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ABSTRACT

Approximation of a smooth function f on a rectangular domain
N c E‘(‘} , by a tensor product of splines of degree m is considered.
A basis for the product spline is formed using a single one~dimen-
sional spline function. The approximation is computed, using linear
programming, So as to minimize the maximum error on a discrete grid
QV <, with grid size h . Realistic a posteriori bounds on the
error in the uniform norm are given. Convergence of the approximation

to a best approximation as h-+0 is shown. The extension to linear

boundary value problems is also discussed.
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1. INTRODUGCTION

A classical problem of approximation theory is that of approxi-
mating a smooth function f on an interval by functions which de-
pend only on a finite number of parameters. More recent work has
generalized this approach to include approximation on multidimen-
sional domains and the approximate solution of ordinary and partial
differential equation boundary value problems. A useful computa-
tional implementation of such a generalized approximation problem
requires both a specific algorithm and an error bound which can be
computed, An important limitation which must be considered, partic-
ularly in the case of the error bound, is that the functions can only
be numerically evaluated at a finite subset of points in the domain
of interest. Since the computer time required will increase with the
number of such points, it is important to keep this number as small
as possible consistent with accuracy requirements.

The main purpose of this paper is to relate the uniform error
in the approximation to the error computed on the finite set of points.
This relation, together with linear programming, is then used to
determine the approximation so as to minimize the bound on the error
in the uniform norm. The approximating functions chosen are splines

of specified degree m on an interval, and the tensor product of



these for multidimensional domains.

In Section 2, known a priori error bounds, based on interpo-
lating spline approximation, are summarized. Relations are then
obtained which give a bound on the uniform error over the interval
I in terms of the maximum error on the discrete grid IV. It is shown
(Theorem 1 and corocllaries) that these two errors differ in certain

(m+1)

cases, by a term of order h f

m+1l
* | , where h is the discrete

grid size. Thus for smooth { and reasonable values of h the error
in the approximation is shown to be essentially that attained on the
discrete grid Iv" Numerical comparison for certain cases given in
Table 1 (Section 6) showsthat the error bound given by Theorem 1
may be orders of magnitude smaller than the a priori error bounds.
Corresponding results for approximation by a tensor product of
splines on a rectangular domain O in yp~-dimensional Euclidean
space are obtained in Section 3. A discrete grid ‘Qv < ) is con-—
sidered, where h is again a measure of the grid size. A result,
similar to that for the one~dimensional case, giving a bound on the
uniform error over Q is given in Theorem 2 and Corollaries 3.1 and
3.2. The term depending on hm+l is now proportional to terms in-
volving the derivative of f with respect to each independent

variable, This is in contrast to a priori bounds which depend on
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essentially all of the mixed partial derivatives (see for example [11]).
As a result it is usually a simple matter to choose the grid Qv SO
that the error bound is given essentially by the error on Q‘v‘ It follows
directly from the error bound that the minimum error bound is achieved
by minimizing the error on the discrete grid QV. This is given as
Corollary 3. 3.

The question of convergence to the best approximation as the
grid size approaches zero is considered in Section 4. This is done

in terms of approximation by a generalized polynomial V(a,x), with

v

’

n coefficients represented by the vector o . Assuming that o =«
is determined so as to minimize the error on each QV, convergence is
shown (Theorem 3) as the grid size approaches zero (v-— ), with
fixed n . In Corollary 4.1 it is shown that one can obtain as
accurate a bound on the uniform error as desired by evaluation only
(as distinct from minimization) over a finer grid.

A finite dimensional basis for product splines of degree m
with uniform knot size is described in Section 5. This basis is
formed from a single spline Bm(T), with compact support on an
interval. This representation simplifies the computation and leads
to well-conditioned matrices.

In Section 6 the formulation as a linear programming problem
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is given. This formulation permits the efficient calculation of the
product spline approximation and its error bound by solving a primal
linear programming problem with n + 1 rows. Numerical results for
approximation on an interval and on a rectangular domain are pre-
sented. FError bounds are given for these examples, and compared
with corresponding a priori error bounds in the literature (Tables 1
and 2).

Finally, in Section 7, the earlier results are extended in a
natural manner to the approximate solution by splines of certain linear
boundary value problems. It is shown that the approximate solution
with a minimum error bound may be obtained by solving a single linear

programming problem.




2. APPROXIMATION ON AN INTERVAL

We first consider the (one-dimensional) approximation of a given
function f(x) on the closed interval I = [0,1], by a suitable spline
function. Let sm(A;x) denote a spline of degree m with maximum

, m+1 ) )
knot size A . We assume that f ¢ C [1], and consider the uni-

form norm A number of papers (for example, sce

[ 12, 7, 117]) have considered a priori bounds on the error
in Em, where ﬁsdm is the spline which interpolates f at the knots.

These bounds are all of the general form

1 (m+1)”

~ +
(2.)  JE-s <k o

where km is a constant independent of A and £ .

A more general approach, which includes interpolation as a
special case, is the construction of a discrete grid of v + 1 points
Iv < I, such that all knots in I are contained in IV. The grid Iv
is assumed to be dense in I as y— o, The grid density is mea-
sured by ilv] , where
(2.2) iIvl = max min |x - y|

xel ye IV

To simplify the notation let

(2.3)  h=h(v)=2]T|



A uniform grid gives h = v—-l, that is, h is the grid size. The dis-

is then given by |

crete seminorm corresponding to ° | o '“ n=
max |-
I
v
The prob f findi s ' ‘ - = mi i
problem of finding m(A,x) so that |f Sm“h min, is

computationally a nice one, and can be solved efficiently using
linear programming, as discussed in Section 6. Note that if Iv
consists of just the knots (in I) of sm(A ,X), then this minimization

problem gives the interpolation spline with |[[f - s The

m“h = 0,

general question to be considered in this section is the relation

between Hf - s H and || f-s for h<A.
m

mH h
This relation has been considered for example by Cheney

[ 3 ]. assuming only that f e Lip(\). A bound of the following

kind is then obtained

(2.4 |if-s < f-s [, +20 +k_[|£]l]

h

where km is a constant independent of h and f . For any fixed

and

spline sm(A,x), it follows from the definition of

h

Iv < I that |f- s Hh < ||f- sml] . Therefore as h— 0 the dis-
crete error ||f - Sm“h converges to the uniform error |[f - smH .

Denote by é\m(h) the spline approximation obtained by mini-
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mizing ||f - sm”h' It is found computationally that for smooth f

A

and h < >

, ém(h) is a better approximation than the interpolating
spline zm. That is, ||f - ém(h) < |If - gm“ for h < é\- For
example, see the computational results in [4] and in Table 1 (Section
6). One would expect that the error bounds (2.1) and (2.4) would
reflect this observed behavior, especially since (2.4) is an a posteriori
bound. In fact, the opposite is found to hold generally. That is,
for most functions f € Cm"rl the second term on the right-hand-side
of (2.4) is much larger than the right-hand-side of (2.1), unless
h << A. Therefore for reasonable h, (2.4) gives a very unrealistic
bound for the uniform error || - §m(h) |, even though the value of
E ém(h) “h is known. In order to do better, we must use the
smoothness of f and get an a posteriori bound with higher order
convergence than the linear dependence on h given by (2.4).

A relatively simple problem is basic to much of what follows.
We consider the approximation of a given function f ¢ Cm+1 on the
interval X = [0,A] by a polynomial Pm(x) of degree m. We choose
a uniform grid qu: X of g+ 1 points, x,=jh, j=0,1,...9,

)

where gh = A, and q zmax {2,m}. Now let [+ = max | -], and
X

Il = mox 1]
q



We also need the norm >\m of the Lagrangian interpolating
polynomial of degree m. Let ﬂm i(x) be the Lagrangian interpolat-
ing polynomials of degree m, for the m+l points Xj =j,
j=0,1,...m, sothat £  (x,)= 0O Then

m,i ] ij .
m
(2.5) Queix) = = gbe)l  (x)
i=0
is the unique mth degree polynomial interpolating g at the points

Xj . Now if

m
(2.6) xm =  max Zo Mm,i(x)l
x efo, m]
then
(2.7) max |Q (gix)| = A max lg(xj)l
xefo, m] j

The values of >\m are easily computed and for m =1,2,...5, are

given approximately by %, = 1.00, >\2 =1.25, X3 =1.63, >\4 =2.21

and 7\5 = 3,11, The corresponding approximate values of )ﬂm as

given by (2.9) below are ’Xl = 0.5, &, = 1.67, 73 = 5.5, 2, = 18.8,

A =67
5 = 67.5.
For any polynomial P_(x) on X, the relation between

£ - P Hh and ||f - P || is then given by




Theorem 1

Assume f e c™H! [X], and Xq as described above. Then

(2.8) lf-7 | < fkm“f'Pm”h*—xm R < a/m
. N

min E_(f{,P_,h,®), hsA/m'Z
o<1 M

where

m+1

- m
A = A
m (m+l)! m

- ) e _ m+1  (m+1)
EnEP o ho) =1+ (o) Tl -P | +o (heon " [
(2.9)
5 2 o g4~1
nm(h,Q) = [”‘Z(L\ -m h) + 5h7]
m
_ 1.2 2 0 - m+l
wm(h,e) = (mtl) ! (m +Ah 7)
Proof: To obtain the first inequality of (2.8) we let
p(x) = f(x) - P_(x). Assume that |p(x)] attains its maximum
value | p|| at x=xeX, thatis +p(x) = |p|. Thenbya
Taylor's expansion about ;:, we have for x e X,
(2.10) p(x) = p (%) £ (m+1): P (X) (x-x)

where pm(x) is a polynomial of degree m, and X is some

point in X. Now since P(mH) = 0, we have

m
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B:iz_[n_ﬂ I g(m+1) I

2.11)  Jp (ol = lpx)| + ot 1)
In particular for XJ. € X
x,-x |
@12y el = Dol + e 1™

et X i PR
L m < Xq denote a set of m+l1 points, say xk, Xk+1

Kt such that x € [Xk’xk+m]' Then for x; € X . we have
lxm—;:{ < mh, so that

m+1
m+1
m h

, ‘ - (m+1)

Now pm(x) is the unique polynomial of degree m which
interpplates the m+1 wvalues pm(xj), XJ. € Xm‘ Then by

(2.7), since x ¢ [Xk’xk+m]’

2.14)  fp Gl = Iyl =2 max |p (x)]
X, €X
j m
From (2.10) we have |[p || = p(x) = pm(;c), so that (2.13) and

(2.14) give the first inequality of (2.8).

A
To get the second inequality, we assume h < T SO that
m

2 2 ,
g=zm and let n be an integer, m < n < g, and consider a subset

ch::Xq of n+l1 points, say Xk’xk+1""’xk+n’ with XE[Xk,Xk+n]'




i1

We wish to use Lemma 2b of [9] on the interval [xk The lemma

'Xk+n]'
is modified slightly to take account of the interval of length nh

instead of 2. Also we let || P, Hh = max lpm(xj) |. We then obtain
X, eX '
i~ n

the bound
@15y e b=y ey

where

‘ 2. 2 -1 4
(2.16} v =[1—m—i%-—'—l-)] < 1+

‘ m.,n bn 5n'2

Again using (2.12) we have

hm-l‘l i
@an eyl = el + b 8™
Combining these two gives
hm-!-l 1
Gas el =y, el 4y, ok ™)

In order that Vm — 1 for fixed m as h—0 (g — «), we require

n—o _ At the same time we require nh — 0. A suitable choice
‘ 2 2.6
isn={m +(q-m’) } where 0< 6 < 1; and ({x} = largest

integer in x. Since A= gh mzh, for any selected @, we have

v

2

nh < (m° + q9n = 7 O\p1-?

(A7 + mzh )h

H

and
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6

5 5 L
8 51+[“E(A-—mh) +5he]lh851.2

m,n
m

Using these inequalities in (2.18) for any fixed 6, gives

|f-P || = E _(f,P_,h,0). Since this holds for each 6, it holds
m m m

for the choice of 6 which achieves the minimum for any fixed A,

mandhs%.%
m

Now consider the approximation of a given f(x) on the interval
I =[0,1] by a spline sm(A;x) with uniform knot size A. We assume
knots at the end points x = 0,1, so that Aul is an integer. Denote
the knots by IAC I. A uniform grid I, with IAC Iv < I, of size

h=wv is constructed, with h = A/q, where q 2 max {2,m}. A

bound on the uniform error ||f - s | is now given by

Corollary 2.1

Assume f ¢ Cm+l [I]. Then the error bound of Theorem 1 holds

with f-s_ replacing f-P_, and | -], representing the maximum

h

error on I
v

Proof: Since IA c IV , the maximum value of |f - sm] at the knots

is bounded by ||f - s_ll,, so the bound (2.8) certainly holds on

hl

IA . In the intervals of length A between the knots, Sm is a

polynomial of degree m so that Theorem 1 holds.
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The requirement that Iv be a uniform grid can be eliminated

by using only the second inequality in (2.8).

Corollary 2.2

Assume that llvl =h/2 < A/‘.Zm2 , and that e c™T!

[1].

Then the second inequality of (2.8) holds with f - S replacing

f-P_,and Il Hh representing the maximum error on I .

Proof: Lemma 2b of {9] holds for a nonuniform grid- Iv , so that the
second inequality of (2.8) is valid on I - I~ B
Finally an asymptotic bound for |/f - S, | ash—0 (v— )

follows directly from (2.8) and (2.9).

Corollary 2.3

As h — 0 we have

2.19) |f-s |l = min E_(f,s_,h,0)
™ ooggs1 T M
where
~ m‘2 h 0
(2.20) E_(f,s ,h,8) = [1+7= () HE-s [l
1.2 _ m+1
g2 210 g(mEl)y

(m+1)!

These bounds are illustrated with numerical results in Section
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3. APPROXIMATION ON A RECTANGUILAR DOMAIN

The results of the previous sect;on for an interval will now be
extended to a rectangular domain in g-dimensional Euclidean space.
We consider approximation by a tensor product of splines on this
rectangular domain. This more general problem has also been con-
sidered from the point of view of interpolation (see for example
[1.2]).

The main result is given in terms of the simpler problem of
approximation by a product of polynomials of degree m , on a square

domain. lLet GC EJZ

denote a square domain with sides of length
A, and coordinates Xj’ i=1,eeeg. Thus G = {x]xj e [0,A],
j=1,°++4). Each coordinate is subdivided by a uniform grid of

q +1 points, g> max {2,m}, where gh=A, and where the grid
includes the end points Xj = 0,A. We denote by Gq the square
)ﬂ

grid of (g +1 points obtained in this way. The norms ][ . H and

!h will denote the maximum on G and Gq respectively.

+1 .

m
Given the function f e¢ C [G], we consider its approxima-

tion by Pm(x) = JII Pm,j(xj)’ where the Pm,j(xj) are polynomials

of degree m in Xj’ for xj € [0,A]. Also let D}TJ. denote the mth

partial derivative with respect to the variable Xj’ Note that

m-+1 . ..
ij Pm(x) =0, j=1, f.




Theorem 2

Assume that

m-+1

Gy o]
with 0, <0,< ="
(3.2) =P |
£-1
X 5
k=0
where
(3.3) » (h,€) =
and
(3.4) Kﬁhﬁ):

iA

(T] 14 ) = l/ .‘e
Gﬁ. Then
. i - ]
min {?\m(h,Q)Hf Pm||h+ ')\m(h,O)h
<6<l
k
Oﬂ_k 7\m(h,(~))]
A, h<A/m
m
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Proof:

Again let p(x) = f(x) - Pm(x), and assume that |p| = |p(;<)‘ ,

1 2.’ oo ,sz). Also let Hj denote the g + 1 grid points

X !

with x = (X, ,

corresponding to the variable Xj ,i=1,...0. It follows that

(3.5) Hp“h: max [p(xl,xz,...xﬁ)\.
x, eH
]
. -t , = - ,
1 e
Consider the (g + 1) points (xl , 'yt+1 yﬂ) with
yJ. € Hj , j=t+1,...4. Assume we know a bound on the maximum
of |p(x)| over these points. That is
. X, eee X e <
(3.6) max [p(xl, XY Yl)l <
y. e H,
J ]
Now consider any specific selection S;j € Hj’ i=t+2,... £ . We
wish to obtain a bound on lp(xl, e x , Xt+l NPYERE yﬂ)[ , for

X e [0,A]. Since all variables are held fixed except x

t+1 the

t+l’

one-dimensional theory can now be applied. We use the bound of

Theorem 1 , where now “f(m+l) = D}Ttillf]t S We have
(3.7) max [p(x,,..x,y l,y ,...%)lf_ €,

Yy, € H

t+l t+1

so that for h < A/m , the first inequality of (2.8) gives

(3.8) [Py, ... X <

A A
t4l’ Y2t 1)1

max ] - = ~ ~ -
Xt+l€ [O,AJ p(xllaooxtlxt+llyt+21no.y£)l S_ knlét 4 ?\ h
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Since this holds for every choice 9)’ € Hj , J=t+ 2,... 2, we must

have
(3.9) max - [PGep, e Xy v ot V) S B
vy, € H,
J J
where €t+l satisfies the recursion relation
= . m+tl
(3.10) €t+1 = Mg g‘t ¥ 7‘mh %41

Starting with t = 0, this recursion has the solution

- om+l4zl k
G i) g = N g R R B o A

From (3.9) with t+1 =y, we have }p(ﬁ)] < ﬁz. By (3.5) we

choose £, = “th' so that

- i - . m+l =1 k
(3.12) |p] = |px)]|< 7\m Hp“h+7\mh k-_/}JO o, x 7\m

This is just (3.2) for h< A/m.

In a similar way we obtain (3.2) for h < A/m?‘, using the

corresponding bound from (2.8). §

In order to extend this bound to the approximation of f(x) on

a rectangular domain we consider the domain Q < Ez ,

(3.13) Q= {x]ongs_bj, j=1,000 1)
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Let Sm(A,x) denote a tensor product of one-dimensional splines
of degree m on £, with uniform knot size AjSA corresponding
to the variable Xj' The knot sizes are determined so that for posi-
tive integers uj ,j=1,-+4, we have U“j A]. = bj’ Specifically we
consider

£
(3.14) S ©n,x)= 11 8

B, .x)
m ]:l ] ]

m
where S (A,,x.) has knots at x, = 0,A,,20,,°++b,, and A =
m j ] J % ] }

max AJ_. Let QA denote the grid of I& (uj+l) points formed by th
j J:

[0}

knots in this way.

A finer grid Qv’ with QA o Qv is constructed by further
d ivision of the coordinate Xj into uniform intervals of length hj =
Aj/q, where "q > max {2,m}. Alsolet h=A/q = m?x hj' A bound

on the uniform error ||f - Sm“ on  is now given by

Corollary 3.1

Assume f ¢ CmH[Q]. Then the error bound of Theorem 2 holds

with f - Sm replacing f - Pm' and “ - ||,. representing the maxi-

h

mum error on Qv .

Proof: In each rectangular domain (with sides AJ.) determined by

QA the spline Sm(A ,%) 1is a polynomial of the form Pm(x). Theorem

2 then applies to each such domain and therefore to the entire domain
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As in the one-dimensional case the requirement that the grid
Qv be uniform can be relaxed. Let IV], denote a one-dimensional
grid along the coordinate Xj , such that Ivj ) IA . The finer grid

]
QV, with QA c QV < ), is then given by QV =N As with

Iy,-
j=1 Vi

Corollary 2.2 we now have

Corollary 3.2

%SA/mZ, 521,---4, and that

Assume that {Ivjf <

fe Cm+l[§2]. Then the bound (3.2) for h §_A/m2 holds with f - Sm

.

replacing f - Pm and representing the maximum error on QV. a

h

Corollary 3.3

1
For any specific function f ¢ Cm+

[2] assume the degree m,
the knot sizes Aj, and the grid QV are selected. Then the minimum

error bound for ||f - SmH is achieved by determining Sm(A ,X) so

that ||f - Sm”h = min.

Proof; For any specific f and fixed m, Aj and QV, the second
term in the error bound (3.2) is independent of the polynomial Pm(x)

used. Similarly in Corollaries 3.1 and 3.2 the only term depending

on the spline Sm(A,x) is ||f - Sm“h'
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4,  CONVERGENCE

We will consider the question of convergence in the somewhat

more general context of approximation on a closed and bounded domain

Qcil, by a generalized polynomial of the form

where the cpi(x) are appropriately selected functions on {i. We wish
to approximate a given function f(x) on Q by V(x,x) for some fixed

n.
Let {QV} denote a sequence of grids such that {QV} < Q

and Q§ < Q . Since [Q | = max min |x - y|, it follows that
v v+l v
xefd y&zQV

| .| < |9 |- We assume that lim |Q | = 0. The norms
v+l v v Y
|+ = max |«| and || L, = max || will be used. Also for any

Q Qv
specific f, let

1

y(a) £ - Vo)

It

v o) = [E - Vi

We assume that f and the @, are such that a best approximation

v(a™,x) exists. That is

(4.3) y(a™) = inf w(a)
o,
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Let A © E' be a compact set containing o, and let o’ ¢ A
achieve a minimum of ;-fv(cx) for a ¢ A. That is
(4.4) vy (@) = min v (a)

v aedA VY

Finally, we assume that for any a ¢ A

(4.5) vla) < v 1 (@) + o

where '\/V — 1 and wv—+ 0 as yv— o,
The quantities actually computed (by linear programming) are
v %

a and Yv(ccv). Convergence of yv(a) to ¥(a') as v—o with

n fixed, is given by

Theorem 3.

The sequence {yv(av)} converges monotonically upward to

¥(d*). For any v the following bounds hold for v(a®) and \1{(@,\)),
(4. 6) ¢ (@) <¥@M <ve) <y v @)+ o

: v - - - yv v v
Proof:

Consider two grids & and Q . Since QO < 0 we have
v v+l v v+l
v+l v+l . .

‘rv(a ) < \}'/v+l (a ). Also since \yv(cx) attains its minimum over

‘ae A for ag-= ocv, we have ‘_HV(OLV) < \YV(GVH). Therefore

v v+l
‘i’v(a ) < \L/V+l(a ), so that (‘yv(av)} is monotone increasing.
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Since 2 © @ we have gv(a*) < y(@). Then by (4.4) and

the fact that a ¢ A, we have

(4.7) v (@") < v (@¥) < wa®)
v \Y)

By (4.3) we have ¥(a™) < ‘J‘{(av) , and using (4.5)

V)+(D

(4. 8) Ya¥) < ¥e) <y ¥ (a
Vv \Y A%

Combining (4.7) and (4.8) gives (4.6). It follows immediately from

the monotone property of {wv(av)}, the fact that yv—-» 1, wv - 0

as v— @, and (4.6) that¥_ @) 1w ).

This theorem will be used in the next section to show the
convergence of the spline approximation (Theorem 4).

We conclude this section by showing that once a coefficient

v . e , .
vector ¢’ has been determined by minimization on .QV, an improved

bound on \_{/(ccv) = Hf - V(OLV) H can be obtained by evaluation only,
using a finer grid Q; Note that from (4. 2) we need only evaluate

f(x) - V(av,x) for x ¢ Q—\; in order to obtain \y;(qv).

Corollary 4.1

Let « ¢ A be given as in (4. 4) and assume that (4.5) holds.

Then for any Q; such that v > v and Q, < Q-\; , we have
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\% v Vv \%
. i i/ < N 18 U5
(4.9) J!V(a ) < l’V(OL ) < ¥(@) < V5 &v(a ) + oy

Proof: The first two inequalities follow directly from QVC Q-\}C Q,

while the third is given by (4.5) with a = aV. ]
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5. PRODUCT SPLINE BASIS
\

In order to apply the pxrevious results it is necessary to use
an appropriate basis for the tensor product of splines of specified
degree m with specified knots. A suitable such basis for computa-
tion is obtained by a slight modification of B-splines [56]. For a
specified degree m and uniform knot size, this modification uses
a single function ﬁnuvn and forms a basis on the interval
x € [0,1] by a linear combination of functions ﬁm(ux - 1i). This
representation, with the properties discussed below, simplifies the
computation by leading to well-conditioned matrices with a special
structure. For simplicity we discuss only splines of odd degree;

a similar basis can be used for splines of even degree.

We define for m= 2k - 1,

k

_ 1 otk 2k m
(5.1) B =T T DT () 0
j=-k
where
X , x>0
(5.2) (x)i1 =
0 ,x=s 0

The function ﬁm(f) is symmetric about T = 0, bell-shaped and non-

negative on the interval [-k,k], and vanishes identically outside
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this interval. More specifically, it has the following properties:

> 0, |7] <k
B_(7) = 0, |1 =k
= 0, |T|>k
(5.3) B_(-7)=8_()

B_(0) >B (1), T #0

00 k-1
s B @Wl= 2 B (i)=1
j=-e0 T i=1-k "
(£)
The derivatives ﬁm (ty, £=1,2,...,m, of Bm('r), are given by
(£) 1 K Jtk+ 4 2k m-4
(5.4) By (T) = a1 jik (-1) (j+k) (G-7),
It follows that
B (m e c™7
(5.5) 8 k) =0, £=0,1,...,m-1
ﬁr(nmﬂ)('r) = 0, for noninteger T

Furthermore, since (x)g =1 for x> 0, and (X),S =0 for x €0, we

m , . e
( )('r) is piecewise constant with discontinuities

also have that B
m

at T=-k,...k, and ﬁr(nm)('r) = Binm)(j) for j <1 < jt+l.
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Now consider the interval [0,1] and a uniform knot size A,
with WA = 1. It can be shown that the n = L + m functions
Bm(ux -1i),i=1-%k,...u+ %k -1, are linearly independent on
[0,1]. Therefore an arbitrary spline of degree m on [0,1], with
L+ 1 knots at x=1iA, 1i=0,1,...4, can be represented by

: prk-1
(5.6) s (e,x) = | 2B (bx-1)

i=1-k
Because of the compact support for each ﬁm(ux ~ 1) there are at
most m + 1 nonzero terms in this summation for any fixed
x € [0,1]. Furthermore, it can be shown that for any x € [0,1],
Mtk -1
(5.7) % B (x-1) =1
i=1-k

so that we always have the bound

(5.8) s = sup |s_(a,%)] = max |« |
R () it

Finally the derivatives of sm(a,x) are given by the easily computed

expressions
)/ Hfk -1
d N/ )/ )
(5.9) ) Sm(QIX)~ H b aiﬁk) (Hx - i)
dx i=l-k

)

where the 5;? (t) are given by (5.4).
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Now consider a rectangular domain £ < Eg, as given by
(3.13). Let Sm(AJ.) denote the class of tensor product splines of
degree m on £}, with uniform knot size Aj corresponding to the
variable X_j as given by (3.14). A basis for Sm(L\j) can readily be
constructed using the single function ﬁm('r) . To accomplish this

we represent any spline in Sm(Aj) by products of the functions

X,
ﬁm(ZL - i].). Specifically from (3.14) and (5.6) we obtain

Mj+k—l 7 X_j_
(5.10) S (a,x) = = X,y g, I B (=-1i)
m =1k i iy ge By
i=1,...4
N 2
where the coefficient vector @€ B, and n=1I (4, + m). Because
j=1

of the compact support, there are at most (m-%—l)z nonzero terms in
this summation for any fixed x € 4. Furthermore, using (5.8) and

an induction on j, it can be shown that

|

(-1 s Il = sup |8 (e, s max fe ,

xefd 1). 1’72 y/

Other properties of Sm(a,x) follow directly from the properties of

+1
B _(t). In particular we have Dm’r S (a,x) =0 for x./A. non-
m XJ. m 3]

integer.
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To illustrate the behavior of this representation of product
splines a contour map of {33(X) {33(}7) is shown in Fig. 1. The
square x € [-2,2] vy e [-2,2] of compact support is shown with

contour lines given by

(5.12) 63(x) {33(y) = .05 [@3(0)]21, i=0,1,... 19.
The contour for i = 0 is the boundary of the square. It is rather
surprising to observe that all other contours shown are almost
circular.

The representation (5.10) of a product spline is of the form
(4.1), so that Theorem 3 can now be applied directly to show con-

vergence of the product spline approximation as h — 0.

Theorem 4

Let the assumptions of Corollary 3.2 hold. Then (4.6) holds

. _ o1
with ¥ (@) = ||f - Sm(a) CY, T }\m(h,z) and
£-1
_ - 1., mtl k 1
(Dv = ?\m(hlz)h kZ—O Gg__k )\rn (hIZ)

Proof: The assumption (4.5), with q’/v and w,, as given, is
satisfied for Sm(a,x) as shown by Corollary (3.2). Therefore

Theorem 3 holds with V(e,x) = Sm(a,x).
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6. LINEAR PROGRAMMING FORMULATION AND COMPUTATIONAL
RESULTS

As shown in Section 3, we obtain a minimum error bound by
minimizing the error over the discrete grid Qh. We will now sum-
marize the linear programming formulation which finds this minimum
over Qh. This formulation will be given in the context of approxi-
mation by a generalized polynomial V(«,x) as given by (4.1) on a
discrete grid Qv < @ of v points. For the purposes of this
formulation these v points may be selected in any convenient
manner,

We assume that we are given a function f(x) onQ < EE and
that a best approximation V(e¥k,x) to f(x) exists on @ . We also
assume we know a bounded polyhedral set A < En, such that

a* € A. We introduce a scalar variable & and consider the

following problem

- = ’ _f, < .
(6.1) gm; {g’& V(axo)zeA(X) 3 vXer}

This is a linear programming problem with n+! variables and
2v + n inequality constraints, where n = nt+1 is the number of

inequality constraints required to define A. The optimal solution
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\ .V Vv , .
to (6.1), say £ and «a € A attain the minimum error over ‘&Zv
That is,

(6.2) v, @)= vey -1 =g"

If is computationally more efficient to treat (6.1) as an
unsymmetric dual problem and solve the equivalent primal problem
using the standard simplex method [ 6 ]. This leads to a
‘primal problem with n + 1 rows and 2V + n columns. The computing
time therefore depends primarily on the number n of functions,
and only in a secondary way on the number v of grid points. The
values of £ on Q’v appear as the "cost row" in the primal problem,
making it easy to use multiple cost row or parametric features of
most linear programming codes to solve a sequence of problems
with different functions f(x). In addition to the approximate solution
V(ozv , %) and the maximum error &V on QV , the primal solution basis
also gives a set of n+l points in Qh at which the maximum error
is attained. Details of this formulation are given in [4] and {8].

As an example, consider approximation by the product spline
basis Sm(a,x) as given by (5.10) on a rectangular domain Q,
using a uniform grid QV . The grid le is constructed with a uni-

form interval hj = Aj/q, corresponding to the coordinate Xj . We
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)/ b
then have n= [I (LL]. +m) and v =] (C{LLJ. +1).
j=1 i=1

In order to illustrate the material discussed above, spline
approximations have been obtained for a number of selected test
problems. For each problem the approximation sm(a V,X) or
Sm(av ;%) was determined using linear programming. Error bounds
were also computed using Corollary 2.1 on the unit interval and
Corollary 3.1 on the half-square. The best available a priori error
bounds for the same problems are also given for comparison
purposes.

Results for two test problems on the unit interval x e I =1{0,1]

are presented in Table 1, the first with f = eZX and the second with

f= m . A fixed knot size A = 0.1 (jL = 10) was used with
both cubic and quintic splines and several different values for the
grid size h = A/q. No explicit restriction was placed on «, that

is we took A = En., The representation sm(a,x) given by (5.6) was
used and the best approximation sm(oz V,x) on the grid Iv, with

h = (v-l)—1 , was determined by linear programming as discussed
above. The error wv(av) on the grid IV and the bound on

Y@y = ||f - sm(av) | as given by (2.8) are tabulated for each case.

For comparison the table also gives the a priori error bounds of



Hall [7] and Schultz {11] for the corresponding spline s
by interpolation at the knots. A more accurate bound on (& )} is
also obtained by the use of a finer grid and Corollary (4.1}. This
finer grid I.\.j with v > v points is chosen with h=({v-1)

sufficiently small so that

(6 3} 'lf"/m "CZV\ - .,r///ka, < i .(// (CZ'V\‘
(0. AN s oA v j
o . _
for some selected Am > A In pariicular we choose
1 m

~m+1 B N

(6.4) h SRR EACLY NN Faintd

17
—
>

”~ S
The values 7\3 = 20 and /\5 = 4,0, were selected. The value of

z,l/-\-/(a } is tabulated and in general will be a good estimate for the err

Y(a'),as well as a lower bound. Note that the determination oI
d/;& (¢”) requires no further minimization; only evaluation of the
error over the finer grid I{}. . It should also be remarked that

additional points may be added with no difficulty to the grid I
used in the minimization and to the finer grid I{}

tion. These additional points should be added where ||f

largest, and will improve both the approximation and the error bound.

This was done for the test problems with f=./.01 + x by adding
10 (unequally spaced) points in the interval [0, .05] for both Iv

and I- .,
Vv
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Results for the more difficult problem of approximation in two
dimensions are presented in Table 2. The domain consists of the

half-square x € [0,1], v € [0, 0.5], with the function

2
f=f(x,y) = XY

The product spline basis Sm(oz,x,y) given by
(5.10) was used with constant knot sizes AX and Ay in the x
and y directions. A uniform square grid QV, with h = ,0625 and
v =153 was used in the linear programming minimization to obtain
o” and z//v(ozv). Again no explicit restriction was placed on o,

A finer uniform square grid Q;j with h= .02 and v = 1326 was
used for the evaluation to get ¥ by (ozv) and the error bound. The
error bound was computed using (3.2) with £ = 2 and the first rela-
tions in (3.3) and (3.4). For comparison, the interpolating spline

approximation (interpolation on QV with hX= A h = Ay) and

x'y
the corresponding a priori error bounds of Schultz {11] are also
given.

It is of some interest to see the error curve along a diagonal
line for this two-dimensional domain. This is shown in Fig. 2 for
the cubic product spline approximation obtained with h = .0625,
along the line y = 0.5x. Along coordinate directions the error
curve is close to a Chebyshev polynomial as in the one-dimensional

case. Along the diagonal line the error curve is seen to oscillate

but with unequal positive and negative peaks.
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Figure 1

Contour plot for B (%) 53(37)
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Table 1

Spline Approximation on Unit Interval

xe[0,1], & =0.1
h g @) e
v v
o1 0 2.97E-5
. 025 1.15LE-5 1.36E-5
. 0125 1.15E~5 i.20E-5
o1 0 5.5E~8
o 1 0 1.92E~2
. 0125 2.31E-3 2.32E~3
o1 0 3.,2E-2
. 00625 6., b6E-4 7.4E-4

“Theorem 2.9, reference [11]

""Theorem 2.8, reference [11]

Error Bounds

2.8) Hall

v G
e iL"&fJ

12,2

Schultz

2, 4057
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Table 2

Approximation by Product Spline on Half-Square

2 _
xe[0,1], ve[0,0.5], f=eY" f-0.02

Error Bounds

A% \% ‘ e
h y Y- (c . (3. hultz"
m AX Ay n \iv(a ) 1V(CL ) Egn. (3.2) Schultz
3 0.333 0.2 Aok 48 0 2.0E~4 7.6E-4 .024
3 0.333 0.2 .0625 48 9.37E~6 2.72E-5 2.6E-4 -
5 0.5 0.25 sk 49 0 1.82E-5 2.1E-4 0.27
5 0.5 0.25 .0625 49 1.14E-5 1,7E-5 2.0E-4 -

“Theorem 3.1 of reference [11]

“nt £ line; h = A , h =4A .
Interpolating spline « AX v Ay
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7. EXTENSION TO LINEAR BOUNDARY VALUE PROBLEMS

.The previous results for the approximation of a given function
by splines can be extended in a natural manner to the approximate
soluti:on of certain linear boundary value problems. Specifically we
consider problems defined by a linear differential operator with con-
stant (or polynomial) coefficients. Tor such problems the error
bounds and computational method are applicable with a minimum of
difficulty.

A closely related approach for both linear and nonlinear boundary
value problems, which however does not take advantage of the nice
properties of splines, is described in [10]. Other methods for the
appr’oximate solution of boundary value problems using splines have
been presented, for example in [2] and [11].

We first consider a differential equation on the interval I -

[0,1]. Fora fixed g>1, let

where aj(x) is a polynomial of degree j on I, that is aj (%) ¢ Hj’

m. Given a function g ¢ c™

and D’u=u +l[

1], with m>q +1, we

consider the problem

(7.2) Llul]=g on I
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subject to g specified linear boundary conditions at x = 0 (initial
value) or at both x = 0,1 (two-point boundary value). We will denote

these g boundary conditions by
(7.3) Blu] = b

It will be assumed that a unique solution u(x) on I exists satisfying
(7.2) and (7.3).

The solution is approximated by a spline sm(A;x) with uniformly
spaced knots at a set of points IA < I. We restrict the class of
splines considered to those satisfying (7.3). Since m>q + 1,

L[Sm] is continuous on I . Furthermore, since Sm € Ilm on I~ I/\ ‘

D'S eI ., sothat L[s Jenl_ on I~1,. Therefore
m m-j m m

m+]
(7. 4) D" Lfsy] = 0 on I-1I,

The relevant error now is that in the differential equation (7.2).

We therefore let

(7.5) p(x) = g(x) ~L[s]

and now obtain

Theorem 5

Assume that Iv is constructed as described for Corollary 2.1
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[Corollary 2.2]. Then the error bound given by (2.8) [second in-
equality of (2.8)] holds with g - L[Sm] replacing f - Pm and

(m+1)

g(m+l) replacing f .

Proof: The proof of Theorem 1 applies directly to this case using
(7.5) and (7.4). The extension to the interval I is essentially

the same as given in Corollaries 2.1 and 2.2.

It should be pointed out that an important special case of

this theorem occurs when g(m+l) = 0. This immediately gives the
bounds

%mng - L[Sm]Hh , h<A/m
(7.6) g -Ls I =

[+ mp(h, D0 g = Lis Il h<a/m?

Theorem 5 gives us a bound on the uniform error in the differ-

ential equation /g - L[‘sm]H in terms of the corresponding error on

Iv. In order to bound the error in the approximate solution [u - s|

we need an additional relation between these two quantities. Many

problems of the form (7.2) and (7.3), with unique solutions,

possess the following monotone property which gives us this additional

relation.

Monotone Property: There exists a constant K such that if w is

any function with Bf{w] = b and L[w] continuous on I, then
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(7.7) ju-w| <K|Lu]-Lw]| .

Since w = S satisfies these conditions and since L[u] = g,
this monotone property immediately allows us to use Theorem 5 to
bound |ju - sy || in terms of the computed (minimized) quantity
lg = Llsml] -

In order to obtain the approximate solution to (7.2) and (7.3) we
again assume a uniform knot size and use the representation for Sm
in terms of the function fsm('c) as given by (5.6). Linear pro-
gramming may again be used in essentially the same manner as dis-
cussed in Section 6.

First considering the boundary conditions (7.3), we use the

linearity of B and (5.6) to give

(7.8) Blsp] ==

These relations give g linear equations on the coefficients ui .
For example, in the initial value problem, B[u] = b represents

u (0)=b, j=0,1,+-g=-1. Then (7.8) requires that the oci

(<) = b /A, j=0,1,7+" q-1
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These g linear equations are then included in the polyhedral set
A. In order to minimize the error | g - L[sm]H on the discrete
h

set 1 , we let
v

(7.10) B () = L[B_(ux-1)]

The minimization is then carried out by solving (6.1) with

Ltk =1 .
(7.11) Via,x) = Do, Bx)

i=l-k 7
The solution to this linear programming problem gives the coefficient
vector ocv, and the corresponding function Sm(av,x), given by (5.6),
which satisfies the boundary conditions and minimizes the error in the
differential equation on the discrete set Iv° Provided a monotone
property holds,a bound on the error H u - Sm(ocv) | can be easily
obtained using Theorem 5.

It should also be noted that the determination of the approxi-
mate solution by linear programming does not depend on the coeffi-
cients aj (x) being polynomials. The computational method described
can be used to obtain an approximate solution assuming only that the
coefficients are continuous on I. Of course, for this more general
case the error bounds may not be valid.

In order to extend the results to linear partial differential

equations we consider a closed and bounded rectangular domain
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qc g

as in Section 3, We denote by 9 the boundary of Q.

We limit consideration to linear partial differential equations with con-
stant coefficients. Let L[u] denote a partial differential operator
with constant coefficients. It is assumed that the highest partial
derivative with respect to any one variable occuring in L[u] is no

greater than q . Given a function g ¢ Cm+l[§2], with m>q + 1,

we consider the problem

(7.12) Llul]=g on

subject to appropriate boundary conditions. The boundary conditions
are assumed to be given in terms of one or more linear boundary
operators with constant coefficients. If differential operators are
involved they satisfy the same restriction on partial derivatives as

L[u]. We denote these boundary conditions by
(7.13) Blu]=b on &0

For example B might be the identity operator or the normal de-
rivative on each boundary face. As in the one-dimensional case we
assume that a unique solution u(x) on  exists satisfying (7.12)
and (7.13).

For this multidimensional problem the solution is conveniently

approximated by a product spline Sm(A;x) as used in Corollary 3.1
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or Corollary 3.2. Because of the derivative restriction assumed on
L and B , we have that L[Sm} and B[Sm] are continuous on {
and 99 respectively. Furthermore, since L[Sm] and Bl_Sm] are

at most polynomials of degree m in xi on & - QA' we have

Di?i“ L[S_]=0 and D}T:l B[S_]=0 on 2-0.

We could apply the results of Sections 3 and 5 directly to
this multidimensional problem as we did in the one-dimensional case,
except for the one significant difference that, in general, we can no
longer satisfy the boundary conditions exactly. We must therefore
take into account the error in both the differential equation and the
boundary conditions. To apply the bounds of Corollaries 3.1 and
3.2 to the error in the differential equations we let p =g - L[Sm]

on 2 and assume that | D;,r?jﬂgnQ < Oj’ j=1,...0. Similarly for

the boundary error we let p = b - B[Sm] on 08, and assume that

m+1

“ DXJ' =0

biiBQ < J.,j:l,.‘,..fz. We then obtain

Theorem 6

Assume that the discrete grid QV < 0 and an < 90, is
constructed as for Corollary 3.1 or Corollary 3.2. Then the error
bound (3.2) holds on  with g - L[Sm] replacing f - Pm, and on

00 with b - B[Sm] replacing f - Pm. ]
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In order to make the best use of these error bounds in deter-
mining an approximate solution we again need a monotone property
to relate the errors in (7.12) and (7.13) to the error I| u- 8 HQ
For many boundary value problems a monotone property can be ob-
tained in the following form.

Monotone Property: There exist constants Kd and Kb such

that if w is any function with L[w] and B[w] continuous on

and &{ respectively, then

(7.14) Hu-w”q_<_Kd[

Liu] - L{wl|| o + K | Blu] - Blw]] ;o

For computational purposes the product spline representation
Sm(a;x) given by (5.10) is again used. Assuming the monotone prop-
erty and in view of Theorem 6, we can minimize the error bound by
solving a linear programming problem related to (6.1). To illustrate,
we consider the special case where B is the identity operator so
that (7.13) requires u =Db on each ¢ -1 dimensional face of the
rectangular domain . Thus the boundary conditions, if con-
sidered alone, would lead to a problem in Ez_l essentially as given
by (6.1) with f =Db, for each face of . Wg will also assume that

m+1 m+1

DXi g = DXi b=0, i=1,...0. Choose any discrete grid

Qv < 0 and 8QV < 900 satisfying the requirements of Corollary 3. 1.
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Then from Theorem 6 and (7.14) we have

(7.15) fu-s I, <X, A LS ]~g[|

mllQ b m HS

- biiaQ
v

Thus to find Sm(a,x) so as to minimize the error bound we intro-

duce two scalar variables ¢ and (, and solve the linear programming

problem

| -0 L[S (0,x)] - g £Y x e

(7.16) min (K, Afngr K, Al 4
£ F,a m ~£< S (0,%) - b(x) < (¥ x e a0

Pl ~
The optimal solution gives the values €, (, qv, the approximating

spline Sm(av,x) , and the minimum error bound Kd 7\ €+ Kb 7\ E for
Lo Vi
v - 8,
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