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1. Introduction

In [Mangasarian - Schumaker (1969)], some generalizations of the basic
ideas of spline functions were developed by considering certain minimization
problems under a mixture of discrete and continuous inequality constraints,
extending concepts in [Atteia (1968), Golumb-Jerome (1969), Jerome-Schumaker
(1969), Ritter (1969)]. Sufficient and sometimes necessary conditions for a
function to solve the minimization problem were presented via optional control
techniques, but no computational methods were discussed. In the present paper
we shall analyze the convergence of simple discretizations of the problem, such
discretizations in many cases being finitely solvable by standard quadratic pro-
gramming methods. Let us first define the problem.

Let m be a positive integer and let 1 <p< . Fori=1,2,...,k, let
1\/Ii be not identically zero linear differential operators on [0,1] of degree less

than m, and similarly for Ni’ i=1,2,...,n we write

m-1 m-1
M, x = z by (1) X(J)(t), N, x = z cij(t) x(J)(t) .
j=0 1=0

We allow k = 0 and n = 0. Let L be a linear differential operator on [0, 1] of exact

degree m,




m
z t)x (), am(t)}/ 0in [0,1].
=0

Let W 'P be the Sobolev space of real valued functions x on [0,1] such that

(m-1) (m

X is absolutely continuous and x ) £ Lp(O, 1) . Then our minimization

problem is to

1 ~
minimize  f(x) = f |z (1) | P dt
0
over C=(xixeW P a(< Mx(< B (1) frogts 1, ) (1-1)
i= 1,...,k,vi£ Nix(éi)g bi for i=1,...,n}

./
where ozi and ﬁi are given functions, the ’yi and 61 are given scalars, and the
éi are points in [0,1]. Some simple generalization is possible by allowing one-
sided constraints or by allowing the Ni to be difference operators but we shall
not consider this here. It is shown in [Mangasarian-Schumaker (1969)] that,
if C is nonempty, if 3 € Cj[o,l] forj =0,...m, ifbij eClo,1]fori=1,

k and j=0,...,m-1, 1fcl e C[0,1]for i=1,...,n and j=0,...,m-1, and
if ozi and Bi lie in 1\/[i wheP fori=1,...,k, then there exists a solution x¥%

to the problem in Equation 1.1. We shall assume the above hypotheses to hold

throughout the ensuing discussion. Since the solution x* may hit the boundary

of C at unknown points, perhaps countably many times, the computation of x*

is difficult. One obvious way to handle this is as follows.



Let h > 0 be some mesh size, say h ==, and let [0, 1] be partitioned by

O |-

1
‘ci =ih, i=0,..., - = Q; we suppose that all the points é’i lie on this mesh for

all h to be used, that is, e is an integer (this assumption is not necessary

but simplifies the notation). Qur first discretization consists in merely re-

placing the continuous constraints by discrete ones, that is, we

1
minimize f(x) = | |Lx(t)|Pdt

I

-0
over Cl(h) = (xpx eW , ai(tj) < Mix(tj) < ﬁi(tj) for (1.2)

j=0,...,Q,i= 1,...,k,'Yi£ Nix(ﬁi)g Bifor

i=1,...,n}.

J

As analyzed in [Ritter (1969)], this problem can be solved in the common
case of p = 2 in finitely many steps by minimizing a quadratic function of
2k(Q + 1) + m + 2n variables subject to 2k(Q + 1) + m + 2n linear inequality
constraints. We shall prove the following (Section 2, Theorem 2.1): All weak

m, . .
limit points (in the W P sense), at least one of which exists, of a sequence of

solutions to the first discretization in Equation 1.2 must solve the original

problem of Equation 1.1; if the solution to the original problem is unique, the

approximating solutions converge to it wH P weakly and in particular the function

and the first m-1 derivatives converge uniformly.




If one must take h very small to obtain a reasonable approximation to
x*, one might well be satisfied to have only approximate values of x* at the
grid points t; rather than throughout [0,1]; if x*(t) were desired and x*(ti)
was accurately known, unconstrained interpolation could be used to generate
a reasonable approximation to x*. Thus we are lead to a second, more complete,
discretization. If z is a function defined at least on the mesh points

= Q, let D= D, be the operator such that

h

i=0,1,..., Q-1. We then have

p?

b .

1 £-i

Z (ti) == Z (-1) (j) z (ti+j) as a natural analogue of the / - th derivative

b
j=0

of z. We therefore define

m-1
_ I . _
Mi,hz(tj) = biﬂ(tj)D z(tj), 0 i€ Q-m+1,
L=0
m-1
‘ 2
= <ji<Q-
Ni,hz(tj) ciz(tj)D z(tj), 0<j<Q-m+1,
=0
m
y/
= < '< —-
Lhz(tj) z ag(tj) Dz(tj), 0< i< Q-m
=0

Qur second discretized problem is now to



Q-m A
R _ p
minimize fh(xh) h z ILhXh(th
i=0
_ A T Q+1
over Cz(h) = {xb, xh- (xh(O),Xh(tl), v ,Xh(l)) e R s
ﬁ (1.3)
-Eh + ozi(tj) < Mi,hxh(tj) < ﬁi(tj) + Eh for j = 0,...,
Q-m+1,i=1,...,k, —e, + 'yiS Ni’hxh(éi)s‘ 51+ &
fori=1,...,n}.

J

Here Eh' which tends to zero, gives a small expansion of the constraint set as

h — 0. 1f some such expansion is not allowed, the set Cz(h) can be empty
[Daniel (1969b, 1970)]; as will be clear from the use made of the expansion by
Eh’ constraints of the form a(t) < x(t) < B(t) or « < x(&) < B need not be
expanded. This problem in the common case of p = 2 can be solved in finitely
many steps since it involves a quadratic function of Q + 1 variables subject

to 2k(Q - m + 2) + 2n linear inequalities. Since in general Q = —1%1- is large,
seeking only approximations to x*(ti) reduces the difficulty considerably. Under

slight additional hypotheses on the problem, we shall prove the following,

roughly stated (Section 3, Theorem 3.1): All Wm,p weak limit points (of certain

"interpolations'), at least one of which exists, of a sequence of solutions to

the discretization in Equation 1.3 must solve the original problem of Equation 1.1;

if the solution to the original problem is unique, the ("interpolations" of the)

m,p

approximate solutions converge to it W - weakly and in particular the function

values and the first m - 1 divided differences converge uniformly to x% and its

first m - 1 derivatives.




2. Analysis of the first, simpler, discretization.

. m
We have yet to define a norm on the space W ’p; two common norms,

which are equivalent as is well known, are

1

nr 1 ‘ S
<=y [ 10 Pa®

; 0

i=0

N p by o 115
llxlllf{izllx(@i)l +f0 1% (1| Pat)

for 0 < 91 < 82 <L .. < em < 1 . For some positive a, A, we have
alxll, < lIxll, < allxl for all x in WP, as is well known.

From the computational standpoint, serious difficulties arise if the original
problem, Equation 1.1, admits solutions of arbitrarily large norm. For example, the
the functions xn(t) = n form a minimizing sequence (in fact, they are all solutions)

(1)(t) < 1 but has no

for fl Ix(z)(t) [Zdt over the set of x satisfying 0 < x
conve?gent subsequence., In this situation our analysis to follow could not
guarantee that the approximate solutions have limit points; to avoid this we must
eliminate problems admitting solutions of arbitrarily large norm. We pause to
see what this means. For 0< £< k, let SE = {(xx ew™ P, Lx= o0, Mix =0
for1 < i< £, and Nix(ﬁi) =0 for 1< i< n}. Itis shown in [Mangasarian-
Schumaker (1969)] that, if dk+l is the dimension of Sk and if dk-!—l-—j is the

i i f - < i< i i i
dimension o Sk+l—j Sk+2-—j for 1 € j £ k, then there exist points @,@,i with



0< 6@1<6£2<...<8 <1 for 1< £< k + 1, with the points

,@,d‘g
dk-l-l
{9k+1 i} , being completely arbitrary in [0,1], such that
‘\
kK dy A1 n
_ D p p
el =0 ) ) M@ P ) ety g )17 ) N
b= j= i= i=
1 j=1 i=1 i=1 2.1)
1 1
+ f |Lx(t) | Pdt )P
0
./

L..m, ) _
defines a norm on W p. We remark that if for some Ilo one has Mg X = x,

¢}

then one may take dgo = m, all other dg = 0, eliminate the sum in Ni from the

Equation 2.1, and take arbitrary distinct points for 8, ;to define the norm.
OI

By the usual Sobolev inequalities it is simple to show that this norm is in fact

equivalent to H]]O and HHl

Lemma 2.1 |+ is equivalent to |- Ho and |- ][1 .

Proof: The existence of an A' such that |[x| < A Hle for all x in

a1, R . P 1
' p is clear from the usual Sobolev inequalities; we ask whether or notan a' > 0

m,p

exists such that |[|x]|| >a'[|x]| .- lfnot, we can find x eW such that

mlpl H ‘ ”

Hxn |—o0but [x “1 = 1; by the weak compactness of the sphere in (W 2

we may assume x _ converges WP ;) - weakly to some x in whP,

Since L 1is bounded from (Wm'p,

|-Hl) into 1.2(0,1), since M, and N, are

bounded from (Wm'p, -l

1
,) into C[0,1], and since f len(t) |Pdt

0




tends to zero, we have ||x|| = 0 and thereforex=0. Since x converges uniformly to

1
x and HX'n”l = 1, we have f IXrEm)(t) |Pdt converging to 1. Then
0

1 1 1 1 p m-l ' 1
Lz (1) |Pati® > Byx™ ey [PgeaP - e D gy 1Py P
{/;lxn ) [Pat) {fo la_ ™ (1) Pt {fo IZO a, (0 (e) [Pat)

which then is bounded away from zero since |am(t)| > €> 0 for some ¢,

1

since [ Ix;m)(t) |Pdt — 1 , and since xg) converges uniformly to M=
0

for 0 < i < m-1. This contradicts Han — 0. Q.E.D.

Now for any x in C, the values [ng(% ) |, lNix(gi) |, and

1

[ [Lx(t) ]pdt (since f(x) < f(x*)) are uniformly bounded. Thus C will be bounded
~0

if and only if the {lx(e j) I} are uniformly bounded for 1< j < d If

k+1, k+1°

d = 0 this is certainly true; if d

0, th ' f ;
k+1 K+1 % there exists a nonzero function =z

in Sk and thus x* 4+ @z eC for all scalars @ and f(x* + az) = f(x%). Therefore
the original problem admits of an a priori bound on its solutions if and only if

dk+l = 0. We hereafter assume that dk+l = 0. Computationally this may be

accomplished simply by adding one continuous constraint ‘x(t)l < E for some

large E or m discrete constraints Ix(ei)] < E and thus this is not a



computationally significant restriction. Adding |x(t)| < E means that we may

use as our norm the simple expression

1 1

m
z |x(ei)|p+f | Lx(t) | PdtyP . 2.2)
0

i=1

We hereafter assume that the points 6 g3 of Equation 2.1 are mesh points

for all h use‘d. if some sz X = x, then we need only assume that the m points

61 of Equation 2.2 are mesh points for all h used.

Now let, for Q = be a solution to the simple discretized problem

1,
h %O

of Equation 1.2; C,(h) is not empty since, in particular, ¥ & C . (h) where x*

1

solves the original problem. Since f(x*) < f(x*), since IMﬁx*{g (Q,Q,j)] <

Q)

max “a)g(@ﬂ,j”’ B ( )]}, and since le’" (ﬁ )| < max (] 6ii,['yil}

E ﬁ

is not

we conclude that Hx

Q

necessarily in C; it is however "near" to C as the following more general

lemma demonstrates.

Lemma 2.2 If x e WP and -e+ @ (t) < Myx(t) < By(t) + € for

i=1,...,kandj=0,...,Q, then - (e + n,(h) + &, (t) < Mx(t) < B,(1) + (e + n(h)

for 0< t< 1, where
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, L 1)1 1
ny=max | ([ 188w PagP, ([ e w(Pae® (67 4 m k) 0
0 0

1,1 )
+ HxHOwi(h) where =+ 0 = 1, ]big(t)l < B, ]bive(tl) - bw(tz)] <

< w,(h) if ]t1 - t, |<h, £=0,...,m-1.

Proof: For the upper bound,

Mpx(t) = By (1) = Myx(t) - Mpx(t) + Myx(t) = By(t) + B,(t) = B,(1) .

Since
t

m, p 1,p (1)
8, & M, W™ PC WP, (B0 - B (1) < ft RICIEE
j

1 1

1 —— —
< {f ]ﬁ.(l)(t)ipdt}p It -t |T. For |M.x(t) - Mx(t,)] <
0 i j i i
m-1 1
) 7
b, - b, (0% () | < B x|t - g%+l w (et )
1=0

arguing as for B,. Thus letting tj be such that |t - tj | < h, we have
e d
M. x(t) - B.(t) < e+ {f 8. ()| Paty +B. x| _|h + x| _w.(h). Similarly
i i o b i o o i

for the lower bound. Q. E. D.

, are Holder continuous with exponent greater than
1

or equal to é, then INi(h)l < Fhd for a constant F uniformly bounded when-

We note that if the bi

ever [x] is bounded.
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m,p

Lemma 2.3 1If functions x.. e W satisfy - €. + o, (1) < M., x-(t
Lemma 2.3 0 y 0 ;1) ; Q( )
for i = P S - . < ) < ,
< Bi(t) + EQ ori=1, k and SQ + Vl NiXQ(él) 61 + EQ for
i=1,...,n,if lim EQ =0 and if XQ converges wh P weakly to x, then
Q"‘" o0
x e C.

(1) ()

Q

Proof: This is obvious since x'(t) converges to x ~'(t) for each t in

[0,1]for 0< j< m -1, and the constraints involve derivatives of order at

most m-1. Q. E. D.

Lemma 2.4 As £, >0 tends to zero, the minimum of f over the set

Q

C€Q= (%% E‘Wm,p' - +ozi(t)§ Mix(t)g ﬁi(t)+e for 1 £ i< kand

“Q Q

< t< - ‘ ‘ < < i< nle
0< tg 1, EQ+ Yig Nix(ﬁi),_ 61+ EQ for 1 < i< n} converges to the

minimum of f over C.

Proof: Clearly each set Ca is weakly closed, and for the minimization

Q

problem over CE we may restrict ourselves to those x satisfying f(x) < f(x*)since

Q

x*eC_ , where x* minimizes f over C. Since, forall x in this set, x|l

Q

is uniformly bounded, the weaklylower semicontinuous functional f attains its

minimum over the weakly compact set C_  at some point x,. Since HxQ I

Q
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is uniformly bounded, we may assume that XQ converges weakly to some x,

which must be in C by Lemma 2. . Thus f(x) < lim inf f(x,.)
Qo O

) < f(x%) for all Q. Thus lim f(x
Q—-»OO

< lim sup f(x.) < f(x¥) since f(x )

Q Q Q

= f(x*). Q. E. D.

We can now prove our discretization result for the simpler discretization.

Theorem 2.1 Let the general assumptions of Section 1 hold and let the

fixed points 9, ; defining the norm | - || in Equation 2.1 (or 6, in Equation 2.2)

als
i

be mesh points in our discretization for all h. Let XQ £ Wm,p solve the problem
of Equation 1.2, that is minimize f(x) over Cl(h)' Then f(x;) converges to
f(x*) and all Wm,p weak limit points, at least one of which exists, of (xé} o

minimize f over C; if x* minimizing f over C is unique, then x_ con-

Q
3 sk (l) *(i)

verges weakly to x"‘, that is, XQ converges uniformly to x for

(m) (m)

0<i<m-1 and x. converges Lp - weakly to %

Q

Al
o

Proof: Arguing as in Lemma 2.4 we see that XQ always exists,

als

f(x ), and there exists a constant E such that szg | < E. Thus, by

ats
kO

f(xQ) <

Lemma 2.2, there exist functions T]i(h) for 1 < 1 < k tending to zero with h ,

sk _ . m,p _ B .
and such that X € CQ = (xixeW 7, - h)+ e (t) < M x (1) < B (1) +n,(h)
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for1 < i<k, 'yig Nix(gi) < 51 for 1< i< n}. By Lemma 2.4, CQ: min f -min f
C C
Q

tends to zero. We write

f(x>'~<)=minf=minf+CQ§ f(x’é)+3§Qg f(sk) + €

Cq
—0, that f(x

0 (2.3)

ol
-

Q

This implies, since ( )——f(x*). Since {x’é} is bounded, it has

ale
s

Q

weak limit points. For any such weak limit point x' with x_, weakly converging

to x', we have x' € C by Lemma 2.3 and thus

ats
3

Q) =

ats
=<

o) = =)

f(x*) < f(x') < lim inf f(x
Qo0

lim f(x

Q-—»oo

which says that f(x') = f(x¥), that is, x' minimizes f over C. The remainder

follows from the definition of convergence in Wm’p. Q. E. D.

We have not been able to estimate the rate of convergence as a function of

h.
3. Analysis of the more complete discretization.
We shall here use the norm ||| defined in Equation 2.1 via points
Qz i (or Qi in Equation 2.2)and we shall assume that the 913 i are mesh points

for all h used. We shall analyze our complete discretization, the relationship
between the problems in Equation 1.1 and Equation 1.3, by the general dis-
cretization analysis of [Daniel (1969a, 1969b, 1970)]; for completeness our

arguments are self-contained.
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We wish to use roughly the arguments of Theorem 2.1 in this case also.

If x}: minimizes fh over C (h) we unfortunately cannot talk about f(x.h

ats
%

f_h (x‘) as in Equation 2.3 in the proof of Theorem 2.1 since these make no sense

in our new situation. Instead, with x* we shall associate a point

vy, = rhx'P € Cz(h) by a "discretization" or "restriction" mapping Iy such that

[fh(rhx‘*) - £f(x™)| converges to zero with h. Similarly, with Xh we shall

s m, . . : :
associate a Z, = P X, ew P "converging into C" by an "interpolation" or

"prolongation" mapping p, and such that |f(p x*) - f (x*) converges to zero
h h™h h""'h

with h. We can then imitate the proof of Theorem 2.1 by replacing Equation

2.3 by roughtly f(x“)-—-nélgf%-CQs ph h)+(§ "f(x +CQ+[fphh

] < By (o) + 8 o+ [E(p ) = 6,601 = 16%) £ o+ [£(my 1) - £, 051)]

als
¥

+ [fh(rhx ) - f(x)].
Having outlined our approach and the reasons for constructing certain

mappings p, and r we now proceed with the technical details. We define
h h

the restriction r h in the obvious manner. Let Yy = r hX* be the discrete mesh

function (that is, defined at points t; = ih only) defined by v, (t,) = x*(ti).
We need to develop some tools for using divided differences. For any

¢ with 0 < £ < m, by Peano's theorem we can write
1 (9
% J /- %
) = —— f Dt -1t kT (yar
4-1)! o ¢ t

where the Dt indicates differences with respect to t and where
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(t-'r)z_]“: (t‘ﬂg- for t-T > 0
* 0 for t-1< 0
as usual. K,(7-1) = -@-}i-)-; Df(t - T) is a "basic spline" [Curry-Schoenberg
(1966)], that is
4
1 z (_1)15-1 (f/) (ih—s)i_l
in

K, (s) =
J )
h (I-1)! <o

vanishes identically for s > fh and s < 0, is strictly positive for s
Ih

- b 2
(0,/h), and lies in C (~w,®), Thus D t =1l! = f Kﬂ(s)ds, and we find
0

Also

S————
wn

=
1

-

L

h£(£~l)

£
L
b-i
X o

KéS)=
"i=0

< b,

ol 1

for some fixed G since we have 0 <
he

Cz(h) for large enough ¢

We now show that r ]X =4
oo (T I\A % t < B h + € l()[‘ 0< i< |« b 17 +

61+ Eh

and 1 < 1< k, and —Eh +'yi < Ni,hyh ({‘ii)



16

1 m-1 1
e, =chT and G> |x | o, || 2% for 1< i<k, and
h o) if Moo
=0
m-1 1
Gzl ) oy ll gt for 1< a<h.
(o] 1 ©o
=0
Proof: For 0< 4 < m-1, ]Deyh(tj) -x (tj)l = |D'x (t].) -X (tj)]
= lf Kr -t)lx (0 -x (t]dt] < sup = (M-x ()],
£, t. < T< t, + 4h J
J ] ]
«Digy 0 T gl " é % é
I I A O R e R e L S I
t,
]
More generally, ]Mi,hyh(tj) - M, x (tj)[ = !Mi,hx (tj) - Mix (tj)] <
-1 -1 1
e Le 4D fa £ g
z ;bw(tj)nD b (tj) - x (tj){ < >J ] big(tj){ l|x Howhl and similarly
£=0 1=0

for N, and N, .. The lemma follows since a_(t,) < M x*(t,) < B,(t,) and
i i,h it i j it
similarly for Ni' Q. E. D.

>=< >"<
As our last step in treating r ,, we show that 'fh(r pX) - f(x )| converges

h

to zero.

oo )

Lemma 3.2  lim |f (r.x )- f(x') | = 0.
== ., 'h'nh
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Proof: Since the m-times continuously differentiable functions are dense

..

m . ) . . *®
inwW ,p, we can find such a function z arbitrarily near x and such that

]f(x'p) - f(z)| is arbitrarily small. Since, for 0< £< m,

t.+4h L)

D%ty - Dz < J 5 -y ) -2 D ar
J ] t. )/ ]

]

t +0h ) L

t,+4h L % (£) P p
f ] KE(T - tj)dt q f ] Kﬂ(’r - tj) lx~ (1) -z (1) dt
t t
)]

IN

]

1.
< sz x (1) -z
0

are bounded, it is also clear that {fh(rhx ) - fh(rhz)] can

1
w)(T) |Pdt )P which is arbitrarily small, and

since the functions az
be made arbitrarily small independent of h by choosing z near xq<. Thus we
are through if, after fixing z, we can show that |f(z) - fh(rhz)[ tends to zero.

By using the triangle inequality we immediately find

L L Q-m theh 2t “ P
£ (r, 2 - £2)P P < z f | z [a t)D2(t) - a (t)zw)(t)J | dt
h''h = , A i/ 79
i=0 ! 4=0
B m-1 0 b
+ J l 2 a,t)z (1) | dt
1-mh =0

the latter term of which clearly tends to zero with h for fixed z . For the
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(£) (¢)

, . , I
former term, since z is continuous, we have D z(ti) = z" ' (\y) for some Ki

in (ti, ti + fh). Then the former term equals

Q-—m . m-1
ih+h
z f | z [ag(ti) zw)(xi) -a,l) zw)(t)] |Pat .
ih
i=0 4=0

(£)

Since aﬁ and z are both continuous, the term under the integral sign for

this fixed z is bounded by some function w(h) tending to zero with h and

Q-m ih+h
thus the whole expression is bounded by z f w(h)dt < w(). Q.E.D.
ih
i=0

Remark. The preceding lemma is of some independent interest. As a

Q-m 1
special case, it says that h z |D™x(t;) |® converges to f Ix (m)(t)lpdt
0
i=0

for all x in Wm’p; since the sum looks something like a Riemann sum for the
integral, it is interesting that convergence can be proved. This is vital for the
work in this paper since [Mangasarian-Schumaker (1969)] did not give broad
necessary continuity conditions for x*: we know of examples in which X*(m)
has countably infinitely many finite jumps although the constraining functions

are very smooth.

als

a m
o Z e WP pear

Next we must consider a mapping ph of x; into phx h

* £ . .
C with If(phxh) - fh(xh)l converging to zero. Let vy be an m-vector function

. - T .
on the mesh points, vy, = (vh,o, e ’vh,m—l,) , solving
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Vh,O(t_’H'l) = Vh,o(tj) + hvh,l(t‘j) B
Vh,m—Z(tj-!-l) Yh,m- 2(t ) +hvy m-l(tj) (2.4)
m-1
h,m-1 1) = Vh,me ) TR z 3 (v 4 () Ly L)
i=0
forOgjéQ-m,withv (o)~Dx(o)for0<1<m1 J

For convenience wehave assumed am(t) =] without loss of generality. Clearly

then we have that

Vh th yfor0< i< m-1 and 0< j < Q-m.

. . . _ T ,
Consider the m- vector function Vh on [0,1], Vh = (Vh, 0r Vh,m—l) , solving
the system of differential equations

(l) _
Yh,0 ™ Vh,1 8
W
Vh m-2 Vh,m--l
m=-1
§)) _ (2.5)
Vhom-1 " 3 Vh,1 Yy
i=0
with V (O) = Vh A{0) fori=90,...,m-1, and u (t) = L - (t ) for
t. <t <t and 0< i< Q-m, u, (t)=0 for t>1 - (m-1)h .
i+l h J
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We see immediately thatthe Y is obtained by applying Euler's method to solve

the system in Equation 2.5 which, for convenience, we write as

(1 _ _
V' =RV +eu, V,(0) = v, (0) (2.6)

where A is the obvious matrix and e = (0,0,...,0, l)T.

We now define Zy = DXy = Vh,O' We notice that Zy = Vh,O solves the
equation L zh = up and thus

1 5 1 @m .
1Lz, (t)|Pdt= ] |u, t)|Pdt = h 1L x. (t.)|7, that is,
h h h“h i
0 0 i=0

£py3¢) = £, by - (2.7)

% %
Thus we have accomplished the goal of making lf(phxh) - fh(xh)l tend to zero;

is "near" C by relating Vh to vh .

fos 3

we now check to see if zy = PpX

Now we write

t,
) =V, (t) + f o) + eu, (1)]dt

Vh (t .
]

j+1

and

t
3 j+1
Vh(tj+l) = vh(tj) + j: [A(tj)vh(tj) + euh(t)]dt.
j
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Letting e (t,) = Vh(tj) - vh(tj) and arguing in the usual way we find, writing

h(J

le, (t) ]l = max le, .(t)] and F = max Nawll .,
hoiile i oy e 0< t< 1 *

1
- 1
el pd [ jam vy Par
0

e, (t) <
bl (1+=) F
q

Thus v, and V1 will be uniformly close if AV, &£ Wl’p and is uniformly

h s h

bounded in WP, 1f A(l) e C[0,1], thatis A€ Cl[O,l], then since (AVh)(l) =

1

(1 2 1 .
A )Vh + A"V +Aeu and HA( )HOO . lall_, and /0 Iuh(t)lpdt are uniformly

bounded, A Vh will be uniformly bounded in Wl 'Pyf Vh is uniformly bounded

in Lp(O, 1); this finally is clearly true if Vh(O) is uniformly bounded in !Rm.

Lemma 3.3 If the coefficients a, defining the operator L are in Clf0,1],
1

then there exists a constant K such that th(tj) - Vh(tj) I, < xh? for

0 <j< Q-m,= + = =1. Also th,o“ = thx;; | is uniformly bounded.

L. 1
p q

Proof: Because of the preceding arguments, we need only show that

Vh (0) = vh(O) is uniformly bounded in me. Because of Equation 2.4, we can

write vh(tj ) via

j-1
vh(tj) = h z [T+ hA(tJ._l)]. A hA(ti+l)]uh(ti)
=0 (2.8)
+ 1+ hA(tj_l)]. LI+ hA(to)] vh(O).
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Consider the term in this expression involving the sum; this, call it Wh’ solves
1

Equation 2.4 with Wh(o) = 0 and is therefore within O(hq) of the solution Wh

to Equation 2.6 with Wh(O) = 0 by our preceding arguments. Note that by

applying the operators Mg h at Qg r and Nr h at gr to the first components of

the vectors on both sides of Equation 2.8, we immediately see that v, (0) solves

i

a certain system of linear equations. Applying one of this operators to the first

B3

component of the left hand side yields merely that operator applied to Xy and

these values are uniformly bounded at the @ and &r . Applying an operator

J,r

szor 0< < m-1 to Wi o merely gives wh 7 which is uniformly close to
Wh IS W}fz)o which is uniformly bounded; it then follows that application of one

of the operators M rN h to wh 0 gives uniformly bounded values.

Z,ho r,

Thus we have found that vh(O) solves a linear system with right hand side
uniformly bounded in lRm. A typical row in the matrix Bh of this system consists

of, say, Mg h applied at 8 to the components of the first row of the matrix

f,r

function whose value at tj is
[T+ hA(tj_I)]. T+ hA)] .

Arguing as we have done above it is easy to show that such an expression
converges uniformly to the row (the collection of which forms amatrix B) consisting

of the application of Mz at o to the components of the first row of the matrix

byt



23

function whose value at t is

A matrix B of such rows however must be of full rank since by assumption there
are no nonzero functions x € WP such that | x|l = 0. Ifwe only apply those
operators at those points which in the limit give an m xm nonsingular matrix, as
we can always do since rank (B) = m, then for small h the matrices multiplying

vh(O) are uniformly nonsingular and therefore the vh(O) = Vh(O) are uniformly
bounded in R™. Since V},(0) is uniformly bounded it follows that | Vi o | is

also. Q. E. D.
We can now prove convergence for the more complex discretization.
Theorem 3.1 Let the general assumptions of Section 1 hold, and let the

fixed points g, , defining the norm |-l in Equation 2.1 (or the 6, in Equation

L

2.2) be mesh points in our discretization for all h. Let the problem in Equation

1.1 not admit solutions of arbitrarily large W P norm, for example, some

M x = x. Let x, € IRQ+1 solve the problem in Equation 1.3, that is minimize
) h
1

f (x

h over Cz(h), where g > th and G is defined in Lemma 3.1; one may

b/ h

1

thus take hq = O(sh) for small h. Suppose the functions ai defining L lie in

1 : o
C’[o,1]. Let PpXy = 2y, Solve
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%k
Lx(ti) for ti£t<t ,0< i< Q-m

h"h i+l
Lzh =
0 for t>1 - (m-1)h .
* * m,p . .
Then f (x,) converges to f(x ) andall W weak limit points, at least one of

h™h

3,

P *
which exists, of {phxh}, minimize f over C; if x minimizing f over C is

* *
converges weakly to x . If (some subsequence of) phxh

s
unique, then P Xy

%
converges weakly to a point x, then Xy and its first m-1 difference approxi-

g * .
mations D Xy evaluated at the points ti = ih, 0< i < Q-£, converge uniformly

to x and its first m-1 derivatives at the points ti.

*
Proof: By Lemma 3.1 and the hypothesis on ¢ r.x € Cz(h) 50 Cz(h)

h' "h
%
is not empty. Since Cz(h) is not empty, Xy exists. By Lemmas 3.3 and 2.2
% %
and the facts that Vho =¥h € C,(h), and thxh]] is uniformly bounded, there

i

exist functions ni(h) tending to zero with h and such that phX; £ Ch

1 1

Gex e WP, - (h) - e, - KhT + a(t) < Mpx(0) < Bi(6) + Ny (B) + g + Kh?

h h

1 1

for 1< i<k, -e -Knl+ ¥ < NxE)< O +e +kh¥for1< i< n.j.

h h

i

min f - min f tends to zero. We write

C Ch

By Lemma 2.4, Ch

* o Uk _ *
f(x ) =min f=min f + Ch < f(phxh) + Ch = fh(xh) + Ch’

C Ch

the last equality following from the construction of Py - Thus we have
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fx ) < o) + 8 = flx) + 8, < G (e x )+
% % *
< flx) + Ch + [fh(rhx ) - f(x )].
*® ¥
From Lemma 3.2 and this inequality we conclude that f(x ) = lim f (phxh)

h—0

® %k

= lim f (Xh). Since, from Lemma 3.3, phx}; is bounded, it has weak limit

h
h—0
points; for any such weak limit point x' we have x' € C by Lemma 2.3 and

thus

% t %k
fix ) < f(x') < lim inf f(phxh) = fix )
h'— 0

%
which says that x' minimizes f over C. If PpXp converges to some X
1, * . . N .
weakly in wh p, then PLX, and its first m-1 derivatives converge uniformly

to x and its first m-1 derivatives. By Lemma 3.3, the numbers vy z(tj) =

(4)

D (=
Vi ole) = by ()

7

)/ %
D v (tj) = Dﬂx_h (tj) are uniformly close to \/‘h

h,0 o) =

’

for 0 < £ < m-1. Q.E.D.

We have not been able to estimate the. rate of convergence as a function of h.

4. An elementary example.

Consider the example in [Mangasarian-Schumaker (1969)] with

2
m=1, Lx= x(l), k=1, Mle X, Ofl(t) =t -t , f3l(t) =t, n=1, le(§1)=x(l)/

61 =Y, =¢c ¢ [0,1], that is,




26

1 .
minimize f }x(l)(t) ]zdt
0

2 2
over C= {xix sz’ S -t <Ix(t) < t, x(1) = ¢}
The unique solution to this problem is
2
t-t for0< t< 1-,/c

*
x (1) =

@2/c-1t+(1+c-2/c) for 1 -/c<t<1

as pictured in Figure 4.1.

Figure 4.1

~ %
Let t=1 —-\/_c;, the point at which x leaves the lower curve.
If we use the simple discretization and merely discretize the constraints

. . _l_ . ~ . ~ E 3
at t, =ih, 0< i< Q—h, then if t, = max {t;t <t} then X4

is just the
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. ) . , 2 ~ . . .
piecewise linear interpolantof t -t at tj; for t< ti and is the linear inter-

polant between ti - ti2 and ¢ for ti < t< 1. For small enough h, the solution

for the complete discretization is also unique; such discrete variational splines

are studied in [Mangasarian-Schumaker (1970)].

1f we define, for ¢ > %‘ , the numbers

@ =min (t;t > /2, }, B =max(t;t < I -J/C ).,

1
* >~ 0
the unique solution Xy for the complete discretization with Sh =h .
1.,
e (0,2) is
~
2
a - a = 2€&
h h h .
€h+t1 o if Ogtigah
% 2 (f
xp (t)) = Lot - gy if @ <t < 6h
2
Y Bl ki T 7
h h h i h 1- Bh h

.
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