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1. Introduction

This work was motivated by the paper [ 8 ] of F.ODEH and I. TADJBAKHSH
who discussed two specific nonlinear eigenvalue problems which arise in the
study of the equilibrium states of a thin rotating rod. They consider the non-

linear system

u A sin 6, 0<t<1t,

1.1)

6" = Aucosg, 0<t<1,
and the two sets of boundary conditions
A-) u'(0) = 6 (0) = u(l) = 8'(1) = 0,

and
B-) u'(0) = 8'(0) = u(l) = 6(1) = 0.

N. Bazley and B. Zwahlen [ 1 ] also studied equations (1.1) under the boundary
conditions (A-).

These interesting papers employ a variety of methods to obtain information
about the existence of solutions when A > Ao, the smallest positive eigenvalue
of the linearized problem (linearized about zero). 1n particﬁlar, Odeh and
Tadjbakhsh pro{re that there always is a nontrivial solution (in both cases) when

Ao < A . Moreover, theymake the following conjecture: if An < A < An+l

then there are (at least) n+1 distinct nontrivial solutions (uj (t), 93. (t))i= 0,1,...n.



We became interested in these problems because the physical solution
(u(t), 6(t)) must satisfy (see the discussion on page 83 of [8 ])

1.2) lo(t) | <g

However, there is no discussion of the "size" of the solution obtained in [ 8 ]
and [ 1 ].

In this report we formulate a general class of problems which include
equations (1.1) and study the existence and uniqueness of "maximal solutions."
While we are unable to prove that all solutions of equations (1.1) which satisfy the
boundary conditions A or B, also satisfy (1.2), we are able to establish the
existence of a maximal, "positive" solution which also satisfies condition (1.2).

The general problem is formulated in section 2. In section 3 we remind the
reader of some basic facts about second order problems as developed in [2 ]
and our previous work. Section 4 uses those results and an idea due to Picard
[12] (in the second order case) to establish the existence of positive solutions.
Section 5 is devoted to the unicity of such positive solutions and their role as
"maximal" solutions. Because these positive solutions are maximal solutions
and provide bounds on all solutions it is particularlyrelevant that our proof is
a constructive proof. The basic existence proof is based on a nonlinear iteration
which may be easily adapted to numerical computation. Finally in section 6 we
establish the conjecture of Odeh and Tadjbakhsh for the boundary conditions B.

In part II of this work we turn to the application of fixed point theorems to
prove the existence of other solutions. In particular the conjecture is established

t

for the boundary conditions A.




2. The General Problem

Let

L [o] = (p(0)9")' - cy (tolt) . k=1,2

be tworegular Sturm Liouville operators. That is,

cp(t) e G [0,1], cp(t) >0, 0O

iN
ot
IN
i

p(t) € c'fo,1], pty2py >0, 0L t< 1

for some positive constant Py
Consider the nonlinear systems of ordinary* differential equations

Ll[u] = AB H1 (t,u, 8) = 7\F1(t,u,9), 0<t<1,

2.1)
Lz[e] = Au Hz(t,u,e) = 7\P2(t,u,e), 0<t<1,

where the functions u(t), 6(t) are required to satisfy the homogeneous boundary

conditions
(A [ul=a, ulo) -b u'(e) =0,
22 A [u] = a, u(l) + b1 u'(l)y= 0,
B [6]= a5 6(0) - Boo'(0) = O,
L B,l6]l=a 6(1) + B 0'(1) = 0,
with

>kThe operators Lk[cp], k = 1,2 could equally well be two uniformly elliptic second
order operators on a smooth domain @ C RP. However, the present treatment
enables us to concentrate on the essential ideas and not get concerned with some
technical "smoothness" questions.



aklaklﬁklbk 2 0 ’ k = 112
2.3)
ak+ bk> 0, ozk+13k> 0, ao+ a1> 0, a'o-i-oz1> 0.
For simplicity, we assume that the functions Hk (t,u,8) are even, i.e.
2.4) Hy(t,u,6) = Hi(t, |ul,|le]), k=1.2.

With this convention we see that -A is an eigenvalue with eigenfunction
(-u,6) whenever A is an eigenvalue with eigenfunction (u,6). Thus we may
restrict our attention to the case where A > 0 .

Definition 2.1 The problem described by equations (2.1), (2.2) is called

"normal® if

Hk(t,u,e) >0, k=1,2

for all t €[0,1] and all real u,6.

Definition 2.2 The problem described by equations (2.1), (2.2) is called a

"cut off” problem if there is a finite positive constant @ such that
(i) Hp(t,u,0)= H(t,u, ), O <lol, k=1,2

(1) H(t,uwe >0, [o]<@® ., k=12

(iii) Hy(t,u, (")) =0 M te[0,1] andall u.
A pair of functions uft),6(t) is called a solution to a cut off problem if and only

if they satisfy equations (2.1), (2.2) and

lew| < ®




Remark: The problem of Odeh and Tadjbakhsh described by (1.1) is reduced to

a cut off problem by setting

sin @ iy
o le] <5 .
Hl(t,u,e) =
2 (s
T ’ |Ql > 2 1
cos 6, le| < g ,
Hz(t,u,e) = N
0, lo] > 5

We assume that F, (t,u,0) & C' except possibly at le|= () in the cut
off case. We will consider the following hypotheses on the coefficients
H.1) The function Fl (t,u,0) is monotone nondecreasing in 9 and ‘E‘2 (t,u,6)

is monotone nondecreasing in u. We write

2.5) 'a"a‘é' Fl(t,u,e)?_ 0, —a'a‘a' Fz(t,u,9)2 0,

even though this statement may not be true at [6| = (") . Observe that these

conditions may be rewritten as

\v4
o

- 2
Hl(t,u,e) 0 35 I—Il(t,u,e) >

2.5a) <

vV
o

0
g Hz(t,u,e) +u au Hz(tlule)
H.2) There are two functions Gl(t,e), GZ(t,u) such that

0< H,(t,u,0) < G, (t,u)



for all t € [0,1] and all u,6.

H.3) The functions Hk(t,u,e) are monotone nonincreasing in |u|,|0]|. That is,
2.6) u—§——H(tue)<o e—a——H(tue)<0k:12
au k 4 ’ - ’ ae k 1 1 ) 1 1 .

However, the system (2.1), (2.2) should be genuinely "nonlinear." Hence, in
addition to (2.6) we assume if u, 6 are positive and C is a constant with

C > 1, then

2.6a) H, (t,Cu, C6) < Hk(t,G,é), k=1,2 .

3. Second Order Problems - A REVIEW

Let L [¢] be a regular Sturm Liouville operator and consider the nonlinear

boundary value problem

Llp] = f(t,p) , 0<t< 1
3.1)

A [o] = A,[o] = 0

where the boundary operators Aj[o], Al[cp] are described by equation (2.2), (2.3).
The function f(t, ) is continuous in (t,) and satisfies a Lipschitz condition in
¢ with Lipschitz constant v .

Definition 3.1 Let cpl(t), P, (t) € Cl[o,l]. We say o, dominates o, if

3.2a) 9, (1) <o), 0<t<1
3.2b) 9, (0) = ,(0) == 9,"(0) < p,"'(0),

3.2¢) 9, (1) = 9, (1) ==>0,"(1) <,'(1).




1f P, (t) dominates cpz(t) we write
3.3) ?, < cpl

The concept of domination* arises in the study of second order equations
through the strong form of the maximum principle and Hopf's lemma [2 ]. Together

these principles give the following assertion: If

3. 4a) Lle] < 0
then
3.4b) p(t) >Min {0, ¢(0), (1)} .

Moreover, if equality (in (3.4b)) occurs at any interior point, then
3.4¢) o(t) = constant.
Furthermore, if ¢(0) > 0 and
3.5a) @(0) = min o(t), 0L t< 1,
then either (3.4c) holds or
3.5b) e'(0) > 0.
similarly, if o¢(1) >0 and o(t) assumes its minimum at t = 1, then either (3.4c)
holds or
3.5c) o'(1) < 0.

These facts lead to the following basic lemma.

* .
We will make essential use of this concept only in section 5 when we are con-
cerned with uniqueness.



Lemma 3.1 If L{e]l< 0, Ao[cp] = Al[cp] = 0, then either oft) =0 or
0 < oft).

The next lemmas collect some basic facts about solutions of the problem
(3.1) as developed in [2 ]and [11]. In [11] we developed the basic ideas for

the special case where

However, using lemma 3.1 one may easily adapt the proofs to the general case.

Lemma 3.2 Let f(t,p) be bounded for all (t, o). Suppose aft) € CZ[O,I] satigfies

L[a] < f(t,a) . Llal$ £(t,a)
3.6)
Ajfal> 0, Ajlalz0,

Then there is a function u(t) which is a solution of equation (3.1) which satisfies

3.7) ut) < a(t)

Moreover, if z(t) is any other solution of equation (3.1) which satisfies

3.8a) z(t) < aft),
then
3.8b) z(t) < uft) .

Finally, if fl(t,u) > f(t,u) for all u, then the solution uy, of
L[ul] = fl(t,ul), Ao[ul] = Al[uI] =0
which is determined by this process satisfies

3.8c) u, < u.




2
Similarly, let b(t) € C~ [0,1] satisfies
L[b]> F(t,b) , L[b] = f(t,b),

3.9)
Ao[b]g 0, Al[b]é 0.

Then, there is a function v(t) which is a solution of equation (3.1) which
satisfies
3.10) b(t) < v(t) .

Moreover, if z(t) is any solution of equation (5.1) which satisfies

3.11a) b(t) < =z(t).
then
3.11b) v(t) < z(t) .

Finally, if fz(t,u) < f(t,u) for all u, then the solution vz(t) of
L[VZ] = fZ(t,vz), AO[VZ] = Al[vz] =0

which is determined by this process satisfies

3.11c) v £ v,

Proof: Consider the iteration

L[ ] -(an_'_l = f(t,zn) Yz

4
n+l n

with zo(t) = a(t) or zo(t) = b(t) . The argument proceeds by induction as in
[11] .
On the basis of this lemma we define two operations U(a), V(b) by

3.12) U(a) = u(t) , V(b) = v(t) .

Lemma 5.3 If f(t, ¢) is monotone nondecreasing in ¢, then equation (3.1) has a

unique solution.
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Corollary: Suppose £(t,) < 0 and is monotone nondecreasing in @ for ¢ > 0.
Then there exists a unique nonnegative solution ¢(t). Similarly, suppose f(t,p) >0
and is monotone nondecreasing in ¢ for ¢ < 0. Then there exists a unique

nonpositive solution o(t).

Proof: We consider only the first case. We observe that if there is a solution
¢(t) of equation (3.1) it is nonnegative.
Let

f(t, ), ©>0
fo(t,(p) =
f(t, 0), o< 0.

Then, o(t) is a solution of equation (3.1) if and only if @(t) is a solution of

Lip] = £_(t,o(t).

But, this equation has a unique solutions because fo(t,cp) is nondecreasing in ¢.
Lemma 3.4 Suppose f(t,9)< 0. Suppose there is a constant k > 0 such that
f(t,9) =0 for k< o.
Let o(t) be a solution of equation (3. 1). Then
0 < oft) < k

Proof: Suppose there is a point ty € (0,1) such that

@(to) > k.
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Then there is an interval [p, 8] about tg such that
3.13) o(t) >k for te [p,B].
Naturally, we take [p, 6] as large as possible.

Casel: p=0, 5=1. Then L[p] = 0 and the maximum principle asserts that
ety = 0 <k.
Case 2: p=0, 8<1. Then ¢(8) =k and o¢(0) is a maximum of o(t) for
t € [0,B8]. If o(t) is not constant on this interval, we have
¢'(0) <0 .
However, the boundary condition, Ao[cp] = 0, implies that ¢(0) = 0 or
®'(0) « ®(0) > 0 . Since @(0) > k we have a contradiction.
Case 3: p> 0, 65=1. In this case we see that

®'(1) > 0, o(l) > k,

but the boundary condition, Al[cp] = 0, implies that
() =0 or ¢'(1) (1) < 0.
Case 4: 0< p < 8 < 1. Then o(p) = o(d) = k and

Lle] = 0, p<t< b,

The maximum principle asserts that

ety =k, p£t<L 0o,
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4. "Positive" Solutions

We now return to the general problem (2.1).

Definition 4.1 A pair of functions (u(t),8(t)) will be called a "positive solution”

of equation (2.1) if they are a solution and also satisfy

4.1) u <0 < 96

Note: If (u(t),o(t)) is a solution, so is (-u(t), -0(t)). Moreover, if either function,
u(t) or 6(t), is nonpositive (but not identically zero) the other function dominates

the zero function.

Definition 4.2 A positive solution (u(t),6(t)) will be called a "maximal" solution

if; whenever (w, 0) is another nontrivial solution of equation (2.1), (2.2) (not
necessarily positive) then

4.2) lot)| < o(t) |wt)] < Ju®)| = -u(t) .

Note: By the remarks above, (4.2) is equivalent to

4.2%) a(t) < o(t) , u(t) £ wit) .

Lemma 4.1 Suppose (w(t), ®(t)) is a nontrivial solution of equation (2.1),(2.2)

and &(t) > 0. Then (w,®) is a positive solution.

Proof: Apply lemma 3.1 and the remarks above.
Consider now the linear problem obtained by "linearizing" equations (2.1)

about (u,8) = (0,0). We obtain

it

Ll[u] = 7\9H1(t,0,0) , Ao[u] = Al[u] 0,
4.3)

L [6] = A6eH(t,0,0) , Bo[u] = Bl[e]'—“ 0.
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Let K1 (s,t), Kz(s ,t) be the "Green's Functions" associated with the operators
~L][u] and —LZ[G] respectively, subject to the appropriate homogeneous boundary

conditions (Aj[u] = Bj[e] = 0, j=1,2). Then the equations (6.3) are equivalent to

1
u(t) = - Aj; Kl(t,x) Hl (x,0,0)6(x)dx ,

1
6x) = —Afo K¢, ) H, (v,0,0)u(y)dy .

On substitution, we obtain

4.4) ()= A° fl G(t, s)o(s)ds |,
o)
with
1
4.4a) G(t,s)=f Kz(t,:’c)Kl(x,s)H1 (s,O,O)I—IZ(x,O,O)dx.
o

The kernel* G(t,s) is a positive (nonnegative) kernel. Hence, the smallest
eigenvalue ?\20 corresponds to an eigenfunction of constant sign (see[4 ], [ 5],
[6], [7]D. Thus, we may normalize the eigenfunction (uo(t),eo(t)) associated
with the smallest positive eigenvalue A4 > 0 so that

4.5) u < o<90.

Moreover, if 7\0 < A we may scale (uO(‘c), QO(t)) so that (4.5) holds and

“In fact, G(t,s) is an oscillation kernel in the sense of Gantmacher-Krein [3]. How-
ever, we will not make use of this fact in this report.
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?\Hk(t, u_.6.)
ANH
o

4.6) R = [1-

K ] <o, k=1,2.

k(t,0,0)

A straightforward calculation now shows that

< : = k =
o Ll[uo] < APl(t,uo,Qo) . B [uo] Al[uo] 0,

: A = =
LZ[GO] > AF, (tou . 6.) BO[GO] 81[90] 0.
These inequalities, together with the mappings of lemma 3.2 enable us to
construct an "increasing' sequence (un(t), Qn(t) ).

Lemma 4.2 Let H.1 and H.Z2 hold. Suppose (un__l(t), en_l(t) ) satisfy

Ll[un_l]s AF (t,u (1), 6,1,
4. 8a)

Lz[en__l] > 7\F2 (t,un_l(t), Gn_l(t) ) .
and

]‘\o[un"l]20 ! Al[un—l]20 !
4,8Db) A

< 0.
BO[Gn_l]S 0, Bl[en_l]_ 0

Let un(t) be the solution of the nonlinear equation
4.9) Ll[un] = A Fl(t,un,en_l(t) ), Ao[un] = Al[un] =0

determined by lemma 3.2. That is

4.10) u = U

H

Then, unless un__l(t) gsatisfies equation (4.9) and un(t) un—l(t)’ we have

4.11a) u. < u '

and
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4.11b) LZ[Q

\

12 AP, (6w _y0 0 ()2 AF (tu (8,6 ).

n-1 n-

Thus, we may choose Qn(t) as the solution of
4.12) Lz[en] = AF, (t,u (t), 6), Bo(en] = B.I[Qn]: 0,
determined by lemma 3.2. That is

4.13) 6 = V(o

Then, unless Gn satisfies equation (4.12) and Qn_l(t) = Qn(t), we have

-1

4.14a) 0.1 <¢ 9
and
4.14b) Ll[un] = 7\F1(t,un, en_l) < ?\Fl(t,un,en) .

In either case

< <
4.15) u Su g en—l < Qn '

and equations (4.8a), (4.8b) hold with n-1 replaced by n.

Proof: The condition H.2 permits us to apply lemma 3.2 while (4.11b) and
(4.14Db) follow from H.1.

Corollary 1. Suppose 0 < ?\O < A. Then we may choose (uo(t), ao(t)) as the
solutions of the linear eigenvalue problem (4. 3) associated with ?\O which also
satisfy (4.5),(4.6) and (4.7). Thus we generate a sequence (un(t), g _(t)),

n

with

4.16) u () < u (1) L0 L6 ()< 6,(t) .

n-1
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The functions un(t), Gn(t) will satisfy equation (4.9) and (4.12) respectively.
Moreover, either un(t) = un_l(t), or

4.,17a) u < u
n

n -1

And, either Qn(t) = en_l(t) , or

4.17b) 0., < 6,

Corollary 2. Let H.3 hold also. Then the functions un(t), t)n(t) are the unique
solutions of equations (4.9) and (4.12) respectively.

Proof: Apply the corollary to lemma 3. 3.

Corollary 3. If we are dealing with a cut off problem and we further "scale"

(u (1), 9,(t)) so that 6,0 < () . then

oM< O ., n=1,2,....

Proof: Apply lemma 3.4.
We obtain our next result from the same argument.

Lemma 4.3 LetH.1 and H.2 hold. Suppose (Wn_l(t), @n_l(t)) satisfy

Lilw 1> AF (t,w, @), 8 ),

1
4.18a)
Lle 1< AP ttw (0, @ (1)),
and
Ao[wn—I] < 0. Al[wn-—I] <0
4.18b)
B Lo _ 120, Bife ,1>0.
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Let wn(t) be the solution of the nonlinear equation
= A = =
4.19) Lyfw I=AF tw o (1)), Alw]=aIlw]=0

determined by lemma 3.2. That is

Then, unless wn(t) Ewn_l(t) and Wn-—l(t) satisfies (4.19),

4,20a) w < w
n-1 n

and

4,20b) L[e. 1< AF (t,w_, @ 1) .

2" " n-1"— 2 n n-

Thus, we may choose <I>n(t) as the solution of
4.21) L2[¢>n] = A Fz(t,wn(t),®n) , Bo[cbn] = Bl{cbn] =0,

determined by lemma 3.2. That is

@n = U(@n_l) .
= isfi .2

Then, unless ®n(t) @n_l(t) and (Dn-l satisfies (4.21)
4.22a) ® < 9 ‘

n n-1
and

22 = A A .
4.22b) Ll[wn] Fl(t'wn’ @n_l) > Pl(t,wn, @n)
In either case
w <w_, 9o < 0
n-1 n n n-1

and equations (4.18a), (4.18b) hold W_ith n-1 replaced by n,
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Theorem 4.1 Suppose 7\0 < A, H.1 and H.2 hold. Suppose (uo(t), Qo(t))
are the eigenfunctions of the linear eigenvalue problem (4.3) which also satisfy

(4.5), (4.6), (4.7). Suppose there exists a pair of functions (w, @) such that

4.23a) w £ uo< 0 <Go < o,
4.,23b) Ll[w]z AF (t,w,0) Ao[w]g 0, Al[w]s 0,
4.23c) L2[<I>]£ AF,(t,w,0), Bo[cb]zO , Bl[®]2 0.

Then, there exists a positive solution (u(t), 6(t) ) of equations (2.1), (2.2).

Moreover, either (w,®) is a solution or
4.24) w < u<u < o<eo<e<@.

Proof: Let (un(t), en(t)) be the monotone sequence generated by lemma 4.2 with
(uo,eo) chosen as above. Let (wn,cbn) be the monotone sequence generated by

lemma 4.3 with WO =w, <I>o = ¢ . We shall prove

4 .25a)

g
IN
[
(]
74N
[l

(e} n n O

4.,25Db) wng u, GOS @n .

Then the theorem will follow from standard estimates and the Ascoli-Arzela lemma.

Iindeed, each pair of sequences (un,en), (wn,®n) will converge to a solution pair
(u,8) and (5\\7, 8) respectively. Thus, there may be two solutions.
The proof follows by induction. By (4.23a) we have (4.25a), (4.25b)

for n =0 . Suppose
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Then

Ll[un_l] < 7\Fl(t,un_1, Qn—l) < 7\P1(t,un_1, <I>O).

Using lemma 4.2 we construct un(t) which satisfies (4.9) and using lemma 3.2

we construct a function /\;(t) which satisfies
5 pad )\ 5 Y = g =
Ll[V] Fl(t,v, o) . AO[V] Al[v] 0

and

Y
w =wgv<u .
le} n

Thus, we establish (4.25a) for all n. A similar argument establishes (4.25b)
and completes the proof.

Theorem 4.2 Let 7\0 < AN, H.1 and H.2 hold. Suppose we have a cut off

problem. Then there is a maximal solution (u(t), 6(t) ).

Proof: Let

W = MAX (AF (t,w, D) 0<t< 1, [w|< o},
and let w(t) be the solution of

Ll[w] = W2 AF (t,v, M) . ()

AO[W]:O , AI[W]= 0.

Let &(t) = () . Then

Lz[cp] = - C,(1) @™ < 7\F2(t,w, M)=o0

Bo[q)]zo . Bl[@]zo .
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Thus, the pair (w, ®) satisfy, the conditions of theorem 6.1 and there is a positive

solution (W(t), ®(t) ) which is the limit of (Wn(t), d)n(t) ) .

Let (v(t),Y (t) ) be any other solution. Then, because (v,¥) is a solution to

the cut off problem, we have

4.26) vl < @ .

Hence

AF (6,v(D), (D) € AF (L), @)W

Therefore
w(t) < v(t) .

And, of course, (-v(t), -¥(t) ) is also a solution so that

4.27) lv(t) | < - w(t) = |w()] .

An induction, based on lemma 3.2 and lemma 4.3 shows that

W < v(t), Y(t) £ @n(t) .
‘1he theorem follows at once.

Returning to the normal (non cutoff) problems, we seek conditions which will
guarantee the existence of a pair (w(t), @(t) ) satisfying (4.23a), (4.23b) and

(4.23c). Clearly, the conditions H.l1 and H.2 are not sufficient because these

conditions include the linear case.

Theorem 4.3 Let 7\0 < A. Let H.1 and H.2 hold. Let Kl(s,t), Kz(s,t) be the

Green's functions of - Ll[u], - LZ[@] respectively which were discussed earlier.
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Suppose there are four positive constants M’Uo’ @ o awith 0< @ < 1, such

that

H, (t,0,0) > H (t,u(t),6(t), k=1,2

"

4.28a)
K].(t,s) Hj(t,u(s),e(s)) <M j=1,2,

1
4.28b) ?\2 f K. (s,t) K, (x,8) H (t,u(t), 6(t)) H (s,u(s),B(s))ds ¥ a ,
, L 2 1 2

for all functions u(x), 9(x), u(x), 8(x) which satisfy

I

U, < lu(x)|, |ax)| ., 0< x< 1,

4,28c)

IN

®,< lel, 186, 0< x< 1.

Then there exists a pair (w,9) with w(t) < - U_< @O < @ (t) which satisfy
(4.23a), (4.23b) and (4.23c). Finally, there exists a positive solutions
(u(t), o ()

Proof: Consider the inhomogeneous , nonlinear equation

r‘

it

Ll[v] AY H(t,v - UO, Y+ @ o)+ A @o H, (t,0,0)

1

4.29) { L,l¥]l = av H, (, v-UL ¥+ @ ) - AU H,(t0,0),

Ao[v‘] = Al[v] = BO[\Y] = Bl[‘Y] =0 .

-

We shall show that there exists a "positive" solution, i.e. a solution (v,Y)
with
4.30) v(t) < 0< Y(t) .

Let
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1
Kl(s't) Hl(t,0,0) dt ,

a )
oy
w
i
>
®
(o]
o%

1
g,(s)= A U f K_(s,t) H,(t,0,0) dt ,
4.31) { 2 °© Wy 2 2

KO: (A M “gl ”oo + “gznoo)/(l'"a’)

K, = MK -M+ g [le -

.

Let S be the convex set

4.32) S= ((F(),¥(t)) e Cl0,1]; =K, < v(t) < 0< ¥(t) < K,)

;<
Let (v(t), ¥(t) € S and let V (), ¥(t) be the solutions of the linear equations

4 - - -
LVI=AH G 7-U_ ¥+ @)+ 2O H, (0,0,

i

4.33) < L,[¥] = AVH,(t,V-U_, ¥ + Q) o) - MU H, (t,0,0) .

AO[V] = Al[V] = BO[‘Y] = Bl[‘l/] =0

-
Ttaing the integral representations of the solution, we have

1
4.,34a) V(s) = —7\f Kl(s,t) ¥ (1) H1 (t,v(t) ~ UO,T(’C) + @ o) dt - gl(s)
0
and

1 1

4.34b)  Y(x) = f
0

where

0

G(x,t)\l-/(t)dt + 7\L/\ KZ (x,8) HZ(S,V-UO,@ + @O) gl(s)ds +g2(x),
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1

2 - - -
4.34c) G(x,t) = ?\j(; Ky (5, 0K, [, 8, (£, v() =V, F(0) + @ )H, (5, V(s)-V_, ¥(s) + @) ) ds

From (4.34a) and (4.28a) we see that

4. 35a) —Kl < vy o,
From (4.34b), (4.28a) and (4.28b) we see that
4.35b) 0< ek + AM - o [l + llg,ll, =¥

Thus, equations (4.33) provide a mapping of S into S . Standard estimates
show that this is a compact continuous mapping. Thus, there is a fixed point,

i.e. a solution of equations (4.29) which satisfy (4.30).

Let

4.36) w=v-U<-U,0=¥Y+ @ 20, -
Tion

Ll[w] = 7\<I>H1(t,w,®) + A O[Hl(t,O,O) - H1 (t,w,®)] + Con’

Lz[q)] = AwH,(t,w, ) = A UO[HZ(t,O,O) - Hz(t,w,cp)] -G, @O.
Thus

Ll[w] > 7\P1(t,w,®)

4.37a) '

Ao[w]=—AOU1§ O,Al[w]:—A U, . <0.

and
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L2[®]£ ?\Fz(t,w,cb)
4.37b)
Bo[q)]:a'o ®020 ! Bl[q)]:al ®020 ’

The theorem now follows irom Theorem 4.1.

5. Uniqueness of Positive Solutions - Existence of Maximal Solutions

In this section we strengthen the hypothesis on the functions Hk(t,u,e)
(k = 1,2) and study the unicity ot the positive solution.
Lemma 5.1 Let H.1 and H.3 hold. Then, of course H.2 holds as well.
Suppose

A A
o <
and there are two distinct positive solutions (v1 , \k’l), (vz,‘i’z) .

Then, there are two positive solutions (u, 8) and (v,¥) which satisfy

5.1) u<dv<0<Y<o.

Proof: Let (uo(t), eo(t)) be the eigenfunctions of the linear eigenvalue
problem (4.3) which also satisfy (4.5), (4.6), (4.7) and

5.2) v, < u <0 <9¢ < V¥ ,k=1,2.
O @]

k k'

Since both pairs (v ) satisfy the conditions (4.23a), (4.23b), (4.23c) we may

¥
k' k
apply Theorem 4.1 to obtain a positive solution (v,¥) which satisfies

vkgv-<0<\1!_<_\¥k k=1,2.
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Suppose
5.3) v (1) F V), ¥ () F ¥ .
Then

LZ[\Y] = ?\Pz(t,v,\y) > AF, (t,v,¥) ,
5.4)

BO[‘EJ] = Bl[w] =0,
By lemma 3.2 there is a function a(t) which satisfies
5.5a) Lz[a] = ?\Fz(t,vl, a), Bo[a] = Bl[a] =0

and, either Y¥(t) = a(t) or
5.5Db) ¥ < a.
But, since vl(t) < 0 and H.3 holds, the corollary to lemma 3.3 asserts that
the solution o‘f (5.5a) is unique. Hence
a(t) = ‘}./l(t) .

Thus, using (5.3), we have

0<\I!<‘l’l.

A similar argument shows that

<
Vl V.

On the other hand, if (5.3) does not hold we apply the same argument to (v2 ,‘1’2).

Lemma 5.2 Suppose H.l1 and H.3 hold and there are two positive solutions
of equations (2.1), (2.7) which satisfy (5.1) Let a be any constant such that
(5.6a) 0<a<1,
(5.6Db) ag < Y.

Then
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5.7) v £ au,

Similarly, if

5.8) v < au,
then
5.9) ag < Y.

Proof: Using (2.6a) we see that

Ll[au]: MeHl(t,u,e) < ?\aeHl(t,afu,ae) = ?\Fl(t,ozu,oze) .

Using (5.6b) we have

Ll[a'u]< AF, (t,ou, V), Ao[au] =A1[au] =0 .

Using lemma (3.2), there is a function w(t) which satisfies

Ll[w] = 7\F1(t,w,\l/) . AO[W] = Al[w] =0.

5.10)
w < au .

However, because H.3 holds, the corollary to lemma 3.3 implies that w(t) = v(t)
and the lemma is proven in the first case. The other case follows by a completely
similar argument.

Theorem 5.1 Let H.1 and H.3 hold. Let

7\O< A

Then there is at most one positive solution of equations (2.1), (2.2) .
Proof: Suppose there are two positive solutions. By lemma 5.1 we may assume
that there are two positive solutions (u,8), (v,¥) which satisfy (5.1).

There is a positive number @ < 1 such that

5.1].) a’QS Y/
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but
5.12) ap & V.
To see this we merely observe that for B small enough, B < V.

We may let B increase until either 6 (to) = \l’(to) for some interior point to ,

or BE'(0) =¥'(0) or BO'(1)=V¥'(1) .
Then, using lemma 5.2, and (5.11),
v < au.
In particular, v < ou . Using lemma 5.2 again,
e < VY

which contradicts (5.12).

Remark: The above uniqueness theorem applies to the cut off case as well as the

normal case. The fact that 0 < @ <1 implies that we have been in the region
ol < ®

Theorem 5.2: Suppose H.l1 and H.3 hold and

7\O< A

Suppose also that the hypothesis of theorem 4.3 holds. Then the positive solution
constructed in theorem 4.3 is also a maximal solution.
Proof: Let (v, ¥Y) be any solution. Let

v, =max |v(t)|, ¥ =max |[¥Y(t)].

1 1

Let

Upy=U_+v, @,=0 +Y.
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Then, following the construction of theorem 4.3 we may construct a pair (w, 9)
such that

wi(t) < v(t) , ¥(t) < o(t) ,
and (4.23b), (4.23c¢) hold. A éimple-induction similar to the basic proof of
Theorem 4.2 shows that the iteration (Wn,cbn) constructed in the proof ot theorem

4.3 gatisty

w_(t) < v(t), Y¥()=29o (t).

n( . n
Thus the functions(’wn(t), @n(t) ) converge to a positive solution (Q(t),B(t) ) which
also satisfies
4(t) < v(t), ¥(t) < B(t)
However, there is only one poéitive’solution and the theorem follows at once.
A very similar argument shows that the maximal solution is monotone in A.

Theorem 5.3 Let (u(t,A), 6(t,A)) denote the maximal solution of equations (2.1)

(2.2). Assume H.1, H.3 hold, 7\0 < A and the hypothesis of theorem 4.3 hold.

Then

u(t, A + 8) < u(t,A) < 8(t,A) < 9(t, A + B) .
Proof: Let

v, = max |u(t,A) | ., \1/1 = max |6(t, \) |
and

U2=Uo+v1, @Zz @o+\yl.
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As in theorem 4.3 we construct a pair (w,®) so that (4.23b), (4.23c¢) hold and
wi(t) < u(t,A), 6(t, A < a(t) .
Consider equations (2.1), (2.2) with A replaced by A+ D. Since

Ll[u(t,m = 7\F1(t,u,e) < (A4 6)P] (t,u,d)

L [6(t,N]= AF (t,u,8)> (A + 8 F (t,u,0)
we may use the induction of lemma 4.2 to produce a sequence which increases and,
as in the proof of theorem 4.1, we have

wi(t) < un(t) < u(t,A) < 6(t, M < Gn(t) < a(t) .

Thus the sequence (un(t), Gn(t)) will converge to the unique positive solution

and the theorem is proven.

6. Other Solutions - Special Cases

Let us now consider the very special case where equation (2.1) take the

form

i

u 7\9Hl(u,8)
6.1)

9“

AuH (u,9) .

subject to the boundary conditions (B) (ot Odeh and Tadjbakhsh) or the boundary

condition

(S) u(0) =u(l)=0, B6(0)=6(1)=0.
Let

6.2a) P:HI(O,O)HZ(O,O) ,

6.2b) J = H,(0,0)/H (0,0) .
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Consider the linear eigenvalue problem
6.3) u" = 7\9H1(0,0), e" = AuH (0,0).

In the case of the boundary conditions (S-) the eigenvalues are

6.48) A =+

while the eigenfunctions are given by (Aj > 0)

uj(t) = A sinmjt

6.55)
B,(t) = i u() = -/T (Asinmit).

In the case of the boundary conditions (B-) we have
2] 2

6.4B) Y (LR 4

and, for 7\]. > 0,

0,00 = /I u) = /T (& cos Atlay .

uj(t) = A cos
6.5B)

We must also consider the differential equation (6.3) on other intervals. For
this reason we introduce the following notation. Let

5.6) 7\k(m,S)

be the k'th positive eigenvalue of the differential equations (6.3) on an interval of
length m subject to the boundary conditions (S.). For example, consider the

equation (6.3) on the interval (a, a + m) subject to the boundary conditions
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u(a) = u(@ +m) = 9(a) = 6@+ m) = 0.
Then, the k'th positive eigenvalue is denoted by (6.6). Similarly, let

6.7) Ak(m,B)

be the k'th eigenvalue of the differential equations (6.3) on an interval of length
m subject to the boundary conditions (B). For example, ?\k(m, B) denotes the
k'th eigenvalue of equation (6.3) on the interval (a, a + m) subject to the boundary
condition
uw'@)=06'd) =ul@+m)=6(@a+m)= 0.

A straight forward calculation shows that

(‘

1 - - _
A (8=, 1,8, k=1, ...

6.8) { M, (@m, )= A (m, B)

2 A (=, B) = A

\)\0(_2—]:%-_1—'8): o 2k+1’ LB, k=0.1,...

i {
These facts lead immediately to the following results
Lemma 6.1 Let H.1 and H.2 be satisfied. Let

?\o(m,B) <A

and suppose that Hl (u,d) Hz(u,e) gets small enough for large (u,9) that one
knows that there is a positive solution (u(t,m), 6(t,m)) of equations (6.1) subject
to the boundary conditions B on an interval of length m, say (a, a + m) .

Then there is a positive solution (U(t,m), @ (t,m)) of equations (6.1)

subject to the boundary condition S on the interval (a, a + 2m) . Moreover,
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( U'(a) = - U'(a + 2m) < O

6.9) ® @)=~ @ '"(a+2m >0
u'@+m) = (@) '(@a+m=
~
Proof: Let
u(2a +m-t), a< t< a+m
6.10a) U) =
u(t-m),a+m< t< a+2m
6(2a+m-1t), a<t<a+m
6.10Db) @(t)z

(t-m),a+m< t<a+m

A direct computation verifies that these functions have the desired properties

Theorem 6.1 Let H.1 and H.2 be satisfied. Let k >0 and assume that

e S)=7\k(1,S)<7\.

k+1 !
Suppose Hl(u,e) Hz(u,e) gets small enough for large (u,8) that one may apply

lemma 6.1 to assert the existence of the function U (t, k+1 -}, @( —) of

k+1
the previous lemma.

Then there is a solution (Uk(t) ,@k(t) ) of equation (6.1) which satisfies the

boundary conditions (S-). Moreover,

b

6.11) Uy G710 =9 (k+1 0.

and these are the only zeros of Uk(t)@k(t) .
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Proof: Let a =0 and U(t), @ (t) be the functions whose existence is assumed

by lemma 6.1, Let

_ 4
U@ =(-1) U(t"k+1)’ k+1 St ¥ia
6.12)

_ )/ 4 b+ 1 _
@k(t):(—l) @(t-—k+1 Crrl St T bE0lk.

A direct computation verifies that (Uk(t), @k(t) ) is the desired solution .

Theorem 6.2 ILet H.1 and H.Z be satisfied. Let

A Gy 8 = A G B = A(LB) <A,

Suppose that H](u,e) H._(u,8) gets small enough for large (u,6) that we may

2

apply lemma 6.1 to assert the existence of the functions U(t’2k+1 e () (5T 2k+1

of lemma 6.1.
Then there is a solution (uk(t) , Qk(t) ) of equations (6.1) which satisfies
the boundary conditions (B). Moreover

2041 20+1 . _
U i) = O Gy = 0 b=0.1,...k.

and these are the only zeros of uk(t) Gk(t) in [0,1] .

1
Proof: Let a = - Ril Let

eyt 2+ 2041 2043 -
6.14)

/ 2 20 2043
= (-0 @a-tly S 2

Once more, a direct computation verifies thatthese functions have the desired

features.
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Remark: In the cut off case, we are assured of the existence of the necessary
positive solutions. Thus, in particular, in the case of equations (1.1) subject
to the boundary condition B, if

AL KALS A

k k+1

there are at least (k+1) distinct nontrivial solutions (u,(t), Gj(t) Yy, §=0,1...k.

J

The pair (uj (t), Gj(t) ) is characterized by the fact that each function has exactly

j interior modal zeros and no other zeros.

Remark: This method of "patching together" positive solutions is clearly of
limited applicability. Nevertheless, it is an interesting direct consequence of

this theory of positive solutions.
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