Computer Sciences Department 1210 West Dayton Street Madison, Wisconsin 53706

Non-Linear Eigenvalue Problems for Some Fourth Order Equations

I. MAXIMAL SOLUTIONS

by

Seymour V. Parter

Technical Report #75

October 1969

^{*}Sponsored by the Office of Naval Research, under Contract No.: N00014-67-A-0128-0004.

		NAME AND ADDRESS OF THE PARTY O
		ar/awa/awa/
		Ì
	•	
		(
		1
		ļ
		1
•		

I. MAXIMAL SOLUTIONS

by

Seymour V. Parter

1. Introduction

This work was motivated by the paper [8] of F.ODEH and I. TADJBAKHSH who discussed two specific nonlinear eigenvalue problems which arise in the study of the equilibrium states of a thin rotating rod. They consider the non-linear system

1.1)
$$\begin{cases} u'' = \lambda \sin \theta, & 0 < t < 1, \\ \theta'' = \lambda u \cos \theta, & 0 < t < 1, \end{cases}$$

and the two sets of boundary conditions

$$u'(0) = \theta(0) = u(1) = \theta'(1) = 0$$
, and

$$u'(0) = \theta'(0) = u(1) = \theta(1) = 0$$
.

N. Bazley and B. Zwahlen [1] also studied equations (1.1) under the boundary conditions (A.).

These interesting papers employ a variety of methods to obtain information about the existence of solutions when $\lambda > \lambda_0$, the smallest positive eigenvalue of the linearized problem (linearized about zero). In particular, Odeh and Tadjbakhsh prove that there always is a nontrivial solution (in both cases) when $\lambda_0 < \lambda$. Moreover, they make the following conjecture: if $\lambda n < \lambda \leq \lambda n + 1$ then there are (at least) n+1 distinct nontrivial solutions $(u_j(t),\,\theta_j(t))$ j = 0,1,...n.

We became interested in these problems because the physical solution (u(t), θ (t)) must satisfy (see the discussion on page 83 of [8]) $|\theta(t)| < \frac{\Pi}{2}.$

However, there is no discussion of the "size" of the solution obtained in [8] and [1].

In this report we formulate a general class of problems which include equations (1.1) and study the existence and uniqueness of "maximal solutions."

While we are unable to prove that <u>all</u> solutions of equations (1.1) which satisfy the boundary conditions A or B, also satisfy (1.2), we are able to establish the existence of a maximal, "positive" solution which also satisfies condition (1.2).

The general problem is formulated in section 2. In section 3 we remind the reader of some basic facts about second order problems as developed in [2] and our previous work. Section 4 uses those results and an idea due to Picard [12] (in the second order case) to establish the existence of positive solutions. Section 5 is devoted to the unicity of such positive solutions and their role as "maximal" solutions. Because these positive solutions are maximal solutions and provide bounds on all solutions it is particularly relevant that our proof is a constructive proof. The basic existence proof is based on a nonlinear iteration which may be easily adapted to numerical computation. Finally in section 6 we establish the conjecture of Odeh and Tadjbakhsh for the boundary conditions B.

In part II of this work we turn to the application of fixed point theorems to prove the existence of other solutions. In particular the conjecture is established for the boundary conditions A.

2. The General Problem

Let

$$L_{k}[\varphi] \equiv (p_{k}(t)\varphi')' - c_{k}(t)\varphi(t) , \qquad k = 1,2$$

be two regular Sturm Liouville operators. That is,

$$\begin{cases} c_k(t) \ \epsilon \ C \ [0,1], & c_k(t) \ge 0, & 0 \le t \le 1 \\ \\ p_k(t) & \epsilon \ C'[0,1], & p_k(t) \ge p_0 > 0 \ , & 0 \le t \le 1 \end{cases}$$

for some positive constant po-

Consider the nonlinear systems of ordinary* differential equations

$$\begin{cases} L_{1}[u] = \lambda \theta H_{1}(t,u,\theta) = \lambda F_{1}(t,u,\theta), & 0 < t < 1, \\ L_{2}[\theta] = \lambda u H_{2}(t,u,\theta) = \lambda F_{2}(t,u,\theta), & 0 < t < 1, \end{cases}$$

where the functions u(t), $\theta(t)$ are required to satisfy the homogeneous boundary conditions

$$\begin{cases} A_{O}[u] \equiv a_{O} u(o) - b_{O} u'(o) = 0, \\ A_{1}[u] \equiv a_{1} u(1) + b_{1} u'(1) = 0, \\ B_{O}[\theta] \equiv \alpha_{O} \theta(0) - \beta_{O} \theta'(o) = 0, \\ B_{1}[\theta] \equiv \alpha_{1} \theta(1) + \beta_{1} \theta'(1) = 0, \end{cases}$$

with

^{*}The operators $L_k[\phi]$, k=1,2 could equally well be two uniformly elliptic second order operators on a smooth domain $\Omega \subset \mathbb{R}^n$. However, the present treatment enables us to concentrate on the essential ideas and not get concerned with some technical "smoothness" questions.

2.3)
$$\begin{cases} \alpha_{k}, \alpha_{k}, \beta_{k}, b_{k} \geq 0, & k = 1, 2 \\ \alpha_{k} + b_{k} > 0, & \alpha_{k} + \beta_{k} > 0, & \alpha_{0} + \alpha_{1} > 0, & \alpha_{0} + \alpha_{1} > 0. \end{cases}$$

For simplicity, we assume that the functions H_k (t,u, θ) are even, i.e.

2.4)
$$H_k(t,u,\theta) = H_k(t,|u|,|\theta|), k = 1,2.$$

With this convention we see that $-\lambda$ is an eigenvalue with eigenfunction $(-u,\theta)$ whenever λ is an eigenvalue with eigenfunction (u,θ) . Thus we may restrict our attention to the case where $\lambda > 0$.

<u>Definition 2.1</u> The problem described by equations (2.1), (2.2) is called "normal" if

$$H_{\nu}(t,u,\theta) > 0$$
, $k = 1,2$

for all $t \in [0,1]$ and all real u, θ .

<u>Definition 2.2</u> The problem described by equations (2.1), (2.2) is called a "cut off" problem if there is a finite positive constant (") such that

(i)
$$H_k(t,u,\theta) = H_k(t,u,\theta)$$
, $\Theta \le |\theta|$, $k = 1, 2$

(ii)
$$H_k(t,u,\theta) > 0$$
, $|\theta| < 0$, $k = 1,2$

(iii)
$$H_2(t,u, \bullet) = 0 \quad \forall t \in [0,1]$$
 and all u .

A pair of functions u(t), $\theta(t)$ is called a solution to a cut off problem if and only if they satisfy equations (2.1), (2.2) and

$$|\theta(t)| < 0$$
.

Remark: The problem of Odeh and Tadjbakhsh described by (1.1) is reduced to a cut off problem by setting

$$H_{1}(t,u,\theta) = \begin{cases} \frac{\sin \theta}{\theta}, & |\theta| \leq \frac{\pi}{2}, \\ \frac{2}{\pi}, & |\theta| > \frac{\pi}{2}, \end{cases}$$

$$H_{2}(t,u,\theta) = \begin{cases} \cos \theta, & |\theta| \leq \frac{\pi}{2}, \\ 0, & |\theta| > \frac{\pi}{2}. \end{cases}$$

We assume that $F_k(t,u,\theta)$ ϵ C' except possibly at $|\theta|=$ in the cut off case. We will consider the following hypotheses on the coefficients H.1) The function $F_1(t,u,\theta)$ is monotone nondecreasing in θ and $F_2(t,u,\theta)$ is monotone nondecreasing in u. We write

2.5)
$$\frac{\partial}{\partial \theta} F_1(t,u,\theta) \ge 0, \quad \frac{\partial}{\partial u} F_2(t,u,\theta) \ge 0,$$

even though this statement may not be true at $|\theta|$ = \bigcirc . Observe that these conditions may be rewritten as

$$\begin{cases} H_1(t,u,\theta) + \theta \frac{\partial}{\partial \theta} H_1(t,u,\theta) \geq 0, \\ \\ H_2(t,u,\theta) + u \frac{\partial}{\partial u} H_2(t,u,\theta) \geq 0. \end{cases}$$

H.2) There are two functions $G_1(t,\theta)$, $G_2(t,u)$ such that

$$0 \le H_1(t,u,\theta) \le G_1(t,\theta)$$

$$0 \le H_2(t,u,\theta) \le G_2(t,u)$$

for all $t \in [0,1]$ and all u,θ .

H.3) The functions $H_k(t,u,\theta)$ are monotone nonincreasing in |u|, $|\theta|$. That is,

2.6)
$$u \frac{\partial}{\partial u} H_k(t,u,\theta) \leq 0, \ \theta \frac{\partial}{\partial \theta} H_k(t,u,\theta) \leq 0, \ k = 1,2.$$

However, the system (2.1), (2.2) should be genuinely "nonlinear." Hence, in addition to (2.6) we assume if \bar{u} , $\bar{\theta}$ are positive and C is a constant with C>1, then

2.6a)
$$H_k(t,C\bar{u},C\bar{\theta}) < H_k(t,\bar{u},\bar{\theta}), k = 1,2$$
.

3. Second Order Problems - A REVIEW

Let L $[\phi]$ be a regular Sturm Liouville operator and consider the nonlinear boundary value problem

3.1)
$$\begin{cases} L[\phi] = f(t,\phi), & 0 < t < 1 \\ A_0[\phi] = A_1[\phi] = 0 \end{cases}$$

where the boundary operators $A_0[\phi]$, $A_1[\phi]$ are described by equation (2.2), (2.3). The function $f(t,\phi)$ is continuous in (t,ϕ) and satisfies a Lipschitz condition in ϕ with Lipschitz constant γ .

Definition 3.1 Let $\varphi_1(t)$, $\varphi_2(t) \in C^1[0,1]$. We say φ_1 dominates φ_2 if $\varphi_2(t) < \varphi_1(t)$, 0 < t < 1

3.2b)
$$\varphi_1(0) = \varphi_2(0) \Longrightarrow \varphi_2'(0) < \varphi_1'(0),$$

3.2c)
$$\varphi_1(1) = \varphi_2(1) \Longrightarrow \varphi_1'(1) < \varphi_2'(1).$$

If $\phi_1^{}(t)$ dominates $\phi_2^{}(t)$ we write

$$\varphi_2 < \varphi_1$$

The concept of domination* arises in the study of second order equations through the strong form of the maximum principle and Hopf's lemma [2]. Together these principles give the following assertion: If

3.4a)
$$L[\phi] \leq 0$$

then

3.4b)
$$\varphi(t) \ge \min \{0, \varphi(0), \varphi(1)\}.$$

Moreover, if equality (in (3.4b)) occurs at any interior point, then

3.4c)
$$\varphi(t) \equiv constant.$$

Furthermore, if $\varphi(0) \geq 0$ and

3.5a)
$$\varphi(0) = \min \varphi(t), \quad 0 \le t \le 1,$$

then either (3.4c) holds or

3.5b)
$$\varphi'(0) > 0$$
.

similarly, if $\phi(1)\geq 0$ and $\phi(t)$ assumes its minimum at t=1 , then either (3.4c) holds or

3.5c)
$$\varphi'(1) < 0$$
.

These facts lead to the following basic lemma.

 $^{^{*}}$ We will make essential use of this concept only in section 5 when we are concerned with uniqueness.

Lemma 3.1 If $L[\phi] \le 0$, $A_O[\phi] = A_I[\phi] = 0$, then either $\phi(t) \equiv 0$ or $0 < \phi(t).$

The next lemmas collect some basic facts about solutions of the problem (3.1) as developed in [2] and [11]. In [11] we developed the basic ideas for the special case where

$$L \equiv \left(\frac{d}{dt}\right)^2 , \qquad b_0 = b_1 = 0.$$

However, using lemma 3.1 one may easily adapt the proofs to the general case.

<u>Lemma 3.2</u> Let $f(t,\phi)$ be bounded for all (t,ϕ) . Suppose $a(t) \in C^2[0,1]$ satisfies

3.6)
$$\begin{cases} L[a] \leq f(t,a), & L[a] \neq f(t,a) \\ A_0[a] \geq 0, & A_1[a] \geq 0, \end{cases}$$

Then there is a function u(t) which is a solution of equation (3.1) which satisfies

Moreover, if z(t) is any other solution of equation (3.1) which satisfies

$$z(t) \leq a(t),$$

then

3.8b)
$$z(t) \le u(t)$$
.

Finally, if $f_1(t,u) \ge f(t,u)$ for all u, then the solution u_1 , of

$$L[u_1] = f_1(t,u_1), A_0[u_1] = A_1[u_1] = 0$$

which is determined by this process satisfies

$$u_1 < u$$
.

Similarly, let b(t) ϵ C^2 [0,1] satisfies

3.9)
$$\begin{cases} L[b] \ge F(t,b), & L[b] \equiv f(t,b), \\ A_0[b] \le 0, & A_1[b] \le 0. \end{cases}$$

Then, there is a function v(t) which is a solution of equation (3.1) which satisfies

3.10)
$$b(t) < v(t)$$
.

Moreover, if z(t) is any solution of equation (5.1) which satisfies

3.11a)
$$b(t) \le z(t)$$
.

then

3.11b)
$$v(t) \le z(t)$$
.

Finally, if $f_2(t,u) \le f(t,u)$ for all u, then the solution $v_2(t)$ of

$$L[v_2] = f_2(t, v_2), A_0[v_2] = A_1[v_2] = 0$$

which is determined by this process satisfies

3.11c)
$$v < v_2$$
.

Proof: Consider the iteration

$$L[z_{n+1}] - \gamma z_{n+1} = f(t, z_n) - \gamma z_n$$

with $z_{O}(t) = a(t)$ or $z_{O}(t) = b(t)$. The argument proceeds by induction as in [11].

On the basis of this lemma we define two operations U(a), V(b) by

3.12)
$$U(a) = u(t)$$
, $V(b) = v(t)$.

<u>Lemma 5.3</u> If $f(t, \phi)$ is monotone nondecreasing in ϕ , then equation (3.1) has a unique solution.

Corollary: Suppose $f(t,\phi) \leq 0$ and is monotone nondecreasing in ϕ for $\phi \geq 0$. Then there exists a unique nonnegative solution $\phi(t)$. Similarly, suppose $f(t,\phi) \geq 0$ and is monotone nondecreasing in ϕ for $\phi \leq 0$. Then there exists a unique nonpositive solution $\phi(t)$.

<u>Proof</u>: We consider only the first case. We observe that if there is a solution $\phi(t)$ of equation (3.1) it is nonnegative.

Let

$$f_{O}(t,\varphi) = \begin{cases} f(t,\varphi), & \varphi \geq 0 \\ \\ f(t,0), & \varphi \leq 0 \end{cases}$$

Then, $\phi(t)$ is a solution of equation (3.1) if and only if $\phi(t)$ is a solution of $L[\phi] = f_{\Omega}(t,\phi(t))\,.$

But, this equation has a unique solutions because $f_{0}(t,\phi)$ is nondecreasing in ϕ .

Lemma 3.4 Suppose $f(t,\phi) \leq 0$. Suppose there is a constant k > 0 such that $f(t,\phi) = 0 \quad \text{for} \quad k \leq \phi \ .$

Let $\varphi(t)$ be a solution of equation (3.1). Then

$$0 \leq \varphi(t) \leq k$$

<u>Proof</u>: Suppose there is a point $t_0 \in (0,1)$ such that

$$\varphi(t_0) > k$$
.

Then there is an interval $[\rho, \delta]$ about t_o such that

3.13)
$$\varphi(t) \ge k \text{ for } t \in [\rho, \delta].$$

Naturally, we take $[\rho,\delta]$ as large as possible.

Case 1: ρ = 0, δ = 1. Then $L[\phi] \equiv 0$ and the maximum principle asserts that $\phi(t) \equiv 0 < k$.

<u>Case 2</u>: $\rho = 0$, $\delta < 1$. Then $\phi(\delta) = k$ and $\phi(0)$ is a maximum of $\phi(t)$ for $t \in [0, \delta]$. If $\phi(t)$ is not constant on this interval, we have

$$\varphi'(0) < 0$$
.

However, the boundary condition, $A_O[\phi]=0$, implies that $\phi(0)=0$ or $\phi'(0)\cdot\phi(0)>0$. Since $\phi(0)\geq k$ we have a contradiction.

Case 3: $\rho > 0$, $\delta = 1$. In this case we see that

$$\phi^{\prime}(1)$$
 > 0 , $\phi(1)$ \geq k ,

but the boundary condition, $A_{1}[\phi] = 0$, implies that

$$\varphi(1) = 0$$
 or $\varphi'(1) \varphi(1) < 0$.

Case 4: $0 < \rho < \delta < 1$. Then $\varphi(\rho) = \varphi(\delta) = k$ and

$$L[\phi] = 0$$
, $\rho < t < \delta$.

The maximum principle asserts that

$$\varphi(t) = k$$
 , $\rho \le t \le \delta$.

4. "Positive" Solutions

We now return to the general problem (2.1).

Definition 4.1 A pair of functions (u(t), θ (t)) will be called a "positive solution" of equation (2.1) if they are a solution and also satisfy

4.1)
$$u < 0 < \theta$$

Note: If $(u(t), \theta(t))$ is a solution, so is $(-u(t), -\theta(t))$. Moreover, if either function, u(t) or $\theta(t)$, is nonpositive (but not identically zero) the other function dominates the zero function.

<u>Definition 4.2</u> A positive solution (u(t), θ (t)) will be called a "maximal" solution if: whenever (w, Φ) is another nontrivial solution of equation (2.1), (2.2) (not necessarily positive) then

4.2)
$$|\Phi(t)| \leq \theta(t) |w(t)| \leq |u(t)| = -u(t)$$
.

Note: By the remarks above, (4.2) is equivalent to

4.2')
$$\Phi(t) \leq \theta(t) , \qquad u(t) \leq w(t) .$$

<u>Lemma 4.1</u> Suppose $(w(t), \Phi(t))$ is a nontrivial solution of equation (2.1),(2.2) and $\Phi(t) \geq 0$. Then (w, Φ) is a positive solution.

Proof: Apply lemma 3.1 and the remarks above.

Consider now the linear problem obtained by "linearizing" equations (2.1) about $(u,\theta)=(0,0)$. We obtain

$$\begin{cases} L_{1}[u] = \lambda \theta H_{1}(t,0,0) , & A_{0}[u] = A_{1}[u] = 0 , \\ \\ L[\theta] = \lambda \theta H_{2}(t,0,0) , & B_{0}[u] = B_{1}[\theta] = 0 . \end{cases}$$

Let $K_1(s,t)$, $K_2(s,t)$ be the "Green's Functions" associated with the operators $-L_1[u]$ and $-L_2[\theta]$ respectively, subject to the appropriate homogeneous boundary conditions $(A_j[u] = B_j[\theta] = 0$, j = 1,2). Then the equations (6.3) are equivalent to \int_0^1

$$u(t) = -\lambda \int_0^1 K_1(t,x) H_1(x,0,0) \theta(x) dx,$$

$$\theta(x) = -\lambda \int_{0}^{1} K_{2}(x, y) H_{2}(y, 0, 0) u(y) dy$$
.

On substitution, we obtain

4.4)
$$\theta(t) = \lambda^2 \int_0^1 G(t,s)\theta(s)ds ,$$

with

4.4a)
$$G(t,s) = \int_0^1 K_2(t,x) K_1(x,s) H_1(s,0,0) H_2(x,0,0) dx.$$

The kernel* G(t,s) is a positive (nonnegative) kernel. Hence, the smallest eigenvalue λ_O^2 corresponds to an eigenfunction of constant sign (see [4], [5], [6], [7]). Thus, we may normalize the eigenfunction $(u_O(t), \theta_O(t))$ associated with the smallest positive eigenvalue $\lambda_O > 0$ so that

$$u_{\Omega} < 0 < \theta_{\Omega}.$$

Moreover, if $\lambda_{0} < \lambda$ we may scale $(u_{0}(t), \theta_{0}(t))$ so that (4.5) holds and

In fact, G(t,s) is an oscillation kernel in the sense of Gantmacher-Krein [3]. However, we will not make use of this fact in this report.

4.6)
$$R_{k} = \left[1 - \frac{\lambda H_{k}(t, u_{o}, \theta_{o})}{\lambda_{o} H_{k}(t, 0, 0)}\right] < 0, k = 1, 2.$$

A straightforward calculation now shows that

4.7)
$$\begin{cases} L_{1}[u_{0}] \leq \lambda F_{1}(t,u_{0},\theta_{0}), A_{0}[u_{0}] = A_{1}[u_{0}] = 0, \\ L_{2}[\theta_{0}] \geq \lambda F_{2}(t,u_{0},\theta_{0}), B_{0}[\theta_{0}] = B_{1}[\theta_{0}] = 0. \end{cases}$$

These inequalities, together with the mappings of lemma 3.2 enable us to construct an "increasing" sequence (u $_n(t)$, $\theta_n(t)$).

<u>Lemma 4.2</u> Let H.1 and H.2 hold. Suppose $(u_{n-1}(t), \theta_{n-1}(t))$ satisfy

4.8a)
$$\begin{cases} L_{1}[u_{n-1}] \leq \lambda F_{1}(t, u_{n-1}(t), \theta_{n-1}(t)), \\ L_{2}[\theta_{n-1}] \geq \lambda F_{2}(t, u_{n-1}(t), \theta_{n-1}(t)), \end{cases}$$

and

4.8b)
$$\begin{cases} A_0[u_{n-1}] \ge 0 \ , & A_1[u_{n-1}] \ge 0 \ , \\ B_0[\theta_{n-1}] \le 0 \ , & B_1[\theta_{n-1}] \le 0 \ . \end{cases}$$

Let $u_{n}(t)$ be the solution of the nonlinear equation

4.9)
$$L_1[u_n] = \lambda F_1(t, u_n, \theta_{n-1}(t)), A_0[u_n] = A_1[u_n] = 0$$

determined by lemma 3.2. That is

$$u_n = U(u_{n-1})$$
.

Then, unless $u_{n-1}(t)$ satisfies equation (4.9) and $u_n(t) \equiv u_{n-1}(t)$, we have

4.11a)
$$u_n < u_{n-1}$$

and

4.11b)
$$L_{2}[\theta_{n-1}] \geq \lambda F_{2}(t, u_{n-1}, \theta_{n-1}) \geq \lambda F_{\theta}(t, u_{n}(t), \theta_{n-1}) .$$

Thus, we may choose $\theta_n(t)$ as the solution of

4.12)
$$L_2[\theta_n] = \lambda F_2(t, u_n(t), \theta_n), B_0[\theta_n] = B_1[\theta_n] = 0$$

determined by lemma 3.2. That is

$$\theta_{n} = V(\theta_{n-1}) .$$

Then, unless θ_{n-1} satisfies equation (4.12) and $\theta_{n-1}(t) \equiv \theta_n(t)$, we have

$$\theta_{n-1} \prec \theta_{n}$$

and

4.14b)
$$L_1[u_n] = \lambda F_1(t, u_n, \theta_{n-1}) \le \lambda F_1(t, u_n, \theta_n)$$
.

In either case

$$u_{n} \leq u_{n-1}, \ \theta_{n-1} \leq \theta_{n},$$

and equations (4.8a), (4.8b) hold with n-1 replaced by n.

<u>Proof:</u> The condition H.2 permits us to apply lemma 3.2 while (4.11b) and (4.14b) follow from H.1.

Corollary 1. Suppose 0 < λ_{o} < λ . Then we may choose ($u_{o}(t)$, $\theta_{o}(t)$) as the solutions of the linear eigenvalue problem (4.3) associated with λ_{o} which also satisfy (4.5),(4.6) and (4.7). Thus we generate a sequence ($u_{n}(t)$, $\theta_{n}(t)$), with

4.16)
$$u_n(t) \le u_{n-1}(t) < 0 < \theta_{n-1}(t) \le \theta_n(t)$$
.

The functions $u_n(t)$, $\theta_n(t)$ will satisfy equation (4.9) and (4.12) respectively.

Moreover, either $u_n(t) \equiv u_{n-1}(t)$, or

$$u_{n} \prec u_{n-1}$$

And, either $\theta_n(t) \equiv \theta_{n-1}(t)$, or

4.17b)
$$\theta_{n-1} < \theta_n$$
.

Corollary 2. Let H.3 hold also. Then the functions $u_n(t)$, $\theta_n(t)$ are the unique solutions of equations (4.9) and (4.12) respectively.

Proof: Apply the corollary to lemma 3.3.

Corollary 3. If we are dealing with a cut off problem and we further "scale" $(u_O(t), \ \theta_O(t)) \text{ so that } \theta_O(t) < \ \textcircled{1} \quad , \text{ then }$

$$\theta_{n}(t) \leq 0$$
 , $n = 1, 2, \ldots$

Proof: Apply lemma 3.4.

We obtain our next result from the same argument.

<u>Lemma 4.3</u> Let H.1 and H.2 hold. Suppose $(w_{n-1}(t), \Phi_{n-1}(t))$ satisfy

$$\begin{cases} L_1[w_{n-1}] \geq \lambda F_1(t, w_{n-1}(t), \Phi_{n-1}(t)), \\ L_2[\Phi_{n-1}] \leq \lambda F_2(t, w_{n-1}(t), \Phi_{n-1}(t)), \end{cases}$$

and

4.18b)
$$\begin{cases} A_0[w_{n-1}] \le 0 , & A_1[w_{n-1}] \le 0 \\ B_0[\Phi_{n-1}] \ge 0 , & B_1[\Phi_{n-1}] \ge 0 . \end{cases}$$

Let $w_n(t)$ be the solution of the nonlinear equation

4.19)
$$L_1[w_n] = \lambda F_1(t, w_n, \Phi_{n-1}(t)), A_0[w_n] = A_1[w_n] = 0$$

determined by lemma 3.2. That is

$$w_n = V(w_{n-1})$$
.

Then, unless $w_n(t) \equiv w_{n-1}(t)$ and $w_{n-1}(t)$ satisfies (4.19),

$$w_{n-1} < w_n$$

and

4.20b)
$$L_2[\Phi_{n-1}] \le \lambda F_2(t, w_n, \Phi_{n-1})$$
.

Thus, we may choose $\Phi_n(t)$ as the solution of

4.21)
$$L_{2}[\Phi_{n}] = \lambda F_{2}(t, w_{n}(t), \Phi_{n}) , B_{0}[\Phi_{n}] = B_{1}[\Phi_{n}] = 0 ,$$

determined by lemma 3.2. That is

$$\Phi_{n} = U(\Phi_{n-1}) .$$

Then, unless $\Phi_n(t) \equiv \Phi_{n-1}(t)$ and Φ_{n-1} satisfies (4.21)

4.22a)
$$\Phi_{n} < \Phi_{n-1}$$

and

4.22b)
$$L_1[w_n] = \lambda F_1(t, w_n, \Phi_{n-1}) \ge \lambda F_1(t, w_n, \Phi_n)$$
.

In either case

$$w_{n-1} \le w_n$$
 , $\Phi_n \le \Phi_{n-1}$

and equations (4.18a), (4.18b) hold with n-1 replaced by n.

Theorem 4.1 Suppose $\lambda_{o} < \lambda$, H.1 and H.2 hold. Suppose $(u_{o}(t), \theta_{o}(t))$ are the eigenfunctions of the linear eigenvalue problem (4.3) which also satisfy (4.5), (4.6), (4.7). Suppose there exists a pair of functions (w, Φ) such that

4.23a)
$$w < u < 0 < \theta < \Phi$$
,

4.23b)
$$L_1[w] \geq \lambda F_1(t, w, \Phi) , A_0[w] \leq 0, A_1[w] \leq 0 ,$$

4.23c)
$$L_2[\Phi] \leq \lambda F_2(t, w, \Phi), \quad B_0[\Phi] \geq 0, \quad B_1[\Phi] \geq 0.$$

Then, there exists a positive solution $(u(t), \theta(t))$ of equations (2.1), (2.2). Moreover, either (w, Φ) is a solution or

4.24)
$$w < u < u_0 < 0 < \theta_0 < \theta < \Phi.$$

<u>Proof:</u> Let $(u_n(t), \theta_n(t))$ be the monotone sequence generated by lemma 4.2 with (u_0, θ_0) chosen as above. Let (w_n, Φ_n) be the monotone sequence generated by lemma 4.3 with $w_0 \equiv w$, $\Phi_0 \equiv \Phi$. We shall prove

$$w_0 \le u_n$$
, $\theta_n \le \Phi_0$,

4.25b)
$$w_n \le u_0$$
, $\theta_0 \le \Phi_n$.

Then the theorem will follow from standard estimates and the Ascoli-Arzela lemma. Indeed, each pair of sequences (u_n, θ_n) , (w_n, Φ_n) will converge to a solution pair (u, θ) and $(\hat{w}, \hat{\Phi})$ respectively. Thus, there may be two solutions.

The proof follows by induction. By (4.23a) we have (4.25a), (4.25b) for n = 0. Suppose

$$w_0 \le u_{n-1}, \quad \theta_{n-1} \le \Phi_0.$$

Then

$$L_1[u_{n-1}] \le \lambda F_1(t, u_{n-1}, \theta_{n-1}) \le \lambda F_1(t, u_{n-1}, \phi_0).$$

Using lemma 4.2 we construct $u_n(t)$ which satisfies (4.9) and using lemma 3.2 we construct a function $\hat{v}(t)$ which satisfies

$$L_{1}[\hat{\mathbf{v}}] = \lambda F_{1}(t, \hat{\mathbf{v}}, \Phi_{0}), A_{0}[\hat{\mathbf{v}}] = A_{1}[\hat{\mathbf{v}}] = 0$$

and

$$w_0 = w \le \hat{v} \le u_n$$
.

Thus, we establish (4.25a) for all n. A similar argument establishes (4.25b) and completes the proof.

Theorem 4.2 Let $\lambda_0 < \lambda$, H.1 and H.2 hold. Suppose we have a cut off problem. Then there is a maximal solution (u(t), θ (t)).

Proof: Let

W = MAX {
$$\lambda F_1(t, w, \bullet)$$
); $0 \le t \le 1$, $|w| < \infty$ },

and let w(t) be the solution of

$$\begin{cases} L_{1}[w] = W \ge \lambda F_{1}(t, v, @) , \forall v(t) \\ A_{0}[w] = 0 , A_{1}[w] = 0 . \end{cases}$$

Let $\Phi(t) \equiv \bigcirc$. Then

$$\begin{cases} L_{2}[\Phi] = -C_{2}(t) & \text{(i)} \leq \lambda F_{2}(t, w, \text{(ii)}) = 0 \\ B_{0}[\Phi] \geq 0 & \text{(iii)} & B_{1}[\Phi] \geq 0 \end{cases}$$

Thus, the pair (w,Φ) satisfy, the conditions of theorem 6.1 and there is a positive solution $(\hat{w}(t), \hat{\Phi}(t))$ which is the limit of $(w_n(t), \Phi_n(t))$.

Let $(v(t), \Psi(t))$ be any other solution. Then, because (v, Ψ) is a solution to the cut off problem, we have

$$|\Psi(t)| \leq |\Psi(t)| \leq |\Psi(t)|$$

Hence

$$\lambda \, F_{1} \left(t \,,\, v \left(t \right) \,,\,\, \Psi \left(t \right) \,\right) \,\, \leq \,\, \lambda \, F_{1} \left(t \,,\, v \left(t \right) \,,\,\,\, \bigodot \right) \,\, \leq \,\, W \,\,\, . \label{eq:continuous_problem}$$

Therefore

$$w(t) \leq v(t)$$
.

And, of course, $(-v(t), -\Psi(t))$ is also a solution so that

$$|v(t)| \le -w(t) = |w(t)|$$
.

An induction, based on lemma 3.2 and lemma 4.3 shows that

$$w_n \le v(t), \quad \Psi(t) \le \Phi_n(t).$$

The theorem follows at once.

Returning to the normal (non cutoff) problems, we seek conditions which will guarantee the existence of a pair (w(t), Φ (t)) satisfying (4.23a), (4.23b) and (4.23c). Clearly, the conditions H.1 and H.2 are not sufficient because these conditions include the linear case.

Theorem 4.3 Let $\lambda_0 < \lambda$. Let H.1 and H.2 hold. Let $K_1(s,t)$, $K_2(s,t)$ be the Green's functions of $-L_1[u]$, $-L_2[\theta]$ respectively which were discussed earlier.

Suppose there are four positive constants M , U $_{\rm O}$, (0) $_{\rm O}$, α with 0 < α < 1 , such that

that
$$\begin{cases} H_{k}(t,0,0) \geq H_{k}(t,u(t),\theta(t)), \ k=1,2 \\ K_{j}(t,s) \ H_{j}(t,u(s),\theta(s)) \leq M \quad j=1,2, \end{cases}$$

$$4.28b) \quad \lambda^{2} \int_{0}^{1} K_{1}(s,t) K_{2}(x,s) H_{1}(t,u(t),\theta(t)) H_{2}(s,\hat{u}(s),\hat{\theta}(s)) ds \leq \alpha ,$$

4.28b)
$$\lambda^2 \int_0^1 K_1(s,t) K_2(x,s) H_1(t,u(t),\theta(t)) H_2(s,\hat{u}(s),\hat{\theta}(s)) ds \leq \alpha$$
,

for all functions u(x), $\theta(x)$, $\hat{u}(x)$, $\hat{\theta}(x)$ which satisfy

4.28c)
$$\begin{cases} U_{o} \leq |u(x)|, |\widehat{u}(x)|, & 0 \leq x \leq 1, \\ \bigcup_{o} \leq |\theta(x)|, |\widehat{\theta}(x)|, & 0 \leq x \leq 1. \end{cases}$$

Then there exists a pair (w, Φ) with w(t) \leq - U $_{O}$ < \oplus $_{O}$ \leq Φ (t) which satisfy (4.23a), (4.23b) and (4.23c). Finally, there exists a positive solutions $(u(t), \theta(t))$

Proof: Consider the inhomogeneous, nonlinear equation

$$\begin{cases}
L_{1}[v] = \lambda \Psi & H_{1}(t, v - U_{0}, \Psi + \Theta_{0}) + \lambda \Theta_{0} & H_{1}(t, 0, 0) \\
L_{2}[\Psi] = \lambda v & H_{2}(t, v - U_{0}, \Psi + \Theta_{0}) - \lambda & U_{0} & H_{2}(t, 0, 0), \\
A_{0}[v] = A_{1}[v] = B_{0}[\Psi] = B_{1}[\Psi] = 0
\end{cases}$$

We shall show that there exists a "positive" solution, i.e. a solution (v, Ψ) with

4.30)
$$v(t) \le 0 \le \Psi(t)$$
.

Let

$$\begin{cases} g_{1}(s) = \lambda & \textcircled{\tiny 0} & \int_{0}^{1} K_{1}(s,t) H_{1}(t,0,0) dt, \\ \\ g_{2}(s) = \lambda & U_{0} & \int_{0}^{1} K_{2}(s,t) H_{2}(t,0,0) dt, \\ \\ K_{0} = (\lambda M \|g_{1}\|_{\infty} + \|g_{2}\|_{\infty})/(1-\alpha) \\ \\ K_{1} = \lambda K_{0} \cdot M + \|g_{1}\|_{\infty}. \end{cases}$$

Let S be the convex set

4.32)
$$S = \{ (\overline{v}(t), \overline{\Psi}(t)) \in C[0,1]; -K_1 \leq \overline{v}(t) \leq 0 \leq \overline{\Psi}(t) \leq K_0 \}$$

Let $(\bar{v}(t), \bar{\Psi}(t)) \in S$ and let $V(t), \Psi(t)$ be the solutions of the linear equations

$$\begin{cases} L_{1}[V] = \lambda \overline{\Psi} H_{1}(t, \overline{v} - U_{0}, \overline{\Psi} + \overline{w}_{0}) + \lambda \overline{w}_{0} H_{1}(t, 0, 0), \\ \\ L_{2}[\Psi] = \lambda V H_{2}(t, V - U_{0}, \overline{\Psi} + \overline{w}_{0}) - \lambda U_{0} H_{2}(t, 0, 0). \\ \\ A_{0}[V] = A_{1}[V] = B_{0}[\Psi] = B_{1}[\Psi] = 0 \end{cases}$$

Using the integral representations of the solution, we have

4.34a)
$$V(s) = -\lambda \int_0^1 K_1(s,t) \overline{\Psi}(t) H_1(t,v(t) - U_0,\overline{\Psi}(t) + \omega_0) dt - g_1(s)$$

and

4.34b)
$$\Psi(x) = \int_{0}^{1} G(x,t)\overline{\Psi}(t)dt + \lambda \int_{0}^{1} K_{2}(x,s) H_{2}(s,V-U_{0},\overline{\Psi} + \omega_{0}) g_{1}(s) ds + g_{2}(x),$$

where

4.34c)
$$G(x,t) = \lambda^2 \int_0^1 K_1(s,t) K_2(x,s) H_1(t, \overline{v}(t) - V_0, \overline{\Psi}(t) + \overline{w}_0) H_2(s, V(s) - V_0, \overline{\Psi}(s) + \overline{w}_0) ds$$

From (4.34a) and (4.28a) we see that

4.35a)
$$-K_1 \le V(t) \le 0$$
.

From (4.34b), (4.28a) and (4.28b) we see that

4.35b)
$$0 \le \alpha K_0 + \lambda M \cdot \|g_1\|_{\infty} + \|g_2\|_{\infty} = K_0.$$

Thus, equations (4.33) provide a mapping of S into S. Standard estimates show that this is a compact continuous mapping. Thus, there is a fixed point, i.e. a solution of equations (4.29) which satisfy (4.30).

Let

4.36)
$$W = V - U_0 \le - U_0, \quad \Phi = \Psi + 0_0 \ge 0$$
.

Thon

$$\begin{split} & L_{1}[w] = \lambda \Phi H_{1}(t,w,\Phi) + \lambda \bigoplus_{o} \left[H_{1}(t,0,0) - H_{1}(t,w,\Phi) \right] + C_{1}U_{o}, \\ & L_{2}[\Phi] = \lambda w H_{2}(t,w,\Phi) - \lambda U_{o}[H_{2}(t,0,0) - H_{2}(t,w,\Phi)] - C_{2} \bigoplus_{o}. \end{split}$$

Thus

$$\begin{cases} L_1[w] \geq \lambda F_1(t, w, \Phi) \\ A_0[w] = -A_0 U_1 \leq 0, A_1[w] = -A_1 U_1 \leq 0. \end{cases}$$

and

4.37b)
$$\begin{cases} L_2[\Phi] \leq \lambda F_2(t, w, \Phi) \\ B_0[\Phi] = \alpha_0 & \text{if } 0 \geq 0 \text{ , } B_1[\Phi] = \alpha_1 & \text{if } 0 \geq 0 \text{ .} \end{cases}$$

The theorem now follows from Theorem 4.1.

5. Uniqueness of Positive Solutions - Existence of Maximal Solutions

In this section we strengthen the hypothesis on the functions $H_k(t,u,\theta)$ (k = 1,2) and study the unicity of the positive solution.

<u>Lemma 5.1</u> Let H.1 and H.3 hold. Then, of course H.2 holds as well. Suppose

$$\lambda_0 < \lambda$$

and there are two distinct positive solutions (v_1, Ψ_1) , (v_2, Ψ_2) .

Then, there are two positive solutions (u, θ) and (v, Ψ) which satisfy $v < 0 < \Psi < \theta$.

<u>Proof</u>: Let $(u_O(t), \theta_O(t))$ be the eigenfunctions of the linear eigenvalue problem (4.3) which also satisfy (4.5), (4.6), (4.7) and

5.2)
$$v_k < u_0 < 0 < \theta_0 < \Psi_k, k = 1,2.$$

Since both pairs (v_k, V_k) satisfy the conditions (4.23a), (4.23b), (4.23c) we may apply Theorem 4.1 to obtain a positive solution (v, V) which satisfies

$$v_k \le v \prec 0 \prec \Psi \le \Psi_k \qquad k = 1,2$$
.

Suppose

5.3)
$$v_1(t) \neq v(t), \Psi_1(t) \neq \Psi(t)$$
.

Then

$$\begin{cases} L_2[\Psi] = \lambda F_2(t, v, \Psi) \ge \lambda F_2(t, v_1, \Psi) , \\ B_0[\Psi] = B_1[\Psi] = 0 . \end{cases}$$

By lemma 3.2 there is a function a(t) which satisfies

5.5a)
$$L_2[a] = \lambda F_2(t, v_1, a), B_0[a] = B_1[a] = 0$$

and, either $\Psi(t) \equiv a(t)$ or

5.5b)
$$\Psi < a$$
.

But, since $v_1(t) \le 0$ and H.3 holds, the corollary to lemma 3.3 asserts that the solution of (5.5a) is unique. Hence

$$a(t) \equiv \Psi_{1}(t)$$
.

Thus, using (5.3), we have

$$0 < \Psi < \Psi_1.$$

A similar argument shows that

$$v_1 < v$$
.

On the other hand, if (5.3) does not hold we apply the same argument to (v_2, Ψ_2) .

<u>Lemma 5.2</u> Suppose H.1 and H.3 hold and there are two positive solutions of equations (2.1), (2.7) which satisfy (5.1) Let α be any constant such that

(5.6a)
$$0 < \alpha < 1$$
,

(5.6b)
$$\alpha \theta \leq \Psi$$
.

Then

5.7)
$$v < \alpha u$$
.

Similarly, if

5.8)
$$v \leq \alpha u$$
,

then

5.9)
$$\alpha\theta \prec \Psi$$
.

Proof: Using (2.6a) we see that

$$\mathbb{L}_1 \big[\alpha \mathbf{u} \big] = \lambda \alpha \theta \, \mathbb{H}_1 \big(\mathsf{t}, \mathbf{u}, \theta \big) < \lambda \alpha \theta \, \mathbb{H}_1 \big(\mathsf{t}, \alpha \mathbf{u}, \alpha \theta \big) \quad = \lambda \, \mathbb{F}_1 \big(\mathsf{t}, \alpha \mathbf{u}, \alpha \theta \big) \ .$$

Using (5.6b) we have

$$\label{eq:L1} L_1[\alpha \mathbf{u}] < \ \lambda \, F_1(\mathbf{t},\alpha \mathbf{u}\,,\,\, \boldsymbol{\Psi})\,, \quad \mathbf{A}_0[\alpha \mathbf{u}] \,=\, \mathbf{A}_1[\alpha \mathbf{u}] \,=\, 0 \ .$$

Using lemma (3.2), there is a function w(t) which satisfies

$$\begin{cases}
L_1[w] = \lambda F_1(t, w, \Psi), & A_0[w] = A_1[w] = 0. \\
w < \alpha u.
\end{cases}$$

However, because H.3 holds, the corollary to lemma 3.3 implies that $w(t) \equiv v(t)$ and the lemma is proven in the first case. The other case follows by a completely similar argument.

Theorem 5.1 Let H.1 and H.3 hold. Let

$$\lambda_{o} < \lambda$$
.

Then there is at most one positive solution of equations (2.1), (2.2).

<u>Proof:</u> Suppose there are two positive solutions. By lemma 5.1 we may assume that there are two positive solutions (u,θ) , (v,Ψ) which satisfy (5.1).

There is a positive number $\alpha < 1$ such that

5.11)
$$\alpha \theta \leq \Psi$$
,

but

5.12)
$$\alpha \theta \notin \Psi$$
.

To see this we merely observe that for β small enough, $\beta \theta \prec \Psi$.

We may let β increase until either $\beta \theta (t_O) = \Psi(t_O)$ for some interior point t_O , or $\beta \theta'(0) = \Psi'(0)$ or $\beta \theta'(1) = \Psi'(1)$.

Then, using lemma 5.2, and (5.11),

In particular, $v \le \alpha u$. Using lemma 5.2 again,

which contradicts (5.12).

Remark: The above uniqueness theorem applies to the cut off case as well as the normal case. The fact that $0 < \alpha < 1$ implies that we have been in the region

$$|\theta| \leq \Theta$$
.

Theorem 5.2: Suppose H.1 and H.3 hold and

$$\boldsymbol{\lambda}_{o} < \boldsymbol{\lambda}$$
 .

Suppose also that the hypothesis of theorem 4.3 holds. Then the positive solution constructed in theorem 4.3 is also a maximal solution.

<u>Proof</u>: Let (v, Ψ) be any solution. Let

$$v_1 = \max |v(t)|, \Psi_1 = \max |\Psi(t)|.$$

Let

$$U_2 = U_0 + V_1$$
, $0 = 0 + V_1$.

Then, following the construction of theorem 4.3 we may construct a pair (w, Φ) such that

$$w(t) \leq v(t)$$
, $\Psi(t) \leq \Phi(t)$,

and (4.23b), (4.23c) hold. A simple induction similar to the basic proof of Theorem 4.2 shows that the iteration (w_n, Φ_n) constructed in the proof of theorem 4.3 satisfy

$$w_n(t) \le v(t), \quad \Psi(t) = \Phi_n(t).$$

Thus the functions(w $_n(t)$, $\Phi_n(t)$) converge to a positive solution ($\hat{u}(t)$, $\hat{\theta}(t)$) which also satisfies

$$\hat{\mathbf{u}}(t) \leq \mathbf{v}(t), \ \Psi(t) \leq \widehat{\boldsymbol{\theta}}(t)$$
.

However, there is only one positive solution and the theorem follows at once.

A very similar argument shows that the maximal solution is monotone in λ . Theorem 5.3 Let $(u(t,\lambda),\theta(t,\lambda))$ denote the maximal solution of equations (2.1) (2.2). Assume H.1, H.3 hold, $\lambda_0 < \lambda$ and the hypothesis of theorem 4.3 hold. Then

$$u(t, \lambda + \delta) \le u(t, \lambda) \le \theta(t, \lambda) \le \theta(t, \lambda + \delta)$$
.

Proof: Let

$$v_1 = \max |u(t,\lambda)|$$
, $\Psi_1 = \max |\theta(t,\lambda)|$

and

$$U_2 = U_0 + V_1$$
, $\bigcirc 2 = \bigcirc 0 + \Psi_1$.

As in theorem 4.3 we construct a pair (w, Φ) so that (4.23b), (4.23c) hold and

$$w(t) \le u(t, \lambda), \ \theta(t, \lambda) \le \Phi(t)$$
.

Consider equations (2.1), (2.2) with λ replaced by $\lambda + \delta$. Since

$$L_{1}[u(t,\lambda)] = \lambda F_{1}(t,u,\theta) \leq (\lambda + \delta) F_{1}(t,u,\theta)$$

L
$$[\theta(t, \lambda)] = \lambda F(t, u, \theta) \ge (\lambda + \delta) F(t, u, \theta)$$

we may use the induction of lemma 4.2 to produce a sequence which increases and, as in the proof of theorem 4.1, we have

$$w(t) \leq \ u_n(t) \leq \ u(t\,,\,\lambda) \leq \ \theta(t\,,\,\lambda) \leq \ \theta_n(t) \leq \ \Phi(t)$$
 .

Thus the sequence $(u_n(t), \theta_n(t))$ will converge to the unique positive solution and the theorem is proven.

6. Other Solutions - Special Cases

Let us now consider the very special case where equation (2.1) take the form

6.1)
$$\begin{cases} u'' = \lambda \theta H_1(u, \theta) \\ \theta'' = \lambda u H(u, \theta) \end{cases}$$

subject to the boundary conditions (B) (of Odeh and Tadjbakhsh) or the boundary condition

(S)
$$u(0) = u(1) = 0$$
, $\theta(0) = \theta(1) = 0$.

Let

6.2a)
$$P = H_1(0,0) H_2(0,0) ,$$

6.2b)
$$J = H_2(0,0)/H_1(0,0) .$$

Consider the linear eigenvalue problem

6.3)
$$u'' = \lambda \theta H_1(0,0), \qquad \theta'' = \lambda u H_1(0,0).$$

In the case of the boundary conditions (S·) the eigenvalues are

$$\lambda_{j} = \pm \frac{(\pi j)^{2}}{\sqrt{P}} ,$$

while the eigenfunctions are given by ($\lambda_j > 0$)

6.5S)
$$\begin{cases} u_{j}(t) = A \sin \pi j t \\ \theta_{j}(t) = -\sqrt{J} \quad u_{j}(t) = -\sqrt{J} \quad (A \sin \pi j t) . \end{cases}$$

In the case of the boundary conditions (B.) we have

6.4B)
$$\lambda_{j} = \pm \left(\frac{2j+1}{2}\pi\right)^{2} \sqrt{P}$$

and, for $\lambda_{j} > 0$,

6.5B)
$$\begin{cases} u_{j}(t) = A \cos \frac{2j+1}{2} \pi t \\ \theta_{j}(t) = -\sqrt{J} \quad u_{j}(t) = -\sqrt{J} \quad (A \cos \frac{2j+1}{2} \pi t) . \end{cases}$$

We must also consider the differential equation (6.3) on other intervals. For this reason we introduce the following notation. Let

$$\lambda_{\mathbf{k}}^{(\mathbf{m},\mathbf{S})}$$

be the k'th positive eigenvalue of the differential equations (6.3) on an interval of length m subject to the boundary conditions (S.). For example, consider the equation (6.3) on the interval (a, a + m) subject to the boundary conditions

$$u(a) = u(a + m) = \theta(a) = \theta(a + m) = 0$$
.

Then, the k'th positive eigenvalue is denoted by (6.6). Similarly, let

$$\lambda_{k}(m,B)$$

be the k'th eigenvalue of the differential equations (6.3) on an interval of length m subject to the boundary conditions (B). For example, λ_k (m, B) denotes the k'th eigenvalue of equation (6.3) on the interval (a, a + m) subject to the boundary condition

$$u'(a) = \theta'(a) = u(a + m) = \theta(a + m) = 0$$
.

A straight forward calculation shows that

A straight forward calculation shows that
$$\begin{pmatrix}
\lambda_{O} \left(\frac{1}{k}, S\right) = \lambda_{k-1} (1, S), & k = 1, \dots \\
\lambda_{O} (2m, S) = \lambda_{O} (m, B) \\
\lambda_{O} \left(\frac{2}{2k+1}, S\right) = \lambda_{O} \left(\frac{1}{2k+1}, B\right) = \lambda_{k} (1, B), k = 0, 1, \dots
\end{pmatrix}$$

These facts lead immediately to the following results

Lemma 6.1 Let H.1 and H.2 be satisfied. Let

$$\lambda_{O}$$
 (m,B) $< \lambda$

and suppose that $H_1(u,\theta)$ $H_2(u,\theta)$ gets small enough for large (u,θ) that one knows that there is a positive solution (u(t,m), θ (t,m)) of equations (6.1) subject to the boundary conditions $\, B \,$ on an interval of length $\, m \,$, say (a, a + m) .

Then there is a positive solution $(U(t,m), \oplus (t,m))$ of equations (6.1) subject to the boundary condition S on the interval (a, a + 2m). Moreover,

6.9)
$$\begin{cases} U'(a) = -U'(a + 2m) < 0 \\ (a) = -(a + 2m) > 0 \\ (a + m) = (a + m) = 0 \end{cases}$$

Proof: Let

6.10a)
$$U(t) = \begin{cases} u(2a + m - t), & a \le t \le a + m \\ u(t - m), & a + m \le t \le a + 2m \end{cases}$$

6.10b) (t) =
$$\begin{cases} \theta(2a + m - t), & a \le t \le a + m \\ \theta(t - m), & a + m \le t \le a + 2m \end{cases}$$

$$\lambda_{o}\left(\frac{1}{k+1}, S\right) = \lambda_{k}\left(1, S\right) < \lambda.$$

Suppose $H_1(u,\theta)H_2(u,\theta)$ gets small enough for large (u,θ) that one may apply lemma 6.1 to assert the existence of the function $U(t,\frac{1}{k+1})$, $\textcircled{0}(y,\frac{1}{k+1})$ of the previous lemma.

Then there is a solution $(U_k(t), O_k(t))$ of equation (6.1) which satisfies the boundary conditions (S.). Moreover,

6.11)
$$U_{k} \left(\frac{\ell}{k+1} \right) = 0_{n} \left(\frac{\ell}{k+1} \right) = 0.$$

and these are the only zeros of $U_k(t)U_k(t)$.

<u>Proof:</u> Let a = 0 and U(t), (t) be the functions whose existence is assumed by lemma 6.1. Let

$$\begin{cases} U_{k}(t) \equiv (-1)^{\ell} & U(t - \frac{\ell}{k+1}), \quad \frac{\ell}{k+1} \leq t \leq \frac{\ell+1}{k+1}, \quad \ell = 0, 1..k \\ \\ \textcircled{\tiny 0}_{k}(t) \equiv (-1)^{\ell} & \textcircled{\tiny 0} & (t - \frac{\ell}{k+1}), \quad \frac{\ell}{k+1} \leq t \leq \frac{\ell+1}{k+1}, \quad \ell = 0, 1..k \end{cases}.$$

A direct computation verifies that (U $_{k}(t)$, $\textcircled{\tiny{\textbf{P}}}_{k}(t)$) is the desired solution .

Theorem 6.2 Let H.1 and H.2 be satisfied. Let

$$\lambda_{o}\left(\frac{2}{2k+1}, B\right) = \lambda_{o}\left(\frac{1}{2k+1}, B\right) = \lambda_{k}(1, B) < \lambda$$
.

Suppose that $H_1(u,\theta)$ $H_2(u,\theta)$ gets small enough for large (u,θ) that we may apply lemma 6.1 to assert the existence of the functions $U(t,\frac{2}{2k+1})$, (u,θ) $(t,\frac{2}{2k+1})$ of lemma 6.1.

Then there is a solution $(u_k(t)$, $\theta_k(t)$) of equations (6.1) which satisfies the boundary conditions (B). Moreover

$$u_k(\frac{2\ell+1}{2k+1}) = \theta_k(\frac{2\ell+1}{2K+1}) = 0$$
, $\ell = 0,1,...k$.

and these are the only zeros of $u_k(t) \theta_k(t)$ in [0,1] .

Proof: Let $a = -\frac{1}{2k+1}$. Let

$$\begin{cases} u_{k}(t) = (-1)^{\ell} U(t - \frac{2(\ell+1)}{2k+1}), & \frac{2\ell+1}{2k+1} \leq t \leq \frac{2\ell+3}{2k+1}, \ell = -1, 0, 1, 2 \dots k-1 \\ \theta_{k}(t) = (-1)^{\ell} \text{ (i) } (t - \frac{2(\ell+1)}{2k+1}), & \frac{2\ell+1}{2k+1} \leq t \leq \frac{2\ell+3}{2k+1}, \ell = -1, 0, 1, \dots k+1 \end{cases}$$

Once more, a direct computation verifies that these functions have the desired features.

Remark: In the cut off case, we are assured of the existence of the necessary positive solutions. Thus, in particular, in the case of equations (1.1) subject to the boundary condition B, if

$$\lambda_k < \lambda \le \lambda_{k+1}$$

there are at least (k+1) distinct nontrivial solutions $(u_j(t), \theta_j(t))$, j = 0, 1...k. The pair $(u_j(t), \theta_j(t))$ is characterized by the fact that each function has exactly j interior modal zeros and no other zeros.

Remark: This method of "patching together" positive solutions is clearly of limited applicability. Nevertheless, it is an interesting direct consequence of this theory of positive solutions.

REFERENCES

- [1] Bazley, N. and B. Zwahlen: Remarks on the Bifurcation of Solutions of a Nonlinear Eigenvalue Problem, Arch. Rat. Mech. Anal. 28, 51-58 (1968).
- [2] Courant, R. and D. Hilbert: Methods of Mathematical Physics, Vol. II, (1953). Interscience Publishers, Inc., New York
- [3] Gantmacher, F. R. and M. G. Krein: Oscillation Matrices and Kernels, and Small Vibrations of Mechanical Systems, A. E. C. Translation 4481; Office of Technical Services, Dept. of Commerce, Washington D. C. (1961)
- [4] Hopf, E.: An Inequality for Positive Linear Integral Operators, J. Math & Mech. 12 683-692 (1963).
- [5] Jentzsch, R.: <u>Über Integral gleichungen mit positivem Kern</u>, Crelle's Journal 141, 235-249 (1912).
- [6] Karlin, S.: <u>Positive Operators</u> J Math. & Mech. <u>8</u>, 907-932 (1959)
- [7] Krein, M. G. and M. A. Rutman: <u>Linear Operators Leaving invariant a cone in a Banach Space</u>, Uspehi Matem, Nauk. (1948) 3-95 (Amer. Math. Soc. Translations no. 26)
- [8] Odeh, F. and I Tadjbakhsh: A Nonlinear Eigenvalue Problem for Rotating Rods, Arch. Rat. Mech. Anal. 20, 81-94 (1965)
- [9] Parter, S. V.: Mildly nonlinear elliptic partial differential equations and their numerical solution I. Numer. Math. 7, 113-128 (1965)
- [10] : Remarks on the numerical computation of solutions of $\Delta u = f(p,u)$. Symposium, University of Maryland, May 3-8, 1965, Numerical Solution of Partial Differential Equations, Edited by J. Bramble, Academic Press, New York (1966)
- [11] : Maximal Solutions of Mildly Nonlinear Elliptic Equations, 213-238, Numerical Solutions of Nonlinear Differential Equations, edited by D. Greenspan, John Wiley & Sons, Inc. (1966).
- [12] Picard, E.: "Traite d'Analyse" Second Ed. Gauther-Villars (1908) Tome III, chapter VII.

Security Classification					
DOCUMENT CONT	ROL DATA - R &	D			
(Security classification of title, body of abstract and indexing	annotation must be en	ered when the	overall report is classified)		
1 ORIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION			
University of Wisconsin		Unclassified			
		2b. GROUP			
3 REPORT TITLE					
I. MAXIMAL SOLUTIONS					
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)	**************************************				
Computer Sciences Technical Report, October 1969					
5 AUTHOR(S) (First name, middle initial, last name)					
Seymour V. Parter					
6. REPORT DATE	78. TOTAL NO. OF	PAGES	7b. NO. OF REFS		
October 1969	36		12		
8a. CONTRACT OR GRANT NO.	98. ORIGINATOR'S REPORT NUMBER(S)				
N00014-67-A-0128-0004 b. project no	Computer Sciences Technical Report #75				
с.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)				
d.	<u> </u>				
10 DISTRIBUTION STATEMENT					
Releasable without limitations on dis	ssemination				
II SUPPLEMENTARY NOTES	12 SPONSORING MILITARY ACTIVITY				
	Mathematics Branch				
	Office of Naval Research				
	Washington, D. C. 20360				
13 ABSTRACT					

A constructive, nonlinear iterative method is developed for the construction of a "positive" solution $(u(t),\theta(t))$ of nonlinear fourth order ordinary differential equation of the form $u'' = \lambda \theta H_1(t,u,\theta)$, $\theta'' = \lambda u H_{\theta}(t,u,\theta)$. A solution $(u(t),\theta(t))$ is "positive" if $u(t) \leq 0 \leq \theta(t)$. Under appropriate hypothesis, these solutions are "maximal" in the sense that; if (ω,Φ) is any other solution, then $u \leq \omega$, $\Phi \leq \theta$. Thus, bounds on (u,θ) are a priori bounds on all solutions. Uniqueness is discussed. In special cases these positive solutions may be patched together to give other solutions.

DD FORM 1473 (PAGE 1)

S/N 0101-807-6801

LINK A LINK B LINK C KEY WORDS ROLE ROLE ROLE Fourth order ordinary differential equations Maximal solution Iterative method Bifurcatum theory "Cut off" problem

DD FORM 1473 (BACK)

(PAGE 2)