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THE NUMERICAL SOLUTION OF VOLTERRA FUNCTIONAL
DIFFERENTIAL EQUATIONS BY EULER'S METHOD.

by

Colin W, Cryer* and Lucio Tavernini

1. Introduction.

Let @ < a <b be real numbers, and let C([t 1— En) denote the space of

1%
continuous functions on [tl ,tz] into En (n-dimensional Euclidean space). We
shall be concerned with the Cauchy problem for Volterra functional differential
equations:
y'(t) = F(y,t), te [a,b],
(1.1)
y(t) = g(t), t € [a,a]. :
Here, F:C([«,b] ~+En)><[a,b] —~E" is a Volterra functional, that is, F(y,t) depends
on t and on y(s) for se [e,t], butis independent of y(s) for s > t: and the
function g ¢ C([a,a] — En) is a specified initial function. We will require F and
g to satisfy certain continuity conditions which will be given later.
The problem (1 .l) includes as special cases the initial value problems for
ordinary differential equations, retarded ordinary differential equations, and
Volterra inteéro~differential equations; some concrete examples of (1.1) are given
below.
Among the many works dealing with Volterrafunctional differential equations we
mention those of Volterra [V059], Driver [DR62}, Bellman and Cooke [BC63],

Zverkin et al [ZK62], and Oguztoreli [OU66]; further references to the literature will

be found in Appendix A.



Numerical methods for solving special cases of (1.1) have been considered
by several authors. Bellman et al [BB65], :El'sgol'ts [EL57], Feldstein [FE64],
and Zverkina [ZV65], have developed methods for solving retarded ordinary dif-
ferential equations. Methods for solving Volterra integro-differential equations have
been given by Pouzet [PO60], Feldstein and Sopka [FES68], and Linz [LI69]. A
brief summary of all these methods will be found in Appendix A.

The most basic method for solving initial value problems for ordinary dif-
ferential equations is Euler's method (Henrici[HEéZ,p.' 9]). It is natural to seek
a generalization of Euler's method which can be applied to the problem (1.1).
Such a generalization has, for example, been suggested by Feldstein [FE64]. In
the present paper we introduce another generalization of Fuler's method. The major
difference between the present approach and previous approaches is that the
approximate solutions which we generate lie inC([e,b] — En).

In the remainder of this section we describe the cont.inuity conditions which
F and g must satisfy. In section 2 we define the generalization of Euler's
method, and in sections 3 and 4 it is proved that this method is convergent. In
section 5 we consider the possibility that it is only possible to compute F and
g approximately. In section 6 we generalize the "improved Euler method" (Henrici
[HE62, p. 67]) and show that the resulting method is quadratically convergent. To
conclude, we give a numerical example in section 7.

We shall use the following notation. For v € E® the norm of v is denoted

by ||v| and is defined by

Ivll = max v,
1<i<n




For arbitrary real numbers t' and t, t'>t, the notation Cp([t,t'] —»En)
denotes the set of all functions on [t,t'] into E? with p continuous derivatives.
, , n, . 0 L n
We shall write C([t,t'}E ) instead of C ([t,t']—~E").

Let I be an interval in [t,t']. For xe C([t,t']—E") we define ||x||I by

I
x| = max |[[x(s)
sel

[e.b] norm will be denoted by

.

The Banach space C([e,b]— E") with the

Let G:X x [a,b] — E". If there exists a constant L > 0 such that

X'Yﬂ[a't]; x,y € X tel[a,b];

lG(x,1) - Gy, || < L

we write G € Lip(X,L), (G is uniformly Lipschitz on X with Lipschitz constant L).

We denote by G(F,g,a) the Cauchy problem (1.1) with the following conditions

(a) F e Lip(X,L), for some L > 0,

(b) t-—F(x,1) € C(fa,b] —~E") for fixed x € X, (1.2)

(c) geC(la,a]~E" .

We give two examples to illustrate the significance of conditions (1.2).
Example 1.1 Consider the scalar retarded ordinary differential equation

fly(t), y(u(t)), 1), t e[a,bl,

i

y'(t)
(1.3)

H

y(t) = g(t) . tela,a],

where « < u(t) < t; g, f, and u are continuous; and f satisfies

[f(rl,s 1) - f(rz,sz,t)l < Ll(lrl —rzl + lsl - sZ|),

1

for t € [a,b]; r ,rz,sl,s2 € El. If we take X to be the space C([e,b]—~ El) with

1
the uniform norm and define F(y,t) = f(y(t), y(u(t)).,t), (1.3) satisfies conditions

(1.2).



Proof: We have for x,y € X, t € [a,b] ,

IF(x,t) - Py, )| = £, x@),t) = £y(t), ya).t],

IN

L, (x(t) =y | + |x(u() - vy,

-y 111,

74N

ZLI

which establishes (1.2a). For fixed y € X, the mapping t — F(y,t) is continuous
by the continuity of composition of continuous functions. This establishes (1.2Db).

Condition (1.2c¢) follows immediately.

Fxample 1.2 Consider th% Volterra integro-differential equation

y'(t) = f(y(t), f k(y(s),s,t)ds, t); te [a,b], (1.4)

a

where y(a) is given, and f and k are continuous and satisfy
lf(rl,sl,t) - f(rz,sz,t)lé Ll(lrl—rzl + lsl-szl),

lk(rl,s,t) - k(rz,s,t)l < Lzlrl—r2| ,

for rl,rz,sl,sz,s,t € El. If we take X as in Example 1.1, F(y,t)equaltotheright

hand side of (1.4), @« = a, and define g: [a}——-E1 by g(a) = y(a), then (1.4)
satisfies conditions (1.2).

Proof: We have for x,y € X, t € [a,b],

t .
IFGet) - By 0]l = [EGx(t), j K(x(s),s,0)ds 1)
' a

t
—f(y(t),fk(y(s),s,t)ds,t)l,

a




t
L (e - v |+ [ Ikixts),s,0 - k(s(s),5,0] ds),

a

’/\‘4

l[alt]

[7AN

!

[L, + (b-a) L,] |lx-y]|

which establishes (1.2a). Condition (1.2b) follows by the continuity conditions

and the continuity of the integral in (1.4), and (1.2c) follows immediately.

2. Definition of Euler's method.

For a given g(F,g,a) and integer N > 0, the approximate solution ;r corre -
sponding to the step h = (b-a)/N is constructed as follows. Set ‘ci =a+1ih,
i=0,..., N. Define x, €eX,1=0,...,N, by

g(t)l < 1< a ’

XO(t) = ] (2.1a)
g(a), a<t<b,

and for i = 0,...,N~-I,

Xi-{—l(t) = (2.1b)
xi(ti) + (t—-ti) F(xi,t'i) . ti <Lt<b.

Set y = XN.

Remarks:

1. The method is independent of the manner in which Xi is extended
beyond ti; all that is required is that X, e X.

2. For the case where 6(P,g,a) is an ordinary differential equation, the
vectors ;r(ti) i=0,...,N, are identical with the approximate solution generated

by the customary Euler method (Henrici [HE62, p. 9]).



3. The computability of Euler's method depends on the computability of F.
For numerical computation F is replaced by a discrete approximation F introducing
an additional error. We call this the approximate Euler method and discuss it in
section 5.

4. The implementation of Euler's method on a computer is discussed in
Appendix B.

We will often be concerned not with a single approximate solution ; but
with a sequence of apz;roxirr1atiorls. Let {Np} be an increasing sequence of posi-
p-

tive integers; for example, Np = 2 Then we set

h = (b-a)/N _, (2.2)
b (b-a)/ D

and denote by yp the approximate solution generated by Euler's method with step-
size h

Following Henrici [HE62, p. 16] we set

t, =a+ih , 0< i< N, (2.3)
1,p p p
ar_ 1= a, (2.4)
“[p]

and
t =a+ kh_, for te (a,b}, (2.5)
[p] p (a,b]

where k is the largest integer such that a + k hp <t< ad k+ l)hp.

Then it follows from (2.1) through (2.5) that

y (t) = g(t), t e [@,a],
p (2.6)

ypm = yp(t[p]) +(t - t[p]) F (yp, t[p]), t € [a,b].




3. Preliminary results.

Lemma 3.1 (Henrici [HE62, p. 18])If the numbers a satisfy the inequality
la, I <A lal+B, i=0,... NI,

where A, B >0 , then

"l
A lB, A#l,

i
la; | < & lagl +

iB, A=1,

for i=0,...,N . PFurther, if A=1+4+ §, 8> 0, then

Q
i
Q

fori=0,...,N.

Lemma 3.2 If x € C([mb]—»En), N > 0 is an integer, h = (b-a)/N ,
ti =a+ih, i=0,...,N, and x satisfies the inequality
[e.t,] o

x| < 1+ ha) [|x| B, te(,t 1,i=0,...,N-1,

where A, B » 0 , then x satisfies the inequality

("
RCECI
TR P AFO
,b . b'aA ra
Iglerbl o gomaiby yleal
b-a -
h B, A=0 .
-

Proof: The bound for ||x(t)|| is uniform for t e (ti,tiH]; therefore,

i

Pl b tnd = ma (e, g Gt

[7AN

(1 + hA) nx]{[“'ti]+B ,i=0,...,N-].



By Lemma 3.1 we have

ihA_l
Co A B, AZ0,
I Lot < o102 yplealy
lB, A:OI
fori=0,...,N . The lemma follows by taking i = N.

We now turn to an investigation of the sequence of functions, {yp} '

generated by Euler's method with decreasing stepsize,

Lemma 3.3 The sequence {yp} is uniformly bounded.

Proof: 0 ¢ Xand F e Lip(X, L) for some L > 0, so that for x € X and t € [a,b] we

have
1P - Fo, 0] < L =)t
Therefore,
el < o e, (3.1
C= max ||[F,t)] .
t € [a,b]
By (2.6) and (3.1) we have, fort e (ti,p' ti+l,p] ,
t < t +h F Lt '
ly @l < ly e i 1Byt D
, L.
P A R S

1

[e,t, ]
l+h L pi+h C.
( p)|WJ| Lpt+ b

By Lemma 3.2 we have
{(b-a)L

L

-1

|[a b] b -a)L “g“[a,a] = c

Iy,

which gives a bound independent of p .




Lemma 3.4 (yp} is equicontinuous on [a,b].
Proof: Let a< t< s < b, so that Sip] t[p] =k hp for some integer k >0. Then
[FROESANC N FRUESACNES W]
+ Volip] T Pl T Ypltpy + 20y |
LT PACE S NES AOT I
By (2.6) we have
Iy ® = vty +h < g+ by - 0Py gp
I Voltoy 1 hp) - vl y (DR I < hy HP(yp,t[p] +ih) I
for i=1,...,k-1, and
Iy otttk Bp) = vl < (s = spp 1Bty spopll-

By ILemma 3.3 we have a constant M > 0 such that

|IF<yp,t)|| <M, tefla,b]l,

so that, summing the above k + 1 inequalities, we obtain

I

I yp(t) - yp(s) I (t[p] + hp -t 4+ (k - l)hp +s - s[p]) M ,

i1

[t -s| M.

We have, therefore, established that {yp} is Lipschitz equicontinuous on

[a,b]. Since yp(t) = g(t) for te [«,a], the lemma follows.
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Lemma 3.5 Let S be a bounded equicontinuous family of functions x € X . For

h > 0 define

d)S(h) = sup {”P(X:t) - F(X:S)”Z xe€eS;t, s¢e [a,b]; It - sl < h}. (3.2)
Then wS(h)———O for fixed S.

Proof: Suppose the contrary. Then there exist sequences {(xp,tp)} and {(xp,sp)}
in S x [a,b] such that

- — 0 —— , 3.3
|p spl as p— © (3.3)

F X ,t FX ,S € ’ p - O,l,-..a 3.4

Define zp: [a,b]—»En+l by zp(t) = (xp(t),tp). Then [zp} is equicontinuous

on the compact set [@,b] and by the Arzela-Ascoli theorem it has a uniformly con-

vergent subsequence (zp ], zp — (x,t) € XX El. Therefore,
k k

)|+ HP(x,tp ) - Fx, )|

HF(xp 'ty ) - F(x,t) || € |IF(x ,tpk) - P(x,tp )

k Pk Py k

< L%, el Pl Rt ) - Be |~ 0 as k— .

t
k Py
By the same argument we have |[F(x_ ,s_ ) - F(x,1) | —o.
Py Py

Therefore,

IPGe, vt ) - Fix .spk) RS

,t) - Fx, 0
k Pk ‘pk Py

k

+Ee ) - Fx,t)||— 0 as k—= ,

+ S
k Pk

contradicting (3.4).
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Lemma 3.6 The sequence [yp} converges.,
Proof: Let p and g be arbitrary integers satisfying 0 < p< g . Let

d(t) = yp(t) - yq(t), t € [«,b]. By (2.6) we have for any t ¢ [a,b]

y (t) =y _(t

Y (ty =y (t[ ] ) + (t - t[ ]) Fly_, t[p]) ’ (3.6)

Subtracting (3.5) from (3.6) we have,

Yp(t) - yq(t) = yp(t[q]) - yq(t[q])

+(t - t[q]) [F(Yp't[p]) - P(qu t[q])] (3.7)

Volo? * Ura1 ™ fpp T o) T Yplap

f t. 1>t then t :
I [q] 2 o] en t t] so that by (2.6),

e[t

[al ~ " Tpl’

yp(t[C{]) B yp(t[p]) B (t[fﬂ B t[p]) F(yp’ t[p]) =0 (3.8)
Otherwise,

= el T M Hal < [p] <
so that, by (2.6) ,

1y5tq) = Yol e) = Crqp = o T P
= gy~ Tpp Elpr Ypp ~ ) = Fp Yy I

7A\

hq ws(hp) , (3.9)

is defined by (3.2) .

where § = {yp} and ®q
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Using (3.7), (3.8), and (3.9), and noting (3.2), we find that

Y

law < gl + @ -“"t[q]) 1Py tpop = Fge trgp I+ by @ ),
. “d(t[q]) I+ - Tq] ” FOp ) ~ F0pr Yqp) I
=t Fly o ) - Flyge trgpl
+ hq ws(hp) /
so that,
law | < 1+ h,L) l|d]| [“'t[q]] +2h o (h) .
Hence,
law{ < @ +h L) fapte gl + 2howglh), te(ty ot 1.
By Lemma 3.2 we have
ndn[“'b]g (P-a)k “dn[o"a] + zg—goj)L’ 1 wglh ). (3.10)

The sequence {yp} is bounded by Lemma 3.3 and is equicontinuous by
Lemma 3.4. Therefore, by Lemma 3.5 given an € > 0 there exists a & > 0 such

that @ g(h )< e forall h < & . Since laft®al - o, it follows from (3.10) that

(b-a)L_

ly -y Il[a'b] <2&———1¢,
p q L.

for all sufficiently large p , p< g . The bound is independent of q , and [yp}

is therefore a Cauchy sequence in X . Convergence follows by the completeness of

X L
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4, Convergence of Euler's method'and an existencgerunigueness theorem.

Theorem 4.1 g(F,g,a) has a unique §olution in X; this solution is the limit of

the sequence {yp} generated by Euler's method.
Proof: For p =10,1,2,,.. define fp: [a,b] —~E" by

£ (t) = Fly ,‘t[p]) ’ t e [a,b]. (4.1)

By Lemma 3.6 {yp} has a limit ye X, For S = {yp} we have

!lfp(t) - F(y,t) ] < !lF(yp,t[p]) - P(yp,t) |+ llP(yp.t) - Py, 0,
<oghy iy -y w0 as oo

Therefore fp(t) — F(y,t) uniformly on [a,b]as p—~® . From (2.6) and (4.1)
it follows by induction that

1

Vol o) = gla) + hy z fltyyy ) K= 0,00 N (4.2)

k-
p
i=0

For arbitrary t ¢ [a,b], t[p] =t . for some k, 0 < k<N ~-1.

k, p

For this k , we have by (2.6) and (4.2)
k-1
t) = g@)+h f(t, + (t—-t £ ().
Fp® = a@) 4R ) (- i
i=0
Since f_ is constant on each interval (t; ,, t + h_] we can write the above
p [e]” el p

as
t

yp(t) - gla) = f fp(S)ds, tela,b].

a
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Taking the limit as p— « we have

t
y(t) - g(a) =j F(y,s) ds. (4.3)

a
Since s — F(y,s) is continuous, the right hand side of (4.3) is differentiable.

Therefore the left hand side is also differentiable and we get
y'(t) = F(y,t) , te[a,b].

The function y is therefore a solution of G’(F,g,a). It remains to show
that this solution is unique.
Suppose that x and y are two solutions of [g(F,g,a). Define
§ =X -Y .,
Then & is bounded, |t < K, t e [e,b].

We claim that

lsmll < KL (¢ - a)%/k1, t e[a,bl, (4.4)

for k=0,1,2,.... This is now established by induction. We have
t
x(t) - g(a) :f F(x,s)ds, te[a,b],
a

t
Y(t)_g(a) :f F(YIS) ds I t€[alb]l

a

from which we get

t )
sl < f |F(x,s) - F(y,s)| ds , t e[a,b] .  (4.5)
a
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The bound (4.4) holds for k = 0 . Suppose it holds for k =0,1,..., m . By

the induction hypothesis we have

1) - Biyosy < Ll s 13 < k1™ (s - a)™/m1 s ela,b].
Therefore, by (4.5),

t

m m+1
16| < f e R k) IR L g =) U S I
m! (m + 1)!
a
which establishes (4.4) for all k . g

Since Lk(b - a)k/k!-——o as k— o and §(t) = 0 for t e [e,a], it follows

that |& H[a’b] = 0 so that the solution is unique.

5. The approximate Euler method.

A significant difference between an ordinary differential equation y' = £(x,Vy)
and the functional differential equation (1.1) is that usually f can be evaluated
to arbitrary accuracy whereas the functional F , in general, must be replaced by
a discrete approximation for numerical work. We now consider the case where in
Euler's method g and F are replaced by approximations 5 and i:" . Let 5:
[a,a]— En, FiX % [a,b]—»En be approximations to g and F corresponding to the
stepsize h = (b-a)/N , N > 0 an integer. Instead of using (2.1) we compute
an approximate Euler function ;r by the relations

gy, a<t<a,

x (t) = (5.1a)
ga), a<t<b,
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x. (1) , a < t<t, ,
i i

Xi+l(t) = 5 (5.1b)
xi(t) + (t - ti) F (Xi,ti), ti <t< b,

~

fori=0,...,N~-1. We set yrxN.

We denote by yp the approximate solution computed by (5.1) with N = Np, h=h

P
g = , and F=TF .
g gp D

Theorem 5.1

Let {yp} be the sequence of approximate solutions generated by the approxi-
mate Euler method. Let y be the solution of G(F,g,a) .

If y is twice continuously differentiable on [a,bl; Pp ¢ Lip(X,M) for some
M > 0; gp(t) = gt) +O(h ), te [¢,a]; and Fp(y,t) = Fly, 1) + Ofh ), t ¢ [a,b]:
then

v, = y(t) + O(hp), t € [e,b] .

Proof: Since y is twice continuously differentiable, the mapping t— F(y,t) is
continuously differentiable on [a,b]. Hence,

A = max |F(y,s) - F(y, ) || = O(h) .
P |s-tl<h P

s,t e[a,b]

For re[0,1],i=0,.. .,Np -1, y and Yy satisfy the relations

t, +rh ) = y(t,
y( . p) y(1

1,

t
o) T Eyes )ty <8y < i+l,p

4

t. +rh )= t, +rh F ,
yp(lp p) yp(l ) +r (y )

L
: Y pp°p L,P

’
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giving
_o ylest ] _
ly=y )t +rhpli<lly=y I 5 p7 + b IF(ys; ) - Fly.t; Dl
+ h ||F(y,t. - F (y,t. +h |F (v,t. )-TF Lt ,
JlFty e ) =Fotyoty dll+h P .ty ) - Fovt
<|ly-y !l[“’ti,p]+hA +h_||Fly,t, )-F (v.t. )
p PP b 1,p p 1,0
[e,t, ]
+ h Miy- ' , ,
o Iy ypll i,p
< (1+h M)|y-y ll[a’ti,p]+h A +C),
p p p P P
where
C,= suw Py, 0 -F (v, 0l . (5.2)
t € [a,b]

By Lemma 3.2 we get

- (b-a)M _
”ynypH[a'b] < o7 Hg-gpu[a'a] + 2 L

———[A_+ C_|.
Y, [A,+C]

The theorem follows .

6. The improved Euler method.

We shall consider the case of approximate computation directly. The im-
proved Euler method for (g(F,g,a) and stepsize h = (b-a)/N, N > 0 an integer,
generates an approximation ;r using the relations

alt) , @< t< a,

xo(t) = ' (6.1a)
g(a) , a<t< b, '



x,(t) , a t<t,,
i i
S 3 L (6.1b)
xi(ti)+rh F (Xi,ti) ST h [P(Qt' (Xi)’ ti + h)
i,h
— = - - <
Px t)] r=(t t)/h, t; <t< b,
fori =0,...,N-1. The operators Qt h : X — X are defined by
'x(s), a < s<t,
(6.1c)

[Q, ,(l(s) =
x(t) + (t-s) F(x,t), t<s< b.

-~ ~

g and F are approximations to g and F respectively, as in the approximate
Euler method. We set ;'= XN .

We call the above method the improved Euler method because it corresponds
to the improved Euler method (or Heun's method) for ordinary differential equations,

(Henrici [HE62, p. 67]), namely,

Y.

=y + 2
oy = Vgt Ly t) v+ hily ), g+ )]

The relationship between the two methods is made clearer by noting that

1. X, 18 a quadratic polynomial on [ti’ti+1] ,
2. Xi+1(ti) = Xi(ti) , lim Xi+l (t) = F(Xi,ti) ,
t )t
i
, _ . h _
Xi+l(ti+l) = Xi(ti) 5 [F(xi,ti) + F(Qt, h(xi), t,+ h)] ,
i,
[QJC (Xi)] (ti + h) = xi(ti) +h F(xi,ti) .

i,h




We denote by ¥<b the approximate solution computed by (6.]1) with N = Np, h=h

5 = gp, and E = Fp . We have the following theorem.

/

Theorem 6.1 Let [yp) be the sequence of approximate solutions generated by

the improved Fuler method. Let y be the solution of G(P,g,a).
| 3 n ) 2
If yeC” ([a,b]—E); Fp € Lip(X,M), for some M > 0; gp(t) = g(t) + O(hp),
2
t ¢ [@,a]; and Fp(y,t) = F(y,t) + O(hp), t ¢ [a,b]; then

7o) =y + o<h§). t e [@,b].

Proof: For r <[0,1],i=0,..., N_ -1, y satisfies the relations

p

rzh2 3
t + rh = t, + rh "(t., + "(t, + O(h ’
Y(i,p rp) y(lp) py(l’p) _,E_E_Y(l’p) (p)

14

1

1
"(t == [F(y,t, +h ) - F(y,t, + O(h '
Pl T (PO ) < R [+ om)

giving
rzh
t. +rh)=vy(t +rh F(y,t. +—P [P(y,t. +h ) - F(y,t,
vit, o rp) y(i,p) rp(y 1,p) > [F(y P p) (y ,p)]
3
+O(h ) . (6.2)
p
i S = .
By (6.1), with vy i Qt, h (yp) , we have
i,p  p
rzh
t. +rh )= t, +rh F ,t, +—L [F (4% ,t. +h
yp(l,p rp) yp(l,p) pp(yp 1,9) 2 [p(yl,p i,p p)
-F (y_.t. )]. (6.3)
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By subtracting (6.3) from 6.2) we get

h
=y )i, J+rhll< ||y~ypii[“'ti,p] +— [Py D -F o Dl
+?~p~ |F(y,t. +h )- F (y» | +h )l +O(h3)
2 "i,p ot p’’
[e,, 1,0
< ly=y P07+ = | Fly,t; )= F vty ) I
h
+ 5 | Fo(vat, )= Fly oty o) |
h
PRy eh) STty e
+E1£HF(yt +h)—F(y ot +h)H+O(h3)
2 pi,p i,p"i,p P p’ '
< lly—ypll[ el —p“ C, +"p‘ M || y- ypll[a’ti'p]
2o Ry I ) 0 (6.4

where Cp is defined by (5.2).

We now compute a bound for the term involving y;“i .. By (6.1c) we have

?

y (1), a< t<t, ,
j& i,p

4 - '
(0

+ (t-t, F P .t t< b,
Tplty, o) F 7, o) gty gl p <

Writin t) = y(t. + rh F(y,t, +Oh§ we get
iting y(t) y(lp) p(y 1,p) ( g

7




21

\ 2
- e =
Hy-vi g g +rhl= iyt ) +rh Pyt ) +Oh)

- t, Y-rh F .t ,
Vot o) RCA l,le

(AN

) |

[alti p]
- : h |F(y,t. ) -TF (y.t,
|y ypﬂ + pH (v.t, )= F vt

2
h ||F _(v,t, -F Wt +O(h ),
+h ISty )= F oty Lty ) +0k)

[e,t, p] [o,t,
P rhCc +h M|y-
oCp thy Iy Yy |

IN

ly-v |

This bound is uniform in r, 0<r< 1. Since | y-—yz: I =

Hy-yp][ 'Y, we get

[e,t, +h_] [a,t

¥ LD P g4 h M)y P in ¢ yom? 6.5
ly-y; I < (L+h M ly-y | o CptOm) . (6.5)

By (6.4) and (6.5) we get

h_p_ [e,t,
=y )t S+ h)ll < (4 M fly-y |

EE [af,ti p] hE 3
+ M(l + h M)|y- B
> M@ +h M ly-y | > MC_+O0Mm) .

‘ ’ h
< nMylly -y 1% ] -2 +O(h>
(t+h M)ly -y I 10 Fh 1+ MG +OMm)

hOM .
where MO = M + ~-—2--—-) . By Lemma 3.2 we get

- [alb] < (b—'a)MO _ [ala]
ly=y | < e lg-q, I
(b-a)M h
e 0-1 P 2
+ Y 1+ > M) Cp + O(hp) .

0
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2
Since Cp = O(hp), the theorem follows,

7. A numerical example .

In this section we present numerical results for the scalar retarded differential

equation
y'(t) = [Y(t/u(t))]u(t) ,
(7.1)
ylo) =1,
where
u(t) = U + Zt)2

It is easily verified that the solution of (7.1) is y(t) = et

An interesting feature of (7.l1) is that t - t/u(t)—-0 as t-— 0, so that the
methods of Bellman et al [BB65] , El'sgol'ts [EL57] , and Zverkina[ZV65] , cannot
be used.

In Table 7.1 we give the values of yp(l) for both Euler's method (2.1) and the
improved Euler method (6.1), Np being equal to 2P in each case. The exact
value of y(l) ise = 2,71828 .

For comparison, we also give the results of Feldstein. Since Feldstein
presents three variants of Euler's method, we have used for our comparison the
most accurate of the three. Feldstein published his results to four digits. After
rounding our results for Euler's method to four figures we get exact agreement.
The extrapolated values computed by Feldstein are obtained in the usual manner

by computing the solution with stepsize h and 2h . This involves 3N derivative
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Je 2
— 4 =
ly=y§ e j+rhyll = v ) +rh Fly,t, )+ 0 )

1,p

- t, }-rh F ,t ,
Vot ) oFolVy i,p>ll

l/‘\

_, ket pl -
ly=y I +h Pyt ) - F vty D

2
h F ,t. "F It. + h ’
+ bl vty V- F vty Dl O

[ty o) ety 2
< - " +h C +h M|y~ T+ 0O
< lly-v, | oCp +h Mly-y | (b))
oz,ti ]
This bound is uniform in r, 0 <r< 1. Since || y——y’i§< p“ 2.
[a,t, p]
ly-y_Il "7, we get
P
5 [a,ti p+hp] [a',ti b >
-y, - < (1+h M)|ly- " +h_ C_+0(M]). (6.5
ly=vi o (L+h M) ly-y |l p CptOM) . (6.5)
By (6.4) and (6.5) we get
}ip_ “rhy p]
~y ). _+rh )| <+ 2my- ‘
ly=y )t o+ rh) < @+ 570 ly-y +h G
EE [a,t, p] E; ]
+ M(l + h_M) |y~ ! - )
2 M@+h M ly-y | t— MC_ +0(m),

< waen gl -y 1) "o h>
< (. Ml lly = v i,p +h'p(l+ ZM)Cp+O(hp)'

hOM .
where MO = M(l + "—-2"*') . By Lemma 3.2 we get

[Q,b] < (b"a)MO . [ala]
< e Hg gp ”

| y-ypll
(b~a)M h
e 0-1 p 2
+ v (l+2 M)Cp+O(hp).

0
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2
Since Cp = O(hp), the theorem follows.

7. A numerical example .

In this section we present numerical results for the scalar retarded differential

equation
v = [yt/umn]*®
(7.1)
y(o) =1,
where
u(t) = ({1 + 21:)2 .

It is easily verified that the solution of (7.l) is y(t) = elE .

An interesting feature of (7.1) is that t - t/u(t)—0 as t-—- 0, so that the
methods of Bellman et al [BB65] , El'sgol'ts [EL57] , and Zverkina[ZV65] , cannot
be used.

in Table 7.1 we give the values of yp(l) for both Euler's method (2.1) and the
improved Euler method (6.1), Np being equal to 2P in each case. The exact
value of y(l) ise = 2,71828 .

For comparison, we also give the results of Feldstein. Since Feldstein
presents three variants of Euler's method, we have used for our comparison the
most accurate of the three. Feldstein published his results to four digits. After
rounding our results for Euler's method to four figures we get exact agreement.
The extrapolated values computed by Feldstein are obtained in the usual manner

by computing the solution with stepsize h and 2h . This involves 3N derivative




evaluations.

improved Euler method results for h

example, the improved Euler

If we compare Feldstein's extrapolated results for h =

23

_ 2-p+l

7P

evaluations.
FELDSTEIN CONTINUQOUS APPROXIMATION
Improved
p | Euler Extrapolated Euler Euler
1 2.301 2,301 2.7496
2 | 2.475 2,649 2.475 2.7267
31 2.568 2.661 2.568 2,7192
4 2.639 2,711 2.639 2.,71866
51 2.678 2.716 2.678 2.71841
» &,
6| 2.698 2.717 698 2.71832
71 2.708 2,718 2,708 2,718292
Table 7.1

Values of-yp(l) for (7.1) .

with the

it is apparent that, for this simple

method gives better results with fewer derivative
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Appendix A

Survey of Volterra functional differential equations and numerical
methods for solving them.

1. Examples of Volterra functional differential equations

Retarded ordinary differential equations. These are differential equations of

the form

y'(t) = f(y(t), y(u (), ..., v(u_(),1), t €[a,b], (1.1)

ami)H o o u )< t, i=1,...,m, and y(t) is specified

where f:E
on [«,a] for the Cauchy problem. Among the many expository works in this area
are the papers of Myshkis [MY49], Hahn [HA54], Zverkin, Kemenskii, Norkin, and
El'sgol'ts [ZK62], Myshkis and El'sgol'ts [MYE67], and the books of Pinney
[PI59], Bellman and Cooke [BC63], and El'sgol'ts [EL66]. Theorems on existence
and uniqueness for this problem have also been given by Franklin [FR54] and
Sansone [SA55] .

The more general equation

y'(t) = f(y(t), y(ul(y(t),t)), cees y(um(y(t),t)).t), t>a (1.2)

where ui(y(t),t) <t,i=1,...,m, has been studied by Driver [ DR60,DR63.1,
DR63.2] in connection with a problem of electrodynamics. (See also [DR63.3],
and Bullock [BU()?]_.)

Volterra integro-differential equations. An example is given by the scalar equation

t
v () = (), / K(y(s), s, t)ds.t), t e [a,bl, (1.3)

a
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where vy(a) is specified for the Cauchy problem. A discussion of equations of
this type and a bibliography of earlier works are to be found in [VO59]. A survey
of integro-differential equations is given in [SAA67] .

A classical example of Volterra integro-differential equations is given by the

Volterra population equations [VO59, p. 207]

t
y' () =y, (1) [al = by v, () - f k, (t=s) y,(s)ds],
t=T,

t
vy = vyl + by v 0+ [ ky(-s)y (s)ds]
t—TO
which are found in the mathematical theory of two species living together.
Applications of Volterra integro-differential equations to servomechanisms and a
nuclear reactor problem are given by Ben&s [BE61, BE63], Levin and Nohel

[LEN60] and Nohel [NO64], respectively.

Volterra functional differential equations have found applications in
fields such as ballistics, control theory, economics, oscillation theory,
statistics, electrodynamics, elasticity, magnetic hysteresis, biomathematics,
number theory, and neutron transport problems. Extensive bibliographies are
found in [MY49,MY50,HA54,ZK62,BD54,BC63,EL66,CH60]. The book of
Oguztoreli [OU66] is devoted to the theory of control processes described by

Volterra functional differential equations.
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2. Existence and uniqueness theorems for Volterra functional differential equations.

Driver [DR62] considered the equation

y'(t) = F(y,t), a<t<b, (2.1)

where F(y,t) € E" is defined for t € [a,b)and y € C([e,t] = D), and D is an
open connected set in En. The case a = - » is included by replacing [«,t] by
(-»,t] and replacing y € C([a,t] — D) by v € C((-,t] — Dy), where Dy c D is
compact. He proved the following theorem, (the vector norm | - | denotes any

. n
norm in E ) .

Theorem 2.1 If the following conditions hold.

1. For fixed x e C({e,t]— D), t— F(x,t) is continuous on [a,b).
2. For every s ¢ [a,b) and every compact G « D there exists a constant LS c

such that

IFGe,t) - Byl < L, o max =) - y(t)]]
! a<t'<t

whenever t € [a,s) and x,y € C([a,t] - G) .

3. g e Cla,a]—-D).
Then there exists a unique solution y on[«,B), a<f<.b, andif B<b and P
cannot be increased, then for any compact G < D there is a sequence of numbers

a:t0<tl<t2<... + B such that
Y(ti)ED_G fOri'—"l,Z,.-.,

i.e. either y(t) comes arbitrarily close to the boundary of D or y(t) is un-

bounded.
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Driver remarks that it is not true, in general, that y(t) approaches the
boundary of D as t 4 B as would be the case for ordinary "differential equations.
We shall discuss this point in some detail: Consider the ordinary differential
eguation

y'(t) = £(y(t), t), t > a, (2.2)
where y(t) € En, and y(a) is given. The usual statement of the Picard-Lindelof

existence-uniqueness theorem for this equation is given below.

Theorem 2.2 Let R = [veEn:Hv—y(a)Hgb}, I=[a,a+h],h>0.

If f is continuous on R X I and satisfies the uniform Lipschitz condition
lfu,t) - f(v, 0] < L fJu-v],

foru, v e R, t € I, then (2.2) has a unique solution on [a,a + ho] , where

h, = min {(h,b/M} , and M is a bound for [[f(v,t)| over RxI.

Suppose that f satisfies the hypotheses of Theorem 2.2, For y € C(I—R)
and t € I, define F(y,t) = f(y(t), t). Then for fixed y , t-— F(y,t) is continuous
because it is a continuous function of a continuous function. Furthermore, for

%,y € C(I — R) we have:

|Fx,t)-Fly,t) || = i@, 0-fy@), 0] < L max |=x@)-y) |,
aét_'ét

where L is the Lipschitz constant in Theorem 2,2. The above holds for all
t ¢ I. Therefore F satisfies the hypotheses of Theorem 2.1. However for
ordinary differential equations we have a stronger theorem on the extension of

solutions (which is independent of Theorem 2.2):
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Theorem 2.3 ([HAR64, Corollary 3.2, p. 14]) Let D be an open connected set

41 —_
in g , and let f be continuous on the closuwre D of D . If (2.2) has a

solution y (with (y(t),t) € 5) ) on the interval ] and J is a maximal interval,
then one of the following three conditions must occur:

1. 7J=la,»).

2. J7=[a,b), b<o,and |y{)||+-~ as t + b.

3, J=[a,b] and (y(b),b) €8D, the boundary of D .

That is, if the solution cannot be extended, it is either unbounded or it terminates
on the boundary of D .

The above theorem is not true even for retarded ordinary differential equations,

where a fourth case may occur: J = [a,b) can be a maximal interval of existence of

the solution y, and there exist sequences ‘c1 <'c2 <...¢+band t'1<t,'Z <...tbsuchthat y(ti)

approaches the boundary of D as i--, but y(t'i) moves away from the boundary
of D as i-—+ ., An actual example which illustrates this case was constructed
by Myshkis [MY49, translation pp. 19-23]. In addition, Myshkis proved that for
equation (1.2) this case can only occur if there exist indices j and k such that

(i) lim sup f, =+, lim inf fj = =00,

t 4 P ) t 4 P
(i) u (B) =B .
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3. Numerical methods for retarded ordinary differential equations.

Difference~differential equations with constant delay can be solved by
standard numerical methods for ordinary differential equations. To illustrate
this technique consider the scalar equation

y'(t) = f(y(t), y(t-7), 1), t2 a, (3.1)
where 7T > 0. We require that y satisfy the initial condition y(t) = g(t),
t ¢ [a - 1, a], where g is given. This problem can be reduced to a sequence
of initial value problems in ordinary differential equations. Fort €[a,a + T],
y(t = 1) = g(t -~ 7) is known., On this interval the solution of (3.1) can be com-
puted by solving the differential equation

yi(t) = fl(yl(t),t), tefa,a+ 1], (3.2)

where fl(s,t) = f(s,g(t - T), t), and yl(a) = g(a). Having solved (3.2) one
can compute y onfa + T, a+ 2 1] by solving the differential equation

7t = L(v,t), 1), tela+ T, a+21], (3.3)

where fz(s,t) = f(s,yl(t - T),t), and yz(a + 1) = yl(a + 7). Repeating this
reduction process we obtain the sequence of initial value problems

Vi(t) = fi(yi(t),t), tela+@-1)7,a+ it], (3.4)

where fi(s,t) = f(s,yi_l(t - T),t), and yi(a + (G -1DT1) = Y. (a + (i-DH71),

i-1

i=1,2,...
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1f the constant delay 7 in (»3.1) is replaced by a variable delay T(t),
the difference-differential equation which results,
y'(t) = f(y(t), y(t - (1)), t), t=>a, (3.5)
where T(t) > 0, can be reduced to a sequence of ordinary differential equations
similar to (3.4) if T(t) satisfies suitable conditions.

The method of Bellman, Buell, and Kalaba. Bellman, Buell, and Kalaba [BB65]

considered the case where T is differentiable and monotone decreasing. They
obtain a sequence similar to (3.4) where the i-th differential equation is solved

- 7(t, )=t,, i=0,l,... To be able

. 1 . - ‘
on the interva [ti’ti+l] with ty = as t i+ i

i+l
to evaluate the right hand side of (3.5), a reduction method of this type would
generally require that the values of the approximate solution (at the grid points)
be saved so that the second argument of f can be evaluated by interpolating on
these values. To avoid doing this, Bellman, Buell and Kalaba proposed the

following. Define Lo(t) = t, Ll(t) =t - 7(t), and Li+l(t) = Ll(Li(t)) for

i=1,2,... The solution of (3.5) can be computed on [to,tl] by solving

y'(t) = fy(t), gt - T(), 1), te [t,t].
Suppose that (3.5) has been solved for t € [to,ti]. Define the real functions

y, on [tj, ] by

t
j j+l

v 0 = yL0), (< St 5= 0, (3.6)

1-]
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Since 71 is assumed to be differentiable, LJ. is also differentiable, From

(3.6) we have
V0 = YL DL, 5= 0,

From the above and (3.5) we obtain the system of i + 1 differential equations

1l

vy (0 = DOy, 0,y (0,L0), 1= 0,....1, (3.7)

1-]

where t a[ti,tiH]. Now, Lo(ti) =t Ll(ti) =t - T(ti) =ty and, in general

= . £, P ) e sl i -5 . e 1 i i
Lj (ti) ti~j Hence yl__J (tl) y(tl__J) The solution of (3.5) on [tl t is given

i+l]

by yi. The initial values y(to), cou, y(ti) are known since the solution y is

known on [to’ti]' This method gives the solution on [to,t ] at the expense of

i+l

solving 1 + 2 + ... (i+l) = (i+1)(i+2)/2 ordinary differential equations.

El'sgol'ts' method. Prior to the work of Bellman, Buell, and Kalaba, El'sgol'ts

[EL55, Translation pp. 164-165, EL57, Translation pp. 283-284] proposed a
different scheme which avoids both the use of interpolation and the solution of an
increasingly large number of differential equations. His method is more direct:

If one can find a sequence a = to’tl’tz’ . .» such that either ti - ’L‘(ti) < a or

t, - T(t,) =1, > a for some j(i) <1i, (3.5) can be solved by Euler's method for

i i j(i)

ordinary differential equations:

Yo = y(a)
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hif(yi, g(t, = ©t),t,), ift, - t)<a,

here h, = - i =
w ; ti+l ti, i=1,2,...

It is difficult to generalize the method of El'sgol'ts to obtain higher order
formulas because of the variable stepsize. Further, higher order methods may not
give good results when used to startthe solutionbecause, even if f and 7 have
arbitrary differentiability, y may nothave therequired number of derivatives until
t is sufficiently large [EL57, translatioﬁ pp. 282-283, EL55, translation pp.
159-161]. This is illustrated by the simple example

y'(t) = y(t - 1), t> 0,

i

y(t) =1, t< 0.
For this problem (3.4) reduces to

C ) = B . . o
y' () =y, (-1, t [i-1,i], i=1,2,...,
where yO(t) = 1. The first three terms of the sequence are

y (8 = 1+¢t,
v,(0= (3 + t)/2

y,(t) = [(t - 1)3 + 9t + 2]/6.

We find yl" (1) = 0 and yé‘ (1) =1, so that y"(lI) does not exist. But

yg (2) = y; (2) = 1, so that y"(2) exists. In general, one finds that the solution

of (3.1) has k continuous derivatives for all t>a 4+ (k - 1)1, provided that f

has k -1 continuous derivatives.




33

7verkina's integration formulas. Zverkina [ZV62, ZV65] has developed numerical

methods which take into account the jumps of the derivatives. Suppose that a
real function g on [a,b] has m + 1 continuous derivatives in the intervals
[a,tl], [tl’tz]’ ce ,[tk,b], where a < £ <ooo <ty <b . Let
c, ,= lim [g(])(t. + €) - g(‘])(t. - 8)} /
1,] 1 1
g€ 4+ 0

and define I(t) = {i:ti <t}. Then g has the expanéion

m , m

V@ .y L] 1
gy = 5 =6l _ay Ll oy e r ), (3.8)
L. j! i m
j=0

j!
iel(t) j=1

where Rm(t) is the remainder, analogous to the remainder in Taylor's expansion.
Finite difference formulas can be constructed based on (3.8) rather than on
Taylor's expansion. This is done by Zverkina in [zVv65] where she generalizes
the classical Adams' formulas to handle the scalar equation of the neutral type
given by

v (t) = f(y(),y(t - ),y (t -Tt),t), te [a,b], yit) =gt), t< a.

The methods discussed so far are not applicable to the equation

y'(t) = y(t/2), t>0. E (3.9)

These methods require that t, - T(tl) =t_ = 0; since T(t) = t/2 for equation (3.9),

1 0

this implies that tl = 0 and the solution cannot be started. The methods discussed
so far are in general not applicable to problems where 1t) = 0 for any t in the

interval where the solution is desired.
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Feldstein's method. Feldstein [FE64] considered the scalar equation

y'(t) = f(y(t), y(u(®)), t), t=za, (3.10)

where a < uft) < t. This excludes the difference-differential equation (3.1)
but does include problems such as (3.9) and y'(t) = y(tz), t e[0,1].
Feldstein developed Euler's method for (3.10) and, under suitable conditions,
developed an asymptotic expansion for the error, thereby allowing the use of
Richardson's extrapolation to refine the approximate solution.

Feldstein defines Euler's method for (3.10) as follows. Let h=(b-a)/p for
some integer p > 0, and let ti =a+ih,i=0,..., p. Define q(i) = int((u(ti)—
a)/h), r(i) = (u(ti) - a)/h - q(i), for i =0,..., p, where int denotes the
greatest integer function. The sequence [yi} , Where yi approximates y(ti) ,
is defined by

y(@), x,=y(a),

Yo~ 0

% = Yaqy T ) -
£, = fyyexty)
Vg™ ¥y TR

for i=0,...,p~l. The algorithm is obviously explicit for q(i) <i . 1f

q(i) = i, then u(ti) - a=ih which gives r(i) = 0 and X, =¥, 80O that the
algorithm is explicit for all 1 . This scheme can therefore handle cases such
as y'(t) = y(t/2), t =0 . Feldstein also explores various modifications of the

above scheme.
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ons e
4. Numerical methods for Volterra integro-differential equatt®

auatl
e
-—
al®
The Runge-Kutta=Pouzet formulas. Pouzet [PO60] considers the °
, S
t ) € <)’
. -1 .Y
v P = v, ...,y w0 f gly®,y' (1), - -
a
> & ’
for t= - pfOb
- .y val .
where y(a), y'(@),... ,y(p l)(a) are given. This type of initial na e
ne
is not included in (1.1) because y(p) appears on both sides of t =, to -
Pouzet developed Runge-Kutta formulas for (4.1). For the cas® P
from the point a to the point a + h he gives the formula
i-1
= f(y,,a - N n) -
z, = fly,,at+6h)+h /, Bi’j g(yj,zj,a +oh,a+ ej
j=0
i-1
v =yE R A e i=12,...a
=
wut
Here, Zg = f(yo,a), Yy = y{(a). The value yq is the coifnp
to vy(a + h). 1ati
r =

e
The coefficients (91,, Ai , Bi j satisfy, among others, h
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The differential equation solving routine can now compute a numerical solu-
tion based on the information provided by the above FORTRAN functions, Details
of the routine are given in Figures B.l1 and B.2. The arguments A and B are,
respectively, the left and right endpoints of the interval over which the approxi-
mate solution is to be computed. N is the number of subdivisions of this interval.
P and Q afe one-dimensional arrays of at least N + 1 elements, and INT denotes
the greatest integer function. At the end of the computation the function Y can

be used to evaluate the approximate solution at any point in the interval [A,B] .
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BEGIN

EULER(A, B, N)

(OPTIONAL)

OUTPUT
SOLUTION

PPt -9

Q, FO/T)

T—T+H

I—-1+1

Figure B.1. Euler's Method: Main Routine.
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BEGIN

Y(T)

FALSE > A

A

TRUE

] < INT ( (T-A)/H + 1.)

Y — G(T) Y - Bk (T A= (71 H) O

Figure B.2. Euler's Method: Function Subprogram.
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