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1. Introduction and terminology

Let £ be a bounded domain (open connected set) in the xy-plane with boundary
dR . Let u be the solution of a boundary value problem over &, for example the
Dirichlet problem

u 4+ udu =0, (x,¥9),e R, 1.1
s T Ugy = 00 (K09) (1.1)

u=1f, (x,y) € OR . (1.2)
When the method of finite differences is used to compute an approximation to
u, U say, the steps which are carried out can be summarized in the following
algorithm (Forsythe and Wasow [12, p. 175], Greenspan [13, p. 14]; see also

Appendix A, section A.1).

Algorithm 1
Step 1
| Choose a set of netpoints, ﬂ .

Step 2

Set up a system of algebraic equations connecting the values qf U at the
points of /L
Step 3

Solve the system of algebraic equations set up in Step 2, thergby obtaining U.

There are several possible choices for the net /b in Algorithm 1, some of which
are discussed in Appendix A, section A.3. However, in the body of the present
paper we will only consider rectangular nets, which are defined as follows. Let

G be a rectangular grid, that is a set of orthogonal gridlines and corresponding




2
gridpoints. Let A = B (G,R ) be the set consisting of the gridpoints and the points

of intersection of gridlines will of . Then, /} is the rectangular net corresponding

to G and R .

Techniques for implementing Algorithm 1 as a program on a digital computer are
discussed by Forsythe and Wasow [12, p. 357], and some additional comments will
be found in Appendix A. 1t is desirable for the program implementing Algorithm 1 to be
as general as possible and to require the minimum of human assistance. Ideally, the
only input data needed should be information (possibly in the form of subroutines)
about the domain £, the differential equation, and the boundary conditions, to-
gether with information about the accuracy desired and the form in which the answers
are required. However, the "ideal program" has yet to be written, primarily be-
cause it is hard to write a program which is capable of handling the topological com-
plications which can arise when f is a general domain. In all programs of which
the author is aware, assumptions are made about ?Z(G, ®)Y.

It is the purpose of the present paper to analyse three assumptions about
72((3,@) which are frequently made. We also provide a variety of information con-
cerning the implementation of Algorithm 1 which is not available in the literature.

The most common assumption about f(G,R) that is made is that /’L(G,R) is
gridlike, that is that all the points of ) are gridpoints. If /) is gridlike, the
programming is substantially simplified because v can then be represented as a
two-dimensional array in the computer. However, in section 2 we show that
h (G, R) is gridlike only for very restricted classes of domains ® and grids G.

Another assumption about /i which is sometimes made is that the "interior
netpoints" are "gridconnected" (these concepts are defined below); in section 3

we obtain conditions upon ® and G which ensure that this is the case.
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Finally, in section 4, we analyse the assumption (which is implicit in many
implementations of Algorithm 1) that the number of "irregular" netpoints is much
smaller than the number of "regular" netpoints.
In the remainder of the present section, we introduce terminology which will be
required later.
For a given rectangular grid G we introduce coordinates x'y' such that the

x'y' - coordinate axes are parallel to the gridlines; we call x'y' the grid coordinates.

With respect to the grid coordinates, the gridlines of G are of the form

x'=x', 1<1i<1,

(1.3)
y'=yj . 1<,
while the set of gridpoints is given by
g-—- (6, v 11T, 1<I<T) (1.4)
. Y 1 Y e t f : d ~. W .
Here, x, < XH_1 and yj < yj+1 orall 1 and j e set
= v x' . - x! HURE A [ 1.5
Gl = max {mc:x lxi+l Xi" max lyj«&-l f B (1.5)
1f ®& lies in the rectangle,
(') % < X< ox, yléyéyj), (1.6)
we say that G covers f . If the gridlines are equally spaced so that
xi=x0+1h, yj=yo+1k, (1.7)

where h and k are positive constants, we call G a regular rectangular grid,

and if h = k so that

LE—— 4 foe ! ] 1.8
X xo+1h, 4 yo—l—)h, (1.8)

we call G a square grid with gridlength h.



If £ is a gridline, P is a point of intersection of £/ with OR if Pe £NOR

and if in every neighbourhood of P there is a point Q € f which does not lie on
OfR . Let B=B(G, f) be the set of points of intersection of gridlines with oR.

We introduce the following sets (see Figure 1.1):

h =B U g (netpoints), N
h b= B (boundary netpoints),
h s = B - g (special boundary netpoints),
h =8, § (regular boundary netpoints),

br

(1.9)

n o = f - R (exterior netpoints),
1) LT f n R (interior netpoints),
n i (regular interior netpoints),
V] 8 T h’i - hir (adjacent interior netpoints). J

Here, an interior netpoint is regular if all its four neighbours are interior
netpoints; otherwise it is adjacent. Note that /A is gridlike iff /LS is

empty.




[] - special boundary netpoint '(725)

B8 — reqular boundary netpoint (ﬂbr)

() - adjacent interior netpoint (7Za)

regular interior netpoint (}Zir)

exterior netpoint (7Ze)

~ - - - gridline

. boundary of OR

Figure 1.1

Classification of netpoints.




An arc is a continuous map of the interval [0, 1] into the xy - plane. (Ahlfors
1, p. 68]). A gridarc is an arc which consists of the union of segments of gridlines.

We say that /'li is gridconnected if every two points of ﬂ'i can be joined by a

gridarc which does not intersect d® . For example, in Figure 1.1 /?.i is not
gridconnected.

1f S is a finite set, |S| denotes the number of elements of S. If K isa
Lebesgue-measurable set in the xy-plane, then K[¥] is the Lebesgue measure of
K. If AB is a lir;e segment then |AB| is the length of the segment. Finally, if 8 is

Y

a rectifiable arc (Ahlfors [1, p. 105]), then 2{G] is the length of §.

2. When is /] gridlike?

As was pointed out in section 1, when Algorithm 1 is implemented it is often
assumed that / is gridlike since then /L can be represented in the computer as a
two-dimensional array, which substantially simplifies the programming. In this
section we show that it is only for very restricted classes of domains ® and grids
G that A(G,R) is gridlike.

First we show that if the orientation of the gridlines is fixed then NG, R)

may be gridlike only for trivial G, even if f is convex:

Theorem 2.1

Let 6%1 be the convex domain shown in Figure 2.1, where AB, CD, and DA, are

straight lines, while BC is the curve

v = sin [m(2-x)/2], 1< x< 2. (2.1)




Let G be a grid with gridlines parallel to the xy-axes such that ]’I,(G, f l) is

gridlike.

Then the gridlines of G which intersect ® i are a subset of the lines

x=0x=1;x=2,
(2.2)

y==1,y=0 y=1.

(2,0)

A(1,-1)

Figure 2.1

The domain & 1



Proof: If the theorem is not true, there is a grid G and a point P = (£,7)

such that N (G, (Rl) is gridlike, P is a point of intersection of a gridline with 5@1,

and P # A, B, C, D. Since every intersection of a gridline with 6621, is a gridpoint,

it is then easy to see that there is a gridpoint P, = (tl’ —tl) € DA where 0< tl <1,

1
and t, is equalto ||, or |2 - £|. Consulting Figure 2.1 we see that the points
PZ’ PS’ P4, and PS’ must also be gridpoints.
But, P5 = (t5, - t5) where t5 = sin (ﬂtl/Z). Since s < sin {(1s/2) <1 for 0 < s < 1,

it follows that tl < t5 < 1 so that the process may berepeated. Consequentlyfmust contain

the infinite sequence of distinct points P., P , which is

1 51 Pgl * s 0y P4k+1’ LI

impossible. The proof of the theorem is thus complete,

Of course, by using gridlines which make an angle of 45° with the xy - axes,
we can clearly construct an infinite number of grids G for which N (G, R3) is
grid-like. However, Theorem 2.1 does show that even for very simple domains R
the gridlines cannot be oriented arbitrarily if J, is required to be gridlike. The
author finds it difficult to conceive of a program which, given the specifications of
®, (perhaps by means of a set of subroutines), could determine the correct orienta-
tion. Therefore, one consequence of Theorem 2.1 is that, with any implementation
of Algorithm 1 for which it is assumed that W is gridlike, the orientation of the
gridlines must be part of the input data provided by the user.

Next we show that for more complicated domains f there may be no non-trivial

grids for which /] is grid-like:




Theorem 2.2

Tet R 5 be the convex domain shown in Figure 2.2. Here, each segment of
the boundary is an arc of the circle with radius 5 and center the "opposite" corner.
For example, AB is an arc of the circle with radius 5 and center D.

Then, there is a positive constant 6 such that, irrespective of the orientation of

the gridlines, if |G|l £ 6 and G covers R, then (G, & ,) is not gridlike.

A (2,,/ZT)

(0,0)

Figure 2.2

The domain 6%2
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Proof: We observe that ® 2 is a Reuleaux polygon (Yaglom and Boltyanskii
[35, p. 243], Eggleston [8, p. 128]).
It is easily seen that the coordinates of the vertices of 8622 are:
A= (2,/21),
B=(3+4,/83/68, 2-,/83/68),
C=(4,0), D=(0,0), E=(1,4).

From elementary trigonometry it then follows that

@ =arc cos (.68) ~ 47.1563°, A

B = arc cos (.66) = 48.70010,

Y =arc cos (.24 + .16,/21 ) ~ 13.2917°, \(2.3)
& =arc cos (.04 + .32,/83/68 + .08,/21 -.04 ——1-—%—3-3—) ~ 56.1080°,

e =arccos (.26 + .64,/83/68 ) ~ 14.7437°. o J

Inspection of Figure 2.2 shows that
a+B+v +64+e=180°, (2.4)
Let T be a positive angle such that 0< T < a/2. Set ¢ = ¢/2 - T, and let

S and T be as in Figure 2,3, Let dAD = dAD(T) be the largest number such that

N
(@) 2d, < |SC| cos o,

(b) 2d,, < |AB| sin (BAS), > 2.5

(c) 2 dAD < (yA - yE) sin (BAS),

(d) 2d,5 < [DT| cos 9.
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Figure 2.3

Intersections of gridlines with 86%2.
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Now, let G be a grid one of whose gridlines is parallel to AQ (see Figure
2. 3) where
0< 0=QA8< 9=a/2~- 1. | (2.6)
Furthermore, let 7/(G, f ,) be gridlike and

IGll < d,p

(M. (2.7
Consulting Figure 2.3, it follows from (2.5a) and (2.7) that the gridlines of G
which are parallel to AQ intersect DC at points which ére not more than [SCl/2 apart.
Hence, there is a gridline El which is parallel to AQ, not further than dAD from AQ,
and intersects the arc QC at a point Pl' Similarly, using (2.5b) we see that Zl

intersects the arc AB at a point PZ' Clearly,

Ya = sz < dAD/sm (BAS).

Remembering that DP, is the normal to the arc AB at Pz' and

2
notinc:; (2.5¢), we see that the gridline ﬂz intersects the arc AE at a point
P3. Using (2.5d) we see that the gridline 1&3 intersects the arc DQ at a point
P4. Finally, remembering that AQ is the normal to the arc DC at Q, we see
that the gridline E4 intersects the arc QC at a point P5. It is clear from the
geometry that P5 is an interior point of the arc QPl’ so that the process may be re- -
peated.‘ Hence there is an infinite number of gridpoints, Pl' PS’ Pg, . oo, On the
arc QC, which is impossible.

We have therefore proved that if (G, R ,) is gridlike and Gl < dpp( 7).
then none of the gridlines of G can be parallel to a line in the open cone C 1= é”l('r)

(see Figure 2.4). Here, the bisector of DAC is one of the arms of (.,o , and the vertex

angle of (401 is equal to «/2 - T.




i - D
/’;:: ~'~
=/ &

13

G, = G
/
o
- -
A
Pigure 2.4

The "excluding" cones.

S
&

(.‘}



14
Repeating the above arguments, we see that if
O<T< [min {ar p’: Y. 6/ 6}]/21
then there is a positive constant d(T) such that if
Gl < d(7), (2.8)
and Q](G, 6?,2) is gridlike, then none of the gridlines of G can be parallel to a line
in one of the ten cones of Figure 2.4.
Using (2.3) we find that to four decimal places the five sides and five
hisoctors of Tigure 2.4 make the following angles with AD:
AD: 07, 2
. o) o)
bis(DDAC): 23.5781 ", AC : 47.15637,
) . e} o)
bis(ACE): 71.5064°,  CE: 95.8564 , g
(2.9)

bis(CEB) : 102.5023°, EB :109.1482°,

bis(EBD) : 137.2022°, BD : 165.2562°,

bis(BDA) : 172.6281°. J

Since all the angles of (2.9) are distinct, modulo 900, it follows from (2.4)
(after a little thought) that if 7T is sufficiently small, 1 < T, say. then, given
two orthogonal lines £ and n, either £ or n is parallel to a line in one of the
ten cones of Figure 2.4. Hence, from (2.8), if

!

then 1(6‘,%@,2) is not grid-like. The proof of the theorem is therefore complete.

G

< 0 :d(TO), (2.10)

When applying Algorithm 1 we must be able to use grids G for which HGH is
arbitrarily small. Therefore, it is a consequence of Theorem 2.2 that in any
general implementation of Algorithm 1, provision must be made for spescial boundary

points.
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The domain RZ of Theorem 2.2 has no axis of symmetry, and the following

theorem shows that this lack of symmetry was essential.

Theorem 2.3
Let R 3 be a convex domain which has an axis of symmetry.
Then, for any € > O there is a grid G with |G| < e for which 7Z(G,R3)
is gridlike.
Proof: We may assume that the axis of symmetry is the y-axis so that ® 3
is of the form shown in Figure 2.5. Here AA', B'C', D'D, and CB, are straight
lines (which may be points). On the arcs AB and CD, y = f(x) and y = g(x), re-

spectively, where f(x) is a strictly decreasing function of x and g(x) is a strictly

increasing function of x.
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Theorem 2.5

Let 616.4 be a strictly convex domain.
Then, there is a grid G, such that g) N oR , is not empt N{ , is empt
'n, g 1 ) 4 pty, G N, is empty,
and /‘Z(G, £ 4) is gridlike.
Also, there is a grid GZ such that fz 0R4 consists of exactly one point,

and ?Z(GZ, ® 4) is gridlike.

Proof: To prove the first part of Theorem 2.5, we note that, (Yaglom and
Boltyanskii [35, p. 32]) it is possible to inscribe a square in é4. That is, there
is a square S such that 5§ & 65;4 and the four vertices of S lie on E)ﬂ4. Extending
the sides of S we obtain the desired grid Gl'
To prove the second part of the theorem, we note that to every angle @ there
corresponds a unique rectangle TUVW(e) which circumscribes &i4 (see Figure
2.6). Now, the points T(2), U(e), V(a), and W(a), vary continuously with «
(Eggleston [8, p. 32], Yaglom and Boltyanskii [35, p. 143]) so that the angles
WZT (o) and TZU () are continuous functions of «. But,
WZT@i/2) - TZU(r/2) = - [WZT(o) - TZU(0)],

so that for some «, a/Z say, WZT(aZ) = TZU(ozZ). Since WZT(a) + TZU () = u,
WZT(aZ) = TZU(aZ) = /2.

Extending the sides of TUVW(aZ), and the line segments UW’(aZ) and TV(afz), we

obtain a grid GZ satisfying the second part of the theorem.




Figure 2.6

Rectangle circumscribed about 4\',4 .
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Bearing Theorems 2.2 and 2.5 in mind we make the following conjecture:

Conjecture 2.6

There exists a strictly convex domain & with smooth boundary of such that
if G is any grid for which g NR is not empty while 7Z(G, R) is gridlike, then

g N R consists of at most one point.

3. When is Zi gridconnected ?

When Algorithm 1 is implemented it is necessary to know which netpoints
belong to Zi. This information can be provided as input data by the user, but it
is of course preferable for it to be generated by the program itself.

I3 %i is gridconnected then there is a simple algorithm for determining the
points of Ji (Forsythe and Wasow [12, p. 358]). Starting with a point P1 € /&'i,
let P be a gridpoint which is adjacent to Pl‘ 1f the line segment PP1 does not
intersect OR then P € ii. By repeating this procedure, we determine all the grid-

points which belong to ﬁi and can be connected to P, by a gridarc lying in f .

1
Since 721 is gridconnected, all the points of Zi have been found. The above
algorithm is used, for example, in FREEBOUN (Cryer [7]).

In the present section we derive conditions which ensure that /Zi is grid-

connected.

Theorem 3.1

Let & satisty
Condition A: There is a positive constant d such that if B1 and

i, are any two points on 9/ such that ]BIBZI < d, then there is an arc
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w(Bl, BZ) (not necessarily belonging to O R ) which connects Bl and BZ’ has no
points in common with ® , and lies in fhe closed disk with diameter Bl BZ (see
T'igure 3.1). |
Let G be a grid which covers £ and satisfies
lall < d/v/2 - (3.1)

Then, 7Zi (G,R) is gridconnected.

Figure 3.1

The arc af(B1 ’BZ) .
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Proof: We remark that examples of domains f satisfying Condition A are
given in Theorems 3.2 and 3.3.

Let S, Te¢ ﬁl (G, R ). We must prove that S and T can be connected by a
grid-arc, LST say, lying in R .

Since ® is open and connected, there is a polygon P[S, T] which connects
S and T and lies in ® (Ahlfors [1, p. 56]); we may assume that the sides of
P[S,T] are parallel to the gridlines (Ahlfors [1, p. 57]).

If U and V lie on P[S,T], let P[U,V] be the subpolygon connecting U and
v, 24r[U, v]) the number of vertices on P[U, V] (excluding U and V), and ¢ (P[TJ,V])
the length of P[U, V].

We construct LST by modifying P[S,T]. More precisely, we construct, by

induction, a finite sequence of points, Sl’ SZ’ ey Sn’ such that

(a) S, =85, S =T,

1 n

(b) Si e P[S,T], and Si lies on at least one gridline, (3.2)
(c) There is a gridarc Li’ lying in R, which connects Si and Si+1°

Finally,
either
(@) Z(Pls,,,. T™h< Z[s;, 1] - 1,

or (3.3)

—

(b) (s, . Th< £(P[s,,Th - G| .

i+l
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We set

i-1

L[S, Si] = U L, 1<i<n-1,
k=1

(3.4)

n-1

L[s,T] = u L .
k=1

Let us assume that for some i>1, points S1 through Si satisfying (3.2b),
(3.2c), and (3.3) have been obtained. IfS, =T we are finished. If 8, # T, we

construct Si+1 as follows.

Let V be the first vertex beyond Si on the polygon P[Si’ T]. If the line

gsegment SiV coincides with a gridline we set
Si+1 =V Li = P[Si, Vi, (3.5)

so that (3.2b), (3.2c), and (3.3a), hold.

If Si\/ doés not coincide with a gridline, then Si is not a gridpoint (since
the sides of P[S, T] are parallel to the gridlines). Let Al be the last gridpoint
before Si on the gridarc L[S, Si]' Then SiV is perpendicular t;) Al Si’ so that
SiV has points in common with exactly one of the four open gridrectangles adjoining
Al; call this gridrectangle ég Without loss of generality, we may assume that g
is the gridrectangle which has Al as its lower lefthand corner, and that Si lies

to the right of A1 (see Figure 3.2). From the method of construction,

AS, © L[S, si] < R. (3.6)
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A, 5 515
Figure 3.2

The gridrectangle 5
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Let Q1 be the first point of intersection after Si of P[Si’ T] with 36 (see

Figure 3.2). Then either Qle SiV' in which case

prlQ,Th < £(LS.TD - G (3.7)
or Q1 £ SiV, in which case
(PlQ). T]) < P1P[S,, Th - 1. (3.8)

The points Al and Q1 divide 0§ into the gridarcs 615 =A1Q1 and

azéf = QlAl (see Figure 3.2). If 25J.éf c ® for j=k, we set

S,,,=Q Ly=8AU 9, 6. (3.9)

Noting (3.6), (3.7), and (3.8), we see that (3.2b), (3.2¢), and (3.3) hold.
There remains the possibility that Of intersects both Bl £ and d Zg]'

Then, since oRf is compact, there are points B]. € 6},6’, noaR, j=1, 2, such

that if o 35 is the gridarc BZAB1 then oR N 536 = {Bl, Bz} (in Figure 3.3,

3 36 is the gridarc BZA4A1B1).

Let 6)1 be the open polytope with boundary 0 35 U BlBZ; in Figure 3.3, 51

is the polytope A1}3]BZA4A1 . Let D be the open disk with diametar BlBZ .
The points B, and B, divide o0&’ into the arcs o 1[9 = BB, and o 2,@ =

BZBI (see Figure 3.3). Finally, let ¥ be the open set

él U g (in Figure 3.3 0% is the solid line).
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3

Figure 3.

The domain 3 .
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The precise geometry of % depends upon the location of the points B1 and

BZ' lHowever, it is readily verified that for all % ,
\
(a) ¥ is a Jordan domain (that is, d% is a simple closed curve),

(b) B_l and B, separate d%  into two components, 813‘ and (3.10)

v, %, where o‘l-? =<?)19 andBZTE - ézﬁ U 636.

~/

Next, we observe ‘thatﬂ contains no gridpoints. This is obviously the case
if B1 and BZ lie on the same side of g 1f B1 and B2 lie on opposite or ad-
jacent sides of g, it follows from the observation that if W ¢ ﬁ then the

diameter Bl B. subtends an angle greater than 90O at W.

2
Since V « 5’ U @, we see that ¥ contains no gridpoints, and, in
particular, T / 3
Now , Si V is perpendicular to Al Si' Furthermore, by (3.6), Si € o 3 6 .
It follows easily that there is a point U € P[Si' Ql] N . But T £ %. There-
fore, P[Si, TIn &3 is not empty. Let Q be the first point of intersection after
Si of P[Si, T] with 03 . Noting (3.10b), we see that either Q € h Ma?, or
Q «32@, orQGB3£.
IfQ = QZ €0 3 & (see Figure 3.3) we set

8.,,=Q, L =823 UAQ,. (3.11)

Since Q, ¢ o6 , we have that QZ € P[Ql’ T]. Hence, it follows from (3.7) and
(3.8) that (3.2b), (3.2c), and (3.3) hold.

Next, suppose that Q = Q3 €0 > % (see Figure 3.3). Then it is geometrically
obvious, and can be proved rigorously with the aid of Lemma 3.6, that

P[U,Q,] intersects o 3{; at some point Q4 (see Figure 3.3). We set
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S, . =Q, L ,=8A UBA Q. (3.12)

As for (3.11), conditions (3.2b), (3.2c), and (3.3) hold.

Finally, we show that Q £ 0 1 €) . For, suppose that Q= Q5 € 619 (see
Figure 3.3). Then A1 Si U P[Si’ Q5] lies in § and connects the boundary
points 1’-\‘1 and Q5. By Condition A of 'i‘heorem 3.1 and (3.1), there is anuarc

(B ,K.) which connects Bl and B2 and is such that

12
c P < 3.

«(B,. By)

It is geometrically obvious, and is proved in Lemma 3.6, that
Al, Si U P[Si’ Q5] must intersect a(Bl, BZ)' which is impossible. Therefore,
as asserted above, Q £ &1,,9 .

To sum up, if points S1 through Si satisfying (3.2b), (3.2c), and (3.3) have
been obtained, and if Si # T, we can construct Si+1 using either (3.5), (3.9),
(3.11), or (3.12). Noting (3.3) we see that this process must terminate after a
finite number of steps. The proof of the theorem is therefore complete.

The following theorems, which follow immediately from Theorem 3.1, show that

]Zi((:}, ® ) is gridconnected in many important cases.

Theorem 3.2

Let ®& be a domain whose boundary 3® is the union of a finite number of
disjoint simple closed curves and simple arcs. Let each curve and arc have

a continuously turning tangent.
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Then there is a positive constant € such that /Zi(G,(ﬁ‘,) is gridconnected if
(i covers & and

Gl < e. (3.13)

Theorem 3.3

Let f be a domain whose boundary of is the union of a finite number of
simple polygonal arcs. Let each interior vertex angle 6 of OR satisfy the
inequality,

o>mn/2. (3.14)

Then there is a positive constant € such that 7Zi(G, R) is gridconnected if

(v ocosvors & and
Gl < <. (3.15)

It is natural to ask whether Theorems 3.1, 3.2, and 3.3, can be stirengthened.
We now show that this cannot be done.

First, consider the grid G5 and domain @5 of Figure 3.4. Here, 6@5
~onsists of two semi-circles of radius 1- 1 joined by two line segments of
length 4 1. Clearly, 7Zi(G5, R 5) is not gridconnected. Butf®_ satisfies condi-

5

tion A of Theorem 3.1 withd =2 + 271 and
G Il = J2 < (1 +m)dA/e .

This example therefore shows that conditions (3.1) of Theorem 3.1 and (3.13) of

Theorem 3.2 are necessary.
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(O - interior netpoint

[~ special boundary point
Figure 3.4

The grid GC) and domain ;-
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Next, consider the domain 6%6 of Figure 3.5. Ré is an isosceles triangle
with vertex at the origin, and vertex angle . @’6 is symmetric about the line
x = y. The base of 6?,6 is a segment of the line x +y =5. We will consider
nets //(Gla,p), 6) where G(a,p) is the square grid wifh gridlines

~-a+ih_, 120,
P

i

X =%,
(3.16)

Yy =Y,

-a+jh , j20.
j ] P ]

Here, a >0, hp = Zop, and p is a non-negative integer.

The first interior netpoint on the line y = X will be denoted by

Q =(z , =z see Figure 3.5). Note that
b ( 0 p) ( 9 )
= h a/h ]|+1-a/h), 3.17
Zp D ([a/ p] / p) (3 )
0<z_ <h_, (3.18)
P p
where [a/hp] denotes the integer part of a/hp.

Since (2,2) € R 6 zi(G(a,p), @6) always contains at least two points.

Then (see Figure 3.5), /Zi(G(a,p), Ré) is not gridconnected if
z /(z + h )< tan {((n/2 - 9)/2}. 3.19
A o (/2 - 9)/2} ( )

Using (3.19) we obtain two theorems, Theorems 3.4 and 3.5. Theorem 3.4
shows that condition (3.14) of Theorem 3.3 cannot be relaxed. Theorem 3.5 shows
that if O f has corners then Zi(G, ®) may not be gridconnected even if G

is chosen so that all the vertices of Of are gridpoints.
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l (0,0) I |

O —- interior netpoint

[ ) - special boundary point

The domain &

6
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Theorem 3.4

Let ¢ < /2, so that for some integer k, k > 2,

tan [(ﬂ'/Z -9)/2} > 1/(2k - 1).

Set

o}
1]
p—
|
‘\_\/-‘8
[8%
1
~

"
3
=
2
—_
)

pm

Then, for all m, 7Z1(G(a, P @6) is not grid-connected.

Proof: It is readily verified using (3.17) that

_ k
zp’m/hpm =1/(2" -1), |

which implies (3.19).

Theorem 3.5

Let
¢ <P = /2 - 2 [arc tan 1/2],
so that, approximately,
< 36.8698°,

Then, for all a and p, 7Z1(G(a,p), [ 6) is not grid-connected.

Proof: Using (3.18) we see that
1/2,

= tan {(1/2 - (po)/Z},

N

zp/(zp + hp)

< tan {(m/2 - 9)/2}.
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Finally, we prove the following lemma which was used in the proof of
Theorem 3.1.
Lemma 3.6

Let % 1 be a Jordan domain. Let Pl and P2 be two points on 9 ;}1 which
are connected by a path p in ?}'1 (see Figure 3.6). The boundary aifl is

divided into two open arcs, 51‘751 and 62%1 say, by P1 and PZ . Let

Ql C ()1 vvl and Q2 66231 be joined by a path g in %}l.

Then p and g intersect.

Figure 3.6

The domain ‘afl.
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Proof: This lemma is geometrically obvious and is undoubtedly well known.
However, we have been unable to locate a proof in the literature.
First we note that we may assume that Pl and P2 do not lie on g and

that Q1 and QZ do not lie on p, since otherwise the lemma is trivial.

Next, let Q3 be the last point of intersection of g with 51‘3‘1

and Q, the first point of intersection of g with o.%

> %) (see Figure 3.6).

Q. and Q4 exist since g, 51‘3-{ and 82?51 are compact. Moreover,

3

neither Q, nor Q4 is equal to Pl or PZ’ so that Q3€ 61%1 and Q4<—:627§1.

3

Let 9, be the segment of g which connects Q3 and Q4 . Clearly, ql is
a crosscut, that is, a simple arc which, except for its endpoints, lies in ¥ 1
(Newman [23, p. 118]).

Let Q3 and Q4 divide 0% ) into the open arcs O 3‘51 and 54?51 where

PI e 63 5 ) and PZ € 8473 p Let P3 be the last point of intersection of p

with  0,%, and P, the first point of intersection of p with 9,45
. A

if either P% or P4_ is equal to either Q3 or Q4, then p and g intersect;

if not, Paﬁ 533'1 and P4€64?1 and P3 and P4 are connected by a

crosscut P, S P (see Figure 3.6).

The crosscut 01_l divides 'E] into two disjoint simply connected domains ¥, and ¢ ’
3 ‘

with boundaries g, U 53-,31 and q, U a4%'1 , respectively (Newman{23, p. l19andp. F45]).

Now assume that p, and q, do not intersect. Let pi =P, - (P, Pyl

Then p' < ¥, U 3%

. . 1 3 e , t X f (R 3
A 3 4 Since p1 ig a connected set p1 < “?J_ or j or
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j = 4, so that P, € "Y_“J for j =3 or j=4. But this is impossible since

P3 £ ¥ and P4 £ %

4 3 Therefore p1 and ql , and hence p and g,

intersect.

4. The number of netpoints

When Algorithm 1 is implemented in a straightforward manner, the amount
of storage required may exceed the capacity of the high speed store. It is possible
to reduce the amount of storage required by allocating different amounts of storage
to dilferent types of netpoints (see Appendix A, section A.2). When doing so, it
is necessary to have estimates for the number of netpoints of each type, and such
estimates are obtained in the present section.

Throughout the present section it will be assumed that

(a) o= /’L(G,m’,) where G is a square grid with gridlength h which covers # .

(b) OR = U S, R, (4.1)

where o is an integer and each ak@ is a rectifiable arc (Ahlfors [1, p. 104]).
Furthermore, any two distinct arcs Bkﬁ and 636% have at most two points

in common,

In addition, we will sometimes assume that

(c) The gridlines of G are of the form,

H

bie x,=x +1ih, 1< 1<1I,
i fe)

(4.2)

]

. = "}'.h, lgé 1
1% y] Yo i i<7J
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and

p Y
;o LR = o R, (4.3)

{
k=1 K k=1 ¥

where B and <y are integers. Each kaﬁ, is an arc on which y is either
a constant or a strictly monotone function of x. Each o Yk&a is an arc on
which x is either a constant or a strictly monotone function of v .
If ¥ is any set in the xy-plane, we denote by ¥(¢) the set of points not
further than ¢ from X. We remind the reader that | /Z | denotes the number
of points in //, i [R ] denotes the Lebesgue measure of ®, and £[0R] denotes

the length of OR .

The main result of this section is:

Theorem 4.1

|7, = ulsh ™+ onTh,

-1

| Myl 1 141 =0b 7).

If condition (c) holds then
-1

| 77,1 =00 7).

Proof: Theorem 4.1 follows from Lemmas 4.2, 4.5, 4,6, and 4.7.
Lemma 4.2
|| < loR J/h) + a.

Proof: Let nk denote the number of gridpoints on the arc Bk@ . The nk

gridpoints form a polygonal line Pk with (nk - 1) segments. Since each segment
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has length at least h, we have, from the definition of the length of a rectifiable
curve, that

(nkwl)h < ﬁ[Pk]g z[ak@].

Summing over k the lemma follows.
Lemma 4.3

If G is a rectifiable arc,

W[ E(e)] < mes +2e L[ C]. (4.4)

Proof: This lemma is the case n =2 of a formula due to Estermann [10];
see also Hornich [15]; Verblunsky [31]. For the convenience of the reader we
give a modified version of the proof of Hornich.

First, (4.4) is proved by induction for the case when & is a polygonal
line, PoPIPZ o Pr‘ Inequality (4.4) clearly holds when r=0or r= 1, for
then & is either a point or a line segment. Assuming that (4.4) holds for

r = n, let p be the polygonal line Po P1 Pn+1' Set p, = PO ... P,

pZ = Pn Pn+l' Then,

1

b [p(e)] = ulpg () U p,(e)].

I

ulp ()] + up,(e)] - up, (€) 0 py(e)l.

Since Prl € pl n pz.:

2

so that

IA

il p(e)] [ﬂe:2 + 2£[p1]] + [ﬂ'e2 + Zﬂ[pZ] ]- e,

7r<—:2 + 24[p].
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Therefore, (4.4) holds for all polygonal lines.
Now let (7 be an arbitrary rectifiable arc. Choose 1 > 0. Ihen there is
a sequence of points on &, Po’ Pl’ TRy Pn' éay, such that Po and Pn are
the endpoints of,éj, and such that every point of the arc PiPi+1 is at a distance
less than 1 from the chord PiPi+l.' Let p denote the polygonal line
PO .es Pn' A point which is at a distance <& from & is at a distance < € + 7

from p. Hence

[ G ()] < u[p(e+ )],

i

(e + n)z +2(e+n) £[p].

I

But, £[p] < £[&] and n is arbitrary, so that (4.4) follows.
Lemma 4.4
foR (6)] < ame” + 2¢ L[oR].
Proof: TFollows immediately from Lemma 4.3 and (4.1).
Lemma 4.5
7,1 < (/2 + /2 + 2 +/2) LR I/h.
Proof: Let P ¢ ]a. Let

,(P: (G, vy |xt -x' |, |y - yPI < h/2}, where x'y' are the grid-
P

coordinates corresponding to G (see 1.3).

Then, LJ{P ¢ OR (h + h/\/zv). Also, MP: J{P, iff P= P' ., Hence,

171 = el Uk ] < p[dRM+hA/2)].
Pe 7]

a
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Applying Lemma 4.4, the lemma follows.
ul & 1/h” - {rre(/2 + 1)°/2 + 2 +/2) L[dR1/h),
/e
bR ]/h2 + (me/2 +ﬁ L{oR 1/h}.

Proof: For P ¢ 7Zir define J{P ag in Lemma 4.5. Let

K = U K.
P
Pelli
Then,
Q- 0Rh+h4/2) € X © R UIRMAZ),
so that

pfe ] - nfoR(th + h/ﬁ)] < h2 | 7.

Ll osnlel+upe (h//2)].
Applying Lemma 4.4 the lemma follows.
At first sight one might suppose that /ZS is a finite set if OR® is rectifiable.
However, this is certainly not the case. Consider, for example, the case when
the arc y = xlo sin{l/x), 0 < x< 1, is part of OR . This arc is not only
rectifiable but also of bounded curvature; yet it intersects the line y = 0 infinitely
often. Therefore, to ensure that js is finite we must impose additional conditions
upon O R , as is done in the following lemma.
Lemma 4.7

IT condition (c) holds, then /ZS is a finite set and

i?ZSI < B+y+4+2 L[oR]1/Nh.
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Proof: Noting (4.3), let

F.}l " ﬁn
dR =[ U o', R Ufu o" RrJ,
k=1 xk k=1 xk
where vy is a strictly monotone function of x on each axk f and y is con-
stant on each ka ® . Then, as in Lemma 4.2,
(ny, -~ Dh < z[axk R1.

where n;d, is the number of intersections of gridlines parallel to the x-axis

with o
%k

# . Hence,

o

ng < B+ L[or I/h.

H L

k=1

Remembering that y is constant on each axk ® , we see that the number of

intersections of gridlines parallel to the x-axis with dR is not greater than

B+ #orl/h+2.

The lemma follows immediately.

To conclude this section we mention some related results in the literature.

The first result provides an alternative method for estimating | 7Za E
Lemma 4.8

The number of gridsquares having points in common with Of is not greater
than 4(e + LJOR J/h).

Proof: See Michael [21] and Potts [27]. The lemma is an easy consequence
of the observation that an arc of length less than h has points in common with

at most four gridsquares.
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Corollary 4.9

| 7.1 < 16(e + L[or]/h).

Proof: Apply Lemma 4.8 remembering that a square has four corners.
The next result shows that even if condition (¢) does not hold, G can be

chosen so that 7ZS is finite.

Lemma 4.10

Given h > 0 there are numbers X and yO such that none of the lines
% ox ih, y=vy, +jh,i,j=0, +1, +2, ..., meets OR in an infinite number
of points.

Proof: This lemma is due to Estermann [li]. The proof of Estermann is
for the case whéen Of is a Jordan curve, but examination of the proof shows that
it holds for OfR of the form (4.1).

Next, let

m(R) = inf |71,

M(R) = sup |/, 1.
where the infinum and supremum are taken over all possible square grids G with
gridlength h. Then, among other results, Niven and Zuckerman [24] prove that

m(R) < u[@]/h2 < M(R). (4.5)
in a certain sense, this result complements Lemma 4.6.

Finally, it should be pointed out that there is a connection between the
results of the present section and the theory of the geometry of numbers. For

example, the theorem of Siegel (Cassels [4, p. 175]) is related to the inequality

(4.5). However, in the theory of the geometry of numbers, interest is usually
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focussed upon properties which hold for all "lattices" whose "determinant" is
cqual to a fixed quantity, whereas in the present paper we are concerned with

"rectangular lattices."
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APPENDIX A

Remarks on the implementation of Algorithm 1

A. 1. Expanded description of Algorithm 1

Step |

Construct a net ,/%/. "Classify” each natpoint, P, and determine its set
of "neighbours", M(P).

)7 is often constructed with the use of a grid G, and t}}is approach was
described in section 1. As in section 1 we then write /Zz 72(G, R).

The definition of M(P) depands upon the boundary value problem being
solved, the method of constructing the algébraic equations (A. 1.1), and the
classification of P. When 7Z is constructed using a grid, and the Dirichlet
problem - {(1.1), (1.2)} is being solved, M(P) usually consists of five points,
namely P and the points adjacent to P in the North, South, East, and West
directions, respectively. For differential equations such as

u + u +u =0,

or

u _+ 2u + u =
XRKX XXYY yYyYy

M (P) is of course more complicated.
Step 2
Set up a system of algebraic equations connecting the values of the

approximate solution, U, at the netpoints. A typical equation is of the form

y A(P,Q) U(Q) = b(P). (B.1.1)
Q &ti\ﬁ(P)
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Here, A(P,Q) and b(P) are constants whose values depend upon the differential
equation (1.1), the\boundary conditions (1.2), and the classification and location
of P and its n=ighbours.
Step 3
Solve the system of algebraic equations set up in Step 2, thereby obtaining

U.

A. 2., Storage requirements
In this section we discuss the amount of the storage required to implement
Algorithm 1, and possible ways of reducing it.
In step 2 of Algorithm 1 the following information is needed about each
netpoint P:
(@) A list of the neighbours of P.
(b) A list of the coordinates of the neighbours of P.
(c) Information about the type of equation to be set up at P.
For example, if
7L = TG, R) ) (A.2.1)
then it is necessary to know whether P lies in 72e’ nbr'
%S, /Za, or 7Zir' (see Figure 1.1).
1fPe /Zb we must also know the type of boundary conditiog

(Dirichlet, Neumann, etc.) which holds at P.

We shall refer to this information as the net data.
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In step 3 of Algorithm 1 it is necessary to know the equation corresponding
to each netpoint P. That is, the following information is needed about each net-
point P:
(@) A list of the netpoints with non-zero coefficients in the
equation corresponding to P. (A.2.2)
(b) A list of the non-zero coefficients.

We shall refer to this information as the equation data.

1f | 77 | is large, then it may be difficult or impossible to store all the
net data and equation data in the high speed memory of the computer. For
example, if /77 = 7Z(G, R) where G is a square grid with gridlength h, then,

from Theorem 4.1,

| 77| =u[@]h'2+o(h"l). (A.2.3)

Since there are in general at least five non-zero coeificients in (A.1.1), we see
that if h = 1/100 and w[®R] =1 it is impossible to store all the equation data in
the high speed store of a computer with a 32,000 word memory.

The difficulty of storing the net data and equation data lessens as the
size of the high speed memory increases. On early computers such as EDSAC 11
(which had a memory of 1000 words) it was a tremendous problem (Cryer [6]).
On present day computers with 132,000 word memories, it is far less of a problem.
However, even on a computer with a 132,000 word memory, difficulties arise when
h is very small. In addition, difficulties arise on all computers when £ is a
three-dimensional region, and many of our remarks below apply, mutatis mutandis,

to the three-dimensional case.
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Of course, it is almost always possible to store the net data and equation
data in auxiliary storage. However, the access time and read/write time for
auxiliary storage is considerably greater than for core storage; this is illustrated
in Table A.2.1 for the UNIVAC 1108. For comparison, floating point multiplication

and division on the UNIVAC 1108 require 2.6 us and 8.25 us, respectively.

Average Read/write

access time Capacity

Type of storage time per word {words)
Core none .75 Us 262,000

(maximum possible)
Drum (FH 432) 4,25 ms 4 Us 262,000
(per drum)
Drum (FH 1782) 17 ms 4 s 2,000,000
(per drum)
Drum (FASTRAND II) 92 ms 40 s 22,000,000
(per drum)
Tape (UNISERVO VIC) variable 180us 2,000,000
(per tape,
approximately)

Table A.2.1
Storage characteristics of the UNIVAC 1108.
If in step 3 of Algorithm 1 the system of algebraic equations is solved by
iteration (as is usually the case), each equation is referred to many times. Itis

therefore highly desirable to avoid the use of auxiliary storage.
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The amount of storage required by the net data and equation data can be
reduced in a number of ways (usually at the cost of more programming and slower
execution):
|. Certain data does not require a full word, and can be packed. For example,
the net data (A.2.1c) requires only a few bits. In many early programs
(Forsythe and Wasow [12, p. 359]), this data was stored in the last few bits of
the mantissa of U (P).
2. If the system of algebraic equations is symmetric, then the possibility
exists of reducing the amount of storage required for the coefficients by
about half.
3. If 72 has a regular structure, then substantial savings in storage can be
achieved. We illustrate this for the case when 77 = NG, R) where G
is a square grid of gridlength h. (Other possible regular nets are regular tri-
angular nets and regular hexagonal nets; see section A.3). We will assume that
the boundary value problem to be solved is of the form

O Ju 0 Ju

3x @5 Ty, Py T o x,y) € R, (A.2.4)
@ %ﬁ- +Pu+ ¥ =0, (x,v) € OR, (A.2.5)

and that a five-point formula is used to approximate (A.2.4).
We note that 7Z(G, R) can be represented in the computer as two arrays, a
one-dimensional array for the points in Ws and a two-dimensional array for the

remaining netpoints. (In some early programs 7Zs was embedded in 7Ze, a
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special boundary point being associated with the nearest external netpoint. This
approach sometimes leads to difficulties since, if 3R has corners, two special
boundary points may be associated with the same external netpoint.)

Because of the cofrespondence between the method of representing 7Z in the
computer and the topological structure of 77, there is no need to store the data
(A.2.1a), (A.2.1b), and (A.2.2a), for points in 7Zir' Furthgrmore, for points in
ﬁir the coefficients (A.2.2b) can easily be generated when required, and indeed
it may be faster to generate these coefficients than to read them in from auxiliary
storage. Hence, for P ¢ 7Zir only the data (A.2.1c) need be stored, and as we
have already mentioned, this data can if necessary be stored in the last few bits
of the mantissa of U (P).

Therefore, the amount of storage required for the net data and equation data

is proportional to I/Za U /Zb . Since, by Theorem 4.1, !/Za U /Zbl = O(hwl)

-2
while | /Zirl = O(h 7), a very substantial saving in storage has been achieved.

A. 3. Commonly used nets

In this section we describe the various nets which have been used, starting
with nets with no structure and ending with nets with very regular structure,

Irregular nets

Irregular nets (see Figure A.3.1) were first suggested by MacNeal [20]. They
have the advantage of great flexibility, so that oddly shaped regions can be easily
handled, and the density of netpoints can be increased in areas where the solution

is expected to change rapidly.
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The major disadvantage of these nets is that every netpoint must be treated as
a special point, so that large amounts of storage are needed, and it is only
recently that computers have had large enough stores for this choice of net to be

feasible,

N
I\

(a) Triangulated.

N 7 /N

{(b) Polygonal.

Figure A .3.1

Irregular nets.
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Lven so, the number of netpoints is severely restricted. For example, the
programs of Wilson [32] and Taylor [30], written for IBM 7090 computers with
32,000 word memories, can handle a maximum of 340 and 500 netpoints, respec-
tively.

Nevertheless, irregular nets have become increasingly popular, especially
among civil engineers using the "finite element" method (Zienkiewicz [37D.
Perhaps this is because the problems of civil engineers often involve irregular
boundaries. Irregular nets have also been widely used at the Lawrence Radiation
Laboratory (Noh [25], Winslow [33, 34]).

The discretization error for irregular triangulated nets has been studied by
Kellogg [16].

Graded Nets

The basic idea of a graded net (see Figure A.3.2) is to combine the advantages
of a rectangular net with the advantages of a high density of netpoints in regions,
such as the neighbourhood of a corner on o ® , when the solution is changing
rapidly. This type of net was used very effectively by Southwell and his
coworkers (Southwell [29, p. 98]). However, it is difficult to implement on a
computer, and has seldom been used. Recently, Young and Whiteman [36] have
used graded nets, but it is the author's understanding that their program makes no

use of the structure of the net to reduce storage requirements.
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Figure A .3.2

A graded net.
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Rectangular nets

Rectangular nets, regular rectangular nets, and gridlike rectangular nets,
were defined in section 1 and will not be discussed here.

Regular nets

We have seen in section A.2 that substantial simplifications result if the net
has a regular structure. " The regular nets considered so far have been constructed
using regular rectangular grids. Two other possibilities - regular triangular grids
and regular hexagonal grids - are shown in Figures A.3.3 and A.3.4. The following

tfomma is of interest, since it shows that no other regular grids are possible.

AVAN

AVA
/v |
VAVAVA

Figure A.3.3

E

A regular triangular grid.
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Figure A.3.4

A regular hexagonal grid.
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Lemma A.3.1

Let G be a grid which covers the plane, and which is built up out of copies
of a regular n—-sided polytope P.
Then ¢ is either a square (n = 4), triangular (n = 3), or hexagonal (n = 6) grid.
Proof: This lemma is well-known. See Coxeter [5, p. 58] and Southwell
[29, p. LO].
Let m polytopes meet at every gridpoint, and let each interior angle of P
be equal to u.
Then,
mo = 27,

and

t

na + 2w = o,
Fliminating o, we find that
2n + 2m =nm . (A.3.1)

Assume that n > m. Then nm < 4n so that m< 4. Settingm=1, 2, 3,

and 4, and remembering that n is an integer, we obtain the solutions
m=3,n=6; m=4,n=4,
Interchanging m and n we obtain the solution
m=6,n=3,

These are all the possible integer solutions of (A.3.1). The proof of the lemma
is therefore complete.

Given a regular triangular grid or a regular hexagonal grid, the corresponding

net // can be constructed in a manner analogous to that used for rectangular
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grids; we call the resulting nets regular triangular nets and regular hexagonal

nects, respectively.

Regular triangular nets were used by handworkers such as Southwell [29,
p. 49]; however, Southwell [29, p. 54] did not advocate the use of regular
hexagonal nets. At present, regular hexagonal nets are used in programs for
nuclear reactor calculations such as KARE (Archibald and Teaford [2]), and PDQ-7
(Cadwell [3]); see also Kellogg [17].

A. 4. General purpose programs

In this section we discuss a few of the programs which have been written to
implement Algorithm 1.

First, it should be noted that the three steps of the algorithm require com-
pletely different types of programming.

Step 3 is easily implemented and is highly suitable for a digital computer,
since it involves an immense amount of repetitive computation.

Step 2 is also easy to implement. It may be thought of as a problem in in-
formation processing, the input being the net data (A.2.1) and the output the
eqgquation data (A.2.2).

Step 1 is difficult to implement, and most general purpose programs for
solving boundary value problems require substantial human assistance in this
step.

One possible approach to implementing Algorithm 1 is typified by the program
of Engeli [9]. Engeli avoids step 1 by requiring the user to provide much of the
equation data and net data. However, his program has many features which

simplify the preparation of the data.
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The program FREEBOUN (Cryer [7]) contains, as a subprogram, an implemen-
tation of Algorithm 1. The input data to the subprogram is provided through sub-
routines; the reason for this is that FREEBOUN itself generates the boundary value
problems to be solved. The differential equation, the boundary, and the boundary
conditions, must be specified. A net (G, R) is used, and both the gridiines
and the boundary netpoints must also be specified. It is assumed that 7 is
gridlike and that 721 is gridconnected.

The programs KARE (Archibald and Teaford [2]) and PDQ-7 (Cadwell [3]) are
general purpose programs for nuclear reactor problems. Both programs are the
latest of a series (there is a more recent version of KARE which is at present still
classified). Both regular rectangular nets and regular hexagonal grids are used.
It is assumed that / is gridlike, and O® is required to be a polygonal line,
There is provision for specifying of in a very compact manner. An interesting

feature of nuclear reactor problems is that

n
R = U ®
k=1 K

where different equations hold in different regions R To specify the domains

e
ﬂ.k in the input data both KARE and PDQ-7 use the technique of "overlays".
Finally, it should be remarked that the problems involved in implementing
step | of Algorithm 1, are similar to those encountered in certain data-processing
problems. (Loomis [18], Morse [22], Nordbeck and Rystedt [38]). It may well

prove possible to apply techniques developed for these data-processing problems

to step 1.
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APPENDIX B

Two examples of non-Jordan domains

In the present paper we have tried to place as few restrictions upon f as
possible. Many of the proofs could have been considerably shortened if more
assumptions about ® had been made. In most practical problems, f 1is a
Jordan domain with piecewise analytic boundary, and the reader may have wondered
whether these was any practical need to consider non-Jordan domains. In this
appendix we give two examples of non-Jordan domains ® arising from practical
problems.

The first example is the bending of a thin circular plate of unit radius which
is clamped at its edges and displaced a unit amount at its center. If w denotes

the normal displacement then (Love [19, p. 488]),

4
y = 2 = .
VWS W TR W =0, (y) € R, (B. 1)
w:%zo, forr=1,
- (B. 2)
w=1, for r = 0,
where
2 2 2
r = x +vy
The domain - is the punctured disk,
. . 2 2
o, = {0y 0<x +y <1}, (B. 3)

shown in Figure B. 1.
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Figure B.1

The punctured disk f 7
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The solution of this problem is (Love [19, p. 490]),
w=l-—r2+2rzlogr. (B. 4)

It is worth pointing out that domains with isolated boundary points (such as
the point (0,0) for ® 7) do not occur when the governing differential equation is
a second order equation. This is because, for second order equations, boundary
conditions imposed at isolated points can be ignored (Petrovsky [26, p. 180]).
However, for equations of order four or higher, boundary values imposed at
isolated points cannot be ignored (Sobolev [28, p. 105]).

The second example is

2

vV od =0 + @ =0, {x,¥) € R

. b
XX | yy 8’ (B. 5)

-

¢ = <I>1, (x,y) € 616%8,

(B. 6)
o = <I72, (x,v) € (52@8.

Here, ® _, is the domain shown in Figure B. 2, 82 ., =GH U G'H', and

8 8

B g = O fog = 02@8; note that OO' < f g

This example is a simplified model of an electrostatic electron microscope
(Grivet [14, p. 5]). Electrons leave the hot cathode C, and are accelerated into
the microscope because the microscope is at a high potential. After striking the
object to be viewed, OO', the electrons are focussed by the lens GH U G'H' U

LDBF © E'D'B'F' and an image is formed on the fluorescent screen SS'. @ is the

electrostatic potential field in the microscope.
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The most interesting feature of RS is that OR 8 contains the arcs GH and

G'H'. Similar regions occur in crack problems in the theory of elasticity.
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