite rules are found
and replaced by left sides. The string is considered parsed when the
“Sentence" node is reached. Thus "THE BOY RUNS" parses, and is
a legal sentence, by the reverse order, right-to-left application of
the rewrite rules used for generation. (Parsing gets more complex,
as sentences get more complex, and usually is not just a simple

reversal of generation.)
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If a sentence is successfully parsed it can be called "gram-
matical", and its syntactic structure has been got by the parsing

process. Thus "THE BOY RUNS" gets the structure

E® )

Figure 2. Parsing Linear Strings

Description ”@ RU&S "
Descri Runs]
is a grammatical sentence with
Structure S = NP IV
NP = AR N
1V = (RUNS)
Input !

1~-dimensional Input

Parse

Inout * ., Extract Write
“IPES Features a Strihg
b "¢

"@@EE®" is a legal

chromosome structure of form:
Cil=adach

86606
5 a ll 3 @ + b + ¢ = TRIANGLE

by 1 dlmensmnal connected strings in 2 dimensions
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Applying Phrase Structure Grammars to Patterns

Such a grammar can be successfully applied, without modifica-

tion, to a few n-dimensional patterns - those that can be mapped

onto the line in such a way as to preserve the basic units that the
grammar must work with. In the syntactic analysis of language the
basic units -the words - are given, and are unambiguously recognizable,
In pattern recognition pre-processing and feature extraction are
needed just to get these basic units.

There are of course a potentially infinite number of ways to map
a finite set of points in an n-dimensional space into a linear string.
Simply scan, as done by a tv camera or a computer when inputting a
matrix. Or randomly choose points, without replacement. The
problem to get the same string of features for all variations of the
pattern. The linguist's syntactic analysis of language assumes
such a string, that is, it assumes that the words (the features) have
been perfectly extracted.

Linear Grammars for Contours of Areas

There is at least one kind of pattern that might be handled with
a traditional phrase structure grammar - a pattern that is an area
whose contour is a single line that can be decomposed into simple

curve features; for example, a triangle, or a chromosome.
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Ledley (Ledley et al, 1965; Ledley and Ruddle, 1965) has
developed such a grammar for chromosomes (Figure 2). He uses a
curve-follower to decompose a contour into simple curve features,
and then describes the chromosome as a siring of these features.
Thus his "grammar" includes the several stroke features, and
strings of these features to describe chromosomes.

Many other patterns could be similarly described. Triangles,
rectangles, and other polygons can be described as linear strings
of straight line segments of various lengths and slopes. Attneave
and Arnoult (1956) proposed a simple system for describing contours,
and describe their own faces as linear strings of these curves.

Looping Branching and Disconnected Figures

As soon as loops, branches, or disconnected figures occur,
we cann no longer make such a direct application of standard
phrase structure grammars. Either a program must pre-process such
patterns, to convert them to linear strings, or we must develop an
extended phrase structure grammar.

Prather and Uhr (1964) first converted compounds of linear
strokes, of the sort we find in letters, into thickened patterns - that
is, into areas, not lines - and then got their contours. This gives a

single contour string for linear letters such as C and M, and also
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for some branching letters, such as E, G and H.

Patterns that contain loops, e.g. A and B, or are disconnected,
e.g. 1 and =, will give several such strings. To handle this we must
either link them into a single string, develop a grammar for sets of
strings (similar to a grammar for paragraphs rather than sentences),
or use more flexible syntactic techniques of the sort we will examine
later.

Extended Linear Grammars for Graphs

Most syntactic pattern recognition techniques work with com-
pounds of strokes, where thin lines are assumed and branches and
loops (but not disconnected lines) are allowed. Either the patterns
are made up of such thin strokes (as are the letters of the alphabet
and spark and bubble chamber events), or a pre-processor is assumed
that converts them into such strokes. In either case, the strokes
must be recognized by feature extractors, and the input to the
syntactic recognizer is a graph of stroke features, rather than a
linear string.

Shaw's (1969) Picture Description Language (PDL) is a good
example of such an extended grammar. The standard phrase structure
rewrite rule is of the form: C1 = C2 + C3(e.qg., Sentence = Noun-

phrase Verbphrase), where each of the class elements (e.g. C2)
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is assumed to be a linear string whose rightmost element is to be
concatenated (that is joined) to the leftmost element of the next
string. Because sentences are in l-dimension their left~to-right
representation in a line of print indicates the left-to-right order in
which their words are joined. But in 2~ and n-dimensional spaces
a line can be oriented in an infinite number of ways. Shaw requires
that the "tail" and "“head” be specified for every line (equivalent to
the "left" and "right" specification that is implicit for things ordered
in a linear string). Now the concatenation operator in a statement
like C1 + C2 means "attach the head of C1 to the tail of C2".
Shaw introduces several additional operators to connect other
combinations of heads and tails. For example, Cl x C2 means
"attach the tail of C1 to the tail of C2," C1 * C2 means "attach
the tail of C1 to the tail of C2, and the head of Cl to the head of C2
(that is, form a loop).

In addition, Shaw's operators specify what are the tail and the
head of the new combined siring. For "+" (concatenation) this is
simple - the tail of the first and the head of the second. For "x" it
is arbitrary - the head of the first and the head of the second.

These extensions allow Shaw's PDL to describe any connected
compound of strokes by a set of successive pairwise compounding

operations, as illustrated in Figure 3. The general principle is to keep



16

Figure 3: Picture Description Language (PDL) Applied to Graphs

Features
Input Extracted Parse
a b a + b a+ b= leanto
“leanto
a) No enclosures
a
d cl = ¢2 = chromosome
o/
a c = cl
/ a+d+a+c+b atdtat

Closed Loop (Ledley's Chromosome Problem)

c) Closed Loop (Triangle) Built of Sub-units

a + b = Leanto

1}

Leanto #® c

(a + b) * ¢

Triangle

Triangle

an end a "tail” or "head" until it has been joined to all the other
strokes that connect to it. But the building up of the description
seems somewhat unnatural and awkward. All strokes must connect
at their "heads™ and "tails." Two large units (e.g. the back and the
seat of a chair) cannot be built up separately, and then connected.
No variations will be tolerated. And something so simple as T or

+ can only be handled in what seems a rather ad hoc and contrived
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way-by breaking the straight line at its join, orienting head and
tail properly, and using an operator that outputs a tail in the middle
of a line.

Describing Graphs and Patterns

Rather than pre-process the input down to one or more linear
string(s), or try to extend an essentially linear grammar to handle
graphs, we can use techniques that handle graphs directly.

Such techniques have a strong flavor of the syntactic, and
some of the early attempts are usually referred to as syntactic
(e.g. Grimsdale et al's, 1959, by Miller and Shaw, 1968). But they
actually grew out of a completely different tradition, and owe little
if anything to the linguistic approach that developed phrase structure
grammars. They grow from a need to deal directly with graphs,
rather than with strings, of connected objects.

A standard way of describing a graph is with a connection
matrix in which each node of the graph labels a row and a column,
and an entry is made in each cell whose row and column names are
connected in the graph. Standard graphs treat nodes as points, so
we need only 1 symbol, say "." to indicate "connected" (Figure 4a).

To handle line segments, we might, with Ledley, merely specify
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“+" for concatenation, or use Shaw's technique, specifying a “tail"
and a "head" for each node, and a set of compounding operators to
connect (e.g. "+" indicates "head-tail", "x" indicates "tail-tail").

Alternately, (and, I think, more simply), we might use a 2-tuple
to specify where on the row node and where on the column node the
connection is made (Figure 4b). Thus Shaw's "+" becomes "4-",

"x" becomes "--" and "#*" becomes "--" and "++".

Grimsdale et al (1959) used such a connection matrix to describe
the various figures their very sophisticated and complex program
recognized. (Their program is of interest for the enormous amount
of pre~processing it needed to reduce letters to lines, joins, and
connected strokes. Figure 4 shows how a graph pattern can be
represented by a connection matrix, and also by listing each thing-
relation-thing.

Figure 4. Describing Graphs

Features
Input Extracted Connection Matrix Linear Description

a b c azy bp

a.b, a.c, a.ap,
b.c, b'bZ'
C-az, C.bz,

a) Strokes connected by'. (signifying "connected")
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2 2
- Head a P D at+-b, a--c, a-ta,,
= Tail b +-4- +- 1 b++c, b,+~b2,
= i —_ — - ~ L
HeadTail ;; + |+ c .az, cH bz,
2
b
2
b) Strokes have Head (+) and Tail (-),
+
a b o}
0 a +-1 0= a+-b,a0-c
b 0+ b 0+ c,
c

c) Strokes have Head(+), Tail(-) and Middle. Can Cross

Regions  Pattern (Connection Matrix Description is Given
Under Each Pattern)

b
+2
AN
1 a a R
0 b
-
-2 aoob azob alob a 2-2b a-1-1b

d) Strokes have regions (+2, +1, 0, -1, -2)
The whole development of list processing languages is in

large part the development of convenient representations for graphs.
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Thus IPL's list structures and LISP's parenthesized notation form the
basis for Evans' (1968) and Guzman's (1967, 1968) descriptions of

objects.
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PLEXIBLE TECHNIQUES FOR LINGUISTIC RECOGNITION

Flexible Connections

Why restrict connections to the two "ends" of an object?

Connections Within the String

Grimsdale et al (1959) specified connections at the tail, head,
and middle (see Figure 4c). Uhr (1959) suggested connections at
the ends, and in the regions near the ends and middle (see Figure 4d).
Shaw must decompose every stroke into a set of strokes by cutting
at every connecting point. E.g. a + becomes 4 strokes. But once
we can specify the middle the + is described as 2 strokes, and their
interrelations are clearly stated.

Uhr's regions can be either objective - of equal size - or
subjective - where "end" is small, "near the end" is larger, and
"“middle" is largest, reflecting the way people perceive objects.

Any number of regions can be specified. For more subtle descriptions
of detail we can go one step further and give the program a set of
procedures for computing relative positions.

Connections At a Distance

Up to now all connective have superimposed points of the two

strings. But why not connect at a distance? This is quite commonly
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done by "n-tuple" and "configurational" pattern recognizers, whose

characterizers specify what to look for in specified disconnected

regions of the input.

Without this (see Figure 5) a program cannot specify a pattern
that is not a connected graph (one with a path between any two points).
Thus = and i cannot be described by any of the grammars we have
examined up to now. Nor can any other perfectly recognizable
letter when one or two of its lines are broken or replaced by dashes.

Uhr and Jordan (1969) give several techniques for connecting
objects at a distance, and more are cataloged in Uhr (in press).

First, let's note that a specification of a distance will be a vector
of size N in N-dimensional space. Thus in a Chomsky grammar for
strings in l-dimension, or Ledley's grammar for strings in 2-dimen-
sions, we need merely replace the singel concatenation symbol "+"
by a number to specify distance. The simplest distance is in terms
of the units of the space - the symbols in a language string, or the
cells in a picture matrix. Thus THE+DOG becomes THE.O0.DOG and
both will succeed in "SO+THE+DOG+EATS". But THE.3.DOG will
succeed in "THE+BIG+DOG" and "THE+RED+DOG", and whenever
THE and DOG are separated by exactly three letters. A variant sub-
routine can be easily coded to treat .N. as meaning "N or fewer letters

to the right."
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Rather than measure by counting letters, the program mighs
count words, phrases, and/or other higher-level units. THE.WIi.DOG
will succeed in "THE+BARKING+DOG" (W1 means "1 Word distant")
IF.PHRASE] .THEN will succeed in "IF+THE+RED+DOG+EATS+THEN. . . "

Figure 5. Connections at a Distance

a._b a b a b a b
—-——-}—-—_- ———— o—— — P ——— P
a.o0.b a.l.b a.2.b a.4.b
a) Objectively measured distances.
Regions Digtances
~ Y, b b
1 +2 3 o _
+1 T
T, 2 b
e 1 a a a
11 0
-2
a.2o-2.b a.z2l-2.b a.02-2.b
b) horizontal distances specified between joins (subjective distances
shown)
b
bO
b
a a o
b
2 2 2
a.Z1 -2.b a.ZOO.b b.OOO.b

c) X-y distances specified
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Connections between features in 2 dimensions can be specified

= vertical distance up
horizontal distance to the righ

1

by 2 numbers, [i t‘} (see Uhr, 1368,
Sauvain and Uhr, 1969). Since the higher-level units are rarely

cleanly given and extractable, as are the words and phrases in language

sentences, and in any case empty background space can lie between

them, distances in terms of array cells seem most appropriate. But

it is also possible to specify subjective distances in the spirit of

subjective joins. For example, a convenient set of subjective
distances is SO = Touching, Sl = Close, 82 = Far, S3 = Distant
(see Figure 5).

Subjective distances allow a single description to apply to a
large number of variants - all combinations of elements of the des-
cription where each element can lie anywhere within the subjectively
equivalent region. Uhr and Jordan (1969) give an alternate way of

getting this kind of flexibility, by specifying bounds rather than

0,2

.T2
O,4T

distances. Eg. (giving bounds in objective distances), T1.
will succeed if T2 touches T1, and also in all cases where T2 is

=2
less than Z{_ away from Tl. Both position on each part and distance

=4
between parts can (and usually should) be specified. (Fig. 5h)

Precise objective distances can be written in a subjective

distance or a bounding system, which therefore include precise




25

distance systems. They can also effect enormous savings, since

a single subjective distance or set of bounds defines an entire region
of points, where a precise objective system would have to specify
each of these points in a separate statement. Further, if the region
contains an infinite set of points an infinite set of such statements
would be needed.

Loosely Specified Connections

Rather than specify a distance, it often seems useful simply
to specify co-occurrences, or directions. For example, we might
write
T1/T2 to signify "T2 should co-occur anywhere with T1."

Tl— T2

I

"T2 should co-occur to the right of T1."

T1 ¢ T2

"T2 should co-occur to the right of and below T2."

General Relations

The joining and relative positioning of two things are just
particular instances of the general problem of relating things to-
gether. We can use this same form, where TI.R].TK specifies a
relata, but the relation, RI, can specify something like "above" or
"encloses"” or "is bigger than" or "kisses" or "likes". Now the
relation must be defined in terms of usable procedures and tabled

information.



Flexible Specification of Relations Among Things

Returning to relative positions (both within and between objects)
let's examine one rather flexible way of allowing a program to notice
any specified degree of precision it may find in a pattern, but to allow
specifications to grow successively vague, until they fit.

Consider an interrelation among two thin strokes in two dimen-
sions, eg:

VERTZ .+-.HORI = GAMMA = ’——

We can assume the strokes have some thickness (ie, are areas),
and specify their join-positions in 2-dimensions (also assuming a
range of regions 2,1,0,-1,-2), so that the above should be written:
VERTZ.E_S.HORI = GAMMA = r

Let's specify a third vector, for distance, which can range
from 0 (= touch) through 1 (= close), 2 (= far), 3 (= distant). Now
V‘ERTZ.;;SS.HORI = BROKENGAMMA = } o

Now let's substitute binary (or ternary) for the decimal numbers,

where each successive digit is used to divide a line segment in half

(or 3). Looking at relative position,

0 = CLOSE, TOUCH 00 = TOUCH
01 = CLOSE
1 - DISTANT, FAR 11 = DISTANT

10 = FAR
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Now each successive digit makes relative position more precise .
Each digit can be treated as another part of the characterizing
description, specifying more precisely where to look, and adding a
bit into the program's overall decision (of the sort to be discussed
later) as to whether the characterizer has succeeded.

Describing and Compounding Areas

An area can be turned into its contour, which can be des~
cribed as a concatenated string of curve segments (eg. Attneave
and Arnoult, 1956; Ledley et al, 1965) But very little has been
done to handle areas directly with syntactic techniques. Kirsch
(1964) has developed a grammar for generating triangles. Dacey
(1970) has generalized this grammar to handle any area that grows
only at its bounds. (I suspect that this may be sufficient - in the
real physical world objects either grow into "empty" space around
them, or they don't grow.)

Patterns - even thinned strokes that result from pre-
processing with a curve follower ~ always have area. Grimsdale
et al (1959) did not really specify beginning-middle-end; actually
they specified a 2-tuple, composed of Left, Middle, or Right and
Top, Middle, or Bottom (except that Middle Middle never occurs

with their decomposing scheme).
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We generalized this in the previous section to the use of
objective or subjective intervals in each dimension. Z rectangle
or some other hull might be drawn around a compound of strokes or
some other irregular area. Now a connection is a triple, specifving
the position on the first object, the distance, and the position on
the second object.

But all these methods have difficulties: The scales and
positions seem arbitrary. Hulls are hard to draw, and they are only
approximations anyway. They seem too rigid and precise to be
useful for a relation like "His head 'sits on' his shoulders" or
"His head 'is tucked under' his arm."

The configurational characterizer (to be examined shortly),
which rather loosely samples fragments of the areas involved, and
is satisfied with only partial success, may well be the appropriate
mechanism for compounding areas.

Figure 6. An example of a configuration Used to Join Patterns

For example, 4 or 5 of the pieces shown in Figure 6 would be

enough to suggest a head above a shoulder. These could all be
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described in a single n-tuple configuration, with a threshold high
enough to insist that at least half of the pieces were found. Or they
could be described by several configurations, so that, for example,
a bottom contour of thé face would have to be found along with a

top contour of the shoulder. Or a more complex structure might in-

sist that the parts of the configuration also belong to other configura-

tions - so that the face parts belonged to a configuration that
characterized the face, and the shoulder parts belonged to one that
characterized the shoulder,

This, incidentally, is a way of handling joins (Shaw, 1969)
and embeddings (Pflatz and Rosenfeld, 1969; Montanari, 1969)
without any special mechanisms, by specifying a compound that
contains one or more things from each of the compounds being joined.
The compounding characterizer is a specification of the embedding:
the program looks for the pieces in the pattern, and also checks that
they were part of the configurations being compounded. When a
well-articulated connection is desired the configuration will specify,
eg. "Shoulder bone+Arm bone". When a looser relation is sufficient,
or preferred, the specification can be of the sort shown in the head-

neck-shoulder configuration of Figure 6.
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LESS-THAN-PERFECTLY MATCHING REWRITE RULES

All syntactic techniques, from Chomsky through Ledley, Shaw,
and Swain and Fu, insist that all parts of the rewrite rule be found
before replacement can be effected. We have just examined tech-
niques for relaxing the restriction that all parts must be concatenated,
rather allowing parts to connect internally, at a distance, over
some region, or within some bounds, or to cross. We will now
examine mechanisms that relax the requirement that all parts must
match.

A rewrite rule is of the form (reversing order so that parsing
goes from left to right):

TI.R1.T2.R2...RN.TN+1 = TNAME

A (linear representation of a) graph is of the form:
T1.R1.T2,T1.R2.T3,...TI1.RI.TI2, = TNAME

In both cases we traditionally insist that all Things be found
as specified, over all Relations specified. That is, the rewrite
rule specifies that all things be "and-~ed" together.

As a program looks for the successive parts of a rewrite rule,
it can count the parts found. If this count exceeds some specified
THRESHOLD the program can decide the rewrite rule has succeeded -

even though all parts were not found exactly as specified. A single
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threshold can be stored for all rewrite rules, eg. THRESHQOLD = 607
- meaning that at least 60% of the parts must be found for zhe ruie
to succeed. Or a threshold can be stored for each rewrite rule,
expanding the right-hand side of the above statements to read:
= THRESHOLDN, TNAME

A threshold grammar includes grammars without thresholds,
for they are simply the special case where THRESHOLD = Total
Possible Count. (Note that a rule will succeed when any one of its
"or-ed" parts succeeds if THRESHOLD = 1.)

Any threshold rule can be replaced by a get of rewrite rules:
simply list all combinations of parts that will exceed the threshold.
The set of threshold rules will never be larger than its equivalent
set of rewrite rules. To the extent that a rule has many parts, and
the threshold for acceptance is relatively low (and both of these con-
ditions seem typical of the pattern recognition situation), a threshold
grammar will effect significant savings, in both storage space for
rewrite rules and processing time to apply them.

The count can be on any or all of the units in the rule: each
Thing, each Relation, each Thing-Relation pair, and/or each

Thing-Relation-Thing triple.
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Rather than counts, the program could accumulate weights, if
these were assigned to the parts of the rule, eg.:
TIHWtLTI . RIFWIRI . TZ2¥WtT2 . R2 . WtHR2 . . .RN*¥WtRN. TN+ 1+WtTN+1 =
THRESHOLDN , TNAME
T1.R1.T2%Wtl,T1.R2.T3%¥Wt2,...TI1.RI.TI2*¥Wtl, = THRESHOLDN,
TNAME
Weights let each part of the characterizer play a role commensurate
with its worth. They @e especially important for learning (see eg.
Uhr and Vossler, 1961; Nillson, 1965).

Note that a count rule is just the special case of a weight rule
where all weights are 1.

If the Grimsdale program doesn't find a perfect match with one
of the connection matrices that describe patterns, it then applies a
number of complex procedures to get a "nearest" less-than-perfect
match. This could be done quite simply with threshold rules, where
each is actually a complete connection matrix for a pattern. The
program would accumulate weights of the parts found for each
characterizer. Each threshold would be the maximum possible weight.
The program would then choose the name implied by the operator

whose combined weights was closest to its threshold.
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Prather and Uhr (1964) attempted to have their program learn
configurations that were partial descriptions of the complete connec-
tion matrix, and combine the implications of these descriptions into
probabilistic decisions of the sort we will examine in the next
section.

Multiple Implications and Probabilistic Decisions

A phrase structure rewrite rule parses by replacing a set of
things by a single thing. This is equivalent to a pattern recognition
operator that replaces a characterization by a single implied name.
Such a scheme either needs 1) some serial depth, where the implied
name is itself a part of a subsequent operator's characterizer, (a
heirarchical structure) or is the name of a subsequent operator (the
sorting tree), or 2) a very large set of rather complete descriptions
to characterize patterns, one such description for each variant
pattern.

The typical pattern recognition program allows an operator
to imply not just one, but rather a number of different names.

Now a decision function is needed to choose among the names im-
plied. (We must take care to distinguish the decision that an
operator succeeds and the decision among the various names implied

by a set of operators.)
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This can easily be done with the rules we have written so far,

by further expanding their right hand sides, to read:

1l

THRESHOLDN ,TNAME1, TNAMEZ , TNAME3, ... or

THRESHOLDN , TNAME1I*WTTN1, TNAME2*WtTNZ2 , TNAME 33

I

WtTN3, ... or

THRESHOLDTNI*TNAME1*WtN1, THRESHOLDTNZ2*TNAMEZ:*

t

WiN2, ...
That is, each name can have equal weight, or its own special weight
can be stored with it. One threshold can refer to all names, or a
different threshold can be stored for each name.

Now a program also needs a decision function - that is,
subroutines to combine the weights of the same name when it is
implied by several different rules, and to choose among the several
different names implied. Typically, the name whose combined
weight is highest is chosen. Sometimes a program chooses and
outputs the first name that exceeds some threshold for deciding.
Sometimes the program insists that the chosen name bhe sufficiently
higher than the next 1, or N, most highly weighted names and, if
none meets that criterion, outputs "CAN'T DECIDE.".

Rules that allow multiple (that is, one or more) implications

include rules that allow only one implication as special cases.




A single multiple implications rule can be replaced by a whole set

of traditional rules, each implying one of the implications. But
standard phrase structure rules will not allow multiple implications.
But standard phrase structure rules will not allow multiple implications,
since they lead to "ambiguous' parses that cannot be handled with-
out the decision function that makes a choice among probables. The
restriction that only "grammatical" and "unambiguous” sentences
should be allowed is not tenable for real world pattern recognition:

Nature does not follow the rules of linguists.

DISCUSSION

On the contrary, linguists, along with psychologists and
computer modellers should be trying to discover the rules of nature.
In the real world of language, just as in the real world of perceived
patterns, people do a beautiful job of understanding broken, defective,
and ungrammatical things. The pattern recognition structure of
configurations of weighted related things multiply implying weighted
things over thresholds gives greater power for pictures, and is quite
likely to give greater power for language strings as well. By “"power"
I mean simplicity of the set of rules needed, which means efficiency
in storage space and processing time,andsize of the set of inputs

that can be successfully recognized, described, or parsed. What
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virtue is there to declaring a sentence "ungrammatical" and refusing
to extract meaning from it that is evidently there? Should pattern
recognizers throw out most letters because they have "ungrammatical"
imperfections ?

The Impossibility of Bounded, Complete, Unambiguous Covers

The traditional phrase structure grammar, and even the extended
grammars, make several additional assumptions that are almost always

violated by pattern recognition imputs.

The root "Sentence" node makes sense only when we can assume
that an input is one meaningful, grammatical, connected unit, where

every part serves some purpose, and should be accounted for.

"THE+BOY+RUNS" is such a unit. But a pattern like °s° is

—~

not. At the heart of the pattern recognition problem is the recognition
of many variants as instances of the same pattern, including trans-
lated, noisy, broken variants, and variants in a noisy background.
A sentence is tightly bounded; it has no background. A syntactic
recognizer would throw out "XTHE BOY RUNS"

"TXHE BOY RUNS"

"THE X BOY RUNS"

"XYZZTHE BOY RUNSXXYZzZX"
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and similar strings as ungrammatical sentences. But these are only
the simplest of the sorts of variations that we want a pattern recog-
nizer to handle, by ignoring them.

The terminal "word" nodes make sense only when we assume
that a word always looks exactly the same, and, further, is ended
by a space. Thus a syntactic recognizer would throw out "THU BOY
RUNS" because it would not find THU, and it would throw out
"THE BOY RUNS" because it would not find THEBOY in its list of
terminal words. But another central aspect of pattern recognition
lies in the absence of primitive markers, in the mystery of the basic
units. A pattern like an A is made up of some unknown set of
features, each of which can merge into or even overlap the others -
and we don't know what those features are, we don't know how to
"spell" them. Worse, we have every reason to think that we must
recognize features, as well as the pattern as a whole, over a wide
variety of "misspellings" - that is, over a wide variety of variations.

Thus we must first have a set of pre-processors and feature
extractors that are guaranteed to give an unambiguous linear con-
nected covering of the pattern before we can apply a traditional gram-

mar. That is, not only must the pattern be pre-processed into a
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string, but it must also be decomposed into a unique and complete
covering by the feature extractors. This is equivalent (in the far
more complex 2-dimensional situation) to demanding that feature

extractors regularize an input like

"THHE BXXXXXXXOY RANS" or
"THE BOY RUNS™" to
"THE BOY RUNS" so that the standard grammar can handle it.

But this merely pushes most of the problems to the earlier pre-
processing stageb5. TFor example, a standard production rule assumes
concatenation; but BXTQY is best recognized by a more typical pat-
tern recognition n-tuple of the form B—0—Y = BOY where the arrow
(—) signifies "anywhere to the right."

Phrase Structure Grammars and Pattern Recognition

Let's recapitulate the features of a phrase structure grammar,
and the problems in applying them to pattern recognition:

A set of rewrite rules is used to parse an input, giving a
single, complete and unambiguous covering if the input is "gram-
matical." But whereas in language the basic units ~ the words -
are assumed to be unambiguous, clearly recognizable, and clearly
bounded, in pattern recognition we don't know, and we have reason

to doubt, that there are equivalent basic units. In any case we
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don't know what they are, nor do we know how to extract them.
Much of pre~processing and feature extraction serves that purpose.

The basic word units are concatenated in language strings.
But as soon as we have 2-dimensional spaces where patterns move
around and vary, we must extend our relations considerably. To
the extent that patterns can be badly distorted and fragmented, vet
still recognizable, we cannot insist upon perfection. To the extent
that background exists (and without it there would be no foreground
figure) we cannot expect a perfect, connected covering.

Thus 1) the inputs to the basic phrase structure rule may not
be unambiguously given; 2) the rewrite rule must be extended to
handle relations other than concatenation, and to succeed with only
a fragmentary match; 3) it is unreasonable to require a perfect
sequence of rewrite rules that make use of and account for all parts
of the input, ending with a complete description of a "grammatical"
instance of a pattern; and 4) the "parsed" input will not be com-
pletely covered and accounted for.

Characterizers and Rewrite Rules

The typical picture of a pattern recognition program is that a
set of characterizers implies a set of names, among which one is

chosen. The characterizers can be organized in parallel, series,

or parallel-series, as indicated in Figure 1.
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The serial organizations are similar to the organization of re-
write rules in a grammar tree. But intermediate decisions can bpe
made to choose the particular characterizers to apply next as well
as what output name to vote for (eg. Uhr, 1969).

When we actually look in detail we find that the individual
characterizer can have much of the structure of a rewrite rule. This
is obvious for the compounds of strings and the graphs that we have
just examined, where a characterizer combines a set of strokes. But
many pattern recognition programs have combined other things, such
as individual cells of the matrix (eg. Bledsoe and Browning, 1959).
Uhr (in press) shows how the parts of a compound characterizer can
be a mixture of any kinds of functions and tabled information. For
example, a characterizer might specify that several strokes be
present over a certain relation, that another stroke co-occur any-
where, and that the total area and total height meet certain specifi-
cations.

How Well Do Syntactic Recognizers Work ?

Do linguistically motivated pattern recognizers give good
recognition rates ? I think the answer is, not very. Worse, they
seem to be rather kludgey systems, lard to code and refine. When

they work at all on real-world patterns they are only a part of a
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larger system, which includes rather sophisticated pre-processing,
feature extraction, and classification. There is no objective evi-
dence to suggest that the syntactic portion of the recognizer has
actually improved performance.

Narasimhan's very interesting work (1963, 1964, 1966) never
resulted in an actual pattern recognition program. Grimsdale's
(1959) program uses the connection matrix only incidentally, as a
small part of a very large program. Much work has been purely
theoretical, eg. Pflatz and Rosenfeld's (1969) development of Web
grammars, and Montanari's (1969) extensions; and Swain and Fu's
development of probabilistic programmed grammars (1970).

Eden (1961, 1968; Eden and Halle, 1961) suggested one of the
most interesting syntactic schemes, for generating handwriting from
a small alphabet of basic strokes.

Eden's students appear to have had a great deal of difficulty
in using the generative technique that generates handwriting as the
basis of a recognition program. Earnest (1963 had minimal success.
Mermelstein (1964; Mermelstein and Eden, 1964) got better results,
but only by introducing additional rather sophisticated techniques for
identifying strokes in the first place, and for using contextual infor-

mation about word constraints that limited the letter possibilities.
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In contrast, more traditional pattern recognizers that have
attempted to incorporate some structural features - in particular the
compounding of several parts into a characterizer - have given good
results (eg. Andrews et al, 1968; Rabinow, 1968; Uhr and Vossler,
1961, 1963; Zobrist, 1970).

What do Our Syntactic Languages Reveal About Structure ?

Chomsky points out that the worth of a type of grammar lies
in the way it reveals the structure of the language. But a grammar
like Shaw's seems rather arbitrary. It works fairly well, but it re-
veals little. The "classes" are merely the different kinds of strokes
(new lines and curves are defined as needed). What attaches to
what in what order of embeddedness is sometimes dictated by
structural difficulties in finding appropriate beginnings and ends for
attaching, but usually it can go on in any order. The grammar is
about as interesting as a grammar for a sentence that embedded
THE BOY EATS RED MEAT into the form:

(((THE(BOY(EATS RED)))MEAT) or any other structure got by succes-
sively pairing words.

Why Syntax and Phrase Structure Rules?

If we really know that phrase structure grammars are in-

adequate for language, with all of its simplifications and abstractions
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and regularizations, why should be expect it to work well for the far
more difficult problem of perception of the real world? Chemsky and
most structural linguists insist on the necessity of transformation
grammars, to handle the underlieing deep structure of a sentence.
To quote Chomsky (Chomsky and Miller, 1963, p. 299) "As far as
we know, the theory of transformational grammar is unique in holding
out any hope that this end can be achieved" (handling a natural
language like English).

Other linguists, notably Lamb (1969 ) and Fillmore (1968),
are attempting to develop more semantically oriented systems. And
several attempts have been made to apply pattern recognition and
heuristic techniques, taking a semantic approach, to natural
language processing (eg., Lindsay, 1963; Quillian, 1967 ; Raphael,
1964 ; Sikklossy, 1968 ; and Uhr, 1964).

Language and Objects

One can raise many doubts about the "linguistic" approach.
But it has unquestionably served a crucial positive function, in
reemphasizing the importance of structure. Most work in this
field has focused on the decision among alternate possible classifi-
cations, as implied by the characteristics (features) of the input.

Some work has concentrated on the getting of good features. Much
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of that has tried to get structural features; but it is the linguistic
school that has re-emphasized the importance of structure,

But we need a delicate balance between structure and flexi-
bility. For an unknown amount of structure exists, and must be
detected; but it is embedded in an unknown amount of non-structure.
We cannot insist upon perfectly spelled and completely grammatical
sentences in the real world. On the contrary, we want our recognizers
to extract the same semantic meaning from widely varying and flawed
fields of patterns.

After all, what do words like "syntax and "grammar" refer to
if not the structure and pattern of language. We are fortunate to
have so well developed a science of syntax, and we should try to
apply it to sensory patterns. But we should apply it with discretion

at the least, and with wisdom if we can.

It is just because of the one~dimensional character of language
strings, and the man-made character of languages, that we have been
able to make more progress in studying the syntax - the structure -
of language. The sensory pattern recognition problem is far more
difficult, and it would be foolhearty to try to apply easy solutions,
without deepening them so that they contend with, rather than ignore,

the difficulties.



45

The one-dimensional string eliminates most of the problems in
connecting objects. In one dimension an object has two neighbors,
to its left and its right. In two dimensions an object has, potentially,
an infinite number of neighbors.

But that's not the only thing. People have made languages.
People define and spell words, and legalize rules of grammar. A
misspelled word or an ungrammatical sentence is thrown out of con-
sideration by the linguist. This is, ultimately, foolhearty of him,
and I hope there will be no tendency to do the same in pattern recog-
nition. For we will always be embarrassed by the person (or pigeon)
who recognizes the pattern perfectly well even though somebody
has declared it ungrammatical.

The pattern recognizer is often described as having three
stages: 1. a pre-processor, 2. a feature extractor, and 3. a
classifier. But this is an oversimplification, and when one examines
a program that actually tries to get good results on real-world patterns,
one quickly finds a more complex structure, where the various steps
merge together. When the classification is unsure, more features
are examined; when a feature cannot be characterized nicely, more

pre-processing is done.
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In particular, it is extremely common to use a number of
stages, in which the application of characterizers and the decisions
are interspersed.

When a set of characterizers imply additional characterizers
to apply, and this goes on for several layers, we get just the kind
of heirarchical depth that we see in a phrase structure tree. When
a characterizer is an n~tuple configuration, we get just the structure
of a replacement statement. Actually, the structures are richer, and
more powerful to the extent that thresholds, multiple implications,
and a wider variety of positionings are allowed.

Can we not take advantage of linguistic methods, but without
imposing upon the pattern recognition problem a stultifying rigidity
that may be appropriate for the former, but seems antithetical to the
latter?

The linguist exactly specifies his individual objects (terminal
words in the vocabulary and internal class names of nodes in the
syntax tree), and insists they appear exactly as specified. The
pattern recognizer has no idea where his objects come from, or why,
but he does know that they are a mess, that many unknown and com-
plex non-linear transformations would be needed to group all members

of the same pattern class - that is, all objects to which the same
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name should be assigned - and that he does not know, and has no
hope of knowning, these transformation. The pattern recognizer
tries his best, or tries to get his program to learn as well as possible
to do as well as possible. The difference is simply the difference
between recognizing the string 'DOG' as punched 100 times un-
ambiguously onto a punched card for input to a computer, and recog-

nizing 100 different dogs.
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SUMMARY

This paper has examined a number of aspects of "grammars"

for pattern recognition, including several new mechanisms that I

call "flexible:"

A,

Grammars for languages like English:

1. Dimensional concatenation grammars (Chomsky's phrase
Structure grammars)

Traditional grammars for pictures:

2. N-dimensional concatenation grammars (Ledley)
3. Head-tail grammars for graphs (Shaw)
4.  Graph grammars (Grimsdale, Pflatz and Rosenfeld)

Flexible grammars for pictures:

5. Head-middle-tail graph grammars (Grimsdale)

6. Regions graph grammars

7. Disconnected graphs grammars

8. Flexible positions, distances, and relations grammars
9. Threshold rewrite rules for describing, joining and

embedding areas
10. Threshold grammars for less-than-perfect match
11. Multiple implication grammars with decision functions

Several additional variants have been examined, including the

use of objective vs. subjective measures, and the use of counts vs.
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weights. Combinations of some of the above can be effected, for
example a disconnected graph grammar with thresholds and multiple

implications.
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