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1., INTRODUCTION

Let A= (aij) be a real symmetric positive definite n xn matrix

and b = (bi) a real column n-vector. We shall be concerned with the

following problem:

Problem 1

Find real column n-vectors X = (Xi) and y = (yi) such that

Ax-y=b, (1.1)
x'y =0, (1.2)
xz 0, y=z0. (1.3)

It is known that Problem 1 is equivalent to a quadratic programming
problem, Problem 2 (see section 2). Both Problems | and 2 have becn
extensively studied from the viewpoint of linear and quadratic programming
(Cottle and Dantzig [1], Hadley [5, p. 212], and Lemke [6]) and there

are many methods available for solving these problems.



Our interest in Problem 1 arose because problems of this tyoe occur when
the method of Christopherson is used to solve free boundary problems for
journal bearings (Cryer [3]). In such cases Problem 1 has certain features

which are unusual in nonlinear programming problems:

(i) A is a large matrix, perhaps a 10, 000 x 10, 000 matrix.

(iil) A is a “finite -difference" matrix. Typically, each row of A will
. -1,
have no more than five non-zero elements. However, A is a full

matrix.

(iii) Because of the physi cal significance of the solution vector X,

most of the components Xi may be expected to be positive.

When these features are present, the conventional methods for solving

Problems 1| and 2 have substantial disadvantages.

1n Section 3 we introduce a method for solving Problem 1 which is partic-
ularly suitable when A is a “fipite-difference” matrix, since the method is
a modified version of S.O.R. (systematic overrelaxation). In Section 3 we
prove that this method converges, and in Section 4 we study how the rate of

convergence depends upon the relaxation parameter.
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2. EXISTENCE AND UNIQUENESS OF SOLUTION

It is convenient to introduce the following quadratic programming

problem:

Problem 2

Find a column n-vector x which maximizes

subject to the constraints
x z 0. (2.2)

Theorem 2.1

Problems | and 2 are equivalent: if {5,1] is a solution of Problem I
then x is a solution of Problem 2; if x is a solution of Problem 2 then
{x, Ax - b} is a solution of Problem 1.

There exists a unigue solution to Problem 2 (and hence to Problem 1}.

Proof: Since A is positive definite, the equivalence of Problems 1 ana
2 follows from the Kuhn-Tucker theory (Hadley [5, pages °2. 12-214]).
Since A is positive definite, f(x) is strictly concave (Hadley [5,
p. 213]). Hence, since x=0 1isa "feasible" solution of Problem 2, there
exists a unique solution to Problem 2. The proof of the theorem is therefore

complete.



It is natural to ask whether Theorem 2.1 remains true if A is not
positive definite. As the following two examples show, if no conditions
are imposed upon A and b then Problem 1 may either have no solution

or more than one solution.

Example 1: n=1, A =0. ThenProblem I has no solution if bl > 0.
-1, 2 -1

Example 2: n=2, A = s, b= . Then Problem | has
2, -1 -1

at least two solutions, namely,

1 0
X = ) = )
0 3
and
0 1
X = , Y=




3. APPLICATION OF S.0O.R,

We study the following algorithm for solving Problem 1:

Algorithm 1

Choose a column n-vector 5(0) = (x(

relaxation parameter & , where 0 w2,

. k
Generate a sequence of column n-vectors 3<_( ) = (X,

)=y )
(k) = (y(k)), k=1,2,..., using the equations,
i-1 n
ri(k'*'l) =b, -3 xfk”) -5 a.,xfk), (3.1)
] 1 j=l 1} j=i 17 3
(k+1) (k) (k+1)
%, = max {0, X, +wg / 11}’ (3.2)
Getl) _ (bl g lerh) ey (3.3)
i i i i

(We remind the reader that we have assumed that A is positive
definite so that a, >0 for L =is<mn.)

Algorithm | is a generalization of methods used by Christopherson [ 2]
and Gnanadoss and Osborne [4]; a brief account of the history of the algorithm
is given in Cryer [3].

Algorithm 1 can be interpreted in two ways. On the one hand, Algorithm 1

consists of applying S.0O.R. to the equations A X = b with the proviso that



(k)

the vectors x should be nonnegative. On the other hand, as will be

§(k+ )) = f(g{_(k) )}, so that Algorithm 1

seen in the proof of Theorem 3.1, £{
is a method for maximizing f(x) subject to the restraint that x =z 0. Of
course, it is not surprising that two interpretations of Algorithm | exist,
since it has been known for a long time (Temple [L0] ) that there is a

connection between relaxation methods and the minimization of quadratic

forms.

Theorem 3.1

(k)

Let x (k)

and y be generated by Algorithm 1.

(k) (k)

Then x ‘= x and y '— y, where {x v} is the solution of

Problem 1.

Proof: The method of proof is similar to that used by Schechter [8,9].

For any column n-vector u let

Glu) = -2f(w) = u Au - 2u'b . (3.4)

Then, direct computation shows that if u and v are column n-vectors,

GW) - GW) = (u- T Au-v) +2u-v @Ay -b. (.5

(k, 2) (k. 1)

It is convenient to introduce the vectors X = (xi )} where
ngﬂ) , if 1=i=s4,
(k+1,4)
- 3.6
E (k) ) (3-6)

Xi , if L <i=sn,




for k= 0 and 0= £ < n. Then,

X(kﬂ, 0) _ x(k‘), X(k+l, n) _ ,&(kH) , (3.7)

I

and, from (3.1},

ri(}<+1) ) [Q_A&(kﬂ, 1—1)]i . (3.8)
Let
[X(ik+.l) ENOR .ii/r(’k+l)’ ] r(ik+l) Zo,
“rel, i -9)
w , if r(ikH‘) =0
Then, noting (3.2),
x(ikH) = x(ik) +wk+l, i r(ik+l)/ ai (3.10)
and
0wy s (3.11)
Using (3.5), (3.6), (3.8), and (3.10), we find that
G(_&(k+l’ i)) _ G(g(k+l’ i~1) )
L i) _ i1y T ) [?i(kﬂ, i)k, i-1),
B R N e T R e



and G(_&(kﬂ, i) ) - G(>_<_(k+l’ i-1) )
K+l k)2 k+1 k), (k+l
:aii[x(i+)’x(i)] "Z[X(i”'x(i)“(i“,

- B (k+1), 2
R Gl R L 17733 - (3.12)

Remembering that 0 < <2, it follows from (3 .11) and (3.12) that

(k+1, i-1) (k, i)

. l’ 1 .
&UH ) ) = Gix ). Therefore, the sequence {G(x Y} is

G(

monotone decreasing. But A is positive definite so that G(u) is strictly
convex and hence bounded below. Consequently there is a constant, G, say,

such that

G(z\j_(k’&)) v G (3.13)
Next, we prove that
) a2 [ ) —ee D7, ag
where
=min a,, . (3.15)
; ii

1
L) ()
1 1

sider the case when xgkﬂ) 7z xgk) . But then, from (3.10), wk+l i,r-' 0, so

It then (3.14) is trivially true, so that we need only con-

H

that, from (3.10), (3.11), (3.12), and (3.15),

G(é(k-lvl, 1—1)) _ G(§(k+l, i) |

o (k+l) (k)2

= (-1 + Z/wk“’ 1) aii[xi %, 17,

> (-l+2/w) a [xikﬂ) - xfk) ]2 . (3.16)




Inequality (3.14) follows immediately from (3.16).
Noting (3.13), it follows from (3.14) that

x,(k+l)~xi(k)~+ 0 as k — oo 1

1

A
-
7y
=

[

Now let x be any limit point of the sequence {g(_(k')}. Then there

is an increasing sequence of integers {kp}, p=1,2,..., such that

(k

From {3.1), (3.3), and (3.18), we have that, as p- ©,

(kp)

I — I = b-Ax,
(3
y o Ly = o
We assert that
xz20, 1=s0 (3

(k)

That x = 0 follows immediately from the fact that x ° = 0 forall k .

To prove that 1 < 0 suppose that this is not the case. Then there is an
c » 0 and integers i_. and k', such that r(.kp) > ¢ for k = k. -

Hence, from {3.2),

> ph) . cew/a, .
lO 10 1010

for k= k'o. But this contradicts (3.17).

ﬁp)-—-»_}g, as p — ®@ . (3.

17)

18)

.19)

. 20)
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Next we show that

Ty = 0. (3.21)

Suppose that this is not the case. Then, noting (3.20), we see that there

is an « » 0 and integers iO and k' such that r(.kp) < - ¢ and x(ikp) ES
0 (k-1 Ax )
for k = k' . It follows from (3.2) that if k_ =z k' then x, P '2x 'p
P P i i
0 0
and
(k) (k -1
|x, P -x | zwe/a
i i - il
0 o 00

But this contradicts (3.17).

From (3.19), (3.20), and (3.21), it follows that {x,y) satisfies

(1.1) through (1.3) and is the (unique) solution of Problem 1.

To complete the proof of the theorem we must show that the sequence

k
{5( )} has at least one limit point. But this is a consequence of the fact

(k)

that (see (3.13)) X e R forall k, where R is the compact set

R=(x G = c&l.
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4. DETERMINATION OF THE OPTIMUM RELAXATION PARAMETER

It is natural to ask how the convergence of Algorithm | depends upon
w, and whether there is a value of @ for which the rate of convergence is
maximized. In this section we partially answer these questions.

Since we make use of the theory of S.0O.R., we first summarize this
theory.

Let

L
"
t

o}

!
t

and

_E_E: (4.2)

I
I
ek

st

(et
where x is a column m-vector, D is a diagonal mx m matrix, and

~ ~r

E and [T are respectively strictly upper and lower triangular m x m matrices.

Let
o~ L [ d —l (a4 facsd
£, B =(D-vE  {(l-w)D+wk]. (4.3)
~~ O
For a given relaxation parameter « and initial guess g{_( ), let

;_{(k), k =1,2,..., denote the iterates generated by S.0O.R, applied to
(4.1). Let

AL (4. 4)
Then, (Varga [1L p. 59]),

~(k+1)
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From {(4.5) it can be seen that e depends upon A, E , and w .

The asymptotic rate of convergence corresponding to A and w is

(Varga [11, p. 67]),

R [0, E)] = -loglple, B)]1], (4.6)

~

where p [Sm@—)] denotes the spectral radius of Sw(é) . Equivalently,

R [f (A)] = - log [ sup lim sup Hg(k)nl/k] . (4.7)
~(0)

W k > 00

The optimum relaxation parameter, & (__'J.X), is defined by means

b~ %b
of the relation (Varga [1l, p. 109]),

()] = max R_[£ (B)] . (4.8)

0<w<2

R [¢

0 O)b Ug(

For certain classes of matrices A, notably 2-cyclic consistently ordered

matrices, Wy (A) is known in terms of the eigenvalues of the Jacobi matrix
corresponding to A (Varga [11, p. 110]).

Next we introduce some notation. We set

7z = {1,2,...,n} . (4.9)

let T<Z B= (Bij) be an n x n matrix, and z = (Zi) be an n-vector.
Then |T| denotes the number of elements of T; B(T) is the |T| x|T|
submatrix of B obtained by deleting those elements Bij for which i 3; T or
j ¢ T; and z(T) is the |T| x1 subvector of z obtained by deleting

those elements z, for which i ¢ T. Finally,

Z(z) = {le Z zi,v-‘ 0} . (4.10)
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We are now ready to consider Algorithm 1. Let ({x, v} be the solution

k)

of Problem 1, and let {5( , X(k)} be generated using Algorithm 1. We

set

(k) (k) : (4.11)

|®
1l
]
]
[=

(k)

From (3.1) through (3.3) and (4.1ll) we see that ¢ depends upon

Ai, b, g(o), and @ . By Theorem 3.1, _e;(k)-» 0 as k- = for any Q(O) .
Corresponding to (4.7) and following Ortega and Rockoff [7] we define
the asymptotic rate of convergence corresponding to A, b, and w, to be
R(A, b, ®) = -log {sup lim sup “ga_(k) Hl/k} . (4.12)
Lemma 4.1
Given 5(0) there is an integer ko such that for k = ko )
x(}'{)> 0, if ieX,
' (4.13)

x(];):O and y(lf)> 0, if ieY,

where X =2Z(x) and Y =Z(y) .

Proof: Let 23(0) be given. Let _r_(k) be as in Algorithm 1. Since

x(k) — x and _g(k) — -y, it follows that there is an ¢ > 0 and an

integer kl such that if k = kL then



L4

xi(k) > 0, if ieX,

yi(k)> 0 and r(li{)< -e, if ie¥Y.

Noting (3.2), we see that (4.13) holds if ko = kl + 1 + [max a xi(kl)]/(e w).
1

Theorem 4.2

Let A and b be such that

IA

= |+ ly,l > 0 1s=isn, (4.14)

where {x, yJ} is the solution of Problem 1. Let X =Z(x) .
Then,

o, if X is empty,
R(A,b,w) = (4.15)
Roo(.i‘fw[ A(X)]), otherwise.

(0)

Proof: Let x be given. Then it follows from Lemma 4.1, (3.1), (3.2),

and (4.14), that, for k 2z k

O’
g = e ae) M,
?_(k+l)(Y) - 0.

The theorem follows from (4.7) and (4.12).
Condition (4.14) is satisfied by "almost all" A and b, and the

following theorem covers an important subclass of the remaining problems.
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Theorem 4.3

Let
0 < ws=s 1 (4.16)
and
aij < 0, for i# j. (4.17)
Then, R[A, b, w] = Roo[ﬁw(A[T])], where T =7 - Z(y) .
0
Proof: Let 5( ) be given. Using an idea due to Gnanadoss and Osborne [4]

we see from Lemma 4.1, (3.1), and (3.2), that for k =z k

O’
My = I By
(4.18)
9(k+l) Y) = 0,
Here, Q(kH) isa |T| x|T| matrix such that
(k+1) lTl (k+1, £) _ (1)
C = o = L ) (4.19)
L=1
L_(H are |T| x |T| matrices such that
T |
e 2amM] = 1 L (4.20)
£ =1
(k+1, L) . ) , .
and H isa |T|x |T| diagonal matrix with diagonal elements
equal to either 0 or 1 . In particular, when T =7Z then L(“ :(L(iﬁ))and
I_i(kﬂ’ SR diag (H(,k.‘ﬂ’ Y )  where

1l
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~
1, if i=j and i# 4,
1l -w, if i=j=41,
-wa“/a{{, if i=4 and j#£ 4,
_ 0, otherwise,

1, if i£4,

H(iki;ﬂ’“ = 1, if i=4 and x(}zﬂ) > 0,

0, otherwise.

From (4.16) and (4.17) it follows that (“2 0; that is, the elements

of L}lﬂ) are non-negative. Hence, we see from (4.19) and (4.20) that

0= kil .

ﬁw[ A(T)]. The theorem follows immediately.
On the basis of Theorems 4.2 and 4.3 we make the following con-

jecture:

Conjecture 4.4

R[A, b, w]= Roo[ﬁw(_A [T])], where T =2 -2Z(y), and {x yJ) is the
solution of Problem 1. ‘

Theorems 4.2 and 4.3 provide some help in choosing ® so as to
maximize the rate of convergence of Algorithm 1 .

If (4.14) holds, then we see from Theorem 4.2 that we should set

=W where
opt
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® oot = p [A)]. (4.21)

Of course, (4.21) does not give wopt explicitly since, in general, neither

X nor o [A(X)] is known explicitly.

bl

If Problem 1 is derived from Christopherson's method then (4.21) is
very useful. For, in this case, A 1is 2-cyclic and consistently ordered

A(S)) £ w, (A). Remembering

(Cryer [3]). Furthermore, for any ScZ, ® b

B
that it is in general better to overestimate wopt rather than underestimate

Mopt (Varga [ll, p. 114]) we see that in this case it is a good strategy to

set w =n (A).

b
If (4.14) does not hold then we can say much less about the choice of

. However, if Problem | is derived from Christopherson's method then (4.17)

is satisfied and, for any TC<Z, Rw[ﬁw(_A_"(T))] is a monotone decreasing function

of w for 0<w=< 1. Hence, the results of Theorem 4.3 suggest that we should

choose w = 1.



[10]

[11]
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