COMPUTER SCIENCES DEPARTMENT
UNIVERSITY OF WISCONSIN
1210 West Dayton Street
Madison, Wisconsin 53706

ON THE COMPUTATION OF RIGOROUS
BOUNDS FOR THE SOLUTIONS OF LINEAR
INTEGRAL EQUATIONS WITH THE AID OF

INTERVAL ARITHMETIC

by

C. W. Cryer

Computer Sciences Technical Report #70

August 1969

Sponsgored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No.: DA-31-124-ARO-D~-462, and the Office of Naval
Research under Contract No.: N 00014-67-A-0128-0004.






ABSTRACT

A method is given for approximately solving linear Fredholm integral equations
of the second kind with non-negative kernels. The basis of the method is the
construction of piecewise-polynomial degenerate kernels which bound the given
kernel. The method is a generalization of a method suggested by Gerberich.

When implemented on a computer, interval arithmetic is used so that rigorous
hounds for the solution of the integral equations are obtained.

The method is applied to two problems: the equation considered by Gerberich;
~nd the equation of Love which arises in connection with the problem of determining

the capacity of @ circular plate condenser.
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§1 Introduction.

We consider the Fredholm integral equation of the second kind,

b
f(x) = s(x) + fk(XlY) fly) dy . (1.1)
a
or, equivalently,
f=s5+naf, (1.2)
Here,
s(x) € € (a,b) , (1.3)
k(x,y) € ¢ ([a,b] x [a,b]), (1.4)
and
s(x) > 0, xela,bl, (1.5)
k(x,y) >0, (x,y) € [a,b] x[a,b], (1.6)
b
e | =\[ [k(x,y)|dy < p < 1, x € [a,b]. (1.7)
In 1956 Gerberich [4] showed how piecewise-constant functions f(l)(x)
and f(z)(x) could be constructed such that
My > > £, x e [a,b], (1.8)

(1)

where f(x) is the solution of (1.1). To obtain the functions f and f(z) Gerberich

approximated the kernel k(x,y) of (1.1) by degenerate piecewise~constant kernels

(2)

1 . . ,
k( ) and k Because of round-off errors, it was of course impossible to com~

(1) (2)

pute the functions f and f exactly. Therefore, Gerberich implemented his

z(1)

method so as to obtain computable functions £

g s (D ~2)

and f 2) such that

) > f(x) > f(z)(x) > (%), x € [a,b]. (1.9)



There are of course many methods for approximately solving equations of
the type (1.1). The method of Gerberich is of interest for two reasons. Firstly,
the method of Gerberich can be generalized to provide bounds for the solutions of
certain nonlinear integral equations; this has been done by Rall [11] and Brown
[1]. Secondly, Gerberich is one of the few workers to take round-off errors into
account.

The major disadvantage of the method of Gerberich is its low accuracy,
which is a consequence of the fact that the kernel k(x,y) is approximated by

@)

1
piecewise-constant kernels k( ) and k In the present work we generalize the

method of Gerberich by approximating the kernel k(x,y) by degenerate piecewise-

(1) (2)

polynomial kernels k and k' ', thereby obtaining a more accurate method. The
resulting approximating functions f(” and f(z) satisfy (1.8) and are piecewise-
polynomial.

Our approach also differs from that of Gerberich in two other respects.
Firstly, we use direct methods, rather than iterative methods, to obtain f(l) and
f(z). Secondly, we use interval arithmetic (Moore [9]) to compute the functions

'}(1) and E(Z)

of (1.9).

The basic theory is extremely simple and is described in sections 2 to 4.
The remainder of the paper is devoted to a discussion of the application of the
method to two specific problems.

The first problem is the problem treated by Gerberich, and the results

illustrate the greater accuracy which results from using higher order approximations

to the kernel k(x,Vy).




The second problem is that of determining the capacity of a circular plate
condenser, which, as was shown by Love (see Sneddon [13, p. 230]) is equivalent
to solving a certain integral equation. We apply our method to obtain upper and

lower bounds for the capacity of the condenser.
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§2 Basic Theory.

Let = [zl e e an} be a partition of [a,b], that is

(i) 2z <z, ., 1<idn.

(In the numerical applications we always set z, = a + (b-a)(i-1)/n.)

We set
I1:(Zi'z+1)’ 1J:IiXIj !
n n s (2.1)
Ix: U Ii’ IX = U Ii..
i=1 B S I
We denote by (;’jﬂ(a,b) the space of functions which are defined and
uniformly continuous on IX. For example, if
0 , 0<x< % ,
Plx) =4 5 . (2.2)
-, 2 <x< 1,

and i = {0, 3, 1}, then ¢ ¢ (‘,W(O,l). It will be noted that if @ e(,'ﬂ(a,b) then
¢ is not defined at the points zi e m, but that, since ¢ is uniformly continuous,

the limits cp(zl.+0) (1 €i<n)and cp(zi—-()) (2 <i< ntl) éxist.



Similarly, we denote by ﬂ,ﬂ ([a,b] x [a,b]) the space of functions which

are uniformly continuous on IX

We shall obtain bounds for the solution f(x) of (1.1) by approximating

(p) (p)

k(x,y) and s(x) by piecewise-polynomial functions k (x,y)and s "'(x), p=1,2.

More precisely, let m be a positive integer and let

’ 1
i (x-2.) , 2, <x<L 2z,
(i, kix) :j ! ! i+l (2.3)

0, otherwise,

for 1 <i<n, 1 {kLm.

if k(p) € ('f},[_([a,b] % [a,b]) and s(p) € (fﬂ(a,b) for p = 1,2, then we shall say that

k(p) and s(p) are piecewise-polynomial of degree m-l if
n m
k(p)(x.y) = T y qi(}f)).‘@ o(i, kix) oli, £vy), (2.4)
i,j=l k, £=1
and

~1z

11
pw

n
S(p)(x) = y

Lo i

i k

Vi(i) o(i, kix), forp=1,2, (2.5)

(p) ()
where qikj,(" and v,

ik are constants. For example, if ¢ is defined by (2.2) then

¢ is piecewise-polynomial of degree 2.

It is convenient to introduce matrix notation. If qi(ij).(, and Vi(lz)') are as in
. o . (o) _ , (P) ,
(2.4) and (2.5) we introduce the m X m matrices g“ij = (qikjf)’ the m x 1

(p) (p)

matrices y*i = (v, = (gij ), and the mn x 1 matrices

1k)’ the mn X mn matrices g

V(D)

= (yj).




It is necessary to have an explicit representation for the mn X mn Gram
matrix g corresponding to the functions o(i, k;x) of (2.3). Let 91 = (gik 0) be

m > m matrices, where

b
g = f p(i, k;x) o (i, 5;x)dx = (2, -z )k‘+'{]’_‘1/(k+£-—l) (2.6)
ks g T o i+l Ti ° '
a
Then g is the block~diagonal matrix,
g = diag. (9-1""’911)' (2.7)

We can now state the basic theorem:
Theorem 2.1

Let k,%&, £, and s, satisfy (1.1) through (1.7)

Let s(p) and k‘(p) be defined by (2.4) and (2.5) and be such that
s(l)(x) > s(x) > S(Z)(X), X € IX, (2.8)
kD01 2 ki) > KB 0m), o a1 (2.9)
s(z)(x)> 0, xel , (2.10)
2 % |
(2) .

k' (x,y) 2 0, (x,y)e Ixy’ (2.11)

b
[k(l)(x,y)dyg p1<1, erX . (2.12)

Then, there exist functions f(p) (x) such that
b

Py = Py +[ k® e, P ()dy, x e L. (2.13)



or, cquivalently,

f<D), (p) h(p)f(p)c

=5 4+ (2.14)
We have
1 2
Mg > £ > €00, xe L (2..15)
Finally,
n m
f(p)(x) = \—1 T u‘p) oli, k;x) , (2.16)
1/,.‘.' {. ik
i=i k=1
where if _g(ip) is the m x 1 matrix (ui(g)) and u(p) is the mn x 1 matrix (_gi(p)), then
-1
_q(p) = (_h(p)) _\L(p), (2.17)
where ,
(p) _ (o
WP e g® g (2.18)
Proof: By virtue of(l.7) and (2.12), the Neumann series (Taylor [14, p. 1641])
- 2
I-=r) 1=I+-h + kot ..
(2.19)
-1 2
AL L SE A ORI )

hold. The inequalities (2.15) follow easily from (2.8), (2.9), and (2.19). Equa-
tions (2.16), (2.17), and (2.18), are simply a restatement of wgllknown results
for integral equations with degenerate kernels (Mikhlin [8, p. 20D

The numerical method which we have used consists of a straight-forward
implementation of Theorem 2.1. Two aspects of the implementation require further

consgideration:

(®) ®

1. Tt is necessary to develop methods for determining v and g

that (2.8) through (2.12) hold.




2. It is necessary to make allowance for the effects of round-off errors.

These questions are considered in the next two sections.

(p)

(p)

§3 Determination of v " and g .

(p) (p)

The matrices v and g must be determined so that (noting (2.4) and

(2.5)), equations (2.8) through (2.12) hold. We consider first the problem of

satisfying (2.8) and (2.9), and then the problem of satisfying (2.10) through (2.12).

(p) ()

The following is a general algorithm for determining g~ ' and v’ so that

(2.8) and (2.9) are satisfied:

Algorithm 3.1

< (m—-l)

Let se¢ (a,b)and k ¢ € (m‘l)([a,b] % [a,b]).

Hence, by Taylor's theorem,

m-1 (X__Zi)k—-l a1<-1S(zi) (X_Zi)m—l am—ls(gi)
5(x) :,7 (k=1) ! S ) N
k=1 x *
for x € I,, and some & €¢I,
1 1 1
and,
k-1 I-1  _k+4-2
S (x-2) " (v-2)) 3*t k(z;.2,)
Kby =) &y G-t NS
2<k+l<m o °Y
k-1 0-1 -1
LN Gz ez T 9TTRGE, )
i (DT (D) SIS

for (x,V) inj and some (ﬁi,nj) € Iij .



Let
k-1
_ d s(z.)
(1) . (2)_ _1 ; ]
vik Hvik —(k_l)! k-1 ’ 1< k<m-1, f
dx
-1
M. L gy Cha 10} ? (3.1)
im (m-1)! P m-1 ‘
. Xe€ Ii ox
@ 1 5m_ls « %
vim = m-1)! inf m_-—Lll , |
) eri X |
J
and
A
k+ b2 'p
SR R O 1 o k(z;.2)) |
ikj?l ikjf  (k=1)! (£-1)! E:\xk”l ay'g—l
for 2 < k+f < m, !
m-1
1y _ 1 sup 0 k(x,y) (3.2)

k-1, £-1"7

qQ.. ., =
g - ! Cand ! -
ik (k=11 (4-1) (x,vy) ¢ Iij ox oy

e Vame

g& - . inf 2™ M, v)
Bl (PO g) e L 5L 5yt
for k+/ = m+1,
1y 2y _
Apip = Tpp = 00 mFLS k+4 < 2m. 3

Then x(p) and g(p) satisfy (2.8) and (2.9).
It should be noted that if m = 1 then (3.1) and (3.2) reduce to the approxi-

mations used by Gerberich.




If k(x,y) and s(x) are defined in terms of elementary functions, then bounds
for the extrema occurring in (3.1) and (3.2) can be computed automatically with
the aid of interval arithmetic (see section 4 for details). Unfortunately, the
bounds obtained using interval arithmetic can be grossly pessimistic, and we
have therefore preferred to compute the extrema in (3.1) and (3.2) analytically
when possible.

There are two disadvantages, one major and one minor, in using Algorithm

The major disadvantage is that if k(x,y) is not smooth, and in particular
if k(x,v) is the Green's function for a boundary value problem, then m may only
take on certain values. For example, in Problem 1 (see section 5) we must take
m = 1 since k(x,y) is not continuously differentiable.

The minor disadvantage is that the approximations (3.1) and (3.2) are far
from being the best possible ones, as is obvious from the fact that qig e 0 for
m+1 < k+/ < 2m.,

In view of the above-mentioned disadvantages we have not relied entirely

(p) (p)

upon Algorithm 3.1 and have used alternative methods for obtaining " and ¥

when appropriate. It should, however, be emphasized that although we have not

(p) (p)

hesitated to use special methods for finding g and v ', these methods use only
the most elementary techniques in calculus.
Having determined g(p) and y_(p) so that (2.8) and (2.9) hold, it is easy

to check directly whether (2.10), (2.11), and (2.12) hold. In view of (l.5),
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(1.6), and (1.7), the inequalities (2.10), (2.11), and (2.12), will, in general,
hold for large n. We have used both analytical techniques and interval arithmetic

to check (2.10), (2.11), and (2.12).

§4 Use of interval arithmetic.

The main purpose in using interval arithmetic is to make allowance for the

(2)

fact that in computing f(l) and f round-off errors occur. However, we have
also used interval arithmetic to check conditions (2.10) through (2.12) and to

obtain bounds for the extrema in (3.1) and (3.2).

We recall (Moore [9]) that a rounded_interval number A is an ordered pair

of machine numbers, [gl, gz], where gl _<_§2. If A = [51' 52] we set

left (A) =&, right (A) = a_.. " (4.1)

1 2

~

The interval number [a a. ] may also be regarded as the set of real numbers x

1" 72
such that 51 <x< 52.
Arithmetic operations between interval numbers are defined in a natural
way. For example, if A and B are rounded interval numbers we say that
C = A+ Bif C is a rounded interval number such that xy € C ifx € A and y € B.
Given a real-valued function f(x), an interval - valued function F(X) may
be defined in a natural way: for any rounded interval X, F(X) is a rounded interval
such that if x ¢ X then f(x) ¢ F(X).
With the aid of the interval arithmetic package developed by Reiter [12] for

the CDC 3600 it is possible to do rounded interval arithmetic within the framework

of a FORTRAN program.
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2
As a simple example, let z = 1/3 so that z = 1/9. The program segment

1./3.

ZSMALL * ZSMALL

ZSMALL

I

ZSMALL

i

will result in a machine number ZSMALL which is approximately equal to 1/9. On
the other hand, suppose that ZINT, ONEINT, and THREEINT, have been declared
to be interval numbers. Then the program segment

ONEINT = (1-,1-)

THREEINT = (3.,3")

ZINT = ONEINT/THREEINT

ZINT = ZINT % ZINT
will result in a rounded interval number ZINT containing the real number 1/9.

After this brief introduction to interval arithmetic, we can proceed to
describe how interval arithmetic is used in the present context.

In the first place, all the "real data", that is a, b, zi, s(x), o(,k;x),
k(x,vy), etc., is replaced by "rounded interval data" A, B, Zi' S(X), o(i,k:X),
K(X,Y), etc. Of course we require that the "interval data" should "include" the
‘;real data" so that, for example a € A, and s(x) € S(X) if x ¢ X.

Next, using (2.6), an interval-valued array G is computed such that

(p (p)

g~ G. Similarly, if v are known analytically, interval-valued arrays

(p)

and g

p)’ and H'™ can be computed so that y_( Pl € _\[(p), g(p) € Q( p)’ and
(p)

M(p)' Q(
(p)eﬂ

h
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However, __V_( P and Q_( o can also be computed by using interval arithmetic
to bound the extrema occurring in (3.1) and (3.2). To illustrate the method,
consider the problem of computing the extrema of

wi(t) = t/(l+t2)2
for t ¢ [-2,+2]. Using interval arithmetic we find that
w(l-2,+2]) = [-2,+2)/0+[0,4)°
= [-2,+2}/[1,25],
= [-2,+2],
so that
-2 <wit)y<2, tel[-2, +2]. (4.2)
Since it is easily shown that
-3./3/16 < wit) < 3,/3/16, te[-2,+2],
the bounds in (4.2) are grossly pessimistic. We can improve upon (4.2) by sub-
dividing the interval [-2,+2]. For example we find that
w([-2,-1)=[-.5, -.04],
w([-1,0]) =[-1,0],
wio,1}) =[o.1],
wi([L,2]) =[-04,-5],
so that
-l wit) <1, te[-2,+2].

Before proceeding further it is necessary to check conditions (2.10) through

(2.12). This can be done analytically, but is easily done using interval arithmetic.

Indeed, noting (2.3), we see that (2.10) through (2.12) are satisfied if
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m
(2) . .
left V. o(i, k:[2,,2. Dt >0, for 1{i<n, (4.3)
kii ik 1774l =
m m
- Toa8) .
left y <I>(1,k,[Zi.Zi+l]) /. Qika @(J,Z.[Zj, Zj+1 Yy >o. (4.4)
k=1 £=1
for 1<i, i< n,
and
n m m
- | - (1) Cd
e J>l k1 Q(l'k'[zi'z“‘l])z_fl Qe @G = F) /) <h @)

for 1<1i<n.

(p)

Next, we wish to find U such that

-1
lﬂm:(ﬂm5‘fm. (4.6)

(p)

To determine U we could use a standard elimination method, suchas Gaussian
elimination, programmed in interval arithmetic, but it seems better to use an
a-posteori method based upon the following lemma:
Lemma 4.1

Let H = (Hrs) and C be N x N interval-valued matrices, and Y and V be

N » 1 interval-valued matrices.

Let || - || denote the maximum row sum norm so that, for example,

N
lEl= max ) jE L
I<r<Nn oy

wheme\Hrélrﬁmax {|left @%S)L lﬁgm:&%sﬂ} .



letR=1-HC, P=HY- V.

o~ ~ ~
1f there are machine numbers [|[C|, |IP]l, |IRl, and §,

such that
et —~

B> 12l el > el Irl < iRl <1,

9]

~51WUIWH

and p 2 —_

1 - |R]l

then 'I;fl exists and

H'v=Y+E

where E is the N x 1 interval matrix each of whose elements is the interval
number [- 5, + pl.
Proof:

Lemma 4.1 follows immediately from Theorem 8 in Isaacson and Keller
[6, p. 48].

In determining Q(p) using Lemma 4.1, approximate inverses Q_(p) and

(p) (p)

are needed. To obtain _(_Z_(p) and Y'©' we choose

(p)

approximate solutions Y

() c y(p) )

machine-number matrices H_(p) and v (®) such that R (®) H" and v

Then, using standard single-precision matrix subroutines we compute the approx1—

mate inverses C. (p) = (ﬂ (p)) and the approximate solutions 2 (®) (h (p)) ”(p),
and set g(p) =c (P} and _Y_(p) =y (p). Lemma 4.1 can now be used; of course

o~
the machine numbers Hﬂ(p) | etc. are computed using interval arithmetic.

(o)

It should be remarked that the above method of computing U™ is closely

related to the method of Hansen (Moore [9, p. 32]).
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The above method of computing _U(p) = (Uii)) has been found to be very

satisfactory. Typically, [right (Uﬁz)) - left (U:E))] was less than 10~9. It should

be borne in mind that the computations were performed on the CDC~-3600 which uses

twelve-figure floating point arithmetic.

Having determined _U(p) = (Ui(]z)) we set

nom
r(Pix) = 7 V Ui(E) Wi, kiX), X = 1. (4.7)
i=1 k=1

By construction,

Py e PPy, ifxex c 1;{. (4.8)
so that we may set

) = rignt (7N p0),

¥ = tert (79 (%)), forx e X < . (4.9)

Finally, we set

m
Ffil -\ gP) o(1,k:Z,), 1 <i<n,

/[
k=1
(4.10)

Ffp) _

(p) C .
im0 U (i l,k,Zi), 2 <i< ntl,

(i-1)k
1 J

{
Ti~"1s

Remembering that f ¢ € (a,b) we have that

(’
. M ...
right (Fl_l_o),.lf i=1,
, 1 s
f(zi) < < right (Fflll_o), if i = n+l, (4.11)

min (right (P(l) , right (Pi(%-)o

46 ) }, otherwise,
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4 (1) ek L
left (Fl+o)’ ifi=1,
f(z.) > left (F(l) ) ifi = n+l (4.12)
in= n+l-o’’ ! .
min { left (F,(l) ), left (Fgl) )}, otherwise.
ito i~o

(-

§5 Problem 1.

As our first problem we consider the equation
1

f(x) = s(x) +f k(x,y) £(v) dy, (5.1)
0

x(l-y), 0 {x Ly <L

k(x,y) (5.2)

y(l-x), 0 <y<x< 1,

XZ. (5.3)

s(x)
This equation was considered by Rall [10] and Gerberich [4].
It can be shown (see Appendix A) that the solution of (5.1) is given by,

f(x) = xz + x(l-x3)/12 +
o . k-1 s
' 2 < sin(kmx)(-1) ~ 4 sin([2k-1]mx)

12‘/;1 (kﬂ”)3 (kzﬂz— 1) ([2k—-l]7r)5 ( [Zk—l}ﬂ]z—l)

(5.4)

For m = 1 Algorithm 3.1 was used (the extrema in (3.1) and (3.2) being

derived analytically). For m = 2 Algorithm 3.1 could not be used since k(x,vy) is

(p) (p)

not continuously differentiable. Therefore g P) and v ' were derived analytically
by taking advantage of the fact that s(x) is convex and that k(x,y) is semi-linear

(Cryer [3]). The analysis is given in Appendix C.
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Numerical results are given in Table 5.1. It is of interest to note that,
summing the first 100 terms of (5.4) using interval arithmetic and estimating the

truncation error, it was found that f(%) e [2.907591, 2.907592].

n Lower Bounds Upper Bounds

m =1 m = 2 m= 2 m =1
2 .2499 .2784 .3076 .4584
4 .2591 L2876 .2954 .3549
8 L2710 .2899 .2921 .3188
16 L2797 .2905 2912 .3039
32 .2849 .2907 .2909 L2972

Table 5.1.
Bounds for f(3) for Problem 1.

Finally, it should be remarked that the program was used to compute
hounds for the casem = 1, n = 10, since results for this case had been given by
Gerberich ([4, Figure 10]). Our bounds are consistently worse than those of
Gerberich. For example, Gerberich finds that

fx) .2 for .3<x< .4,
and

flx) < .3 for .4<x<.5,
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while we find that
f(x) < .2136 for .3<x< .4,
and
f(x) < .3126 for .4<x<.5.
We find this puzzling since we believe that our bounds should always be
slightly sharper than those of Gerberich because of our use of direct methods,

(p)

as opposed to iterative methods, for computing 77 (x). Of course, round-off
errors could make our bounds worse but this is not the case in the present in-
stance since the interval arithmetic computations show that

£y e [.2135, .2136] for .3<x< .4,

and

f(l)(x) e [.3125, .3126] for .4<x<.5.

§6 Problem 2.

As our second problem we consider the equation

+1 |
flx) =1+ — / S V2 B 6.1)
M 2
_p (xmy)o+ow

Equation (6.1), which was derived by Love (see Sneddon [13, p. 230])
occurs in connection with the determination of the capacity of a circular plate

condenser. Of particular interest is the quantity

+1

yik) = 4 f fx) dx, (6.2)
-1

which is proportional to the capacity of the condenser.
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(1) (2)

2
It f and f satisfy (1.8) then,

b b b
f 1) ) dxzf £(x) dxzf 3 (%) ax. (6. 3)
a a a

(1) (2)

and F

Hence, having computed F (see 4.7) we may compute the following

bounds for -y(x):

> 2 (k)

(6.4)

Since s(x)=1 for equation (6.1},

1,if k=1,
V(p) -

-k -
e 0, otherwise.

(o)

The arrays ¢ were computed in three ways:

(@) Using Algorithm 3.1 with m = 1, the extrema in (3.1) and (3.2) being
derived analytically. Details are given in Appendix D.

(b) Using a special method for m = 2 which took advantage of the fact that
k(x,y) is a function of (x-y). The analysis is given in Appendix D.

(¢) Using Algorithm 3.1 with m = 1, 2, and 3, the extrema in (3.1) and (3.2)
being bounded automatically with the use of interval arithmetic.

Numerical results are presented in Tables 6.1 to 6.3. In these tables,

an asterisk indicates that inequalities (4.3) to (4.5) were not satisfied.
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n Lower Bounds Upper Bounds
m =1 m = 2 m=2 m=1
1 1.145 1.145 2.752 2.752
2 1.286 % % 2.752
4 1.453 1.690 1.887 2.308
8 1.605 1.786 1.838 2.064
16 1.706 1.812 1.825 1.942
32 1.762 1.818 1.822 1.881
Table 6.1.
Bounds for 7y (1) (using methods (a) and b)).
n Lower Bounds U‘pper Bounds
m =1 m = 2 m=2 m=1
1 * % * %
2 S 3 & %
4 * % % 3
8 * 2.587 3.714 %
16 2.136 2.909 3.271 5.679
32 2.515 3.056 3.140 4,031
Table 6.2.

Bounds for ¥ (.4) (using methods (a) and (b)).
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n Lower Bounds Upper Bounds
m=1 m =2 m =3 m=3 m=2 m=1
1 1.145 % % % % 2.752
2 1.286 % % % % 2,752
4 1.453 ES * * %* 2.308
8 1.60511.614 1.728 1.935 2.106 2,064
16 1.706 |1.763 | 1.808 1.833 | 1.885 | 1.942
32 1.762 |1.806 |notrun not run 1.837 1.881

Bounds for ¥ (1) (using method (c)).

Comparing Tables 6.1 and 6.3 we see, as is to be expected, that it is

(p)

hetter to use approximations k

(p)

specially tailpred to the problem rather than
approximations k obtained automatically from (3.2). Nevertheless, reasonable
bounds are obtained using the automated Algorithm 3.1 provided that sufficiently
large values of n are used.

An approximate expression for 7y (k) was derived by Maxwell in 1866, since
when 7 () has been estimated in many ways. Sneddon [13, p. 230] summarizes
this work and quotes, among others, the following estimates:

Y A1) : 1.8208 (truncated series),

1.8138 (variational method).
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v(.4) : 3.1029 (truncated series),
3.0023 (variational method),
3.0846 (analytic method due to Maxwell),
3.1044 (analytic method due to Kirchhoff).
Remembering that the bounds in Tables 6.1 to 6.3 are rigorous, we see
that for Love's equation the method described in the present paper is fully

competitive with analytical techniques.

§7 Concluding remarks

The method which we have presented is substantially more accurate than
the method of Gerberich, as the results of sections 5 and 6 show.

Interval arithmetic is too costly in terms of machine time for general
computation. However, section 6 shows that when rigorous bounds are required,
methods using interval arithmetic can compare favorably with classical analytical

methods.
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APPENDIX A

Analytic solution of Problem 1.

1
We consider the equation f(x) = XZ + A f k(x,y) i{y) dy, (A. 1)
0
x(l-y), 0<x<Ly<Ll,
k(x,y) = (A. 2)
Y(l—x)l O_<_Y§_X.<.l
Now, it is easily shown that
1
f k(x,y) sin(mjy) dy = 212 sin(mjx), =1, 2, ..., (A. 3)
0 ]
and (Byerly [2, p. 41]),
XZ -5 2 sm(kﬂ;{%(—l) _ 4 z sm[(2k+l)7;x] , (. 4)
[(2k+1)]
k=1 k=0
for 0 <{x<1.

We can solve (A. 1) by expressing f(x) as a Fourier sine series and using
(A. 1), (A. 3), and (A. 4), to determine the Fourier coefficients of f(x). However,
the resulting Fourier series for f(x) is slowly convergent and unsuitable for
numerical computation. The reason for this difficulty is that the Fourier series
(A. 4) is the Fourier series for the saw-tooth function s(x) shown in Figure A. 1,

XZ, 0<x<1,

2
-x , =1 <{x<0.

s(x) =
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s(x)

v

et o o o e b e o o e

Figure A, 1.
The function s(x).

Since s(x) is discontinuous, the Fourier series (A. 4), and, consequently, the
Fourier series for f(x), are slowly convergent.

To obtain & more rapidly convergent Fourier series for f(x) we proceed as
follows. Setting

2
fix) = x + f(x), (A. 5)

and substituting in (A. 1) it is found that
1
fl(x) = A SL(X) + A f ki{x,vy) fl(Y) dy. (A. 6)
0

where

1 ‘ )
sl(X) =f k(x,v) yz dy,

0 $ A. 7)

=x(l~x3)/ 12, 0<x<K1I.
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Setting
f(x) = rs (x) + £(x)
and substituting in (A. 6) it is found that

1

£, = 3 s, () + xf k(x,v) £, () dy.

0

where

|
SZ(X) =f k(x,v) sl(y) dy ,
’ )

2 5
_ x(4-5x% tx )
= 360 , 0 <xKLKl1.

/
From (A. 3), (A. 4), (A. 7), and (A. 10), it follows that

OO. . _ kv_l OO_‘ . .
5,(x) = 2 \ Sm(k“X)(S 1) 4 sin[ (2k+1)mx]
k=1 (k) =

[k+l)n] *

(A.

(A.

(A.

9)

10)

11)

We observe that the Fourier series (A.ll) is far more rapidly convergent than the

Fourier series (A. 4).

Let

8

sz(x) = ck sin (mkx),

[
k=1

fz(x) = §1 ey sin (mwkx).

(A.

12)
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Noting (A. 9) and (A. 3), it follows that

- 2. 2
2 a%
e, = * “%TE"" o, - (A. 13)
(" k=A)
Combining (A. 5), (A. 8), (A. 11), (A. 12), and (A. 13), we obtain the

desired result:

fx) = x° + A x(l-x")/12 +

oo‘ ‘ k-1 o0 .
. 2>\2 E sm(];ﬂxg(-—zl) 4 7 51n([52k—1]7rx) > A 14)
k=] (km) (kT =A) K=l [@k-1n]” ([@k-1)m] -2}

The series (A. 14) is quite suitable for numerical compution. For example,

if A =1 and flOO(x) denotes the value obtained by summing only the first 100

terms in (A. 14), then

[£(x) - £, |
1 4
< 2 + , ’
- (kﬂ)g(kzﬂz—l) [(Zk—l)ﬂ“]5 [ (Zk--l)zvrz-l]
k=101
11/1
<2 ) VS, ]
Flor | kM7 [@k-2)r]
noor dt Lop dt
¢ [u bt o |
> 10 5 32 7
. t=100 M f=99 M
=2 11@30 6 1 7 : 8 '
6.1 . (100) ‘ 32.m . 8. (99
< 1078,
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APPENDIX B

Some remarks on the implementation of interval arithmetic.

The interval arithmetic computations in this revort were performed using the
interval arithmetic package INTERVAL developed for the CDC 3600 by Reiter [12].
In this appendix we make some general remarks arising from our experiences
using INTERVAL. These remarks in no way constitute a criticism of INTERVAL
which was developed as an experiment and which we have found to be very use-
ful.

The most important features of INTERVAL are:

1. Programs using interval arithmetic are written in FORTRAN and compiled

by the usual FORTRAN compiler.

2. INTERVAL uses the TYPE-other feature of the CDC 3600 FORTRAN com-

piler. The user designates interval-valued valued variables to be of
TYPE INT5(2); the co’mpiler then assigns two storage locations to each
such variable.

3. The compiler arranges for arithmetic operations of the form A r B, where

A and B are interval-valued variables, and r is an arithmetic operator,
to be evaluated by the appropriate subroutine in INTERVAL.

4. Mixed-mode arithmetic is permitted: INTERVAL contains subroutines for

converting real and integer variables into interval-valued variables.

5. INTERVAL has special subroutines, such as LOGINT, for evaluating

elementary transcendental functions.
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, 2
For example, the following FUNCTION subprogram computes x + /3 in

interval arithmetic:

101

102

103

104

FUNCTION F(X)

TYPE INT5(2) X, 21, 23, F, F1, F2, F3, F4

Z1 =1.

Z3 = 3.

Fl = (1./3.)+X%*X

F2 = Z1/23 + X*X

F3 =21/7Z3 + X %% 2
F4 = 21/23 + X %% 2.0
F =F4

RETURN

END

The above program illustrates certain idiosyncracies of INTERVAL:

(@) Since mixed-mode arithmetic statements are legal, statement 101 is
correct. However, the quantity 1./3. is first evaluated in REAL
arithmetic and then converted to an interval number.

(B) X * X and X *% 2 are both computed by direct multiplication so that
F2 = F3., However, if X = {_x:§l <{x g_?éz} then X * X = {xy:;:l <%,

y {x,}. For example, if X = [-1,+1] then X * X = X *%2 = [-1,+1].
On the other hand, X *% 2.0 is evaluated by special subroutines in
INTERVAL. In effect, X %% 2.0 = (x2:§

1
if X = [-1,+1] then X ** 2,0 = [0, 1].

< x< §2} , so that for example,
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Thus the program computes three different results, Fl, F2 = F3, and

F4, of which F4 is probably the desired result.

A further idiosyncracy of INTERVAL is:

(y) Statements containing "relational expressions” involving interval-valued

variables are accepted by the compiler, but are not correctly interpreted.
For example, if A = [51, 52] and B = [Bl, EZ], then, according to the
definition of Moore [9, p. 7], A < B iff 52 < Bl' However, the compiler
interprets the statement

IF (A. LE. B) GO TO 100

to mean

IF (Sl.LE.BI) GO TO 100,

The purpose of using interval arithmetic is to ensure that the final results

are rigorously correct. This requires that the following conditions be satisfied:

4,

The interval arithmetic package should be correctly coded.

The computer should be V\;'orking correctly and in accordance with the
descriptiéns in the manufacturer's manuals.

The compiler should be error-free.

The program should be correctly coded.

Unfortunately it is impossible to guarantee even one of the above conditions.

For

1.

While developing the program used in the present report, two minor

mistakes in the input/output subroutines of INTERVAL were found.
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2. Of computers on which the author has worked, at least two have had
errors in their circuits which remained undetected for over a year.

3. Tt is quite common for errors to be found in compilers which have been
in use for several years. In addition, in order to optimize the object
code, compilers sometimes introduce operations which are not implied
by the FORTRAN c/:ode; a particular case of this was encountered while
developing the program used in this report.

4. Tt is impossible to ensure that a program is fully debugged.

Incorrect proofs are of course not unknown in mathematics; for example,
Lefschetz [7, p. 7] refers to the large number of incorrect proofs of the Jordan
curve theorem. However, it is possible for mathematicians to arrive at a con-
sensus of opinion on the correctness or otherwise of a mathematical proof. It
does not seem that it will be possible to ensure similar certainty for results
obfained using interval arithmetic.

Nevertheless, it seems to the author that the goal of certainty is worth
striving for, even if it is not attainable. It is in acgordance with this view that
the following suggestions are made:

1. When possible, the techniques of "program-proving" should be used.

(See Good and London [5]). |

2. Since most mistakes in compilers arise because of attempts to optimize

the resulting code, it is desirable for the user to have the option of using

a simple compiler which has no optimization features.
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3. Expressions such as X *% 2 which are not well-defined (see(f) and
(v)) should not be permitted.
4. Extensive debugging facilities should be provided. For example, the

user's attention should be drawn to mixed-mode expressions (see (2)).
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APPENDIX C
(p) (p)

v and g_p for Problem 1.

m=1

We use Algorithm 3.1.
(1)

Since s(x) is convex, v,

il vip) = s

)I il (Z.).

= 8(2
( 1

i+l
The kernel k(x,y) has been considered previously (Cryer [3, Problem 6]);
(p) _ (D)

using these results, and noting that because of symmeiry qiljl = qjlil’ we find
that
N _ e
q“j1 = k(zi, sz). ifj <i,
L1y o el
q(l) ) k(z, 3) 1/4, if aE[Zi: zi+l]’
ilil =~ _ .
A max {k(zi, Zi)’ k(zi+l’ zi+1)}, otherwise.
(2) _ .
G = KBz IS
m = 2

Since s(x) is convex, for x € [Zi' Zi+1] s(x) lies below the chord connecting

zi and z. , and above the tangent at Zi‘ Hence, we set

i+l ’
"S) = slz), "Elz) = sz, )-s 2 V17,2,
To obtain (p) we first note that, because of symmetry, we need only

q..
1]
consider the case j £ 1.

(p)

1f j < i then we can choose g-ij

(p)

so that k (x,vy) = k(x,y) for (x,y) € Iij'

That is, we set
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o _ )

a1 " 9q KGRz .
n @2y _

Uiz = Yyz T Kyl 2y
1y - (2) _

g1 = Yiz41 T Kxl®ieBy)
(1) (2)

U2j2 = 2527 Kyyl®i z5)

Finally, to obtain -CLS) we note that k(x,vy) is semi-concave (Cryer [3D.

Hence, if g(l) is chosen so that k(l)(x,y) represents the tangent plane to k(x,y)

ii
Wi, v) > k(x,y) for

. . - >
at the midpoint (Zi+% , Z..01), 2,1 (zi+zi+l)/ , then k

i+3 it+3

2 2
(x,y) ¢ Iii' Also, if 91'(1) is chosen so that k( )(x,y) = k(x,y) for (x,y) =
(2)
(Zi' z.), (z,, zi+l)' (zi+l' z.), and (Zi+l' zi+l)’ then k' ' (x,y) < k(x,y) for
(x,y) ¢ Iii-
The detailed formulas for QS) are:
d sz a) -z - 2) Wiz, L)
ilil itz i+3 i itz !
(1) (1)
= = ! 2
Az = Gyaq = W (24102
1y _
9242 = 0
h = (z, + )/2 and (t)—t—t2
wnere Zi+% = Zi ZZH‘]. naw = .
(2) _
Gy T REe )
2y _ () _ _ _
Uiz = Gipq1 = K(Zpy0 7))~ Kz z) 1z, - 2l
@) Ky Ey) YRE ) - K@z ) ke 2)

q_ A s
'i2i2 2
(z;4) = %)
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APPENDIX D

q(p) for Problem 2.

It is clearly only necessary to obtain approximations for the function

p(x-y), where

b(t) = 5 - (D. 1)
K+t

The function p(t) has the bell-shaped form shown in Figure D.l.

A pilt)

Figure D.l

The function p(t).

Because of symmetry we need only consider the case (x,y) € Iij ,iLi, or

(D. 2)
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We introduce the points Pp, = (,tg, p(tg)), and Pr = (tr, p(tr)).

We shall obtain bounds in the form

m m

Sﬂ (1) k-1 y (2) k-1 ;

L aijkt >pelt) > /. aijkt . tgg_tg_tr. (D. 3)
k=1 k=1

Since t = x-y, (D. 3) is easily brought into the form (2.4).
m=1

From Figure D. 1, and (D. 2), we see that

p(0), ifi=]

SO
1 p(tz) , otherwise.
2) _

aijl - p(tr)'

m=2,1i=
Then tg = tr. Hence, we set

(1) _ (2) _

@i T p(0), e = p(t),
N _ _(@2) _

%2 = %2 T 0

This approximation corresponds to bounding p(t) between the tangent at t = 0 and

~the chord between PE and Pr'

m=2,j<i
This case is rather complicated.
First, we note that tr > ti, > 0 . Next, we note that for positive t p(t) has

only one turning point, namely at t = «/,/3. Hence, if k//3 is not an interior
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point of [tj/' tr] then p(t) is either convex or concave on [tp, tr] and is bounded

by the chord joining Pﬂ, and Pr'

[ p(tr)_p(tz)](t_tﬂ)

u=p(t,)+ - , (D. 4)
4 [tr tg]
and the tangent through the midpoint,
u = p(ta) +p (ta) (t—ta) '
(D. 5)

t = (t,+t)/2 .
(1) (1) : (2) (2)
'
1f k4/3 < ty then @) and @ are determined by (D. 4) and @i and @
are determined by (D. 5); if k4/3 > t_, the roles of (D. 4) and (D. 5) are

reversed.

Finally, we must consider the case when KA/? e (t L tr) . 1If this is so,

then we can construct a line passing through Pz which lies below p(t) and is

tangent to p(t) at a point tﬂc’ tﬁc > tz (see Figure D. 2). The equation for this

line is easily found to be

[p(t, ) - plt ] (t-t)) . )
u=plt,) + [t -t,]
be ! ) (D. 6)
t, = -t +\A2 + K
ge” TV
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A\
tﬂ trc K/\/g tﬂc tr h
| — % | >t
Figure D. 2

The case when K/\/g is in (tz, tr).

Similarly, there is a line passing through Pr which lies above p(t) and is

tangent to p(t) at a point t = trc’ trc < tr (see Figure D. 2). The equation

for this line is easily found to be,
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[pte ) - pe)] (1) . )

_ rc
rC r
_ (D. 7)
/2 2
t =-t +/t +K
rc r r
S
Then, a(l) and ar_(}) are determined by (D. 7), and a,(‘.z) and oz@) are
ijl ij2 ijl ij2

determined by (D. 6).
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