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1. Introduction

The maximum principle is an important and powerful tool in the
study of second order elliptic partial differential equations, and,
several authors [11], [15], [30] have used this fundamental tool in
the study of singular perturbation problems for linear partial differ-
ential equations, The work of Eckhaus and DeJager [11] is an ex-
ceptional example of the power of the maximum principle in such
problems.,

Since this basic and useful tool is not particularly emphasized
in the study of singular perturbation problems, our goal is to exhibit
its applicability and versatility by way of numerous examples., We
only consider two-point boundary value problems for second order
ordinary differential equations, although we examine nonlinearities,
turning points, and, in the last section, coupled pairs of such equa-
tions,

Some of our results are new (see section 5 and theorem 4.1 in
particular). In other instances we have studied interesting examples
to demonstrate the many ways our estimates may be used. The reader
interested in the general field of singular perturbations is urged to con-
sult the books by Cole [7] and Wasow [28] and the excellent survey
articles by O'Malley [19] and Vasil'eva [27]. The articles by Carrier [3]

and Wasow [29] describe many interesting examples.




In Section 2 we state the basic maximum principle in the form
in which it is used in the remainder of the paper., We then use it to
derive some basic comparison theorems, which provide bounds on the
solutions of linear and quasilinear problems. The next two sections
give applications of these preliminary results to determining the
asymptotic behavior of solutions to boundary value problems. Section
3 treats linear problems under various hypotheses, including turning
point problems, Section 4 is concerned with quasilinear problems of

the form

(1)

The principal result complements work of R. v, Mises [16] and
Coddington and Levinson [5]. A complete analysis of the quasilinear

problem

ey" +yy'-y=0

is made with the use of the maximum principle. Such problems may
involve turning points,

The remaining three sections are independent of one another.
They represent different directions which can be pursued from the basic
material of the preceding sections.,

The quasilinear problems of Section 4 do not permit y' to



appear nonlinearly. In Section 5 we study nonlinear problems which
are quadratic in y', These nonlinear results are related to the results
of Haber and Levinson [14]. As we have indicated, our methods of
analysis could be used to discuss other nonlinearities., Indeed, the
special problem (see [23])

ey =y - (v, 0<t< 1
(2) '
y(0) =0, y(l)=1/2

is easily treated by these methods. However, we restrict ourselves
to these quadratic nonlinearities because maximum principle estimates
also enable one to prove the existence of solutions for ¢ > 0, These
results, which are rather general and technical, stand alone and are
not used in the following sections.

The maximum principle is a (very important) special case of the
general theory of differential inequalities. Section 6 demonstrates the
application of more general comparison results to a variety of linear,
nonlinear, and turning point problems, An interesting physical problem
describing the combination of diffusion and flow in a tubular reactor is
examined. Asymptotically convergent upper and lower bounds are used
for numerical purposes, and compared with direct numerical integration

solutions in the chemical engineering literature.

Finally, in section 7 we turn to systems of the form

u" = f(t,u,v)

(3)

ev' + g(t,u,u')v' - c(t,u,u')y v=20

which were studied by Dorr and Parter [9]. The present discussion

extends their results for some interesting examples.




2. Basic Comparison Results

We begin this sectién by recalling some basic facts about the
maximum principle. These results are well known, and we refer
the reader to Protter and Weinberger [ 25 , Sec. 1.1] for proofs.

For a fixed € > 0, let L denote the differential operator

Ly(t) = € y"(t) + e(t)y'(t) - B(t)y(t) (0<t< ).
We assume that «(t) and B(t) are bounded on every interval
[a,b]=(0,1), and that B(t) =2 0 for 0<t< 1. Suppose that

v(t) € C2 (0,1) satisfies
(2.1) Ly(t) = 0 (0<t<1).

The maximum principle states that if y(t) assumes a nonnegative
maximum value M ata point te (0,1), then y(x) = M. In
addition, suppose that y(t) € C1 [0,1] and y(t) is not identically
a constant. If y(t) has a nonnegative maximum at t= 0, and if
the function a(t) - tp(t) is bounded from below at t = 0, then
y'(0) < 0. If y(t) hasanonnegative maximum at t= 1, and if the
function e(t) + (1 - t) B (t) is bounded from above at t =1, then
y'(1) > 0.

These results comprise the essence of the maximum principle.

There are some elementary consequences of these facts that will be



needed later in the paper. Consider the two-point boundary condi-

tions
B Iyl =a_y(0) -b_y'(0),
B,[y] = a;v(1) + b, y'(1).

We assume that a, 2 0, b,=20, a_+ b >0, a, +b_ > 0, and
i i o] ‘o) 1 1

that we do not have

i

a =a, =0, B(1 0.
It is easy to show that if y(t) € Cl [0,1] n C2 (0,1) satisfies
ineqL/tality (2.1) and the conditions
B Iyl =0, B vl= 0,
then y(t) = 0 for 0 < t < 1. From this, we see that if y(t)
satisfies (2.1), then
y(t) = max (0,y(0),y(1l)) (0= t= 1).

Similar results can be proved if Ly(t) = 0 by replacing y by
-y.

We now consider the specific boundary value problem

Ly(t) = 0 (0<t<1)

(2.2)
y(0) =A, y(1)=B ,




where «a(t) and B(t) are assumed to be continuous. There is a
unique solution to the problem (2.2) [ 1 , p., 96], and from the
maximum principle it follows that
min (0,A,B) < y(t) < max (0,A,B) (0st<s 1),
Furthermore, if B(t) = 0 we have
min (A,B) < y(t) £ max (A,B) (0= ts=s 1),
Later in the paper, we will need conditions which ensure that either
y(t) or y'(t) has one signfor 0 =< t < 1. The following sufficient
conditions are easy consequences of the above remarks:
(@) If AB = 0,then vy(t) has one sign.
(b) 1If B(t) = 0,then y'(t) has one sign.

(c) If AB = 0, then y'(t) has one sign.

In the remainder of this section, we will derive some a-priori
bounds and existence theorems for solutions to quasilinear problems
of the form

ey" + aft,y.e)y' - B(t,y,e)ly =7 (t,y,e) (@<t<b)
(2.3)
y(a) = A(e), y(b) = B(e).
We assume that «,B, and 7Y are continuous functions and that

B = 0. As an immediate consequence of the maximum principle, it

is easy to see that if y(t) is a solution of (2.3) with

i



Y(t,y,€) = 0, then

max |y(t)| < max(iA(e){, IB(G)I).
0<st=s1l

With the use of a suitable comparison function, this result can easily
be extended to include the case VY (t,y,€) Z 0. Assume that there

is a continuous function ao(t,e) such that
(2.4) lett,y @) = e(t,e).

Then using the construction developed in [ 25 , Sec. 1.5], it

is easy to show that there exists a constant M(e) such that

(2.5) max |y(t)|<max (|A(e)|, |B(e) )+ M(e) max|Y (t,y(t),€)|.
Ost=<1 O<t<l

With this estimate, we can prove the existence of a solution to
the quasilinear problem.

Theorem 2.1. Assume either that l”y (t,y,€) = 0 or that (2.4)

is satisfied. Also assume that there exists a continuous function

Vo(t, €) such that

(2.6) Iv(t,y.e)| = Y ().
/

Then there exists a solution y(t) to the problem (2.3).
Proof. Define an operator T: y(t) — y(t), where y(t) is the solution

of




ey" + a(t,y,e)y' - Blt,y,e)y =V (t,y,e) (a<t<b)
y(@) = Ale), y(b) = B(e).
A standard argument using (2.5) and (2.6) can be used to show
that the operator T has a fixed point y(t), which is then a solution
of (2.3). (ct. [ 9 , Thm. 1]).
Remark. The condition in (2.6) can be relaxed to only require

Y1
Y = :
that 7 (t,y.€) Yl(t,y,e) + Vz(t,y,e), where v > 0 and

IVZ(t,y,e)l < Y (t,e). To see this, we write

of

Oy (t,€,€)
Yty ) =706 +y TTITTTTT o+ Y, (yse).

The existence of a solution to (26 3) then follows by applying
Theorem 2.1 to the differential operator
oV (L., €)
Ly = ey" + alt,y,€) y' - [B(t,y.€) + 3y —ly .
For the general quasilinear problem, we frequently have

lim M(e) = +o in (2.5). - The next two theorems give
€ 0+

sufficient conditions for having M(e) bounded independent of <.

Theorem 2.2. Let y(t) be a solution of (2.3) and assume that:

(@) a(t,y(t),e) has one sign,

(b) |a(t,y(t),e)] + B(t,y(t),e) = a_ > 0.
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Then (2,5) is satisfied with

M(e) = -;1; [(b-a)(b-a+1) + 1].

Proof. If w(t) is a continuous function, define

lvt) [, = max |v(t)].
astsb

We first consider the case «(t,y,€) < 0. Define a comparison

function g(t) by

2 (t) =—O-}— [t2 - (1 +2b)t+ (2ab + a --a2 - 1)].
(o]

1f we let

w(t) = y(t) + [vit.v@). e g,

it follows that
ew'(t) + a(t,y(t), e)w'(t) - B(t,y(t),€) w(t)20 (a<t<b).

With the use of the maximum principle, we then have

2.7) y(t) = max(|a(e) |, [Be)|) - [|v(t,y(t),e) ] #(b).
A similar argument with the use of the function

w(t) = - y() + [y (t,y),e) g

yields (2.7) with y(t) replaced by -y(t) on the left-hand side

of the inequality. This completes the proof for the case
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a(t,y,e) < 0. If «a(t,y,e) = 0, the proof follows in the same fashion

with the use of the comparison function

g(t) = —Q-l— [t2 + (1 -2a)t+ (2ab - b - b2 - 1].
0

Theorem 2.3. Let y(t) be a solution of (2.3) and assume that

Blt,v(t),€) = B > 0.

Then (2.5) 1is satisfied with M(e) = El— .
0

Proof. The proof follows as in Theorem 2.2 with the use of the com~

parison function #(t) = - L.

By’

Comparison functions can also be used to determine the rate of
decay of y(t) ase — 0+. The next three results give examples of
this technique.

Theorem 2.4. Let y(t) = y(t,e) be a solution of (2.3) with

Y{(t,y,€) = 0, and assume that:

(8)  There is a function @ () € Cl[a,b] such that

a(t,y,e) = ao(t) 2 0 and B(t,y,€) = —ozb (t).

(b) Either B(e) = 0 or B(t,y.,e) =0.
t

If we set afl(t) = [ ao(x)dx, then
“a
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[v(t,€) - Ble)| = |A(e) - Be)| exp P e (]  (a=tsb).
Proof. Define a function #(t,€) by
Bit,e) = (v(t,e) - B(e)) exp [T e (0] (a<tsb),

It is easy to verify that g(t) = #(t,€) satisfies

&
" - t ____Q, - - | I —_
ed" + (a 2ao);zf +(e (ao @) oy B)g = 0.
By assumption we have
o
R

and hence
[B(t.€)| = |A(e) - Be)|.
The theorem then follows easily from this fact.
We can also give an analog of Theorem 2.4 for the case

a(t,y,e) = 0.

Theorem 2.5. Let y(t) = y(t,e) be a solution of (2.3) with

Y(t,y,€) =0, and assume that:

(a) There is a function ozo(t) € C1 [a,b] such that
aft,y,e) < ozo(t) =0 and B(t,y.e) = - a/b(t),

(b) Either A(e) =0 or B(t,y,e) =0.

t
If we set al(t):é ao(x)dx, then
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ly(t,e) - Ae)| = [B(e) - Afe)| exp [-‘é‘wl(t)] (astsb).

Proof. The proof follows as in Theorem 2.4 with the use of the

function

Blte) = (v(t,€) = Ale)) exp [+ @, (1],

The next theorem treats the case where ea(t,y,) =0 but

B(t,y,e) is bounded from below.

Theorem 2.6. Let y(t) = y(t,e) be a solution of (2.3) with

a(t,y,€) =0 and Y(t,y,€) = 0, and assume that:

(a) There is a nonnegative function Bo(t) € C1 [a,b] such that

Blt.v.e) > [Ba +./& (B0 1.

(b) Either A(e) = 0 or B(e)

il

0.

b
If A(e) =0 we let ﬁl(t) = f ﬁo(x)dx, and then
' t

A

t

A

yt.e) = [Be)] exp [- == B(0] (@< t=b).

€

t
If B(e) =0 we let [32(t) = f ﬁo(x)dx, and then
a

1
vl < A exo [- 77 8,01 (2= t=b).

Proof. The proof follows as in Theorems 2.4 and 2.5 with the use

of the function
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v(t,€) exp [~= B, ()] if Afe) =0
VE
B(t,e) =
y(t,€) exp [—"1- ﬁz(t)] if B(e) = 0.
€

We now consider a-priori bounds for y'(t). If
a(t,y,€) = %y > 0 we expect in general to have a boundary layer
at t=a, so the bound for y'(t) cannot be uniform in the whole
interval [a,b]. However, it is uniform in any interval [a + ©, b]
for 0 < 5<Db - a.

Theorem 2.7. Let y(t) be a solution of (2.3), and assume

that a(t,y,€) = QO > 0. Define

Y, = max v (t,y(t),e) |,

a<ts<b
) o 1 B(t,y(t),e)
ﬁo = max (2, (b a) [(b~a)(b—a+l)+l +azlta<}k{) Ct’(t,Y(t)le) ]) :

and
o
M = B, [max(|a[, [B]) + == ((b-a)(b-a+1) + 1)].
0

If we have a <t< to < b, then

t-t

0
| .

(2.8) ly(t) -yt | = M |-
0

and hence
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@9 Iyels2t (@<tsb)

Proof. Define a comparison function

t—to
Bt) = y(0) - y(ty) + M(-—~——)

a—to

Then #t) satisfies

ed" + aft,y,e)d - B(t,y,e)f < 0 (@ <t<ty),

and hence

a-t

t—to
y(t) - y(tO) > ~M( 0> (@astcs tO).

A similar argument with the use of the comparison function

t-t,
g(t) = y(t) - y(ty) - M(g_—t';')

proves that

t—tO
y(t) - y(ty) < M{-—= (@ <ts<t)).
-t 0
0
This proves (2.8), which easily implies (2.9) Dby taking the

limit as t tends to ‘to.

It is easy to obtain a bound for y'(a), although this bound

may become infinite as € — 0+. Let y(t) = y(t.€) be a solution of
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(203) with a(t,y,€) = an > 0, and assume that there is a

constant M such that

(2.10) ly(t,e)| = M (a = ts b).
Then there exists a positive constant I\/I1 such that

M

(2.11) Iy'(a,e:)ls*'e-l (0 <e < €.

To prove this, we use an integrating factor to write (2.3) in

the form

Q(t)

Wy = By + F()e 2D,

(2.12) e(y'(t)

where B(t) = B(t,y(t),€), Y (t) = Y(t,y(t),€), and

t

Q) = f a(,y(7),e)dr.
a

m |

By integrating eq. (2.12), we see that

| t
@13 yws e DL [ Eeiyie) + 7)) as +f AR
a

[P,

a

where

t X
f (B(s)y(s) +7(s))e2E ) g 4y
a
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Then (2.11) follows easily from (2.10) - (2.13).
This construction can also be used to establish a uniform
bound for y'(t) in the case where the boundary condition at t = 0

is changed.

Theorem 2.8. Consider the problem

ey" + aft,y,e)y' - B(t,y,e)ly =Y (t,y,€) (a<tkb),
(2.14)

y'(a) = A, aly(l) + bly"(l) = B,

where a(t,y,€) = ao > 0, al1 = 0, b1 = 0,

al + bl > 0, and if B(t,yv.,) = 0, then a1 > 0. Assume that there
exists a solution y(t) = y(t,e) of (2.14), and a constant M
such that (2.10) holds. Then there exists a positive constant

M 1 such that

Iy ] = M, (a<tsb). ;
Proof. As before, we integrate eq. (2.12) to find that

t
y(e) = e 0 4 1 f B (s)v(s) + 7 (s))e (&M yq

€
a
Thus

M t
ly' ] < |a] + =2 f eQ(s)-Q() 4o

€
a



A

|A] +

I
g




19

3. Applications to Linear Problems

We now consider some applications of the results in the pre-

ceding section to linear problems of the form

(t,e)y'(t) —a (t,e)y(t) = a (t,e) (a<t< b)

(3.1) 2

We assume that lim A(e) = A(0) and lim B(e) = B(0). Many
e—>0+ e— 0+

of the examples we consider can be treated as special cases of exist-
ing theorems (cf. [ 21 ] and the references in that paper). However,
the proofs of these results are very simple with the use of the maxi-
mum principle, and do not require strong assumptions on the differ—
entiability of the coefficient functions ai(t, e). In addition, Theorems
2.4 - 2.6 can be used to give very simple estimates on the rate of
convergence as ¢~ 0+,

We first define a set of functions DO which will be used to

specify the smoothness of the coefficient functions oci(t,e). If

v(t,e) is a given sequence of functions defined for 0 < € < €gr

then ~(t,e) e DO if there exists a function Y(t) such that

V(t,é)&i€ :{31[

a,B], y(‘t,“é")’? Co-’mi}e‘rge”st: uniformly to v(t) as e -0+, “'

and |v'(t,€)] <My for a<t<b and O<e§_eo.;we assume

that the coefficient functions a,(t,e) in (3.1) satisfy:
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(@) a(t,e) e Dy for 1<i<3,

(b) a,(t,e)20.

Theorem 3, 1. Let y(t,e)

be the solution of (3.1), and

assume that Ial(t,e)l > 6>0, If a,(t,e) <0, let yo(t) be the

solution to the initial value problem

and if oal(t,e) > 0, let yo(t) be the solution to the terminal value

problem

Then

lim y(t,e) = yo(t) (a<t<b).
-+ 0+

Proof. We give the proof for the case al(t,e) < 0, and the proof

for the case al(t,e) > 0 follows in a similar fashion. Let #(t,¢)

be the solution to

al(t,e)ﬂ'(t) - az(t,e);zf(t) = a,(t,e) (@a<t<b)
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With the assumptions on ocl.(t,e), it is easy to show that

'

8"k, 0] < M, (agt<b, 0<e<ey).

Furthermore, from a standard theorem on the continuity of solutions
to initial value problems [6, p. 29], it follows that

lim #(t,e) = Yo(t) (agt<b).

e—0

Let Y(t,e) be the solution to

ey (t) + a(t,e) P'(t) - OLZ(T-,E)YIJ('E) =a,(t,e) + ef"(t,e) (a<t<b)

1
P(a) = A(e), y(b) = Ble) .

3

From Theorem 2.2 we have

[ytt.e) - pt.e)f, <Clled(t,e)] <eCM, .

Finally, from Theorem 2.5 it follows that

' 5
|y(t,e) - B(t,e)| < |Ble) - #(b,e)| exp -2 b-v]

(b - 1) ]

m lon

5_1\/13 exp [ -

for 0< €< e The theorem now follows easily from these results.

Ol
Using a similar technique with a different comparison theorem,

we can also treat the case al(t,e) = 0.
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Theorem 3.2, Tet vy(t,e) be the solution of (3.1), and

assume that n,l(t,e) =0 and az(t,e) > 6> 0. Then

5,0
lim vy{t,e) =~ = ) (a<t<b).
e—-+ 0+ Qs
a3(t’€)
Proof. Let wit,e) = - ——— , and define three auxiliary
OLZ(tJG)

functions ﬂi(t,e) as the solutions of:

eﬁ1~a2ﬁl=-ew (a<t<b)

eﬂ%*azﬂzzo (@a<t<b)

g, (a) = Ale) - w(a), ﬂ'z(b) =0,

Thus we have
y(t,e) - w(t,e) = ﬁl(t,e> +ﬁ2(t,e> + ﬂg(t,e> (@agt<h).

With the assumptions on (xi(t,e), we see that |w“(t,e)‘ <M.

From Theorem 2.3 we then have

M
8,t,0] < 5
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If we apply Theorem 2, 6 with ,F_’)O(t) =,/%, we see that

{fzfz(t,e)| < |Ale) - w(a,e)| exp [-(t-a)/gg-] '

14, (t,0)| < [Ble) - wib,e)| exp [-(b-1)/ 2 ] -

The theorem now follows easily from these results.

Remark. Carrier [ 3 , pp. 176-177] gives the following example,

which can be treated by Theorem 3. 2:

ey"(t,e) - (2 - t¥) y(t,e) = -1 (-1 <t<l)

y(-1) = y(l) = 0.
We now consider the linear problem

ey'(t) +alt,e) y'(t) - B(t,e) y(t) = 0 (@< t<hb)
(3.2)

y(a) = A(e), y(b) = B(e) ,

where:

(@) aft,e) e D, PBlt,e) eD

0 and f(t,e) >0,

Ol
(b) lim A(e) = A(0) and lim B(e) = B(0).
e— O+ e— 0+
First, we recall an elementary result for problems of the form of

(3.2)e Define SO to be the set of all possible limits of y(t,e¢)
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as e-+0+. That is, So is the set of all Y(t) e Ll[a,b] such that

there exists a sequence ¢ — 0+ with lim y(t,e ) =Y(t) for

n n— oo n
a < t<b, Using the maximum principle, it is easy to show that
(v(t,e)|0<e< eo} is a uniformly bounded family of functions with
uniformly bounded total variation. Thus it follows from the Helly

selection theorem [17, p, 222] that SO is not empty. The reduced

equation associated with (3.2} is
(3.3) alt) Y'(t) - B(t) Y(t) = 0.

We would expect any limit function Y(t) ¢ SO to satisfy (3.3),
and in fact the following result is an immediate consequence of

Theorem 3.1.

Theorem 2.3, Let y(t,e) be the solution of (3.2) and let

Y(t) e SO' If there is an interval (c,d) < (a,b) such that
a(t) £ 0 (c<t<d) ,

then Y(t) e Cl(c,d), and Y(t) satisfies (3.3) for c<t<d.

As an example of an application of these results, we consider
the following simple turning point problem. It is clear that the result
could also be extended to a function a(t,e) with a finite number of

interior nodal zeroes.
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Theorem 3.4, Let v(t,e) be the solution of (3.2), and assume
that there is a 9(¢) ¢ (a,b) such that
<0 if a<t< 6(g)
(3.4) a(t,e) =0 if ot = 6(e)
> 0 if d(e)<t<b.
Also assume that lim 6(e) = © and &(t) #0 if te[a,b] and
e—=+0
t £6 . Then
~ t= _
A(0) exp f éﬁﬂdx if a<t<9
s a(x)
lim y(t,e) =
e—=+0
t ——
B(0) exp f 2 gxl if d< t< b,
_ b G(X)
Proof. The proof follows easily from Theorem 3.1.

In the analog of Theorem 3.4 for the quasi-linear case, we can

derive a non-trivial lower bound for the solution vy(t,e¢).

We first

state a slightly modified form of the maximum principle.

Lemma 3.1 Let

Y(t) ¢ Cla,d) N C(6,b] such that

IZfz(t) be bounded functions on

a function that satisfies:

§ e (a,b), and let T be the set of all functions

lim  y(t) and

lim y(t) exist. Let ﬁl(t) and
= 5~

t— 04

[a,b] with ﬂz(t)_>_0. Let w(t) be
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(@) wi(t) e Cla,b], w'(t) e T, w"'(t)e T,

(b) w"(t) +ﬁl(t)w'(t) - Q’Z(t)w(t) >0 for a<t<b, t£5,

If there is a point t_ ¢ (a,b) such that w(t

>
0 ) > 0, then

0

O +

w'(S )< 0<w(6).

Proof, If w(t.)> 0, it follows from the maximum principle applied

0

to wi(t) on the intervals (a,8) and (&6,b) that

max wit) = max wi(t) =w(é) > 0,
a<t<gso 5<t<b

and hence W'((5+) <0< w'(c‘)“) .

Theorem 3, 5. Let y(t,e) be a solution of (2.3) with

Yy(t,y,e) =0, Ale)> 0, and B(e) > 0. Assume that there exists a

& = O(e) € (@a,b) and a constant M > 0 such that

<0 if a<t< @&
alt,y(t), e) =0 if t=296
>0 if §<t<b,
and
B, yt), e
- < M .
alt,yit),e) | = (a<t<b, t#9
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Then
y(t,e) > min (A(e), B(e)) exp [- M(b -a)].
Proof. Let W = L(e) be the solution to

Ale) eI\/I(]o +a-2u)

= B(e) .
Then we have two cases to consider:

Case l, W< 6. Define a function f#(t) by

Ale) exp [~ M(t -a)] if a<t< 6

Ale) exp [M(t-256+a)]if 6<t<b.

If we apply Lemma 3.1 to the function wi(t) = #(t) - y(t), we
have
y(t,e) > #(t) > Ale) exp [-M(b-a)] .

Case 2. > &. Asincase 1, we define a comparison

function

B(¢) exp [- M(t-26+b)] if a<t<$

B(t) =
B(e) exp [ M(t - b) ] if 6<t<b.

It is then easy to show that
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y(t,e) > #(t) > B(e) exp [-M(b - a) ],

and this completes the proof of the theorem.

We can also consider a problem similar to  (3.2)  in which
the sign conditions on aft,e) in  (3.4) are reversed. The following
result shows that we cannot have a result such as Theorem 3.5 for this

case, since the limit function is identically zero.

Theorem 3,6 Let y(t,e) be the solution of (3.2) with A(e)> 0

and B(e) > 0, and assume that there exists a 60 ¢ (0,b-a) such
that

ala +t)> 0,

ab-t)<0 ,
and

Bla+t)Bb-1)>0

for 0<t< 60. Then
lim y(t,e} = O (a<t<b).
e—>0
Proof, If Y(t) e SO' it follows from Theorem 3.3 that Y(t) is
continuously differentiable and satisfies (3.3) on the intervals
(a, a + 60) and (b - 60, b). Suppose that we do not have Y(t)= 0

for a< t<b., We then have two cases to consider:




29

Casel. Y(t)=0 forall te(a,a+ 60). Then there exists
a point tO cla + E>O,b) such that Y(to) > 0. From the maximum

principle, we have Y(t) _>__Y(t0) >0 for t. < t<b. Equation

0

(3.3) then implies that there exists a point t, ¢ [to,b) nb-56_,b)

1 0

such that Y'(t,) < 0, and this contradicts the maximum principle.

1

Case 2. Y(to) > 0 for some to e (a, a + 60). Then from

(3.3) we have Y'(t ) > 0, and so Y(t)_>_Y(tO)> 0 for t_<t<b.

0 0

As in case 1, this implies that there exists a point tl € [to,b) n

(b - &.,b) such that Y'(t

0 ) < 0. Because of the maximum prin-

1
ciple this cannot happen, and hence Y(t) =0 for a<t<bh.

The proof of the theorem can then be completed by using a standard

argument on the uniqueness of the limit function Y(t).
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4, Applications to Quasilinear Problems

Consider the quasilinear boundary value problem

ey" + alt,y,e)y' = ¥Y(t,y,€) x (a<t<b)
(4.1)
y(a) = A(e), y(b) = B(e)

where the functions oaf(t,y,e), <vy(t,y,e) are uniformly continuous,

and continuously differentiable with respect to (t,y) in any region of

the form

(4.2) R(k)= {(t,y,e)| ast<h, |y| <k, 0ge<l]),

and the functions A(e), B(e) are uniformly continuous for 0< e < l.
In this section we study these problems with the aid of the esti-

mates of Section 2. Our first result complements the work of

Coddington and Levinson [ 5 ].

Let

Theorem 4,1: Suppose there are three positive constants ¢ M,

OI

OLO such that

(i) For 0< e< e, there is a solution y(t,e) of the problem

0
(4.1).
(il) ]'Y(tIY(tle)l e)l S M ®

(iil) 0O < % < aft,y(t,e), €).




31

Then, there is a function u(t) which satisfies the reduced equation

(4. 4) aft,u(t), 0)u'{t) = y(t,u(t),0) (agtgb)

Moreover, u(t) is the only solution of (4.4) which also satisfies

= Max (3,B) + 2L [(b-a)(b-a+l) +1].

(4. 5) ]u(t)[gko o

Finally, forany &, 0< 6<b - a,

(4. 6) lim Max {]y(t,e) =u'(t)|} = 0
e—=0+ a+dLtb

Proof:  Using Theorems 2.2 and 2,7 we see that there is a constant
1\/I1 > 0 such that
(4. 7a) |y(t,e)] 5k0 (a<t<bhb)
Ml b
. ' <t< .
(4. 7b) ly'(t,e)| < T—— (a<tgb)

Thus, on the interval [a + &§,b] the functions {y(t,e)} are uniformly
bounded and equicontinuous. Hence, we can select a sequence

en'—* 0t so that the functions y(t,en) converge uniformly to a con-
tinuous function ‘u(t). This function is absolutely continuous. Multiply
(4.1) by a function o(t) e cg[o,l], divide by a(t,y(t,e ) e ) and inte-

grate over the interval [0,1]. Then
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L oy, en) at l[cp(t) T
€ r=n - - s _
jo alt,y(, en)en) | om j; alt,y(t, ep)en) | ¥ (FrEp)dE—0

as €. 0. Thus, u(t) is a weak solution of (4.4). A theorem of

Friedrichs [13] (see [9] and the remark therein) can be applied to
show that u(t) is a differentiable solution of (4.4). Since (4.7a)
holds, we see that (4.5) holds, We may modify the coefficients «ft,y,0),
y(t,y,0) for lyl > ko and arrive at another problem which possesses
only one solution. Thus, u(t) is the only solution of (4.4) which
satisfies (4.5).

The proof of (4.7b) follows from an argument in [ 5, p. 76].

Let

(4. 8a) z(t,e) = y(t,e) - uft).

Then

(4. 8b) ez" + alt,y(t,e),e) z' =1

where

(4. 8¢c) ]r|§_k(c5)[]z| + €] @+ 86<t<h).

for some constant k(&) depending on 6. Let

at+d<a+d<<tghb.
Then, integrating (4.8b) we obtain (see [ 6 , eq. 12])

lz'(t)] < |z'{a + )| exp {—-_OL_Q (t-a-206)1}
€ a

t  -Z0(t-s)

a+ d<t< 1} e € ds

a+oé

1
+ C max {|r]

and (4.7b) follows from (4.7a).
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Remark: In [5] Coddington and Levinson assumed that there is
a function uf(t) satisfying (4.4). They then proved the existence
of an € such that (4.1) has a solution y(t,e) for 0< e < €y

Moreover, vy(t,e) is unique in the sense that it is the only solution

of (4.1) in a sufficiently small neighborhood of u(t). Earlier, R.

V. Mises [16] had studied this problem under the assumption that
both y(t,e) and u(t) exist.

We now turn our atteﬁtion to an example which has often been
considered a "model"” quasilinear example for singular perturbations —

see [4]’ [7, pp. 29-38], and [20]. Consider the problem

(4.9) ey"+yy' -y=0 (<t 1)

y(0) = A(e), y(1) = B(e).
Ilemma 4, 1. Let vy(t,e) be a solution of (4.9). Then
(4. 10) min (A(e), B(e) - 1) < y(t,e) - t < max (A(e), B(e) - 1).

Moreover, if
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(4. 11) Ae) > B(e) - 1,
then y(t,e) is the unique solution of (4.9).
Proof: Let
w(t,e) = y(t,e) ~ t.
Then

ew" +uw' =0 (0< t< 1)

W(Ole) = A(e)l W(]'I E) = B(E) -1

Applying the maximum principle, we see that w(t,e¢) is monotone

and (4.10) follows at once. Moreover, if (4.11) holds, then
w'(t,e) = y'(t,e) - 1< 0.

Suppose (4.1]) holds and that there are two solutions, say vy(t,e) and

v(t,e). Let
q(tle) = Y(tl 6) - V(tl€)°
Then

€q"+ yq' +(v' -1 q=0 (0<t<1)

a(0,e) =a(l,e) =0.

Thus, using the maximum principle, we see that

qaft,e) = 0.
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We are now able to discuss the asymptotic behavior of y(t,e)

in the case that A(0) B(0) > 0.

Theorem 4.2, Suppose y(t,e) is a solution of (4.9) and

(4.12) Ale) > 0, B(0)> 0.

If

(4.13a)  B(0) > 1,

then

(4.13Db) lim  v(t,e) =1t + B(0) -1 (0<t<l).
e 0+

If

(4, 14a) 0 < B(O)y <1

then
0 0<t<l=-B(),
(4. 14Db) lim vy(t,e) =
€= 0+ t +B(0) - 1 1-BO)<t<l.
Proof: Let

a = min (0, 1 - B(0)).

Then, using Lemma 4.1 we see that, for every 0> 0 and «¢

sufficiently small,

y(t,e) > 6/2 (a+ 8<t<]
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Applying Theorem 4,1, we have

(4.15) lim y(t,e) =t +B(0) -1 (a<t<]y,
e—0+

which proves the theorem in the case when a = 0, Suppose now that
a > 0. The maximum principle can be used to show that there is an €p > 0

such that

(4.16) y(t,e) > 0 (0<t<l, O0<e<e)

0
Suppose the theorem is false. For each e > 0 and each vy(t,e)

there is at most one point -y(e) such that

y'(t,e)< 0 if 0<t<y(e)
(4.17a)
y'(t,e) >0 if Y(e)<t<g 1,

such a point may not exist, Consider a sequence en—+ 0+ such that

(4.17b) y'(t,e)> 0 O<t<l)e

In this case

and

(4.18) lim y(t,e ) =0 (0<t<a).
en‘-» 0+ n

On the other hand, consider a sequence en-+ 0+ such that (4.173a)

holds. We may assume that there is a value " such that
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lim Y(ey) = Vl .

e =G+
n

If Vl = 0, the theorem follows as in the preceding case.

Let pe (O,"yl) and suppose

lim yipiey) =4 >0,

€n™ 0+

so that for €, small enough
y(t,e‘n)z_A/Z o<t<p) .

Now if we apply Theorem 4.1, we see that vy(t,e) must con-
verge to a function which is monotone decreasing in the interval (0,pl.
However, this contradicts the choice of 3/1 and p , and the contradiction

completes the proof of the theorem.

Corollary. Suppose

If

(4.19a) A(0)< -1,

then

(4.19b) lim  y{t,e) = A(0) +1 (0<t< 1y,
e— 0+

If

(4. 20a) -1 < A(0) < 0,
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then
A(0) + t 0<t<~A(0),
(4. 20b) lim vy(t,e) =
e— 0+
0 -A(0)<t< 1,
Proof: Replace y(t,e) by

z(t,e) =yl - t,e).

Having obtained this basic result, we turn to the
case when the reduced equation has "turning points", That is,

A(0) B(0) < 0.

Lemma 4, 2. Let y(t,e) be a solution of (4.9). Suppose
(4. 21) A(e) < 0 < B(e).

Then there is a unique point C = C(y(t,e)) such that
(4.22) y(C,e) = 0.

Moreover, if

(4.23a) B(e) - A(e) < 1,

then

(4.23b) O0<y'(t,e)< 1 (0<t< D).

If

(4. 24a) B(e) = A(e) > 1,




then
(4.24b)  y'(t,e) > 1, (o<t .
Proof: The existence of a point C = C(y(t,e)) is obvious. That C

is unique follows from the maximum principle., Suppose to e [0,C) and

(4. 25a) 0<y' (‘to,e‘) < 1.

Then, in @ neighborhood of t =t

O ]
" ..]; '
y'" =-~yly' -1 <0,
€
and y' decreases as t increases, Thus
(4.25b) O0<y'(t,e) < 1 (t,<t< O
On the other hand, suppose t, ¢ [0,C) and

1

(4. 26a) y'(tl,e) > 1.

The same computation shows that in the neighborhood of tl y'(t,e) >0,

and y'(t,e) increases as t increases. Thus

(4. 26Db) y'(t,e)> 1 (t, < t < Q).

1

Finally, on the whole interval [0,C], either

(4.27a)  y'(t,e)< 1,
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or
(4. 27b) y'(t,e) > 1.

Moreover, if there is strict inequality at any interior poin‘t, then
there is strict inequality at t = C.

A similar argument on the interval (C, 1] allows us to extend
the result to the interval [0, 1]. That is, either (4.27a) holds or
(4.27b) holds. Moreover, if there is strict inequality at any interior
point, there is strict inequality at t = C.

If (4.23a) holds, then there is some interior point at which
(4. 27a) holds. But then (4.27a) holds on all of [0,1]. Similarly,
if (4.24a) holds, then there is some interior point at which (4. 27b)

holds and hence (4.27b) holds on all of [0,1].
Remark. If B(e) -~ A(e) =1, then

y(t,e) = Afe) + t
is the unique solution of (4.9).

Theorem 4. 3. Suppose there is an €0 > 0 such that (4.21) and

(4.23a) hold. Let vy{t,e) be a solution of {(4.9). Then

A(0) +t 0<t< |AO)] ,

(4.28) lim  y(t,e) = 0 |A(0)| <t < 1-B(0),
c— 0+
7 B(0) -1+t 1-B(O)<t< L,
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Proof: Applying Lemma 4.2, we see that the functions y(t,e¢) are
uniformly bounded and equicontinuous. Moreover, from (4. 23b) we

see that
|A(e)| < Cly(t,e)) < 1= Ble).
We can select a subsequence € 0+ such that

lim  C(y(t,ey) = C.
Fat 0+

Forevery &> 0, we can extract a subsequence so that y(C-Z + cS,en )

and y(é -5, € ) converge. Applying Theorem 4.2 we obtain (4, 2.8)

for this subsequence. However, the uniqueness of the limit function

allows us to assert the convergence of the entire family {y(t,e)].
The case when (4.24a) holds involves a"boundary layer". As

we shall see, this boundary layer may occur in the interior of the

interval,

Lemma 4, 3. Suppose there is an e_. > 0 such that (4.21) and

0

(4. 24a) hold for 0< e < ¢ Suppose there is a sequence en—+ O+

0

and a constant E} such that

(4. 29a) lim . C(ylt,e )) = C
en—+0+ n

with

(4. 29b) 0 < C< 1.
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Then
(4.30a) C = —;—(1 ~ B(0) - A(0) )

and

(4.30b)  lim  vy(t,e,) =
€ 0+
B(0) -1+t C<t<l

Proof: Since (4.24b) holds, we have

)

(4.31) 1 -B(e )< Cly(t,e )) < [Ale,

Again, we argue in the two intervals [0,C-6] and [C + 6,1] to obtain
(4.30Db). Applying theorem 4.1 we see that y'(0, en)
and y‘(l,en) are uniformly bounded. Integrating (4.9) we find that
1 2 2 1 1 - -
E {[BOO)]"-[A0)]7] :f [lim y(t,en)]dtz ‘2‘+ A(0) C+(B(0)-1)(1-C).

0€,~0+

This equation can be solved for C to complete the proof.

Theorem 4. 4. Suppose there is an eO> 0 such that (4.21) and

(4.24a) hold for 0<e< € Let C be given by (4.30a). If

00

C e (0,1) then, as in Iemma 4.3
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A(O) + ¢ 0<t< C
(4.32) lim vy(t,e) =
e 0+
B(O) -1+t (—3<tgl.
If C>1, then
(4.33) lim  y(t,e) = A(0) +t (0<t< 1),
e— 0+
If C < 0, then
(4, 34) lim y(t,e) =B(0) -1+t (0<tgl).
c— 0+
Proof: We can extract a sequence so that lim Cly(t,e ) =C_, a
e — 0+ n 0
n
constant, If CO e (0,1), then we can applyLemma 4.3 to obtain
(4.32),and CO is given by (4.30a).
Suppose CO = 1. Then, since (4.3]) holds, we have
(4.35) A0y > 1.
As before, we apply Theorem 4.1 in the interval [0,1-6]=[0,C, - &]

0

to  conclude that (4.33) holds. Once more y'(O,,en) remains bounded.

Integrating (4. 9) we find

.

im [e_v'(Le )]+ 3 (BOI - AT = A©0) +3

e + 0+
n
Since y'(l,en) > 0 we have

[B(0)]% < [A(0) + 1]° .
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Using (4.35) we obtain
B(0) < [A(O)[ -1

and

(4.36) 1< C.

Finally, suppose CO = 0. I“hen, since (4.31) holds, we have
1 - B(0) < 0.

Arguing in a similar manner we obtain (4.34) and
C<oO0.

Since the three cases considered are mutually exclusive and exhaust all
the possibilities, the theorem follows.

The case when
B(0) < 0 < A(0)

is easily studied by considering y(l - t,¢). In this way we have a
complete analysis of (4.9) based on Theorem 4.1 and the ({frequent)

use of the maximum principle.
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5. Nonlinear Problems

The quasilinear equations considered in section 4 are linear
iny'. In[ 14 | Haber and Levinson (see O'Malley [ 23 ] also)

consider the general nonlinear equation

[er = fttyy e (0<t<l)
6.1) /
| v(0)=a, y(1)=B
where the "reduced" problem
/f(t,Y(t), Y'(t),0) = 0 (0<t<l
(5.2)
L v = a, vy -5
has an "angular solution®
KYL(t) 0<tst,
Y(t) =
YR(t) tO <=t=x 1
with
Yp(tg) = Ypltg), Yy (tg) # Yp(to).
Theorem (Haber and Levinson). Suppose
Hy =Y, (ty) < YR(tO) =M,
1 ' 0<t<t),
l < - t
fy.(t,YR(t),YR(t),O) = -k, <0, ( oSt
and
f(tO,YL(tO),w,O) >0
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Then, for € sufficiently small, there exists a solution y(t,€) of

the boundary value problem (5.1) such that

lim  y(t,e) = Y(t) uniformly on [0,1], and
c— 0+ '

Y () 0st<t

lim yl(tle) = ‘
o4 Y tg<ts

uniformly on [0,t. - ©] and on [tO + 8,1] forany © > 0. Furthermore,

0

for € small enough,

By <y'{ty.e) <K,.
The solution is unique in the sense that there is no other solution of
(5.1) which lies in a sufficiently small neighborhood of Y(t) through-
out [0,1] for small € > 0.

Using our basic estimates we can approach (5.1) from the
theory of second order equations and shed some light on the condi-
tions imposed in this theorem. We make the following observation.
Lemma 5.1 Suppose there is an 60 > 0 such that there exists a

solution y(t,e) of (5.1) forevery ¢ with 0<e< ¢ Suppose [a,b] <

O.
[0,1] is an interval on which
(5.4) ly(t,e)| + ly'(t,e)| s M

and

(5.5) lfy-(t,y(t,e), y'(t,e),€)| = k>0
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for two positive constants M and k. Then, there is a function

Y(t) e Cl(a,b) which satisfies

(5.6) (e, Y(t),Y'(t),0) = 0
and there is a sequence €, 0+ such that

lim y(t,e ) = Y(t) uniformly on [a,b], and
(5.7) n

lim y'(t,e ) = Y'(t) uniformly on [a+6,b-6].

Proof: Let uf(t,e) = y'(t,e). Then
eu” - £, y(t,0),y'(E,€) e )u’ = B(Y) (a<t<b)

where B(t) is a bounded function., Using Theorem 2.7 we find

that u'(t,e) = y"(t,e) is uniformly bounded on every subinterval

[a+6,b-6], and, the lemma follows from the Ascoli-Arzela theorem [8].
While it is difficult to go much farther in general, we are able

to treat a large class of problems which are quadratic in y'. First,

we consider some particular examples. The problem (see [14],[29])

ey" + (v =1 (0<t<l)



with

is easily solved.
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0<B-AK1

The limit function is the angular solution

A-t

Y(t) =

On the other hand, if

B+ (t-1)

l1<B-A,

then

Y(t) = B+ (£t - 1)

Another interesting example is

ey + (v - ly'ly =0

(5.8)

y(0) = A <B = y(l1).

For this problem we have three cases.

Case 1. If B= 0,

(5.8a) Y(t) = B,

i

Case 2 If

B< 0 and

Be < A,

ostsl——“—%—:—i\l
1- (B-4A) _ .
2
(0<t<] .
0st=<1
(0<t<).
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[ Be
| 0 f=As
A stslnA B
(5.8b) Y(t) =
1-t Be
- < t< ],
l~Be In NS <1

Case 3: If B<0O and Be>A,

(5.8c) y(t) = Be!™t 0<t<l).

Consider now the general boundary value problem

( 2
ey + (L Y)Y') + 9y (t, vy + g (ty)]y'| - Bt y)y = f(t,y)

(5.9) (0<t<l)

y(0) =A< y(l)=B, B>O0,

.

The coefficients pl(t,vy), go(t,y), gl(t,y), B(t,y), f(t,y) are assumed
to be continuously differentiable with respectto t and y for 0 <t<1 and

ly| < « . As usual, we assume that

(5.9a) Blt.y) = 0.
Moreover, we assume that there are constants pO > 0 and FO < o such
that

0<py = plt,y) (0= t=1, |y] <)
(5.9b) '
[t 9| < F (0sts1, |y|]<e®),
We also assume that

(5.9c) f(t,y) 2 0 if vy = 0.
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Clcarly, if there is a Yo such that

(%) f(t,y) + B(t,y)y = 0 for y<y,,
then the basic results of section 2 imply the existence of an
a-priori lower bound for any solution y{(t,e). In that case, we
could assume that the coefficients go(t,y), gl(t,y) are bounded
for all negative y. However, instead of the strong assumption (%),

we assume that there is a constant g such that

(5.9d) golt,v) = g,(t,y) = g for y < B.

Having described our basic problem we turn to the question

of a-priori estimates for y(t,e) and y'(t,e€).

Lemma 5.2 Let y(t,e) be a solution of (5.9) and let (5.9a -
5.9d) hold. Then

(5.10) y(t,e) < B for 0<t=l,and y'(l,€) =2 0.
Proof: Apply the maximum principle.
Lemma 5.3 Let y(t,e) be a solution of (5.9) as above. Let

(5.11a) B, = max {B(t,y)] 0=<t<l, 0<y< B}

0

and

frms

- 2
(5.11Db) M, = (2pg) 1{g+[g2+4(1?0+(505) Pyl 1 -
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Then

(5.12a) y'(t,e) = - M

and hence

y(t.€) z (A-Mg).
Proof: Since (5.10) holds, if y'(t,€) assumes a negative minimum
at a point t € [0,1], we have

% (to,e) > 0.

Hence
1/, Z 1)
poly'(ty.€)]” = (Fy+ ByB) + gly'(ty. €) |
and the lemma follows at once.

Lemma 5.4 Let y(t,€) be a solution of (5.9) as above. Let

h = max {—[gO(t,y) + gl(t,y]]o <sts< 1, A—MO < y s B}

and 1
M. = (2 _1h+[h2 4 (F B ]2
1 = @pg) | +4 (Fy+ B Bpgl }.
Let ty € [0,1) and suppose
(5.13a) y'(to,e) < 0.
Then
(5.13Db) y'(t,€) < M1 : (togt_<_1).

Proof: If y'(t,e) assumes a positive maximum at a point tl € [to,l] ,

we have y"(tj,€) 2 0 and
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] 2‘ < 1 .
Poly (tl,E)) <hy (tlle) + (F + ﬁOB),

which proves the lemma,

Lemma 5.5 Let y(t,€) be a solution of (5.9) as above. Suppose

there is an interval [0,b] such that

(5.14) y'(t,e) =z 0O 0<t<h .,
Let
1\/[2 = (B-A) + (}?'O + (308).
Then
M
(5.16) 0= y'(t,e)s———z—-s-l\/[ + Lth (0<t<b).
t 1 po

Proof: Let t, € [0,b] be the point at which y'(t,€) assumes its
maximum, If 1:1 > 0 then y"(tl,e) = 0 and (5.13b) holds. So assume that

'cl = 0, and let ¢ <b be the largest value such that

(5.17) y'(t,€) = (1+h)/p, (0<t< )

Of course, if there is no such «, the lemma is true. Applying
Theorem 2.7 to y(t,€) in the interval (0,a] we obtain

MZ
(5.18a) 0 < y'(t,e) = T (0<t<a)e

If @« = b, then the lemma is proven. If o < b, let t2 € [@,b] be the
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point at which y'(t,c) assumes its maximum over this smaller

interval. If tZ > o, we argue as above and

(5.18b) y‘(t,e)sl\/[1 (< t < b,
On the other hand, if o= tz, then
(5.18c) y'(t.€) < y'(a,€) = (1+h)/p (@< t<b).

In either case, combining (5.18a), (5.18b) and (5.18c) proves

the lemma.
Collecting these results, we have the following basic set
of estimates which are independent of «.

Theorem 5.1 Let y(t,e€) be a solution of (5.9). Let (5.9a-5.9d)

hold. Then

(5.19a) A—-MO < y(t,e) < B.

If y'(t,€) assumes its positive maximum at t = 0, then

M .

(5.19b) ]y'(t,e)|s—-t~2 + Mg+ M, 1ih (0 < t<b).

Po
On the other hand, if y'(t,€) does not assume its positive maximum

at t=0, then

5.19c) ly'(t,e) < My + M.

Theorem 5.2 There is a solution y(t,€) of equation (5.3a) subject to

the conditions (5.9a - 5.9d),
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Proof: Let vy(t,e) be a solution, Let W(s) be the

bounded discontinuous function
W(s) = p(s,y(s,€))y'(s,€) + gyls,v(s,€)+ g,(s,y(s,€) sgn y'(s,€),
and let Q(t) be the continuous function

AT
Q(t) = J’I W(s)ds.
Y0

Using the estimates on y(t,€) we can bound Q(t) from below and

above. Then, y(t,€) is a solution of

Q{t! __i_)Qet
€ e Q(t)
(e © vy =
where
t) = f(t,y(t,e)) + Blt,y(t,e))y(t,€).
Using (2.11) -~ve are able to obtain a bound on y'(0,¢€). This bound

and Theorem 5,1 allow us to bound vy'(t,e), 0 <t < 1l., Then
we can apply the Schauder fixed point thecrem to show the existence
of a solution,

Having proved the existence of solutions for € > 0 and having
obtained some basic estimates (Theorem 5.1) which are independent
of ¢, we are in a position to discuss the asymptotic behavior of

y(t,e}) as e -~ 0+. We collect several basic convergence results.
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Lemma 5,6, l'orevery € > 0 let y(t,e) be a solution of (5.9). Then
there is a sequence €, 0+ and a function Y(t) ¢ C[0,1l] such that

for every & ¢ (0,1)

(5. 20a) lim Max |y(t,e )= Y(0)} .
€L 0+ &<t<l

Moreover, the function Y(t) is absolutely continuous and satisfies a

Lipschitz condition on every interval [6,1]. Finally,

1 1 y 2’
(5. 20b) lim y (t,en) =Y'(t) weakly in L7(8,1).
en—+ 0+

Proof: Apply the Ascoli-Arzela theorem and the weak compactness of

bounded sequences,

Corollary: Suppose (a,b) < (0,1) is an interval on which, for all n > nO,

(5.2la) H(t,y(t,en)) = go(t,y(t,en)) +gl(t,y(t,en))‘ sgn y'(t,en)

is continuous and

(5. 21b) 2p(t, y(t,ep))ey'(t,epn) +Ht, y(t,ep)) < -k < 0
for some constant kl' Then, for every &> 0,
(5.22) lim max ]y'(t.en) -Y'(t)| = o.

e — 0+ ag_t_<_b—<5
n
Similarly, if (a,b) © (0,1) is an interval on which (5.2la) holds

and, for all n > nO,

(5.23) Zp(t,y(t,en))y'(t,en) + H(t,y(t,én)) > kz >0,
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then

(5.24) lim max |y'(t,e ) —=Y'(t)| = O.
en—+0+ a+o6<i<b

Proof, As in the proof of Lemma 5.1, the application of Theorem 2,7 to

the equation fo y'(t,¢) vields (5.22). Because of the uniqueness of the

limit function Y'(t) we can dispense with the subsequence.
Unfortunately, (5.2lb) is a rather stringent condition and this

result is not quite strong enough., Our next two lemmas give us "strong"

convergence of y‘(t,en).

Lemma 5.7 Let €, 0+ and let {y(t,en)} be a convergent sequence

as inLemma 5.6. Let Y(t) be the limit function. Let (a,b) < (0,1)

be an interval in which (5.21a) holds and on which y'(t,en) is

bounded. Then

b b : : '
€= 04 a n

n A B (1, Y(t)

Proof: Divide equation (5.9) by p(t,y(t,en)) and integrate over the
interval (a,b). The uniform convergence of H(t,y(t,en))/p(t,y(t,en))
together with the weak convergence of y'(t, €n) implies the convergence
of the integral on the right hand side of equation (5.25). An easy inte-
gration by parts, together with the boundedness of y'(t,en),disposes

of the term
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b y"(t,e )
c f N SR
nJ, p(t,y(t,en))

Lemma 5.8 Under the hypotheses of Lemma 5.7 we have:

b 5 b 5
(5.26a) lim f ]y'(t,en)l dt = f [y'(t)|” dt,

€ —~0+"a a

n

I ' - Y'(t) in 1%
(5.26b) en'30+ y (t,‘en) =Y'(t) in L%(a,b)
(5.260) o (£, Y)Y ()% = £(t, Y(E) + B(t, Y(E)Y(E) = H(t, Y(E)Y' ().
Proof: Let
2
z(t,e ) = (v'(t,e ) (a<t<b)

On the interval (a,b) these functions are uniformly bounded. Hence
there is a subsequence €y SO that the function Zi(t,en,) converge
weakly (in Lz(a /b)) to a function Z(t). The Cesaro means of this
subsequence converge strongly ([26, p. 80]),and a subsequence of
the Cesaro means converges almost everywhere to Z(t). Since the
same statements apply to y'(t,en), and this sequence of functions
converges weakly to Y'(t), we see that

z(t) = (¢'()°.
Once more we divide (5.9) by p(t,y(t,en)). Evaluate the Cesaro means
and integrate over the interval (a,b). Since the right hand side con-
verges we see that (5.26a) holds. However, (5.26a) and the weak

convergence implies (5.26b) and (5.26¢).
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At this point we would like to find general conditions which
enable us to find intervals (a,b) on which H(t,y(t,en)) is continuous

and for which we are able to determine the appropriate root of (5. 26c), Of

course, we should also like to find conditions which allow us to
apply the corollary to Llemma 5.6. In any particular example one can
probably carry through a large part of this analysis. However, it is
not apparent how to do this in great generality, although there
are some useful results. Let

E(t,y) = [ft,y) + B(t,v)v],
(5.27) 8(t,v) = [g,(t,v) + g, (t, ],

D(t, Y) = [go(tr Y) - gl(tIY)]'

~

Let u(t) be the unique solution of 1

u' = 2pet,w)] ) (=S(t,u) + [5G, u) + 4p(t, wWE(,w)]° )
(5.28) {

which exists in some interval (a,1]. We shall assume that there are

values a, e (a,1) and yogo such that

(5.28a) E(t,y) 2 0 (a0<tsl, VgLV <B)
and
(5. 28b) If E(t,y) =0, then S(t,y)> 0 (a0_<_t_<_1, y0_<_y_<_B).

Similarly, let v(t) be the unique solution of

—

- ~1 .2
529 vi=2[pt,v)] " (-D(t,v) - [D(t,v) + 4p(t, vE(t, v)]%)

v(0) = A
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which exists in some interval [0,b). Sometimes we will assume that

there are values bO € (0,b), and Yo < A such that

(5.29a) E(t,y)

[\
(=]

(Ostsbo, Vo< Yy <A

and

1}

(5.29b) If E(t,y) = 0then D(t,y) <0, (0<t<b,, vy

Lemma 5.9 Let u(t) be the solution of (5.28). Assume that (5.28a)
and (5.28b) hold. Let y(t,e) be a solution of (5.9) subject to the

conditions (5.9%a-5.9d). Then, there is an interval [a1 ,1] such that

(5.30)  lim y(t,e) = u(t) (@, <t<l).
€— 0+

Proof: For each e > 0 and corresponding y(t,€),there are values

a(c) and y(e) such that

[ vl(a(e),€) = max (0,A)
y(t,€) > max{0,d) f(x(e) < t<1)
(5.31a)
y(Y(e), €) =20
y'(t,e) =20 (v(e)<t= 1),
Of course,
(5.31h) 3”(€) < a(e),

Using the estimates of Theorem 5.1, it is easy to obtain an upper

bound for «(g),

(5.31c¢) a(e) - @, <1.

Let {y(t,gn)] be a convergent sequence as in Lemma 5,6, and
let Y(t) be the limit function. We can also assume that there is a

value Vl such that



lim Y(e ) = ’Ylf_ Q
S 0+

Applying Lemma 5.8 we have, for every &> 0,
Y'(t)> 0 and Y(t) >0 ('yl+55t_<_1).
On the interval [vl + 6, 1] we have

p(t,¥)(Y)% = E(t,Y(1) + S(t,Y(t))Y' (t)

and, using (5.28a) and (5.28b),we see that

(5.32) Y({t) = ul(b), (min (v y<t< ).

1'%

Because the limit function is unique over the interval min(« ,ao) <t=s1,

0
we can dispense with the choice of a sequence En — 0+ and assert
that, on this subinterval, the entire family v(t,€) is convergent to
u (t).
Corollary 1  If there isa 63> 0 such that
S{t,y) =z © (a_<t<l, 0<Ly<B,

then for every A > 0 we have

im  max (|y'(t,e) - Y'(1)] .min(wo,ao) +A=ts1}=0.

¢ — 0+
Proof: Apply Lemma 5.6,
Corollary 2 Suppose a, = 0 and
(5.33) u{0) > max(A,0).

Then

(5.34) lim y(t,e) = u(t), (0< t=1),
g 0+

Proof: Let en~+ 0+, y(t,en) and Y(t) be as above. Suppose

corollary 2 is false, and let (1 be the smallest value such that




Y(t) = u(t) (O <t<l),
Considering the definition of «a(¢) and Y(e), we have

(5.35) = & and YQ) > 0.

™
Thus for € sufficiently small, y(t,en) has a positive minimum at

y(gn). But then
Y'(t,en)so (0<t<yle )),

and hence

Y(t) <A (0<t< Q).

If there is a point tO e (0,0) at which Y(to) < A, then, for € small

< A, Si ", f <t< ny
enough, vy(t ,en) A ince vy'(t en)g_() or to_t___'y(en) we

0

cannot have (5.35).

Theorem 5. 3, Let y(t,e) be a solution of (5.9) subject to (5.9a-5,9d),

lLet A> 0, and let u(t) and v(t) be the solutions of (5.28) and (5, 29)
respectively. Assume that (5.28a), (5.28b), (5.29a), (5.29b) hold with

) be any point at which

= b > . .
y OameaO Let ¢

€ (aO'bO

0 0

(5.36) ulc ) = v(c ) > 0,

Then

v(t) 0<t<e,
lim  y(t,e) =
¢ 0+

u(t) cggts_l.

Proof: ~ Applying Lemma 5.9 we find a maximal interval [Q},1] in which
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Iim  y(t,e) = u(t) @<t
e— 0+

As usual, let €, y(t,en) and Y(t) beasin Lemma 5.6. Let

af(en), Y (en), Y. be asin Lemma 5.9. The complete theorem now

1
follows from an argument similar to the proof of Corollary 2 of

Lemma 5.9,
Looking over these latest results we see several classes of
problems which are easily treated.

Remark 1: Suppose the coefficients go(t,y) g, (t,y) are bounded

1
for all y. Suppose

B(t,y) =0
and

f(t,y) =0 _ > 0.

0
Then we may easily discuss the complete problem. We need merely
consider the function

Z(t,e) = y(t,e)+ C
where C is a sufficiently large constant so that

Z(t,e) =z 0.

Remark 2: Suppose f(t,y) =0 and
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plt.y) = OO> 0

Then y(t,e) >0 if A> 0, On the other hand, if A0
and

S(t,y)y =0,
then

yv'(t,e) = 0

and the limit function Y(t) must be nonnegative. With these
insights one can easily discuss the entire problem.
We now turn our attention to equation (5.8). We observe

that
(5.38) v'(t,e) = 0.
If B> 0, then (5.8a) follows from Corollary 2 of Lemma 5.9. If
B < 0,we consider the positive function

Z(t,e) = y(t,e) - 2A
which satisfies
(5.39) eZ" = =Z'[Z' + (Z + 2A)].
Let e¢ — Otand y(t,e ) and Y(t) be as in Lemma 5.6. If
u=y', then

eu” + (2u' + y)u' = --u2 <0,

Thus, y'(t,€) cannot possess an interior minimum.
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We consider two cases.
Case 1: y'(t,en) assumes its maximum att = 0. In this case
y"(t,en) < 0 in the entire interval 0 < t < 1. Hence
(5.40) y (t,en) + y(t,en) = 0
and

[v'(te )= - y(t,e ) = -B

(5.41) ¢

A\

t > —
\\‘Zy (toe ) +vit,e )2 =B,
Thus, applying the Corollary to Lemma 5. 6 we obtain, for every
v> 0,

(5.42) lim  max [|y(t,e ) =Y({®)| + |y'(t,e ) =Y'(®)|]) =0,
) n n
£q 0+ &<t

and

Since A< Y(t), we see that this case can occur only if A < Be.

Case 2: y'(t,(;n) assumes its maximum at some point a(en) e (0,1].
Applying Theorem 5.1, we see that y(t,en) converges uniformly to
Y(t). In particular

(5.44) lim  Y(t) = Y(0) = A,
t— 0+
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Since Y(t) is continuous near t = 1 and

(5.45) [Y'(t)]2 = Y'Y a,e.on [0,1],

we see that

vty = Bel T,

Combining this fact with (5.44) we see that
(5.46) Be < A.

Without loss of generality, we may assume that there is an oel
such that
5.47 lim ale ) =a, .
( ) e — 0+ n l
n
Arguing as before we see that

(5.48)  Y(t) = Bel " (@, £t <),

and moreover, y(‘t,en) and y'(t,en) both converge uniformly on

the interval [« ,1]. Furthermore, on the interval [O,a(en)) the func~-

1

tion y'(t,€n) is increasing. Thus, if t0< @, and

5.48 lim y'(t ,e ) =0,

( ) e =0+ 0" n
n

we have
lim y'(t,e y=0 (0<t<t ).
En_+0+ n 0

In addition, there will be an nO > 0 and a constant k such that

2y'(t,e ) +ylt,ep= -~k n>n_, 0<t<t

OI O)'
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Thus, if (5.48) holds for any subsequence €. then

Y(t) = A O<t<ty.
Since (5.45) holds, we see that there is a unique constant tO such that
( A 0<t<t,
{(5.50) Y() =
Be!™t tpst<le

Clearly, to is determined by the requirement that Y(t) ¢ C[0,1]. In
addition, y’(t,en) converges uniformly to Y'(t) on every interval

[0, t, - &] and every interval [t  + 6, 1].

0 0

This completes the discussion of equation (5.8). The interested
reader will see many more ways in which the estimates of this section

can be used in particular examples.
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6, Differential Inequalities

There is an extensive literature on the use of differential in-
equalities and comparison theorems for estimating solutions of
differential equations, and the maximum principle can be regarded as
a special case of these generalresults, It warrants special treatment
because it is especially simple and powerful. In this section, we
treat a variety of examples that are based on more general compari-
son theorems than the maximum principle.

The basic requirements for our exposition are: (1) a funda-
mental family of comparison problems, whose solutions are easily
analyzed, (2) a class of differential equations which some member
of the comparison family satisfies as an inequality, and (3) a
theorem relating the solutions of the differential equation and in-
equality. Bailey, Shampine, and Waltman ['1 ] treat the class of
nonlinear differential equations

[ ey"(t) + £(t,y(t),y'(t),€) = 0 (a <t<b)
(6.1)
\ y(@) = A, y(b) =B,
where (t,y,y',€) is a continuous function satisfying the one-sided

Lipschitz conditions
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f — ] — I‘ d -
K&y, -v,) = ft,y, . ve) - Hty, v'.€) s Ky (e)ly, = v5)
if Yy Z Yy
(6.2)
Ll(e)(yl my,) = Hty,y €)= iy, y).e) < Ly(e)y] - v3)
if y' = yl.
\ | b2
In order to decide when (6.1) has a unique solution, we define

a function «(L,K) by

e
y - 2
221/2 coslmli*if 4K -L > 0

(4K - L) 2.k
' - 2

p 2 Coshl“‘L"—ﬁ 4K -L < 0, L>0,K>0
LZ-4K1/2 K
a (L, k) ={ { )
”?: if 4K-—L2=O,L>0
+ otherwise ,

K

and we let B (L,K) = a(-L,K). Then if there exists an € > 0 such
that

L(e)  K,(e) L () K

1 2 (€)
(6.3) O<b—a<a(€ - )+ BY( . ,“—e“—)

for 0 < e < ¢ (6.1) has a unique solution for 0 < € < €

0’ 0
[ 1 , p. 96]. We remark that the following are convenient
sufficient conditions which guarantee that (6.3) issatisfied

for € small enough:
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(1) K,(e) <0 if 0<e < e,
(i) lim Kz(e) = KZ = 0 and

e 0+

lim Lz(e) = L2 <0,

€— 04
(i) lim K, (e) = 122 > 0 and

e— O

lim L (e)=1, >0
1 1
e O+

In order to generate the family of comparison problems, we

observe that the inequalities in (6.2) can be written as

— L 1 — ] - ’ LI, |

where
’ K (€)y + L (e)y" ify=0,y >0
K. (e)y + L, (e)y' ify> 0,y <=0
' 1 2
G ly.y'. €)=
Kz(e)y + Ll(e)y' ify< 0,y =20
\‘KZ(G)Y + L2(€)y ifys 0,v' =0
and
fKZ(€)y+ Lz(e)y’ if vy=20,vyv'>20
Kz(e)y + L1(€)y' if y=2 0,y'<0
G,(y.v' €)=
Kl(e)y+ LZ(e)y' if vy 0,vyv'=20
LKl(e)y+ Ll(e)y' if vy<0, y' < 0 .
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Fori =1 and 2 the differential equations

[Qu." (t) + G, (u,(t),ul(t),e) + f(t,0,0,€) =0 (a<t<b)
i it i
6.4)
L u(@) = A, u(b) = B
are included in the family defined by (6.1). Thus if (6.3)
is satisfied, unique solutions uy (t,e) exist to (6.4). Further-

more, a basic comparison result[ 1 , p. 96] states that in this
case we have

(6.5) ul(t,e) < y(t,e) s uz(t,e) (@ <t < b).

The comparison equations (6.4) are relatively simple, for
they are linear equations with constant coefficients in regions
where ui(t) and ui(t) have one sign. Indeed, if f(t,0,0,¢) = 0,

the exact solutions to (6.4) can be explicitly computed [ 2 ].

We now consider some examples for which lim ul(t,e) = lim uz('t,e).

e—~ 0+ e— 0+

We see from (6.5) that we then also have lim y(t,e)= lim ul(t,e).

e— 0+ €— 0+

Theorem 6.1. Suppose that for 0 < € < € _ the problem

0
ey"(t) + glt,y(t),y'(t),e)y'(t) = 0 (@ <t<b)
y(@) = A, y(b) = B
has at least one solution y(t, ) such that Gl s gt,y(t), yv'(t),¢e) = G
with GlGZ > 0. Then, fora <t <b,
A if Gl <0

(6.6) lim y(t,e) =
e— 0+ B if Gl > 0.
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Proof: Let w(t,€) be the solution to
ew"(t) + Gw'(t) + Hw(t) = 0 (a <t<b)
w(a) = A, w(b) = B,

with H < 0. Then, fora <t<b,

'/'Aexp[—g(t—a)] ifG<O0,H< 0

i

lim wi(t,e) = B exp [—E“(t—b)] ifG>0,H<0
e— 0+ } G
\ 0 ifG=0,H<O.

If H< 0, it follows from the maximum principle that w'(t,e) has
one sign. Thus the bounding functions ui(t,e) in (6.5) have a
common limit, which proves the theorem.

The statement in (6.6) is typical of those which follow
in this section. However, it should be remembered that we actually
prove a much stronger result. That is, we exhibit computable
(t,e), and for

functions ui(t,e) such that u_ (t,e) = y(t,e) < u

1 2

these cases the hi(t,e) collapse to a common limit function as
€ — 0+. For many combinations of boundary conditions and Lipschitz
constants the bounding functions ui(t,e) do not have a common
limit, and the theorems we state are a sample of the successful
cases.

The method of proof of Theorem 6.1 also yields the following

two results.
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Theorem 6.2. Suppose that 0 = A =< B, and for 0 < ¢ Seo the
problem

[ey"(t) Fh(t,y(t),y'(1), €)y(t) = 0 (@a<t<b)

\ y(@) = A, y(b) = B

~
has at least one solution y(t,€) such that h(t,y(t),y'(t),¢€) < Hl < 0.
Then

lim y(t,e) =0 (a<t<b).
€— 0+

Theorem 6.3. Suppose that for 0 < ¢ < € the problem

ey"(t) + g(t,y(t),y' (), e)y'(t) + h(t,y(t),y' (1), e)y(t) = 0 (a <t<Db)

y(@) =A, y(b) = B
has at least one solution y(t,€) such that h(t,y(t),y'(t),e) < 0.
Also assume either that A = 0 and g(t,y(t),y'(t),e) = Gl <0 or
that B = 0 and g(t,y(t),y'(t).€) = GZ > 0. Then

lim y(t,e) =0 (a <t <h).
€— 0+

The last theorem can easily be extended to apply to singular
perturbation problems with two small parameters (cf. [ 19 , sec. 4]
and the references given there).

Theorem 6.4. Suppose that for 0 < e <

€9 and0<p,suothe

problem
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ey" + Hg(t,y,y', e, W)y"' + h(t,y,y',e,)y =0 (a<t<b)
~y(@)=0,y()=B= 0.
has at least one solution y(t,e,l) such that

Gy = glt,y(t),y'(t), €, 1) < G, and Hl < h(t,y(t),y'(t), e, 1) < H, <0.
2

1f we assume that either -G-Z— — 0+ or -%—-—- 0+, then
[0
lim y(t,e, ) =0 (a <t<b).
€—~ O+
- O

Proof. Using the usual comparison functions, we consider the
problem
/'ew"(t) + LGw'(t) + Hw(t) = 0 (@ <t<b)
\_ w(@) = 0, w(b)= B,
where H < 0. With the assumptions made in the theorem, it is
easy to show that
lim  wit,e,l) =0 (@a<t<b),
€— 0+
H— O+
and the theorem follows easily from this result.
It should be noted that Theorem 6.4 can be applied to
turning point problems, since we have made no restrictions on

the sign of g{t,y,y',e,L). Asymptotic expansions for the case

when g =g(t) and h = h(t) with |g(t)] = G, > 0 are given by
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O'Malley in[ 18 , Sec. 4]and [ 19 , Sec. 4.B].

We now turn to a different type of application of these com-
parison results. Consider the quasilinear problem in (2.3)
with y(t,y.€) = 0. In the preceding sections we have required
B(t,y,€) = 0 so that the maximum principle can be used. With the
use of these general differential inequalities, we can relax this
restriction. As an example of the application of this technique, we
will prove an analog of Theorem 2.4 without the sign restriction on
B(t,y,€). We first state a preliminary result.

Lemma 6.1. Fori= 1,2 consider the comparison problems

éui"(t) + Gyl (1), u'(t),€) = 0 (@ <t < b)

ui(a) = A(e), "ui(b) = 0,

Assume that Li > 0 and Kl =k + ”l-é with k12 < 0. Then there

11

is an €0 > 0 such that

L
lu ()] = [ae) [exp [- 3¢ (¢ - a)] (a<tsh)
for 0 < e <€ and i=1,2,
1 1 2 . .
Proof. Let A(L,K) = "€*K Y L. With our assumptions, there
4e

exists an eO> 0 such that A(Li,KJ.)< 0 for 0< € < eo,i= 1,2,

1

2
and j =1,2. Ifwe let k(L,K)= (|A(L,K)|)", itis easy to show that
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sinh[k(L, . ,K)(t-b)] N [_1_:3_.i
sinh[k(L, .,K)(@-b)] P L7 %

u (t,€) = A(e) (t-a)],

and the lemma follows ea sily from this result.

Theorem 6.5. Suppose that for 0 < e < S the problem

cy" +alt,y, vy, e)y' - B(t,y,y',€)y=0 (@ <t<b)
y(@) = A(e), y(b) =0
has at least one solution y(t,€) such that

0 < ap = at,y(t),y'(t),€) = @ and |B(t,y(t),y'(t),€)] < B,- Then

o
vt ] = 1a@ ] exp[- 3o (t-a)] (@< tsb).

Proof. Define a comparison function f(t) by
(¢4
0
Ay = ylt,e) exp [3= (- ~a) ],

Then @(t) satisfies the equation

2010 a/o afo
[eﬂ'“& (@-=5) + (553 -0 -Bf=0 (a=stsh).
| # @ = ate), g0 = o,
and the proof now follows easily from Lemma 6.1.
If we expand our class of comparison problems, we can treat
certain kinds of turning point problems. For some similar recent

work in this area we refer to O'Malley [ 22 ] and Dorr [ 10 ],

Consider the problem
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cu"(t) + th(t)u'(t) =0 (a<t<hb)
u(@a) = A, u(b) = B,
where k is a nonnegative integer, a < 0 < b, and
Gl if ast=0

GZ if 0<tsb

G(t) =

with Gle > 0. If k = 0 we require Gl = GZ’ so that the function
th(t) is continuous for all values of k. We can find the asymptotic
behavior of u(t,€) by examining the following cases:

(i) G(t) <0, k even.

lim  u(t,e) = A (a <= t < b
€~ 04

(ii) G(t) < 0, k odd.

G k+1
( A if al‘< <)
2
G k+1
b -a 1 b
lim wuf(t,e) = [T A+ (—)Blif = = (T
e O+ < b-a b-a G2 a
G. . k#l
B if ‘é-l*> ('g‘)
\_ 2
(iiil) G@) > 0, k even.
lim wu(t,e) =B (a<t=sbh)

e— O+
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(iv) G(t) > 0, k odd.
A if ast<0

lim uf(t,e) =
e— 0+ B if 0<t=<b.

With the use of the appropriate comparison problems and
a differential inequality result such as Theorem 1.10 in
[ 25, p. 18], we then have the following result (cf. [ 10 ]).

Theorem 6.6. Assume that k is a nonnegative integer,

a<0<b, and tk g(t,y,v',€) is a continuous function. Suppose

that for 0 < € = € the problem

ey"(t) + £ gt,y(1), v (1), )y" (1) =0 (@ <t<b)
y(@) =4, y(b) = B
has at least one solution y(t,€) such that G1 =g(t,y(t),y'(t),e) sGZ
with GIGZ > 0. Then we have:
(i) If Gz1 <0 and k is even,

lim y(t,e) = A (a =t <hb).
g— 0+

(ii) 1If Gl > 0 and k is even,

lim vy(t,e) = B (a <t<= b).
€— 0+

(iii) 1f Gl > 0 and k is odd,
A if a=t<o0

lim  y(t,e) =
g0+ B if 0<t=< b.
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It should be noted that this theorem does not treat the case
("}1 <0 and k odd. Indeed, the following result shows that the

asymptotic behavior can be somewhat arbitrary for this case.

Theorem 6.7. Let «€[0,1] be given. Then there exists a piece-

wise continuous function g(t), which is linear on [a,0) and [0,b]
and satisfies g(t) < Gl <0 for a < t< b, such that, if y(t,e) is
the solution to

/’ey"(t) + tg(t)y' (1) = 0 (a <t<b)

v =4, yo) = B,
then

lim y(t,€) = aA + (1-2)B (a < t < b).
e— O+

Proof. See [ 10 ].

This type of analysis can also be used to treat problems in
which the coefficient of y' has a zero at an end point of the
interval.

Theorem 6.8. Assume that k is a nonnegative integer, b > 0,

k
and t g(t,y,y',€) is a continuous function. Suppose that for

0< e = ¢, the problem

0
ey (t) + ta(t, y(t),y' (1), €)y'(t) = O (0 <t < b)

Y(O) = A/ Y(b) = B
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has at least one solution y(t,€) such that Gl < g(t,y(t),y'(t),e) = GZ
with GIGZ > 0. Then, for 0<t<b,
A if Gl <0
lim y(t,e) =
e— 0+ B if G1 > 0.

The final theorems of this section are of a rather different
nature than the preceding results. They are motivated by physical
problems arising in the field of chemical engineering. Several
authors have considered these problems, and we mention in particular
the paper of O'Malley [ 24 ] and the further references given there.

Theorem 6.9, Consider the boundary value problem

ey"(t) - b(t)y'(t) - g(t,y(t)) = 0 (0<t<1)
v(0) = A, y(1) = B.
Assume that b(0) > 0, b'(t) = 0, A < B, g(t,y) is continuous,
and gy(t,y) z 0. Define Z(t) as the solution of the reduced equation
b(t)Z'(t) + g(t,2(t)) = 0 (0<t<1)
(6.7)
Z(0) = A,
and w(t) = w(t,€) as the solution of the boundary value problem
ew"(t) ~b(Hw'(t) - g(t,Z(1) = 0 (0<t< 1)
w(0) = A, w(l) = B.

Assume that g(t,Z(t))= 0 and gt(t,Z(t)) < 0 for0< t=< 1. Then

the functions y(t,€), Z(t), and w(t,€) exist for all € > 0 and satisfy



Z(t) < y(t,e) < w(t,e) (0 < t=< 1).
Furthermore,

lim wi(t,e) = lim y(t,e) = Z(t) (0= t<1).
€— 0+ e— 0+

Proof. The existence of the functions follows from previously stated
sufficient conditions. We first show that z(t) < y(t). Since
Z'(t) < 0 and Z(0) = A < B, we see that Z(1) = B. Since Z"(t) = 0,
we can use the differential inequality Theorem 1.22 in [ 25 , p. 48]
to see that z(t) < y(t). The same argument shows that z(t) <wi(t).
Finally, since
ew" - bw' - g(t,w) = g(t,Z) - g(t,w) < 0

it follows that y(t) < w(t). The convergence of w(t,e) to Z(t)
follows from Theorem 3.1, and this completes the proof of the
theorem.

For the physical problems, the boundary conditions are not
given by y(0) = A and y(l) = B. However, the proof of Theorem 6.9
can be modified to yield the following result.

Theorem 6.10. Consider the boundary value problem

ey"(t) - bt)y'(t) - gt,y(t)) =0 (0<t< 1)
y(0) - ey'(0) = A, y'(1) = 0.
Assume that b(0) > 0, b'(t) = 0, g(t,y) is continuous, g(0,4) =0,

and gy(‘t,y) > 0, If we consider the equation
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€9(0,r) _
(6.8) r+ b(0) = A,

then there is a unique solutionr = ro(e) to eq. (6.8) and

lim ro((—?) = A. Define Z(t,€) as the solution of the semi-reduced
e 0+

equation
b(t) Z2'(t,e) + g(t,Z(t,€)) =0 (0<t<1)
Z2(0,¢) = ro(e),
and w(t) = w(t,e€) as the solution of the boundary value problem
ew"(t) - b(t) w'(t) -~ g(t,Z(t,€)) =0 (0<t<)
w(0) ~ ew'(0) = A,w'(1) = 0.
Assume that g(t,Z(t,€)) = 0 and gt(t,Z(t,e)) <0 for 0 <= t=1. Then
the functions y(t,€), Z(t,€) and w(t,€) exist for all € > 0 and satisfy
z(t,e) < y(t,e) L w(t,e) (0=st=s1).
Furthermore,

lim wi(t,e) = lim y(t,e) = lim Z(t,e) = Z(t) (0<t=<1),
e— 0+ e—0+ e—~ 0+

where Z(t) is the solution to the reduced equation (6.7).
Proof. The method of proof is the same as for Theorem 6.9, except for
the convergence of w(t,¢) to Z(t). But it follows from Theorem 2.8

that ly'(t)i < M, , and the convergence proof can then be carried

1

through in the same way as the proof of Theorem 3.1.
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We now give two examples to illustrate the application of the
preceding thedrems. First, consider the problem

ey"(t) - y'(t) - ¥ =0 (0<t< 1)

y(0) =1, y(1))= B=21,
A simple calculation shows that Z(t) and wi(t,¢) of Theorem 6.9 are given by
1.2

wit,€) =@ =) + e = Dt + 5t + yexp (5)

ml‘—f-

= Z(t) -7 +-1-et+Vexp (-GE),

2
where
v= -t -1 Ly _ gyl
r = (B-7g -5 (exp () -1 .
Then Theorem 6.9 states that
z2(t) < y(t,e) < w(t,e) 0= t= 1),

and lim w(t,e)y=2(t) for 0 t< 1,
¢— 0+

As a second example, we consider the problem
ey"(t) - vty ~alyw] =0  (0<t< 1)
y(0) = ey’ (0) = 1, y'(l) = O,
This boundary value prcblém describes the concentration of a reactant
undergoing axtal diffusion in an isothermal tubular flow reactor. The

positive cons‘tantv n is for an nth order reaction, and n need not be

an integer. The positive constant a is related to the ratio of reaction
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ond [low velocities, and € > 0 is the ratio of diffusion and flow

velocities. Fan and Bailie [ 12 ] present some computations for this

problem with a = 0.1 and n = -i—, Zlf' 2, 3. Letus apply Theorem 6.10

to the case n = If we let Z(0,¢) = 62, then © satisfies the

N =

§.

. 2
equation b + 0.1 € O =1, and hence
1
. 2
b = (14 O.OOZSeZ) - 0.05¢ .

Then it is easy to calculate

Z(t,€) = (b - 0.050)°,

2 —
w(t,€) = a+ Bt + 0.0025t" + Y exp [wtél“]
-1
= Z(t) + 0.005¢ (e + t) + Y exp [—-——-E 1,
where
2
a =1-0.1¢ + 0.005¢,

o)
i

0.005¢ ~ 0.10,
. . 2
Yy = (0.10 - 0.005)e - 0.005¢".
The theorem then states that
Z(t,e)< ylt,e) < wlt,e) (0 =t=<1)

14

and lim wi(t,e) = lim Z(t,¢) for 0 < t< 1. These bounds provide
e— 0+ e— 0+

excellent approximations to y(t,e) even for rather large ¢. For example, if

€ = 0.1 the maximum difference between the two bounding functions

-3
is 9.95 x 10 ~, and the maximum is attained att= 1. Fort< 1 the
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difference is relatively constant and approximately 3 x 10_4. Since
wi(t,e) and Z(t,¢) ljZe between 1 and 0.893, the relative error is
nearly as satisfactory as the absolute error. Thus it appears that
these bounds are a useful computational tool. Unlike the usual
asymptotic methods, their validity and degree of approximation can

be readily assessed.
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Nonlinear Systems

In this section we turn to some special examples of pairs of

second order equations of the type studied in [9].

Our first example completes the discussion of an interesting

example treated in [ 9 ]. Consider the problem

(‘
u" = v (0<t<l)
ev" +u'v' =0 (0<t<]
(7.1)
u(0) =ufl) = 0

\_v(0) = A, v(l) = B.

The results of [9] resolve the cases when A and B are of the same

sign. Tor the moment, we assume that

(7.2) A< O0<B,

We now collect some basic facts,

Lemma 7,1

For each ¢ > 0 there is a solution pair {u(t,c), v(t,e)]}
of (7.1), and

(7.3) v'(t,e) > 0.

Accordingly, there is exactly one point

a=ale) e (0,1) such that
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v{ia,e) = 0,

(7.4) u"(t,e) = v(t,e) < 0 (0<t< )
u'{t,e) = v(t,e) > 0 (a<t<).
Finally,
(7.5) u'(a,e) = min u'(t,e) < 0.
0<txl
Proof: The existence follows from a fixed point argument as in

[9, Theorem 1]. Inequalities (7.3) and (7.4) follow from the maximum

principle., Finally, (7.5) follows from (7.4) and the fact that
u(a,e) = v'(a,e) > 0,

which implies that u'(t) decreases near t = 0 and increases near

t=1.

Lemma 7.2. There is a sequence €, 0+ and a pair of functions

Ul(t) e Cl[O,l], V(t) € Ll[O,l] such that

(7.6a) lim  Max {Ju(t,e ) = UM)] + |u'(t,e ) = U'(D[} =0
e — 0+
n

and, at each point t e [0,1],

(7.6b)  lim  |v(t,e ) = V(t)| = 0.
n
€h” 0+
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The function V(t) is monotone nondecreasing and

(7.7a) U'(t) = V(i) a.e. (0<t<l)

U() = U@y = 0.

Moreover, in any interval (a,b)< [0,1] for which [U'(t)] > 0

we have

(7.7b) V(t) = constant (a<t<b)

Proof: See [ 9, Theorem 2].

Lemma 7.3 Suppose the sequence {en} and the limit functions U(t),

V(t) are  such  that (7.6a), (7.6b), (7.7a), (7.7b) hold. If

(7.8) U(t) Z0 O<t<l,
then
(7.9a) V(t) < 0 (0<t<1)

and hence

U) > 0 (0<t<l,
(7.9Db) u'(0) > o,
U@ < o.

Proof: Once (7.9a) has been established, (7.9b) follows easily

from (7.7a),the maximum principle, and the formulae
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(7.10)
1
Uyl = f sV(s) ds.
0
Without loss of generality we can assume that
(7.11) lim  ae) = a e [0,1].
en - 0+

There are three possibilities,

Case I: a = 0 and V() >0 for 0<t<l,

Using (7.6a) and (7.5) we see that U'(0) < 0. If U'(0) =0,

then
t
U't) = [V(s) ds > 0
=0
and
1
u() :f(l-s) V(s)ds > 0.
0

On the other hand, suppose TU'(0) < 0,

Then we canapply the argument of Lemma 3.2 asin [ 9 , Theorem 3]

to see that
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v(t) = A (0<t< 9
for some 6> 0. Since this is impossible, we see that
(7.12) a £ 0.
Case 2: 0< a<l. Then we have
U'la) < 0
(7.13) V(t) > 0 t> a),
V(t) < 0 (t < a.
Thus, using Lemma 7.2 we see that there is a A >0 ' such that
V(t) = 0 (@<t<a+A).
We choose A as large as possible, Either @ + A =1 and

the lemma follows, or
Ul(a ’I" A) = O .
However,
a+A
U'la +4A) = U'(a) + [ V(t)dt = U'(@) < 0.

"o
Hence, in this case, the conclusion of the lemma is established.

Case 3: a = 1. Then
V() < 0 (t< 1y,

and the lemma is proven.
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Let

1
(7.14) G(s,e) = exp (-7 uls,e)] .
Our next lemmas are merely restatements of some results of [ 9].

Lemma 7.4, Forall ¢ > 0

1
(1.15)  v(z.e) < 3 (A+B).
Proof: Asin [ 9 , Lemma 2], we have
t 1 i
(7.16) v(tie) = A + (B - A) [] G(s,e)ds] [f G(s,e) ds] "t .
0 0

Let F(t) = u(t,e) —u{l -t,e). Then F(“li) = F(1) = 0 and F"(t) =

v(t,e) = v(l - t,e). Since v(t) is monotone increasing,

FU(t) > 0 (5 <tz
Thus

ute) < ull -t e) (5 <t<D,
and

Git,e) > G(l - t,e) 5 <tzl,

Inserting this result into (7.16), we obtain (7.15).

Lemma 7.5, If 0<e<l,

1
(7.17) 0 < | [ G(s,e) dS]'~1 < AE/I‘“ .
1)
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where

A Al -
M = lZL (1-exp (- Jjgo) L,

Proof: See [ 9 ,Lemma 3].

Lemma 7.6. Suppose {_en}, U(t), V() are as in Lemma 7.2, so

that (7.6a), (7.6b), (7.7a) and (7. 7b) hold. Suppose (7.8) holds.

Then
V(t) = %m+BL O<t<l),
(7.18)
1 2
Ut) = 3 A+ B -y 0<t<l).

Proof: Using Lemmas 7.3 and 7.5, and the argument of [ 9 ,

Lemma 4], we obtain (7.18).

Theorem 7.1. Let uf(t,e) v(t,e), be a solution of (7.1) subject

to (7.2).

i) If A+B>0,

(7.19) lim u(t,e) = lim v(t,e) = 0 (0<t<l),
e— 0+ e— 0t

(ii) f A+B< O,

(7.20) lim v(t,e) = '12‘ (A + B) (0<t< ],
e~ 0+

and
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(7.21) Hm u(t,e) = ~ (A +B) -1 (0<t<ly.

Proof: Choose a sequence €n-—+ 0+ so that u(to,en) and v(’c0

,en)
converge for some fixed tO ¢ (0,1). Using the compactness, we can

choose a subsequence (which we continue to call en) so that all

the hypotheses of Lemma 7.2 are satisfied.

Using Lemma 7.3,we see that either U(t) = 0 or (7.9a)

i
<

holds. Using Lemma 7.6 we see that either U(t) or

v(t) = ”12" (A + B).

Hence, if (i) holds, then (7.19) holds. On the other hand, if
(ii) holds, then Lemma 7.4 and the monotone behavior of wv(t)

give

V(t) < Yo

_,—;—(A+B)<o 0<t<

1
2
Thus V(t) Z 0 and U(t) #0, and the theorem follows from Lemma 7. 6.

Remark: It is an easy matter to show that there is at least one

point B = B(e) ¢ (0,1) such that
u'(B,e) = 0.

Indeed, there cannot be more than two such points. There are
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three cases,

Case 1: u'(0,¢e) < 0. Then there is only one such point B,
and

ale) < Ble) .

Case 2: u'(0,e) > 0 and u'(l,e) < 0. Then there
is only one swh point B and

Ble) < al(e).

Case 3: u'(0,e) > 0 and u'(l,e)> 0, Then there are

two points Bl and Bz,and

51(6) < ale) < BZ(E) .

Using Lemma 7.3 we can easily prove the following result,

Lemma. There is an €5 > 0 suchthat 0< ¢ < ¢, implies that

0

Case 2 occurs,

Proof: Suppose not. Then there is a sequence en — 04+ such

that Case 1{Case 3) occurs for all € small enough. After extracting

CERIRTGA e e

a convergent subsequence we have U'(0)< 0 in Case l, and U'(l)> 0

in Case 3, In either case, this contradicts Lemma 7, 3.




94

Remark:

In all cases, one can show that there exists an €5 > 0 such
that u'(0,e) >0 for 0< e< €ye
Remark:

Part of the interest in this problem is the fact that in Case 3 we
are dealing with two unknown turning points Bl and Bz for the re-
duced equation,

We are now in a position to summarize the asymptotic behavior

of the solutions (u(t,e), v(t,e)} of (7.1). In all cases the limit

functions are related by (7.7a).

Case 1 (A+B)< 0, Then
(7.22) lim v(t,e) = —12~ (A + B) (0<t<1),
-+ 0+

Proof: See [ 9 , Theorem 6] andTheorem 7.1. If A> B, con-

sider u(l -t,e) and v(l - t,e).

Case 2: A<O0 or B< O but A+B> 0, Then
(7.23) lim v(t,e) = 0 0 < t < 1)

e 0+
Proof: Apply Theorem 7.1. Again, if A > B consider

u(l - t,e) and v(l-1t,e),

Case 3: 0 < A < B. Then,




A O0<t< w
(7.24) lim v(t,e) =
7 — 0-}-
B Gt <1
where
. 1
(7. 24a) v o= —
1 +./A/B
Proof: See [ 9 ,Theorem 3 ]
Case 4: 0 < B<A. Then
A 0 <t < g
(7.25)  lim v(t,¢) =
e— 0+
B O < t <l
Proof: Consider u(l - t,¢) and v(l - t,e) and we have Case 3,

We now consider two  other examples of the type studied
in [9].

Consider the nonlinear system

u(t) = v (0 < t < 1)
(7.26) ev'(t) + u'(t) v'(t) - u'(t)] v(t) = 0 0 <t< 1)
u(0) = u(l) =
0 <A = v(0) < v(l) = B

Once more, we know there are solutions {u(t,e), v(t,e)) and

Lemma 7.2 holds.
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Theorem 7. 2. Let u(t,e), v(t,e) be solutions of (7.26). Let

It be the unique root in (0,1] of the equation

(7.27a) Al- (1 +u)e ™) = B[l+ (@ - Z)e““l].
Then
-t
Ae 0<t<yp
(7.27b) lim v(t,e) =
e— 0+ t-1
Be L<t< 1.

Proof: Let € 0+ and let U(t), V(i) be limit functions. If
A = 0, it follows from [ 9 , Theorem 4] that V() =0, If A> 0,

by using the technique of Theorem 3.5 we see that

(7.28) V(t) >

o >

> (0<t< D,

Hence there is a unique W e (0,1) such that U'(u) = 0. With the use of
(7.28), it is easy to see that (7.27b) holds. Finally, we substitute
(7.27b) into (7.7a). Using the fact that U({t) ¢ Cl[O,l] and
U'(1) = 0 we find that ;. satisfies (7.27a).

The asymptotic behavior in the case f(t,u,v) = - v can be

determined from the following more general result.

Theorem 7.3. ©Let u(t,e) and v(t,e) be solutions to
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u(t) = = v(t) (0<t<l)

cvi(t) +u'(t) v'(t) = c(t,ult), u'(t) ) v(t) = 0 (0<t<l)

Assume that there exists a 60 > 0 such that
c(t,u,u’ycl - t,u,u'y>0
for 0<t< 60 and for all u, u' with uu'#Z 0. Then

lim v(t,e) =0 0<t<l).

e—-)

Proof: Let V(t) be a limit function, and let U(t) be the solution
of (7.7a). Assume that we do not have V(i) = 0 for

0<t<l. Then

1
[ (1-x)V(x)dx>0
Y0

H

U'(0)

and

1
—f xV(x)dx < 0 .
0

Since U'(t) is monotone non-increasing, there exists a &> 0 such

1

U

that

u'(t) > U'(e) > 0 (0 <t < 8

U'(t) < U'l-8) < 0 1-6<t< 1.

The rest of the proof of the theorem now follows easily from Theorem 3.6.
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