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L. INTRODUCTION

Consider the Hammerstein equation

1
(t.) x(s) = A fo K(s, t) f(t, x(t) ) dt
where K(s,t) is continuous for 0 £ g, t <1 and "positive," i.e.,
(L.1) K(s,t) > 0, 0<s<1, 0<t<1,.

The function f(t, x) is assumed to have the form

(L.2) f(t, x) = xH(t, x)

where

(1.2a) H(t,x) = H(t,-x) > 0, 0=t=s1, [x|] <
(1.2Db) fx(t, x) = H(t, x)+ x Hx(t, x)> 0

(1.2¢c) XHX(t,x)< 0, x#0.

Many authors have studied such problems. However, the work of
George Pimbley [6], [7] is of particular interest for us.
A related problem which is basic for the study of equation (l.) is

the linearized problem (linearized about zero)

(1.3) h(s) = x]l K(s, t) H(t, 0) h(t) dt.
0

It is well known [3], [4] that there is a unique positive number X, > 0
which is the smallest eigenvalue of equation (1.3). We may normalize

the associated eigenfunction ho(t) to be positive for 0 < t < L .




Moreover, if A is any other eigenvalue and o¢(t) is the associated

eigenfunction then either

(1.3a) 2] > XO and H‘to € (0, 1) such that cp(to) =0
or
(1.3Db) A= XO and o(t) = cho(t)

for some constant c .
We will assume that the positive eigenvalue XO is strictly

monotone in H(t, 0).

Definition: Let gl(t), gz(t) € C[0,1] satisfy
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(1.4) 0 <cy=g(t)s= g,t), 0

Let (gl), L (gz) be the minimal positive eigenvalues of the linear

eigenvalue problems

1
(1.4a) Q(s) = (g,) f K(s,t) g (t) Q(t)dt, K=1,2.
0

We will say the kernel k(s,t) satisfies condition M if gl(t) £ gZ('t)

implies that

(1.4b) L(g,) < i(g)).
Remark: We know of no examples where this condition is violated.

Nevertheless, since it is this particular fact which is used, it seemed

worthwhile to identify it.



Remark: When K(t,s) = K(s,t) we see that K(s,t) satisfies condition

M from the variational characterization (see [ | ])

1
f 9% (t) dt
L (g) = Min 2

T 71 T
Q(t)£0 lf f K(s, t) [g(s)g(t)]® o(s)o(t)dtds]
0 0

In this note we prove an existence theorem for "positive"
solutions of equation (1.) which also enables us to establish a priori

bounds on all solutions of equation (1.). A basic result is

Theorem 1I: Let K(s,t) satisfy condition M . Let X be a fixed

constant satisfying

(1.5a) x0<x

Suppose there are two positive constants Yy a with 0 < a< 1 such
that

1
(1.5b) x[ K(s, t) H(t,y)dt = @ <1.
0

Then there exists a positive solution of equation (1.), say vy(t).

Moreover, if v(t) is any solution of equation (l.) then

(1.6) v(t) = y(t) < Yo

Finally, if v(t) is any nontrivial, nonnegative solution of equation (1.},

then

(1.7) v(t) = y(t)




Remark: Since -v(t) is a solution whenever wv(t) is a solution,

the inequality (1.6) implies
[v(t)] = ¥() .

Using this estimate and the basic idea of Pimbley [7] and

Wolkowisky [8] we then prove

Theorem II: Suppose K(s,t) is an oscillation kernel. Suppose

(1.5a), (1L.5b) hold. Suppose

(1.8) <A

(1.9) MH(t y) < A HE(E 0)

hold, where Xn is the mth smallest eigenvalue of equation (l.3). Then, there
exist (at least) n+1 nontrivial solutions of equation (1.) .xj(t), j=0,1...n.
The function Xj(t) has exactly j interior nodal zeros and no other
interior zeros.

Theorem II is essentially Pimbley's theorem of [7]. Unfortunately
there is a gap in the proof of lemma 5 of [7]. Our contribution is

basically the use of the a priori estimate of Theorem I to avoid the

difficulties. Nevertheless, because of many questions asked by our
interested friends and colleagues we include most of the details. We
will assume the reader is familiar with Pimbley's work.

I wish to thank my many friends who discussed this matter with me.

In particular, I am indebted to George Pimbley and Paul Rabinowitz.



2. POSITIVE SOLUTIONS

Our basic results of this section follow from some elementary lemmas.

Lemma 1: Suppose K(s,t) satisfies condition M . Suppose vy(t) and

z(t) are two solutions of equation (l1.) with

(2.1) 0= y(t) s z(t), 0<t< 1
0 ¥ y(t)
Then
(2.2) 0 < y(t) = z(t), 0<t< 1
Proof: From equation (l.l) and conditions (2.1) we see that

0 < y(1), 0<t< 1,
Thus, we need only prove that y(t) = z(t), 0< t< 1. Let
g, (t) = H{t, y(t)), g, (t) = H{t, z(t) ).

Then, condition (2.1) and (l.2c¢) imply that

Thus,

H{g;) < uig,)

unless gl(t) = gz(‘t). However, the fact that vy(t) and =z(t) both satisfy

equation (l.) and both are positive for 0 < t < | means that

A =u(gl) =1 (g,) -




Thus

H(t, y(t) ) = H(t, z(t) )

and we use (l.2¢) to see that

y(t) = z(t)
Lemma 2. Let (1.5a) hold. Let yo(t) be a positive function which
satisfies
(2.3) 0<c05y0(t), 0<st= |

for some constant cO . Suppose

1
(2.4) T ks, £t volt) ) dt = v (s) .
‘0

Consider the sequence of functions yn(t) generated by

Yo(t) = Y (t)

(2.5) 1

() =1 [ kls, 1) 8ty eat
“0

Y

The functions yn(t) decrease with n and converge uniformly to a

continuous function v(t) which satisfies equation (l.) and also satisfies

(2.6) 0 < y(t) = yo(t), 0<t< 1,

Proof: Condition (2.4) implies

0 <y (1) =y 1), 0<t< L,



Assume that yn(t) <y l(’c), 0=t=1. Then
Yogp(8) vy (s) = A ]0 Kis, ) £ (t,€ (1)) [y (1) -~y _,(t)]dt= 0.

Thus the functions yn(t) decrease with n .

The function ho(t), the non negative eigenfunction of equation (1.3},
is the eigenfunction of a linear eigenvalue problem. Hence, it may be
“scaled". We assume ho(t) has been chosen non negative and so small

that

A

_0
ME(t hy(1) =57 H(t0)] ho(t) > 0, 0<t<]

0 < hy(t) < ¢, = y(t) .

Assume that

h(t) = yn<t)
Then
1
ynH(s) - ho(s) = XL/(; K(s, t) [ £(t, yn(t)) - f(t, ho(t) )] dt +
1 A

xf K(s, t) [H(t,h (1) - _{Q H(t, 0)] hy(t)dt = 0 .
0

Thus, the functions yn(t) converge monotonically to a function y(t)
which satisfies condition (2.6). Because the family {f(t, yn(t.) )} is
bounded, the family {yn(t) } is compact and one sees that the con-

vergence is uniform. Thus y(t)e€C[0,1] and satisfies equation (1.).




Corollary: Suppose there exist two constants YO’ a, 0 ~a <! such that
(l.5b) 1is satisfied. Suppose (l.5a) is satisfied. Then, there is a positive

solution vy(t) which satisfies

0 < y(t) < Y,

il
~

Proof: Set yo(t) =

The normalization (2.7) is based on the ideas of Picard for nonlinear second

order differential equations [5].

Lemma 3: Let K(s,t) satisfy condition M. Suppose we can construct a
function yo(t;co) which satisfies the hypotheses (2.3) and (2.4) of Lemma 2
for all choices of 4 > 0. Suppose (l.5a) holds. Then there is only one
nontrivial nonnegative solution y(t). This solution may be constructed via
lemma 2 and is independent of the choice of o > 0. Moreover, if v(t) is

any solution of equation (!.) then
v(t) = y(t).

Proof: Let v(t) be any solution of equation (l.). Let

(2.8) c, = max |v(t)| + L.

Let the sequence yn(t) be constructed as in lemma 2 starting with
= H < < .
yo(t) yo(t,co). Then, clearly v{t) yo(t) yn(t) Then

1

vis) =y, () = [ Kis O [ VD) - £t v, (0)] &
0

n+l(s

1
= j; K(s, t) fx(t, E(t)) [v(t) - o) ]dt = 0.



Thus the functions yn(t) converge to a function y(t) which is also a

solution of equation (l.) and

v(t) = y(t).

If v(t)2 0 and v(t) ¥ 0, then Lemma ! gives us

v(t) = y(t)

Thus there is only one positive solution,which dominates all other solutions.

These three lemmas immediately give our basic Theorem I.

Theorem 2.l: Suppose K(s,t) satisfies condition M. Suppose there

is a positive constant Y, and an £, > 0 such that

k0<>\

(2.9)

ARt y) = (A - gq) BT, 0) -

0
Let f(t,x) be of the form (1.2) and satisfy (1.2a), (1.2b), (l.2c).

Then there exists a positive solution of equation (l.), say y(t), with

(2.10) 0 < y(t) 0< t< 1.

Moreover, if v(t) is any other solution of equation (l.) then

(2.11) v(t) = v(t) .

Finally, if z(t) is a nonnegative, nontrivial solution of equation (l.), then

(2.12) z(t) = y(t) .
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Proof: Let
1

(2.13) p(s) =Xy0 f K(s, t) H(t, 0)dt > 0 .
0

Let u(x) be the unique solution of the linear integral equation
1
(2.14) u(s) = A f K(s, t) H(t, yo) u(t) dt + p(s) .
0
It is easy to see that equation (2.14) has a unique solution since the minimal

eigenvalue (M H(t, yo)) satisfies
(2.15) pL(XH(t,yO))z u,((XO-EO)H(t,O))> 1.

Indeed, equation (2.15) also guarantees that we may compute u(s)

via the Neumann series. The positivity of p(s) and K(s,t) shows that
(2.16) 0 < u(s), 0<s <1,

Let

yo(t) =u(t) +vy, .

Then
1
vols) =% [ K(s, (L v+ uln) (ule) + v ) de 4
0
1

A | K(s, 1) [H(t v ) ~H(t, v +u(t))] (u(t) +y)dt +

0

,_
o

1
K(s, t) [H(t, 0) = H(t, yo)] Y, dt + Yy -

S



I

That is,

1
A f K(s, t) f(t, yO(t)) dt = yo(s) .
0

Thus, for Sy =Y, we have constructed the function yo(t, cO) of Lemma 3.

However, if Zq > Y then of course, (2.9) holds with M replaced by
Zg Thus we may construct yO(t, cO) for all CO . Hence we may apply

Lemma 3 and the theorem follows at once.
Remark: The positive solution ¥(t) = ¥(t,\) is monotone in A . To see
this we need merely observe that & > 0 implies

Nl

XJ K(s, t) £(t, y(t, \)) dt
0

i

v(s, )

1
+9) j; K(s, t) £(t, 7(t,\)) dt.

IA

Hence if c, = max y(t, \), and yO(t, CO) is used as a starting value when

»+ 0 replaces A, the induction of Lemma 2 will easily prove that
v(t,A\) = y(t, 2 +0) .

Sometimes it is desirable to modify the functions f£(t, x), H(t, x)
and yet preserve the class of solutions of equation (1.). Let a > 0 be

any constant. Let m be a positive constant such that

1
l < —
(2.17) 0< m= 2
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Define
H(t, x), {x] < a
(2.17a) G(t, x) =
H(t,a) {(1-m)+ me—B(t)(lXI - a)} , x| =z a,
where
(2.17b) B(t) = %ﬁ%) > 0.
Lemma 4: Let
(2.18) F(t, x) = x G(t, %)

where G(t, x) is given above by equations (2.17a) and (2. 17b).

Then

(2.19a) G(t,x) = G(t, -x), 0=st=<1, |x|< o
(2.19b) F(tx) = G(t,x) +x G_(t,x) > 0
(2.19c) x G(t, %) <0, x%0

(2.19d) Lim G(t, x) = (l-m)H(t,a) > 0

] =

Proof: Clearly, it is only necessary to verify (2.19b) for x > a.

In that case
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(2.20) F_(t,x) = H(t, a)(L-m) + {mH(t, a) +a H_(t, a) + (x-a)H_(t, a)le

A straight forward computation using (2.17) completes the proof.

Theorem 2.2: Let K(s,t) be a positive kernel satisfying condition M .

Suppose f(t, %) is of the form (l.2) and satisfies (1.2a), (l.2b) and (l.2c)
for |x| < %, where x, is some given positive constant. Suppose there

are two constants Yo <X a with 0 < a < L, such that (l.5a) and

O b
(1.5b) hold.

Then there is a positive solution ¥(t) of equation (l.). Moreover

0 < F(t) <y, < %, -

Finally, if v(t) is any nontrivial solution of equation (l.) satisfying

(2.21) [vit] < %,

then

(2.22) v(t) = y(t) .

Of course, if v(t) is also nonnegative,

y(t) .

v(t)

Proof: Let v, =2 and construct the functions F(t, x), G(t, x) as

above. Let ¥(t) be a solution of

B(t)(x-a)




14
1
(2.23) vis) = A f K(s, t)} F(t,¥V(t)) dt .
0
Then, by the aboveresults, there is a function y(t) which
satisfies equation (2.23), such that

0< (t) <y 0<t<1

O 3

~—

(2.24)

R GERA

But then, y(t) and ¥V(t) are both solutions of equation {l.) which

satisfy (2.21).

Conversely, if v(t) is a solution of equation (l.) such that (2.21)
holds, let
(2.25) b = max (max |v(t)], vo) < %g -

~ ~

And, let F(t, x), G(t, X) be the functions constructed above and modified

for |x| > b. The argument leading to theorem I shows that all solutions of
o ~
(2.26) x() =2 ) (s, t) Flt, x(0) dt
0
satisfy
x(t) = Vg

Thus, all solutions of (2.26) are solutions of (2.23) and satisfy (2.24).
But, of course, v(t) satisfies (2.26) by the choice of b. Thus, the

theorem is proven.
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3. THEOREM II

Let K(s,t) be a symmetric oscillation kernel [2]. Then, by the
remarks of section |, K(s,t) satisfies condition M . The difficulties in the
proof of [7] arise because H(t,x)— 0 as x-— « . However, we avoid this
difficulty by using the modification described in section 2. That is, let

there be a positive constant Y such that (1.5b), and (1.9) hold. Assume
(3.1) A<

where Xn is the nth smallest eigenvalue of the linearized problem (1.3). Let
a =y, and let F(t, x), G(t, x) be constructed as in (2.17), (2.17a),
(2.17b) and (2.18). Clearly any solution of equation (l.) is a solution
of equation (1.) when f(t, x) is replaced by F(t, x) and vice-versa.
Hence we may assume
(3.2) Lim H(t,y) = (l-m)H(t,y.) > O
|y |- °
uniformly for te [0, L].

We follow Pimbley's argument. Let
(3.3) A= {a(t)e C[0, L]; (L-m)H(t, yO) < g(t) = H(t, 0)) .

Let j < n. Forevery @, 0= a< o andevery g(t) €e A we construct a
mapping Lj(oc) taking A into A . Let Vj(t), uj be the jth eigenfunction

and eigenvalue of the linear integral equation




16
1
(3.4) V.(s) = My, f K(s, t) g(t) V. (t)dt .
3 J 0 J
The theory of oscillation kernels allows us to conclude that uj and Vj(s)

are unique (uptoa scale factorin V]_(s) ), and Vj(s) has exactly j interior

nodal zeros and no other interior zeros. We normalize Vj(s) so that
(3.5) “VJ-HOO = max |V (t)] = 1.

Moreover, if Cj is the jth eigenvalue associated with the kernel

K(s, t) H(t, YO)(l -m), then
(3.6) 0< 1, = C, .
J J

Thus the functions \/j(s) are uniformly bounded and equicontinuous.

Having obtained Vj(t), uj we set

(3.7) [Lj(a)q](t): H(t,avj(t)). .

Clearly,

(3.8) Li@): A= A ¥ o e [0,w).

Lemma 5. For every j, 0= j<n, and every a e [0,»), L ()

]
is a continuous mapping of A into itself.

Proof: See Lemma 1 of [7] .
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Let Oj(on), wj(t) be the eigenvalue and eigenfunction of the linear eigenvalue

problem
1
g.(s) = A O0(a) f K(s,t) H(t,a V. (1)) ¢.(t) dt.
(3.9) ) J 0 ) J
1,1, =1

Foreach 0= 0 let Pj(é) be the jth smallest eigenvalue of the linear
eigenvalue problem

1

N
. = & ' ‘ , 8) . .
(3.10) cpj(s) kpj( )Jo K(s, t) H(t )cpJ(t)dt

Clearly p].(O) =>\j/>\ and pj increases as 0 increases. Moreover,
Lim p(8) =C, - x> X
ey 00 ] J

because of condition (1.9). Thus there is a unique 5;‘ such that

Lemma 6; There igs a unique a = E(q) € [(53,, ) such that

(3.11) o,(@a) = 1.

Proof: For fixed gq € A, hence for fixed Vj(t), the eigenvalue GJ,(OL) is

a strictly monotone increasing function of o (see Lemma 2 of [7]). Since

> o)
A H(t, 5), Vj(t)) > X H(t, J.)
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we see that

(3.12) 0.(6) =

As a— o the functions H(t, o Vj(t) ) converge to H(t, «) = (1 -m) H(t, yO)
monotonically, almost everywhere,and uniformly on compact subintervals not

containing a zero of Vj(t). Hence

cyj(a)-»Cj>l as q-— o .,

Thus there is a unique o =o(q), O = % < =, and equation (3.11) holds.

~

Lemma 7. The quantities a{q) are bounded for g ¢ A,

Proof: Suppose there is a sequence qn(t) e A such that
~ ~ n
a

=g )= 85 N=s©,

2
The sequence [qn) is weakly compact in L [0,1]. Hence there is a

subsequence qn (t) which converges weakly to a function q(t). While T(t)

may not be continuous, we have

(3.13) H(t,») < g(t) < H(t, 0), a.e.

By extracting enough subsequences we may assume
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uj(q )= U
n = .
Vj — V(1) uniformly
n  — .
?ﬁj — p(t) uniformly
n — , 2
q (t) — q(t) weakly in L~ .
Then
— l —
(3.14) V(is) = 2 f K(s, t) q(t) V(t)dt .
0
Since ||V]| =1, we see that V(t) is an eigenfunction of an integral

equation with an oscillation kernel relative to the positive measure
G(t)dt. But then V(t) has only a finite number of zeros. As in the

argument above

H(t, o v].“(t) ) — H(t, «)

almost everywhere and uniformly on compact sets not including zeros of

T(t). Furthermore,

1
(3.15) U(s) = f K(s, t) H(t,x) P(t)dt .
0

But then, (1.9) implies that

However, || w“oo =1,
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Lemma 8. The function a(q) is a continuous function of g € A,

Proof: Let qk, k=1,... be asequence in A which converge uniformly

to a function q(t) € A. The associated eigenvalues and eigenfunctions

k k -
o, V}, (t} also converge to an eigenvalue and eigenfunction pk, V]_(t)

associated with q(t) (see lemma | of [7]).

The constants a*k = N(qk) satisfy

< < °k
0 a0<q SOL1< oo,

Let @& be a limit point of this sequence. We must show that

(3.16) c’i—‘-g('(ff).

After extracting a subsequence (k') we have

~x -
a = Q

ij (t) — z,(t) uniformly.

Thus the functions H(t,g[k \/j (t) ) converge uniformly to H(t,& V. (t) ).

]
(h)
j (t)

lemma | of [7] we see that the associated eigenfunctions y

(t)

converge to the j'th eigenfunction ?p-j of the limit equation. That is

7 - xf K(s, 1) H(t V,(1)) (0t .
0

~

Using the unicity of q(g) we see that (3.16) holds and the lemma is

proven.

By
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Let Mj be the mapping of A into A defined by
(3.17) (qum)=mn7m%an=<%@mnmum

It is now an easy matter to verify that Mj is a completely continuous

operator (see [7]) and hencethere is a fixed point q(t). Then

(3.18) mmﬂmﬁwm
where
l ~
(3.19) ww=XmenHmameﬂmn
J 0 ] J
Hence
ﬂm=awm

is a solution of equation (1.) having exactly j interior nodel zeros and

no other zeros.
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