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BOUNDARY VALUE CONTROL OF THE HIGHER
DIMENSIONAL WAVE EQUATION*

by David L. Russellsk

1. Introduction

Many imporiant control processes can be described approximately by
means of partial differential equations with control parameters appearing in
the boundary conditions. For example, a triangular airplane wing may be
equipped with ailerons on the trailing edge. An idealized model for such a
plant would involve the partial differential equations which describe the
motion of a plate with arbitrary control functions appearing in the boundary
conditions along one of the sides of the triangle. Many other examples could
be given.

Linear hyperbolic problems in one space dimension have been studied
rather extensively, see, e.g. [1], [2], [3], [4], [5]. Here the theory is
relatively uncomplicated. One can study questions of controllability using
the geometric techniques based on characteristic curves or the more algebraic

techniques based on the theory of non-harmonic Fourier series. One obtains
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not only thecrems asserting the existence of controls transferring one state
to another within a finite time period but also constructive proofs of these
theorems which can be adapted to yield numerical techniques whereby the
appropriate control functions can be calculated. The papers of Grainger
[4] and Cirina [5] are noteworthy in this respect. Cirina's paper shows that
such methods can even be used for quasilinear systems.

The theory is not nearly as complete for problems involving two or more
space variables. The reasons why this should be so become apparent when
one compares Chapters V and VI of the treatise [6] of Courant-Hilbert. Some
results have been obtained in this area by Fattorini [7] who considers, for the
most part, boundary value control problems wherein the controls can be
described by finitely many functions of the time t - physically the most
realistic situation.

The purpose of the present paper is to study hyperbolic problems in
several space dimensions using certain uniqueness theorems due to Holmgren
[8] and John [9]. Using these results we can obtain very explicit estimates
on the length of time required to transfer a given state into an arbitrarily
small neighborhood of any other state using boundary value controls restricted
to a subset of the boundary of the region in question. More specifically,
we are able to show for the wave equations in 3 or fewer space variables that
the system can be controlled in any time T which exceeds twice the wave

propagation time from the boundary set where controls are applied to the rest
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of the physical medium. It should be noted that such a result is in agreement
with known results [1], [2] for the case of a single space dimension.

I should like to express my appreciation to Professor J. L. Lions of
the University of Paris whose suggestions in a 1966 letter provided the

germinal idea for the proofs presented in this paper.




2. The Control Problem

Let £ be a bounded, open connected domain in Rn whose boundary is

an analytic surface I' of dimension n-1. We indicate points in Q by

The boundary surface I' is parametrized by an n-1 dimensional vector variable

s. Integrals over @ will be denoted by f ( ydx while integrals over T
Q

will be written ‘/; ( )Yds. Ifwe wish to indicate a point in R" which lies

on ' we will write x(s). The surface I', being analytic, has everywhere a
unique unit outward normal vector which we will indicate by n(s).

We consider a second order linear hyperbolic partial differential equa-

tion
n
(2.1) L{w) = p(X)th - z (aij(x)wi)j = 0.
i,j=1

The subscripts i,j indicate partial differentiation with respect to xl, :x:J ,

respectively. The coefficients p(x), aij (x) are real analytic in some open
subset of Rn which includes QUI'. Moreover, if A(x) is the nxn matrix
with entries afij (x), A(x) is symmetric and there are positive numbers p o
and . such that

px)>p o x )

VAV 2 @ ”VHZ, xeQ, veR".



Let I’l be a relatively open subset of I'. For T > 0 we denote by F
the space of all c® functions f: T ® [0, T] — R1 with the property that f
vanishes outside some compact subset of Fl ® [0,T] (this set varies with f).
We pose for (2.1) the initial-boundary value problem

w(x,0) = w,(x,0) =0, xe,

t
w_(x(s),t) Alx(s))n(s) = (s, 1), (x(s),t) el®l[o.71).

(2.2)

The symbol W denotes the row vector of spatial partial derivatives of w:

W= (WI,WZ,.. .,wn) .

With these assumptions it is known that the initial boundary value problem
(2.1), (2.2) has a unique solution wi (x,t) which lies in the class
C®((Qur® [0,T]). The reader is referred to the papers of Friedrichs,
Lax and Duff [10], [11], [12].

If f(s,t) =0 for t., < t< t, then wf(- ,t) can be considered as a vector

1 2
2
valued function with range in L~ ) which solves the evolution equation

dzw
(2.3) *——Z+Bw=0,t <t< t,,
1 2
dt
where B is the unbounded operator on LZ(Q) which is the unique self-adjoint

n

extension of the operator Z (aij (X)Wi)j defined on twice continuously

i,ji=1
differentiable functions w(x) satisfying the boundary conditions

WX(X(S)) Ax(s))n(s) = 0, x(s) e I".
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Let H1 denote the space of pairs of real valued functions w(x), Wt(X)
defined on  with Wt(X) square integrable and w(x) having square integrable

derivatives:

n
f (w (x)2 + 2 w.(x)z)dx < oo,
Q t i

i=1

Let HE denote the space of equivalence classes of Hl modulo the zero energy

states wt(x) = 0, w(x) = const. The "energy”

& ) = [ e, 6 4w () Abw, (') e

is a constant on each such equivalence class. HE is a Hilbert space with

the inner product

{w w)iv, v Dy = fm (P GIW, (x)v, () + W_(x)AG)V, (%) )dx

and resulting norm

I (w,w,) “E = /((W,Wt);(w,wt»E =/g(w,wt)

We will not stress the distinction between Hl and HE where unnecessary

and we will say “(W'Wt) e H_" if the equivalence class of (W,Wt) is a

E

member of HE .

f .
For each feTF the corresponding solution w (x,t) of (2.1), (2.2) is

such that (wf(- ,T), wi(- )] GHE. In fact, if we put

£ f
Rp= (W (.,T), w(,T)|feF]
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then RT is a subspace of HE which we will call the reachable space. Fol-

lowing others we make the

Definition: The control system {(2.1), (2.2), f € F} is approximately controllable

in time T > 0 if R‘I‘ is dense in HE relative to the topology induced by the

norm || ;.

We will conclude this section with a theorem which relates approximate

controllability to "observability". (cf. parallel results for o.d.e.'s [13].)

Theorem 1 Let (\'}, ¢

.) € Hy be such that both v and Gt liein CT@QUT) and

’\ .« I . . s
v satisfies the consistency conditions

GX(X(S)) A(x(s)) n (x(s)) = 0, GtX(X(S))A(X(S))T] (x(s)) = 0, x(s) el ,

Let v(x,t) be the unique Coo solution of L(v) = 0 which satisfies the boundary

conditions
(2.4) VX(X(S),t)A(X(S)) n(x(s)) =0, (x(s),t) eI’ ® [0,T]

and the terminal conditions

(2.5) v(x,T) = V(x), v (x,T) = Gt(x) :

Then (¥, \'}t) € (RT) 1 in H._ if and only if vt(x(s),t) = 0, (x(s),t) € 8 ® [o,T].

E

Proof: For f e F we have

(2.6) 0= f (VtL (Wf) + Wi L(v))dxdt
Q®[o,T]
—vt(wial) - wf (vxal)
div . dxdt,
f f
= x,t -—vt(wxan) - wy (ann)
a®[o,T]

Wf +fA'
ptvt Wx Vx
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where, for convenience, we have suppressed the arguments in the integrand

and the column vectors ai(x) are the columns of the symmetric matrix A(x):

Ax) = (al(X), as(x), ..., an(X))-

Applying the divergence theorem to the second member of (2.6) we obtain

(2.7) 0= f (pwivt+wiAv;<)dx
Q® (T}

f f
-f (ow, v, +w_Av )dx
Q@{O} t t X X

f f
- (v. W_ A7) +w,_(v_AT7)) dsdt.
fF@[O,T] tox box

Using (2.5), (2.2), respectively, in the first two members of (2.7) and (2.2),

(2.4) in the third member we obtain

(2.8) f (p (x) wi (x,T)‘\\/'T‘(x) + Wi(X,T)A(X) QIX(X)‘) dx = f (vt f) dsdt.
Q ‘ r®fto,T]

From the definition of <, >P we see that (2.8) becomes

u}

(2.9)  <w'(-,m), wf:(- ,T));(G,Gt)> g = f (vif)dsdt
" Yr®lo,T]

The right hand side of (2.9) vanishes for all f e F if and only if v, (x(s),t) =0,

(x(s),t) € I‘1® [0,T] and thus the proof is complete.

Theorem 1 is fundamental in the proofs of the controllability theorems of

the subsequent sections.



3. The Time TO

In order to state and prove our theorems on approximate controllability of

(2.1), (2.2) we must employ the concept of a characteristic surface for (2.1)

n+1
in R . This concept is treated in detail in [6], for example, but we give a

brief description to make our presentation somewhat self-contained.
) n+l |
Let S be a surface in R given by

S = {(x,t) | o(x,t) = 0}

where 0(x,t) is a smooth real valued function of n+1 variables. We define

the characteristic form

x(0,%,1) = p () (2,65,)% = 0_(x, DAY B ', 1)

The surface S 1is: characteristic if x(%,x,t) =0 for (x,t) € S ; uniformly
space-like if 3 & > 0 such that x(®,x,t) > & for (x,t) € S ; uniformly
time-like if 3 6> 0 such that x(9,x,t) < - & for (x,t) € S . For what is
usually called the wave equation p (x) =1 and A(x) =1, the nxn identity
matrix, a surface is characteristic if and only if it everywhere makes an angle
of 45° with any intersecting surface t = const. It is this special case that
we will use in our diagrams since it is less confusing than the general case.
Let (xo,to) e (Q UM [0,T]. We define the forward cone of influence of
(xo,to) to be the subset K+(xo,to), the largest closed subset of @ UI‘)@[tO,T]
which contains (xo,to) and does not meet any uniformly space-like surface

passing through (xo,to). Similarly we define K (xo,to), the backward cone

of influence of (xo,to), by replacing [tO,T] with [O,to]. It is easy to see that
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K+(xo,to) and K_(xo,to) have characteristic boundary surfaces. When

p(x) =1, A(x) =1, we have K+(XO,O) = ((x,t) e (QUT)® [o,tr]it2 - Hx—-xo []2 > 0}

If G is a subset of QUI' we define forward and backward cones of influence

of (G,ty) by

k'et)y= U K'x .t)
(@] O O
erG

K (G,to) =U K (Xo,to) .

x eG
0
Let t_, t, liein [0,T] and let G € QUT'. We define
K(G,t ,t.) = K (G,t) N K (G,t.)
’ OI 1 - ’ o ’ 1 .

Since the coefficients of the operator L do not depend upon t, K(G,to,tl) is

symmetric about the plane t = 3 (tO + tl) .

The fact that A(x) is uniformly positive definite can be used to prove
that there is a least time TO > 0 such that K+(I“1 ,0) includes the set
QX {TO}. Then K(PI,O,ZTO) also includes Q& [TO}. It T> ZTO there is a

@ > 0 such that K(Pl,O,T) includes Q® (t} for |t -

[\CRTEE

| < a. If T< 2T  the

set
16) =2® (5 ) - K(,,0,T)

2
is a non~empty set. For p(x) =1, @ = unit discin R, Figures 1-4 illustrate
the geometry of the situations described above both when 1"1 = I" and when I’l

is a small sub-arc of T.
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Fig. 1 T‘l is a subarc of I T < ZTO Fig. 2 Fl =T
T< T< ZTO

{ ~_ Q® (T)
T T

Fig. 3 T’l is a subarc of T Fig. 4 FI =T
T> 2T T> 2T,
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4, Non-controllability for T < 2Tg

Since the reachable set RT is a linear subspace of the Hilbert space HE'

RT fails to be dense in HE just in case there is a non-zero element of HE

which is orthogonal to all elements of RT' In view of our definition of HE
in terms of equivalence classes of states in Hl modulo the zero energy states,

we see that R_, is dense in H_ if and only if the equations

T E
f A f A
(4.1) f (px)wW (x,T)v (%) + w_(x,T)A(x)V_(x))dx =0,feF,
Q t t X X
A A ~ A
where v, A is a fixed element of Hl' imply that A = 0, v = constant.

When T < ZTO the subset J of Q given by

7= (x| x3) e T6G))

is a non-empty open set. Let v(x), vt(x) be a state in Hl such that (i)

~ ~ e}
v(x), vt(x) has non-zero energy norm (1ii ) v(x), vt(x) e C () and vanish
outside a compact subset of the interior of 7J.

We now permit the state ?/(x), \Nzt(x) to evolve, via the partial differential

equation with

We put
A
(4.2) V(%) = vix,T), \'>t(x) = v (x,T)
and note that (2.1), (2.4) imply conservation of energy so that

1&g = v, vl # o.
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Now our requirement (ii) on \7, ?;t guarantees that v(x,t) € Coo (Qf[o,T),

as does wf(x,t) for each f € F. This enables us to apply Theorem 1 to show that
(4.1) holds if and only if v (x(s),t) = 0 for (x(s), t) € rl.@ [o,T].

It is easily seen that the fact that K([’l .0, TYNT = & implies that the

interior of K(F1 ,0,T) does not meet K+(I,g') UK (I’—ZI)’ the cone of influence of

(T,‘g‘ . Well known results for hyperbolic partial differential equations [6] then
show that v(x,t) =0, Vt(X,t) =0 in K(l"l,O,T). But Fl R [0,T]lc K(FZ,O,T) so
we conclude that vt(x(s),t) = 0, (x(s),t) € FIQ"Q [0,T]. Therefore (4.1) must

AN
hold for the non-zero energy state v, v, and we have proved

Theorem2 The system (2.1), (2.2) is not approximately controllable in time

T if T< 2T,.

This theorem may be compared with comparable results [1],[2] for hyperbolic

systems in one space dimension.
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5. The Holmgren-Fritz John Unigueness Theorem

The uniqueness theorems of Holmgren and Fritz John [8],[9], applied

to the case we have in mind, reduce to

Theorem 3 Let u(x,t) be a twice continuously differentiable solution of

L(u) = 0 (cf. (2.1)) in K(pl,to,tl), [to,tl] < [o,T], with

(5.1) uX(X(S),t)A(X(S)) n(x(s)) = 0
(x(s).t) e n®[t_.t,].
u(x(s),t) =0 '
Then
(5.2) ulx,t) =0 in K(ry.t.t)

The proof of this theorem is detailed in the works cited. However, we
need to strengthen the theorem somewhat for our needs and this strengthening
requires that we have some details of the proof. For this reason we give a
short proof of Theorem 3. An important part of the proof is the lemma stated

below, which we do not prove. See [9] for details in certain cases.

Lemma f (>_<:,:c_) lies in the interior of K(rl,to,tl) there is a uniformly time-like

family of surfaces S(A ), 0 < X < 1, with the following properties:

(i) S(\) is a compact subset of a relatively open analytic n-1 dimensional

surface;

(ii) S(\) varies analytically with respectto A, 0 < A < 1}

(iii) S(\) < K(pl,to,tl), 0 < A< 1, and S (0) is a subset of the interior of

Il@ [O,T];
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(iv) If 0< A< 1 then S(0) U S(\) is the boundary of an open subset

D(\) ¢ K(f,t ) and (x,t) € D(I).
Assuming this lemma, we proceed with the

Proof of Theorem 3. The uniformly time-like character of the surfaces S ()\)

together with the analyticity of these surfaces enables one to employ the
Cauchy-Kowalewski theorem [6] to show that there are n dimensional
neighborhoods N()\) of the surfaces S(\) such that if analytic Cauchy data
for z are prescribed on S(\) there will be a corresponding unique analytic
solution z(x,t) of L{(z) = 0 in N(A). Since the equation L(z) = 0 is linear,
N(») depends only on S(\), not on the particular Cauchy data. Moreover,
N(M\) varies continuously with A, 0 < A < 1 . Thus for sufficiently small

A > 0, S(0) € N(\) and the analytic solution z(x,t) is defined throughout the

domain D(M\) which is bounded by S (0) and S(\). We consider the identity

(5.3) 0 = [ (uL(z) - zL(u)), dxdt

i D()\.)
. —uzxa1 + zuxal
div . .
= [ x,t . . dxdt
Y D(A) ~uz_ a + zu a
X n X n
puzt - pzu,
=[ (~uz_An + zu An + 1 _puz, -1 _pzu)do,
“S(0)US(\) X h2d 0 t e} t

where d6 denotes integration with respect to surface area on S (0) US()\) and
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(?] ) is the unit outward normal to S(0)US(\) in Rn'H , defined in the relative
o

interiors of S(0) and S(}). We observe that no =0 on S(0), and that (5.1)
holds on S (0) since S(0) ¢ 1—l® [0,T]. Thus (5.3) reduces to
(5.4) ‘/WSO\)(u(T]Opz,E - zXAn) + z(noput - uXAn))dd = 0.

We choose analytic Cauchy data for z on S(\) as follows: we put
z =0 on S(\) and we take the normal derivative of z across S()\) to be an
arbitrary real valued analytic function a¢, i.e.,
(5.5) z(x(6), t(6)) =0

(x(6),(6) & S(V).
(5.6) 2 (x(6), (6N (6) + 2,(x(6) ,£(6)) 1 _(6) = @(6)

The equations (5.5), (5.6) together imply that

(5.7 (z_(x(6),t(6)), 2 (x(6),t(6)) = a(6)(n'(6),n_(6)), (x(6). t(6)) € S(A).

Substituting (5.7) and (5.5) in (5.4) we obtain

2
(5.8) f uap(n,) - n'An)ds = 0.
S(\)
Since S(M\) is uniformly timelike we have

(5.9)  p&EN(M OGN = 1 (OWEEN(E) = BE) < - B < O

for all values of the vector 6 parametrizing S(\). The equation (5.8) becomes

f uapfds = 0.
S(\)

Since this equation holds for all real analytic functions @ , we conclude

u(x(0),t(6)) B (6) = 0, (x(6), t(6)) &S (A)
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and, since (5.9) shows that B never vanishes we have

u(x(6),t(6)) =0, (x(0),t(c)) € S(A).
Repeating this argument on surfaces S(i1), 0 < i < A, which sweep out the
interior of D(\), we conclude

u(x,t) =0, (x,t) € D).

We now let I denote the largest subinterval of [0,1] which includes 0

and has the property that u = 0 on S(A\) if A el. We have seen above that I
is non-empty. Essentially the same technique can be used to show that I is
open. But it is obvious that I is closed and we conclude, from the connected-
ness of [0,1] that I =[0,1]. Thus

u(x,t) =0, (x,t) € D)
and, since (x,t) € D(l), we have

u(x,t) = 0.
Since (x,t) is an arbitrary point in the interior of K( 5} ,to,tl) and since u is

continuous in K(Pl’to’tl) we see that (5.2) follows and the proof is complete.
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6. Controllability for T > ZTO, n< 3.

A A
Let the state (v, Vt) lie in the finite energy space H_ and suppose that

E

forall f € F we have

A

6.1 f Lo, )% () + W (A dx = 0
6.0 [ (Pl D0 + W (IAGIT, G = 0.

A A
If this implies Vt(X) =0, vVv(x) =const. then R_ 1is dense in the Hilbert space

T
HE and we have approximate controllability.
Let wv(x,t) be the generalized solution in Q ® [0, T] of the partial
differential equation L(Vv) = 0 corresponding to homogeneous boundary conditions
(2.4). If v{(x,t) were smooth, say v ¢ C3((Q Ur)®I[o0,T], the proof of our
controllability result would not be difficult. Applying Theorem 1 we would get
vt(x(s), 1y =0 for (x(s),t) e rl ® [0,T]. Putting u(x,t) = vt(x,t) we would have

a solution of L(u) = 0 satisfying the hypotheses (5.1) of Theorem 3 and we could

i

conclude v, Zu =0 in K(rl,O,T). If T> ZTO the set K(rl,O,T) includes

t
T T . . T T ‘
Q@['Z- -85+ g ] for some & > 0. If v, vanishes in Q@[-Z- - g, 5+ e]
n
then vtt(x,-zr-) = 0 which would imply 2 (01 (X)V x,'é-)) = 0. Thus
i,j=1

v(x,z) would be a solution of the elliptic boundary value problem
n
(6.2) (o (X)V(XI)) =0, x 8
’ ij ivr2t !
i,j=1
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(6.3) v (x(s), 3) A(x(s)) n(s) = 0, x(s) & T.

It is clear that the only solutions of (6.2), (6.3) have the form v = const. Thus

).

we would have vt(x, l) =0, vx(x, -g-) = 0 which would show that (v(-,

N

vt(- , -]:-)) = 0. Since solutions of L{(v) = 0 with boundary conditions (2.4) con-
TaliVal
serve energy, we could then conclude g(v(' .T), vt(- [T = é"(v,vt) = 0, so
A A
that v, = 0, v = const. and the proof would be complete. In fact, under these
conditions we could obtain the result for T = ZTO also and there is nothing
special about n < 3,
Unfortunately we are not at all justified in assuming such smoothness for
A AN
v(x,t). A rigorous proof requires that we allow (v, vt} to be an arbitrary finite
. . N 2 A 2 )
energy state. All this gives us is that v, eL () and v, e L (Q),i=1,2,...,n.
The generalized solution v(x,t) is no smoother. For this reason it becomes a non-
trivial task to justify the argument presented above. In the present paper we will
give such justification only for n< 3, T > ZTO. The result undoubtedly remains

true for larger values of n and for T = ZTO but rather involved arguments seem to

be required. Fortunately, n < 3 includes most cases of physical interest.

A A
Theorem 4 . f (v,/\\/t) € H_ is such that (6.1) holds forall f € F then vt?_ 0,

E
A
v=a const , providedn< 3, T > ZTO . Thus the system (2.1), (2.2) is _approximately

controllable in time T > ZTO when n < 3.

Proof Let v(x,t) be the generalized solution of L(v) = 0 with homogeneous boundary
A A
conditions (2.4) and satisfying the terminal conditions v(x,t) = v(x), Vi (x,T) = Vt(X)°

N A A A
Let (v, vt) be a sequence of states in H,_ converging to (v, Vt) in the energy norm

E
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A ~k
as k — o, Moreover, vk(x), vt x) ¢ COo (2 UT) and satisfy the consistency

conditions
Nk
(

(6.4) v (x(s)) A(x(s))n (s) = 0, x(s) e T.

A A
One way in which this could be done is to expand v(x), vt(x) in terms of the

eigenfunctions cpj (x) of the operator B introduced in (2.3):

A _ = A ‘ i

9= ) ee 6o, V=) 8oyt
j=0 j=0

and take

k k

A S

Feo=) eae. v 8o e
=0 =0

For k=0,1,2,... let vk(x,'t) be the Coo solutions of L(vk) = 0 which satisfy
the terminal and boundary conditions

vk(x,T) = \Afk(X), v]t( (x,T) = 3}: (%)
(6.5)

k ‘
v (x(s),t)A(x(s))n(s) =0, (x(s),t) e " &® [0, T].
It is known ([6], Chap. VI) that for each fixed 1:1, 0 < tl < T, the states

(vk(-,tl), V];("tl)) converge to (v(',tl), Vt("tl)) in the space H_, in fact

E

this is just a consequence of the energy conservation.
Since

~ k Ak
(6.6) im (@5 - &5, ¥, =0

k-—-»OO
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and (6.1) is assumed to hold we have

lim f[pwfsk—}-waQk ]dxzo.
t X b4
k-——-»OO Q

Performing a computation similar to that and in the proof of Theorem 1 we conclude
that for each fixed f € F

k
(6.7) lim f v, f dsdt = 0.
KT T @01

Let us now define functions D - v,j=1,2,..., for x € Q by
_]_ t
(D v)(x,t) = f v(x, T)dT ,
T

, t .
(0 0oy x, 1) = f (D v)x, )dr.
T
. -j ko . . e : k .
We define D "v  similarly and verify without difficulty, since the v satisfy
the evolution equation (2.3), that

2 . . j-1 j-2
— — — N -
6.8) = oIS sppdSpk D ok D
i t (=11 G-2)1

Ky (1)

(D—jvk)('l") - (D Iy .

0,
for j > 2.
A result proved in [14] (Theorem 1.19, p. 486) shows that the inhomogeneous

linear initial value problem

dzr
— Br = g(t), r(T) = rt(T) =0,
dt
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. 2
where g: [0,T]—~ L (Q) is continuously differentiable with respect to t, has a

2
unique solution r such that rtt(tl) el () and r(tl) lies in the domain

2
A(B)c L (Q) of the unbounded self adjoint operator B for 0 < tl < T,

Moreover it is also shown in the theorem cited that there are constants Mo' l\/[1

such that
©.9) Bricpli<s Mo osup gl o+ M, sup o (0]
0<t< T 0< 1< T
uniformly for all t, € [0,T], where || || denotes the usual norm in LZ(Q), and

it is also shown that Br(t) is continuous in t with respect to the norm | ||.

Applying this theorem we see that for j >2 D) v lies in A(B) and solves

2 » -1 -2
6.20 @y + pply= S, SO
dt t (j-1)! (j-2)!

(> ) (1) = (D"jv)t(tr) - 0.

Further, (6.9) together with (6.8), (6.10) shows that

6.11)  lim [BO (-, 1 - D IVE

k\-—-»OO

Y, =0

uniformly for 0< t< T.

Now the operator B is uniformly elliptic and we can apply known results from
the theory of elliptic boundary value problems ([15]}, Theorem 9.11, p. 132 and
remarks, p. 148) to show that the fact that D-j v € A(B) together with (6.6)
implies that D_j v(+,t) lies in the space HZ(Q) (for definition of Hm(Q), see
[16)) for 0< t< T, | (D_jv) (+,1) “Z,Q is continuous and uniformly bounded for

0<t< T, and
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(6.12) im | 7w, - 07 L I =0

k——-OO

uniformly for 0 < t< T, wherc ][ is the norm in HZ(Q), the sum of the

2,0
integrals of the squares of the partial derivatives of order < 2.

The theorem of Sobolev ([15], Theorem 3.9, p. 32) states that if r e Hm (93]
then r can be modified on a set of measure zero so that r € Cl(Q UT), provided
J/ is an integer such that £ <t _121_ . For m=2, we have 02 —% when

n< 3so, for such n, r & H,(Q) implies r € c® (Qu ). Moreover, if | “s

denotes the usual "sup" norm in C® (Qu '), we have
I llg<e lirll, g+e lirl.

Applying these results with r = D—Jv, j >2, the uniform boundedness and
continuity of || (D) (-, 1) HZ Q and (6.11)we conclude that (D 7v) (x,1) is continuous

for (x,t) € (QU T [0,T] and

(6.13) im (D) &1 = (D7) (x,1)

k —— OO
uniformly for such (x,t).
-2
Having now obtained the continuity of (D ~v) (x,t) we return to (6.7). Integrating

by parts three times we conclude that for all f € F

) -2 k 3
lim f (D v )fttt ds dt = 0
n®[o,1]

k i OO
which with (6.13) implies

A 3
(6.14) [ (D ) fttt dsdt = 0, f € F.

A

n,® fo,1]
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Taking account of the fact that { and all its derivatives vanish outside a compact
-2

subset of rl® [0,T], (6.14) implies that (D " v) (x(s), t) is a polynomial in t of

degree at most 2 whose coefficients are continuous functions of x(s), for all

(x(s),1) e T;® [0,T].

Let © be a small positive number, We define the third order difference

3
A r(x,t) =r(x,t+ 30 - 3r(x,t+208) + 3r(x,t + 8) - r(x,t)

for any function r defined onQ ® [0,T - 356] and possess all smoothness properties

-2 -2
of r(x,t). Applying this difference operator toc D v and D vk we obtain functions

M, 1) = (DY) (x,1).
3

(6.15)
1) = £ (D) 1), k=0,1,2,....

From (6.8), (6.10) we see that

dzﬁ A
L(G) =" + Bu =
dt
2 k
L(uk) = d uZ + Buk =0,
dt

the uk satisfy the homogeneous boundary conditions
k
(6.16) u x(x(s),‘c) A(x(s)) n(s) = 0, (x(s),t) eT®[0,T-35]

while ﬁ(x,t) is continuous, ﬁ(- ,t) lies in A (B) (which means G(x,t) satisfies the
boundary conditions Gx(x(s),t)A(x(s))n(s) =0, (x(s),t) e r®[0,T - 35] in some
sense which we need not specify) and, from the fact that D~Zv is a polynomial

of degree at most 2 on I“I(X) [0,T], we have
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(6.17) GMGLUEO,(M$A)8q®[mT—3M.

Now we refer back to Theorem 3, or, more precisely, its proof. We let

t =0,1t

o 1 ° T - 356 and define the surfaces S(\) as we did there. We define =z

as we did there and put uk in place of the function u of Theorem 3. Repeating

the calculations following (5. 3) we see that

/ (—ukzXAn + zu]:{An +N,P ukzt - T]Opzu];)dcpz 0
“S(0)y US(N)

On S(0) we have no(s) = 0 and u};An = 0., Defining « and B as in the proof

of Theorem 3 and recalling z =0 on S(\) we have

[ ukozﬁ do ukzxAn dsdt
“S() “s(0)

1
—

Now uk converges uniformly to ﬁ in (QUT)Y®[0,T -38], so we have

/ﬂ Qap ds = [ GZXAT]det-‘—‘O

“S(\) © 5(0)
since 1 obeys (6.17). As in Theorem 3 we conclude that =0 on S(\). A
continuation process similar to that described in Theorem 3 can be used to show that
i=0on every surface S(\), 0< X < 1. Then, just as in Theorem 3, we conclude
that

(e, 1) =0, (x,1) eK(, 0,T - 30),

Now if T > ZTO, we have

O® [3 - e 5 + el € K(,0,T - 39)

if & and © are both chosen sufficiently small. (We need €+ 35 < % - TO.)

Thus we have, for small € and o,
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AN

(6.18) G(X,t) EO,XEQ,%‘ - g t <

N3
-+
m

Returning to the definition (6.15) we see that if (6.18) holds for all small & , then

T

it must be true that for I . e t< >

-2
> +e (D v)(x,t) is a polynomial in t of

degree not greater than 2 with coefficients which are functions of x lying in

-2 -2
A(B) (since D "v € A (B)). Differentiating D “v twice with respect to t in

% - < t< :Zr- + € we see that there is a function v(x) with ¥ & A (B) such
that
v(x,t) = V(x), x €Q, %"— e £t §+ €.
dZv
But if v(x,t) is a generalized solution of > + Bv = 0 such that v & A(B) and
dt

v(x,t) is constant with respect to t then we must have
B v(ix,t) =B v x) = 0.

But the only elements ¥ € A(B) for which B ¥ = 0 are of the form ¥ = const.

T

Therefore, for L. £ <t< > + €

> <

const., vt(x,t) = 0.

il

{IV(X)

Hl

v(x, 1)
Since the energy associated with the generalized solution v(x,t) is constant, we
conclude that v(x,t) = \’?(X) = const. , vt(x,T) = Qt(x) = 0 and the proof of Theorem 4

is complete.
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