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1. Introduction

A journal bearing consists of a rotating cylinder which is separated
from a "bearing surface" by a thin film of lubricating fluid (see Figure 1).
The fluid is fed in at A and flows out at B . The width of the film is
smallest at C, and weset t= Q/GC where 6 is as shown in

Figure 1.
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| Figure 1.

Cross-section of a journal bearing.
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Between C and B the width of the film increases so that the
pressure in the lubricating fluid may be expected to decrease. We assume
that for t = T the pressure becomes so low that the fluid vaporizes. The
point t = T, the interface between the two phases of the fluid, is called

the free boundary.

The mathematical problem can now be formulated (see Pinkus and

Sternlicht [9, p. 41 and p. 46] ):

Problem 1
rind a function p(t) and a constant T such that p € G[0.T] n

(2(2)(0, 1), and

_d . 3.,.dp, _dh _

Ep(t)~dt [h (t)dt] dt*0, 0<t< T, (1.1)
p(ty=0, T1=t=sT, (1.2)
p(0) = 0, (1.3)
< p(r) = 0. (1.4)

In Problem 1, p(t) is proportional to the fluid pressure, while equation
(1.1) is Reynolds' equation for the pressure in a lubricating film.

It should be pointed out that although the above formulation is
widely used, there has been considerable discussion as to whether it is
an accurate model of the physical problem. Firstly, many assumptions
are made in deriving Reynolds' equation (1.1) (Pinkus and Sternlicht [9,

p. 6]); for a discussion of the validity of these assumptions see Halton [6]




and Hersey [7]. Secondly, conditions other than (1.2) through (1.4) are
sometimes used; for a discussion of this see Birkhoff and Hays [1].

In order that Problem 1 be well-defined, it is necessary that h(t),
the width of the film, satisfy certain conditions. Throughout this paper

we. will assume that h € C,’(l)[o, T] and that

h(t) > 0, te[0,T], (1.5)
dh
1 < 0, te(0,1),

(1.6)
dh .
dt> 0, te(l,T),
h(T) = h(0). (L.7)

It will be shown in section 2 that conditions (1.5) through (l.7) ensure
that there exists a unique solution to Problem 1.

Conditions (1.5) and (l.6) are always satisfied in practice, but this
is not true of {1.7). However, as we shall see in section 2, condition (1.7)
can be imposed without any loss of generality.

In 194!, Christopherson [3] proposed a method for solving journal
bearing problems numerically. A partial analysis of the method was given
by Gnanadoss and Osborne [5]. In the present paper we present a detailed
analysis of Christopherson's method as applied to Problem 1.

The method of Christopherson consists of two steps. In the first
step a discrete approximation to Problem 1 is set up; this discrete approximation

is analysed in sections 3,4, and 5. In the second step of Christopherson's



method, the solution of the discrete approximation is computed by an
iterative procedure; the convergence of this iterative procedure is studied

in section 6. Finally, some numerical results are presented in section 7.
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2. The Analvtic Problem

In this section we first analyse Problem 1 and prove that this problem
has a unique solution. We then formulate another problem, Problem 2,
and prove that it is equivalent to Problem 1. The reason for introducing
Problem 2 is that, unlike Problem 1, it has a natural discrete analog, as
we show in section 3.

First, we define several functions whichwill be used subsequently:

t
>, = [ h™%(s)ds , te[0,T], (2.1)
Ot
{ -3
:yg(t) = | h (s)ds, te [0, T] (2.2)
0
Pty = &, 1)/ (1), t e (0,T], (2.3)
v(t) = h()d (1 -y (0, te[0T]. (2.4)
It is easily verified that,
3 2
o'(ty = /{7y, W]} te(0T], (2.5)
p'(t) = h'(1) >, (1), te [0, T], (2.6)
and
t
v = [ [a) -ne)] h 7 s)ds, t e [0,T]. (2.7)

0



Lemma 2.1

This is a unique constant ¢, 1< o< T, such that

p(t) < 0, for t € (0, 0), A
y(o) = O, > (2.8)
y(t) > 0, for te (o, T]. J

Proof: From (1.6) and (2.6) it follows that w(t) is strictly monotone
decreasing for t € [0,1] and strictly monotone increasing for te€ [1,T].
From (1.7) and (2.7) we see that ¥(T) > 0. Since ¢(0) = 0, the

lemma follows.

Lemma 2.2
If 0 is as in Lemma 2.1, then ¢(t) is strictly monotone decreasing

for t € (0,0] and strictly monotone increasing for t € [0.T].

Proof: Follows immediately from (2.5) and (2.8).

Definition 2.1

For a € (0, T] let q(t;a) be the function such that

fq(t;a) = 0, t € (0, a), (2.9)

q(0;a) = 0, (2.10)

qa(t;a) = 0, te[a, T], (2.11)




where { is as in (1.1).

g(t; a) is unique and

:‘rz(t) - o(a) i’r%(t), te[0,a]
a(t;a) = ‘ (2.12)

0, tela, T].
Proof: The lemma follows by integrating (2.9) twice and using (2.10) and

(2.11).

Theorem 2.4

There is exactly one solution {p(t), 7} of Problem 1. If o is as in

Lemma 2.1, then

T = 0, (2.13)
and

p(t) = q(t;o). (2.14)

Proof: The proof is a straight-forward generalization of previous results
(Birkhoff and Hays [l, p. 132], Pinkus and Sternlicht [9, p. 46], and
Gnanadoss and Osborne [5]).

From Definition 2.1 and Lemma 2.3 we see that if {p(t), T} is a

solution of Problem 1 then

p(t) = a(t; 1) = 3,(0) -7 3,(0, te[01T],



from which it follows that
, 3
p'(1-0) =y (1)/{h7(1) ()]} .
Noting (l1.4) and (2.8), the theorem follows.

We now formulate

Problem 2

Find  {p(t), T} such that
T = sup {a e (0,T]: q(t;a)=z 0 for te[0,T]}), (2.15)
p(t) = alt;T) . (2.16)

That is, find the largest interval in which a non-negative solution of
Reynolds' equation exists.
Problem 2 was first suggested by Gnanadoss and Osborne [ 5], and the

next theorem is a generalization of their results:

Theorem 2.5

Problems 1 and 2 are equivalent.
Proof: Rewriting (2.12) we obtain
[o(t) - o(@)] (1), te(0,a],

0) te[ayT]-




The theorem follows from (2.15), Lemma 2.2, and Theorem 2.4.

We conclude this section with a discussion of condition (1.7). First,
we note that it is the role of condition (1.7) to ensure that the lubricating
fluid occurs in both the liquid and gaseous phases. If (1.7) is not
satisfied then it is possible, for example if B is close to C (see Figure
1), for the fluid to occur only in the liquid phase.

Next, we note that (1.7) is used only in Lemma 2.1. Examination
of the proof of Lemma 2.1 shows that we may replace (1.7) by the weaker
condition ¥(T) > 0.

Finally, we note that there is no loss of generality in assuming (1.7).

For suppose that H(t) and T are such that he C‘Z(l)[o,?f] and

h(t) > o0, te [0,T],
dh

o <0, t e (0,1),
dh ~
an 1

qt > 0, te(l,T),

but that h(T) < h(0). Let T > T and he a’a%o,fr] be such that (1.5)

through (1.7) are satisfied and h(t) :'H(t) for t e [O,rf]; clearly, h

~

and T can be chosen in many ways. Let Problem 1 and Problem 1 be
the problems corresponding to h and '1'\1’ respectively. Clearly, if

Problem T has a solution {S(t), ?} then Problem 1 has a solution

{p(t), 1} where 7T = T and
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p(t), tel[0,T],
p(t) =
0, te (T, T].

Hence to solve Problem T we may first find the solution {p(1), T} of
Problem 1; by Theorem 2.4 this solution exists. If T > T Problem 1
has no solution. On the other hand, if 7 = rTV, then Problem T has

the solution {S(t),?} where 7= 1 and ;(t) = p(t) for te [O,r'f].
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3. The Discrete Approximation

In this section we formulate and analyse a discrete approximation
to Problem 2, Problem 2D. We prove that the solution of Problem 2D
exists and obtain an analytic expression for the solution.

Before defining Problem 2D, it is necessary to develop some prelim-
inary results.

Throughout this section we denote by {p(t), 7] the solution of
Problems 1 and 2. We subdivide the interval [0, T] into N sub-
intervals, each of length At, so that N = T/At. We seek an integer
m and an (N+1l)-vector P = {Pj], j=0,1,..., N, such that mAt~ 7
and PJ. = p(jAt).

We approximate the Reynolds' equation (1.1) by the finite difference
equation

1

1
(LB = apz 2.1 VP - Ay Ah

0< i <« N, (3.1)

where A and 7 denote the forward and backward difference operators
respectively, hi = h(iAt), and hi 1 = h([i- %;] At) .
-2
In order to avoid certain trivial possibilities, we assume that
At = 2/3, (3.2)

N = 3. (3.3)
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We also make an additional assumption about h(t), namely that
h(T - (At)/2) = h({At)/2). (3.4)

Assumption (3.4) is trivially satisfied by, if necessary, slightly
increasing T and modifying the definition of h(t) appropriately (see

section 2 where a similar device is used).

We set

L -2
I(1)= 2 (h, 1) , 0<1i< N, (3.5)
2 - J=2

j=1

L -3
I,(i)=2 (h,_1) ", 0=1i= N, (3.6)
3 . j=z

j=1
o, = IZ(iL/Ig(i), 1<is<N, (3.7)
\}/iz hi+% 13(1)-12(1), 0<is<N-1. (3.8)

In (3.5), (3.6), and elsewhere in this paper, we follow the convention

that

0
5 (h,

1
=1 TR

It is easily verified that

3 _ . .
Aq—w/ﬂm%) L) (4]}, 1sisN-1, (3.9)
Ay, = (Ahi+é_)13(i+l), 0<i<N-2, (3.10)
: 3 1 (3.11)
= h -h. h - ’ 0=1izs N - . 3,
¥, JEI ( p4k J_%)( J-é—)
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Noting the analogy between equations (1.1) and (3.1) and between
equations (2.1) through (2.7) and equations (3.5) through (3.11), we are

led to

Lemma 3.1

There is a unique integer n, 1 - 3(At)/2 < nAt < T-2(At), such that

\
y, <0, for 1lsi<n,
= .1
\yn 0, > (3.12)
gy, > 0, for n<is N-1.
' o/

Proof: Let n1 = nl(At) be the largest integer such that (n1 + %)At < 1;

noting (3.2) we see that n1 = 1,
From (1.6) and (3.10) it follows that \yi is strictly monotone de-

creasing for 0 £ i =< n, and strictly monotone increasing for n, <is N-1,

From (3.8) we have that Yo = 0. From (1.6), (3.3), (3.4), and (3.11), we

see that

3 3 0.

v

L L IR \ I VP RS VLA VY

\I/
Combining these results, we see that (3.12) holds for some unique

n, where nl £ n< N -2. The lemma now follows.
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Lemma 3.2

If n is as in Lemma 3.1, then & is strictly monotone decreasing

for 1 < i< n, and strictly monotone increasing for n+ 1 = i = N, while
o) = @

n+l n "

Proof: Follows from (3.9) and (3.12).

Definition 3.1

For any integer f, 1= ¢ <N, let Q(#) = {Qi(ﬂ)} be the (N+ 1)-

vector such that

[LQw)], =0, 1sis g2-1, (3.13)
Qute) = 0, (3.14)
Q.xy = 0, 1 £isN, (3.15)

where L is as in (3.1).

Lemma 3.3

Q (¢) 1is unique and

At(IZ(i) - 3, 13(1)], 0<is<y,
(), g £ i N.

Proof: The lemma follows by summing (3.13) twice and using (3.14) and

(3.15).
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We can now formulate the discrete analog of Problem 2:

Problem 2D

Find {P, m} such that,

m=max {¢: 1s 2= N; Q(e)=z 0 for 0=ix= N}, (3.17)

P = Q(m) . (3.18)

Theorem 3.4

There is exactly one solution { P, m} of Problem 2D. If n is as

in Lemma 3.1 then

m=n+1, (3.19)
and
P = Q(m). (3.20)
Proof: Rewriting (3.16) we obtain
Ml - o] L), 1=is< 1,
Q) = (3.21)
0, g £is N

The theorem now follows from (3.17) and Lemma 3.2.

We conclude this section by pointing out that there is an obvious

discrete version of Problem 1, namely



16

Problem 1D

Find {P, m} such that

P = Q(m), (3.22)
and

VP_ = 0. (3.23)

The reader may have wondered why we have not considered Problem 1D.
The reason is that, in general, Problem 1D will have no solution. For
if {P, m} is a solution of Problem 1D then it follows from (3.22), (3.23),

and (3.16), that m must be such that
- & =0, (3.24)

Only in exceptional circumstances will there be an integer m satisfying

(3.24), so that, in general, Problem 1D does not have a solution.
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4. Error analysis

In this section we obtain bounds for the difference between the
solution {p(t), T} of Problems 1 and 2, and the solution {p,m} of
Problem 2D. We use the same notation as in section 3. In order to

obtain satisfactory error estimates, we assume that

he 6% 00,17 . (4.1)

Theorem 4.1
There are positive constants (A t)o and K such that if

At = (At)o, (4.2)
then

| T - mAt] = 5(At)/8, (4.3)
and

|ptist) - P,| < K(At)2, 0= < N. (4. 4)
Proof: In the proof, Kl’ KZ, ..., and (At)l, (At)z, ..., will denote fixed

positive constants which depend only upon h(t) and T .
Since Iz and 13 coincide with the approximations to g‘rz and &3
obtained using the repeated mid-point rule (Hildebrand [8, p. 154]) we

have, noting (4.1), that

)2 7

b

(A1) I,(1) =¥, (iat)] = K, (At

[(aD T, (1) =5, (i80)] < KZ(At)Z , > (4.5)

‘ for 0 < i< N. p,
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Rearranging (3.8) ,

Lo, L -2
i i) 1[0+ 5 (hya) 7] (4.6)

v, =h, [0+ 0,07

Since
bs([iJr%;]At) =;>3(1At)+% (At)(hH%)_B +o([atl®,
s, ([1+3180) =5, (180 + (At)(hi+%)_2+ o([st] %),

it follows from (2.4), (4.5), and (4.6) that
| (At) \yi - w([i+%]At)| < KS(At)Z. (4.7)

Remembering that T > 1 (see Theorem 2.4 and Lemma 2. 1) we see

from (1.6) and (2.6) that ¥' (1) > 0. Hence, since y(T) =0,

w(t)zK4]t— |, te [T, T+(At)l] ,
(4.8)
w(t) < —K4|t-'r|, te [t (), 1.
Let
(A1), = min {(A1),/2, (T- 1)/4, K,/(16K,)}, (4.9)
and denote by n, = nl(A t) the integer such that
(n, + 3)At = T - (A1)/8 < (n) +3/2) At (4.10)

From equations (4.7) through (4.10) we have that
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< - i : 1
(At) wnl_ I(At)\i’nl p(ny +z1a0] + p([n, +2]00),

2 1
< Ky (A1) - K, |(ny + 2)At - 7],

2
< K (807 - K (At)/8,

K3(At) [At - K4/(8K3)] ,
<0, for At= (At), . (4.11)

It follows from (4.10) that
T 4+ 2At > (n1 +5/2)At > T+ (At)/8 .

Hence, from equations (4.7) through (4.9) we have that

(At)‘Enl+22—|(At)§2nl+2 - w([nl-!-S/Z]At)l + w([nl+5/2]At),
z - K3(At)2 +K, ] (n1+5/2)At - 1|,
> - K. (A + K, (AY)/8
z 5 (A1) 480/8,
= K (At) [-(a0) + K4/('8K3)] ,
> 0, for Ats= (Af), . (4.12)
Finally, if

T+ (A1)/8 S (n) + 3/2)0t, (4.13)
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then,

(At)\j!n 1z I(At)w ([n1+ 3/2]At)] +’q/([nl+%At]),

-y
1 nl+l

)2

v

- K, (Bt +K4|(nl+ 3/2)at - 1|,

v

2
-K, (807 + K, (80)/8

i

KB(At) [ -At + K4/(8K3)] ,
> 0, for Ats (At)2 . (4.14)

If n is defined as in Lemma 3.1, it follows from Lemma 3.1,

Theorem 3.4, (4.11), and (4.12), that

n. +1, if ¥ >0,
m=n+1= ! ny+l (4.15)

nl + 2, if

25
A
]

n1+l
for At = (A’c)2 .

We now prove that

| T - mAt] = 5(At)/8, for At = (At), . (4.16)
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Case 1: m:nl+1

Then, using (4.10),

| mat - |(n1 + At - 1|,

IA

1(n1 + 1At - [T - (A)/8]] + (AY)/8

IA

(At)/2 + (At)/8

5(At)/8 .

Case 2: m:nl+2

Then ¥ 0 . Since (4.13) implies (4.14), it follows that

<
n1+1
(4.13) does not hold. Hence, noting (4.10) ,

(nl +3/2)At < T+ (At)/8 < (n1 + 5/2) At .

Therefore,

| mAt - T

|(ny +2)at - 7],

IA

1(n1 + 2)At - [T+ (AD)/8]] + (AD/8

A

(At)/2 + (At)/8

1

5(At)/8

We have thus established (4.16).
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We now consider (4.4). First, we note that ¢'(1) =0 (see

Theorem 2.4, Lemma 2.1, and (2.5) ). Thus,

o) - om)] = K |t -] (4.17)

Next, we see from (1.5), (2.2), (4.5), and (4.16), that

[(At)ls(m)[, 153(mm)1 z K, >0, for At= (At),. (4.18)

Hence, using (2.3), (3.7), and (4.5),
lq;m - p(mAt)| =

| {[(AD1,(m) =% ,(mAY)] >, (mAt) +

+ [&B(mAt) - (At) Ia(m)] sZ(mAt) }/{(At)Ig(m)5 3(mAt)) 1

< K7 (At)z, for At = (A’c)3 . (4.19)
It follows from (4.16), (4.17), and (4.19), that
{@m - ¢(1)| = K8(At)2, for At < (At)4. (4.20)
Since p(1) = p'(T) =0 (see (1.3) and (1.4) ),
(4.21)

2
|p(t)]| = Kglt i
Finally, it follows from (1.5), (3.16), (3.20), (4.16), and (4.20),

that
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i

7P| = | 7Qym].

i

2

-3
|

[@olh, 1 = e 1 1)

I(At){[hm 1~ h(D)] + [h(1) - o(1)]
2

-3
+o(n = o 11t )7,

< (at) {K, |7 - (m-3)At] + K (At)z}(h 1)—3

- 11 8 m-3 ’

< K (AT:)Z At £ (At) (4.22)

12 ’ 4 ° )
Now let n, = nz(At) be the largest integer such that
n,At < min {mAt, 1] . (4.23)
Then it follows from (4.16) that

max {mAt, T} < (n, +2) At At = (A, . (4.24)

We now assert that (4.3) and (4.4) hold if we set
mmo=mnumg,muy(mu}.

Clearly, (4.16) implies (4.3). To prove (4.4) it is necessary to consider

three cases.
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p(jAt) = P, = 0. (4.25)

Then, using (2.14) and (3.20),

| p(jot) le = |a@istt) - QJ.(m)l ,

|5, (81 = (A0 T,(3) = @(T)¥5 (GAD + (A1) o, L0

1A

13,0 = (A 1) + | [y, ~9(0] (A0 1;0) |

() [0 L,G) =3,680 |

A

(K, + kgl (A I, (m] + [o(n K, J a5 (4.20)

Case 3: ):n2+1

Then, using (4.21), (4.23), and (4.24),

Kg(At)Z, if jAat = T,
[p(jAt)\ < (4.27)
0, if jaot > T,
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On the other hand, using (4.22), (4.23), and (%.24),

2 i 1 i
KlZ(At) , if § s~ m,

Pl = (4.28)

0, if j=2 m.,

Clearly, equations (4.25) through (4.28) imply (4.4) for some K.
The proof of Theorem 4.1 is therefore complete.

We conclude this section with two observations. Firstly, we
draw the readers attention to the fact that {P, m} is as accurate an
approximation to {p(t), T} as could be hoped for. For we can at best

have that
|T-mat| s (At)/2, (4.29)

and (4.3) is almost as good as (4.29). Since we can at best have (4.29),
we might expect that | p(jAt) - PJ,] = O(At). Instead, the gods have
smiled and we have (4.4).

Secondly, as the reader may have noticed, if we replaced (4.10) by

the condition

(n, + )AL s T - (A0/2r S (ng 4+ 3/2) At

for any integer r, r 2= 4, then we can use the same method of proof as

in Theorem 4.1 to prove that

| T - mAt] s (At)(r +1)/2r .
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5, Another Discrete Approximation

In this section we formulate a second discrete approximation to
Problem 2, Problem 3D, and prove that Problems 2D and 3D are
equivalent. The reason for introducing Problem 3D is that the iterative
procedure in step 2 of Christopherson's method is best unders tood if
it is regarded as an algorithm for solving Problem 3D.

We set M = N - 1 and denote by A the MX M matrix with

components

3 e e
-(hH%) , if j=i4+1,
3 3 ,
[(hy 1) + (b 1) I, i gj=1i,
A - 2 2 (5‘1)
1] 3
-(h, 1), if j=1i-1,
1-2
LO , otherwise ,

for 1 < i, j < M. Noting (1.5), we see that A is a symmelric irreducibly
diagonally dominant matrix with positive diagonal entries, so that A is
positive definite (Varga [11, p. 23]).

We denote by B the M-vector with components

B, = =(At)[h, 1 -h,

, 1 =1i= . 5.2
i itz 1—%] ' M ( )
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We can now formulate

Problem 3D

Find M-=-vectors X and Y such that

AX-Y = B, (5.3)
X'y =0, (5.4)
Xz0, Y=z0 (5.5)

Theorem 5.1

Problem 3D has a unique solution.
Problems 2D and 3D are equivalent. If {P, m) and {X, Y]} are

the solutions of Problems 2D and 3D, respectively, then

X =P, lsisM, (5.6)
1 1

Y = AX-B, (5.7)
Py = Py = 0> (5.8)
m = inf {i;Yi> 0} (5.9)
Y. =0, l=si<m, (5.10)
Yi>0’ ms<is M, (5.11)
X, >0, lsism-2, (5.12)

3
Xy = —(At)\i’m__l/{(hm_%) I,(m]) =0, (5.13)

X, =0, msis<s M. (5.14)
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Proof: Since A is positive definite it is known from the theory of qua-
dratic programming (see Cryer [4]) that Problem 3D has a unique solution.
Let {P, m) be the solution of Problem 2D, and let X and ¥

be defined by (5.6) and (5.7). We assert that (5.9) through (5.14)

hold.

First we establish (5.12) through (5.14). Equation (5.1 4) follows
immediately from (3.16), (3.18), and (5.6). To prove (5.13), we note

that

P = Q 1(m),

m-1 m-

= At {IZ(HI“].) - @In 13(m_l)) s
= (a6 o)) Lm=)

=~y ¥ /b s 13(m)}-

-2

Finally, (5.12) follows from (3.21), (3.19), and Lemma 3.2.

Next, we establish (5.9) through (5.11). First it follows from

(3.1), (5.1), (5.2), and (5.7) that
2 .
Yiz—(LE)i(At), lsism-1.

Noting (3.13) and (3.20), we see that (5.10) holds. To prove (5.11) we

observe that it follows from (5.7) and (5.14) that
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m,m-1 "m-~1 m
Y = (5.15)

-Bi, m+l<is M.

But from Lemma 3.1 and (3.19) we see that (m + $)At = 1 . Noting

(1.6), if follows that

B <O, m+lsisM,. (5.16)

On the other hand, using (5.13), we have

Am, m-1 Xm—l B Bm
=(an (¢ /L(m +[h o -h 11]),
= (At) {[hm_% Ig(m—l) - 12(m~1)]
+1(m) [h - hm__%]) / I (m),

= (At) {hm_% I,(m) - L, (m-1)
- hm_% [Ig(m) - Ig(m—l)] ]/13(m),
= (At) \ym/13(m) . (5.17)

Since ‘Bm > 0 (see Lemma 3.1 and (3.19)), equation (5.11) follows
from (5.15), (5.16), and (5.17). Finally, (5.9) follows from(5.10) and

(5.11) .
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We can now show that Problems 2D and 3D are equivalent. We
have seen that if (P, m} is the solution of Problem 2D and X and Y
are defined by (5.6) and (5.7) then (5.9) through (5.14) hold. But (5.7)
and (5.10) through (5.14) imply (5.3) through (5.5), so that {X, ¥} is
a solution of Problem 3D. Remembering that the solutions of Problems 2D
and 3D are unique, and noting that equations (5.6) through (5.9) define
a one-to-one correspondence between the pairs {P, m} and (X, Y},

the equivalence of Problems 2D and 3D follows.
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6. The Iterative Solution of the Discrete Approximation

In this section we analyse the algorithm used by Christopherson

to compute the solution of the discrete approximations to Problem 1 .

Algorithm 6.1

0
Choose an M-vector }__{_O = {Xi( )} where X(O) > 0. Choose a

relaxation parameter w, where 0 <w < 2.

Generate a sequence of M-vectors X

i)

(K) _ 0y g - (r ()
i ’ !

and )_{_(k) = {Yi(k)}, k=1,2,..., using the equations,
i-1 M
Ri(k‘“) cp - 3 a x5 x® (6.1)
i j=1 i} ] j=1 1}

w ) o f0, x5 wor® g, (6.2)
1 1 1 11

Y,(k+l) _ "R_(k+l) A (X,(k+l) _ X.(k) ). (6.3)
i i ii i i

The reader will have observed that Algorithm 6.1 consists of applying

S.0O.R. (systematic overrelaxation) to the equations A X = B with the

(k)

proviso that the iterates X be non-negative. This was the way in

which Algorithm 6.1 was viewed by Christopherson except that, since he
worked by hand, he used relaxation rather than S.O.R. The condition that

(k)

the vectors X be non-negative arises naturally from the physical

restraint that the lubricating fluid cannot support negative pressures.
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Christopherson used Algorithm 6.1 without explicitly formulating
the discrete problem that he was solving. Of the two formulations of the
discrete problem that we have developed, Problems 2D and 3D, it seems
to us that Problem 3D lies closest in spirit to Christopherson's ideas.

In computations for Cameron and Wood [2], Fox (working by hand)
used Algorithm 6.1 with relaxation instead of S.O.,R.; Raimondi and
Boyd [10] (using an IBM 704) used the Liebmann or Gauss-Seidel method
instead of S.0O.R.; finally, the use of S.0.R. was suggested by Gnanadoss
and Osborne [5].

Throughout the remainder of this section we denote the solutions of
Problems 2D and 3D by {P, m) and {X, Y]}, respectively, and assume

(k) (k)

that X and Y are generated using Algorithm 1,

First we show that Algorithm 6.1 is always convergent:

Theorem 6,1

For any X(O) = 0, X(k)-—»}_{_ and Y(k)

—Y as k — o,

Proof: Since A is positive definite, the theorem follows from Theorem
3.1 of Cryer [4].
Next we consider the speed with which Algorithm 6.1 converges.

We define the asymptotic rate of convergence of Algorithm 6.1 to be

1x* - K

4| (6.4)

R(A, B,w) = -~ log { sup lim sup
«(0)

=0 k— o
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where || -|| denotes any vector norm.
We need certain concepts from the theory of S.O.R, (see Varga

-T,

IFJZ

[11]). Let E_ be a p X p positive definite matrix. Let AA: :E

~

where D is a diagonal matrix while E and E are respectively sirictly

upper and strictly lower triangular matrices. Then the point successive

relaxation matrix corresponding to A is given by

o~

g (B =

)

N_

wE) {1 ~a>)§+m£}. (6. 5)

lUZ

The point Jacobi matrix E is given by

7= (®TIEAED . (6.6)

The asymptotic rate of convergence for ,.E",(D(g) is given by
R [£ (A)] = -log {p[L (A)]]}, (6.7)

where p[:ﬁw(Z{)] is the spectral radius of E’w(g) . Finally, the optimum

relaxation parameter wb =a>b(’1§:) satisfies
2] = (M)]. 6. ¢
Rw[ﬁmgi)] max R [ (A)] (6.8)

If E is consistently ordered and two-cyclic then

1
o (A) = 2/{l+[L-p ‘1% . (6.9)



34

Theorem 6.2

Assume that

m-1 2 0.
Then
R(a, By = R (e [2MT]), (6.11)
where .g\__(m’l) is the (m~-1) x (m - 1) matrix consisting of the first

(m~-1) rows and columns of A . Moreover, if

_ (m-1)
wopt = wb(A_ ) (6.12)
then
w) < . B, ., 0<w<2, 6.13
R(A, B.®) = R, B ) w ( )
and
< . 6.14
O oot S w, (A) ( )

Proof: From (5.10) through (5.13), we have
Xi +Yi > 0, 1l=i=s M,

Equation (6.11) now follows by Theorem 4.2 of Cryer [4].

Inequality (6.13) follows from (6.11), (6.12), and (6.8) .

(6.10)
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-1
Finally, to prove (6.14) let ] and I(m ) be the point Jacobi

-1
matrices corresponding to A and A(m )

respectively. Let J be

(m-1)

the M x M matrix obtained by augmenting J by (M -m + 1) rows

and columns of zeros. Then

(m-1)

p0™ ) = (6.15)

Also, by the Perron-Frobenius theory (Varga [11, p. 30]),

peIY = p(J) . (6.16)

-1
Since A and aM™Y

are consistently ordered two-cyclic matrices,

(6.14) follows from (6.15), (6.16), and (6.9).
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7. Numerical Results

In this section we present numerical results for an infinitely long

full journal bearing to illustrate the theoretical results of the preceding

sections.

The equations for an infinitely long full journal bearing are (Pinkus

and Sternlicht [9, p. 42 and p. 46] )

d 3 dp ; _ dw(6) y
go (W& gl = 5 0°

T
2
I
o
®
IA
@
IA

w(6) =1+ ¢€cos €.

Here, € is the eccentricity ratio and satisfies 0

Introducing the variable

t = 9/7T,

(7.2)

(7.6)

it is found that p satisfies equations (1.1) through (1.4) with T = 2,

T = (—)Z/ﬂ , and

h(t) = (1 + € cos 7 t)/\/—Tf

(7.7)
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It is easily verified that h satisfies (1.5), (1.6), (1.7), (3.4), and
(4.1), so that all the results of the preceding sections are valid.

For h given by (7.7) the solution of Problem 1 can be given
analytically. Using the results in Pinkus and Sternlicht [9, p. 47]

we find that

T o= (a+m)/m, (7.8)
p(t) = . {7(’[) - € sin vy (1)
[1 - 62]3/2
2 , 2
_ [(2+€7) v (1) - 4€ sin v (t) + € siny(t) cos v (t)]
2(1 + € cos B} } (7.9)
for 0 <t< T,
where B is the zero in [0, 7/2] of
F(x) = €[sinxcos x - (m+x)]+2[(m +x)cos x -~ sin x]. (7.10)
q = arc cos {€+ cos B)/(1 + € cos R)}, (7.11)
and
" arccos {[e + cos (mt)]/[1 + € cos (mt)]},
0 <t< 1,
y(t) = (7.12)

21 - arc cos {[e + cos (mt)]/[1+€ cos (mt)]},

9 1sis 2.
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As shown in Theorem 6.2, if ‘Ym ] > 0 then w = w (A).

opt b
Let ] be the point Jacobi matrix corresponding to A . Then, from
(6.9),

w, (B) = 2/(+ [L=[p(])]°]

=

J. (7.13)

Now J is similar to the MX M tridiagonal symmetric matrix J with

components
( f f =1i+1
T SEE ’
ij ( Ly HEa=iol
g 0, otherwise ,
where
3 3 3,-3 3 3.5
-2 -2
;= - + ,
for = ()7 ()" + (b a)7) % Ly )7+ (hy )7

Hence, for small At, I is approximately equal to J where

5, if |i-j] =1,
ij

0, otherwise.

-~

It is well known that the largest eigenvalue of J 1is equal to cos(m /N)

and that the corresponding eigenvector has components sin (ri/N).

Replacing  p(J) by p(J) in (7.13), we obtain
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wb(g.\_) ~wk* = 2/{1 + sin(m/N)} . (7.14)

We do not claim that »* is a good approximation to . (A) since the

b
difference between p(_}'_) and p(i) is "magnified" by (7.13). Nevertheless,
noting (6.12), (6.13), and (6.14), and remembering that it is in general better

to use a value of « which is too large rather than too small (Varga [1l, p. 1141)
we believe that is is a reasonable strategy to set o =™ .

Numerical results were obtained for the case € = .8 . The computations
were performed on the UNIVAC 1108 computer at the University of Wisconsin;
this computer uses eight-decimal floating point arithmetic. The analytic
solution {p(t), T} was computed using equations (7.8) through (7.12),
the zero, B, of F(x) being computed to eight decimals by the method of
interval-halving. The discrete approximation {p, m)} was computed by

solving Problem 3D using Algorithm 6.1; the iterations were terminated

when

125, = max RO s 107" (7.15)
1

(0)

The initial approximation X was always taken to be ideniically zero.
Two experiments were carried out. In the first experiment, N was
taken equal to 64 while « was varied. We were primarily interested in
determining the number of iterations required to converge, that is the
number of iterations required before (7.15) was satisfied. The results

(see Table 7.1) reinforced our opinion that while setting ® = »*  does

not ensure optimum convergence, it is a reasonable strategy to adopt.
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w No. of iterations to
converge
1.0 811
1.1 670
1.2 558
1.3 453
1.4 362
1.5 288
1.6 216
1.7 146
1.8 70
1.9 136
w™® = 1.90645 146

Table 7.1

Number of iterations to converge (N = 64).
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In the second experiment, ® was taken equal to w® while N

was varied. We were primarily interested in the difference between

{p,t) and {P,m].

Setting

lp -2, = max [p(an) =P |,
J

(7.16)

the dependence of Hp --_EHOO upon At is shown in Table 7.2.

N At lp -2Jl_ No. of No. of iterations

iterations to stabilize

to converge sign pattern
64 .03125 .016017 146 9
128 .015625 .002725 268 14
256 .0078125 .000756 513 56
512 .00390625 .000170 923 319
1024 .001953125 .000073 1640 714

Table 7.2

Dependence of

|p ‘EHOO upon At .




42

Bearing in mind that the UNIVAC 1108 works to only eight decimal places,
it is clear that the results are in agreement with the assertion of Theorem
4.1 that |p - _E_HOO < K(At)2 . The other assertion of Theorem 4.1, namely
that |7 - mAt] < 5(At)/8 , was always satisfied.

Finally, in the second experiment we also observed how the "sign

pattern" of Y(k)

varied with k . Let
m(k) = inf{i;Yi(k)} > 0.,

We found that m(k) was a good approximation to m for quite small k .

For example, for N = 1024, m = 569, m(SO) = 567, and m(k) = 569 for
k = 714. It follows from this observation that it might be possible to
reduce the number of iterations required to converge by first carrying out

a small number of iterations with ® =™ so as to obtain a good estimate

for m, and then using (6.12) (rather than (6.14) ) to estimate wopt .
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