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1. Introduction

Greenspan [2, 3] has developed a discrete version of Newtonian
mechanics which makes it possible for problems in mechanics to be
formulated in a form suitable for solution on a digital computer.

In applying discrete mechanics, it is necessary to use a time-step
At which is small enough to ensure stability (Greenspan [2, p. 22; 3,
p. 19]). 1In this report we analyze in detail the stability properties of
one of the problems treated by Greenspan. For this problem (which we
describe in section 2), Greenspan found experimentally that the discrete
mechanics model was stable if

At L 2¢a, (1.1)
where « is a positive constant associated with the problem. Our main
result, which is proved in section 5, is that the discrete mechanics
model is stable if

At < min (2a, 2/a). (1.2)
Since in Greenspan's experiments « was always less than or equal to
1, our result confirms Greenspan's experimental observations.

We also prove certain other results: in section 3 we show that

the discrete mechanics model is convergent; and in gection 4 we show
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that the linearized discrete mechénics model is stable if and only
if
At < min(2a, 2/@), for a#1
(1.3)
At € 2, for a=1,
We have emphasized the close rela;gionship between the "continuous
analysis" of section 2 and the "discrete analysis" of section 5, in the

hope that this will clarify the proofs and perhaps make it possible to

adapt the proofs for other problems.
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2. Newtonian Mechanics

The problem to be considered (Greenspan [2, p. 18])) is the damped
motion of a particle of unit mass which is constrained to move with its
center on the x-axis. We denote the position and velocity of the par-
ticle by x and v, respectively. The particle is subjected to a
viscous damping force « v, where « is a positive constant, and a
restraining force sin x. At time t=0 the particle is at XO and has
velocity VO.

In Newtonian mechanics the problem can be formulated as follows:

ax _ .
dt = v, (2.1)
dv . '
T = —-(av + sin x), (2.2)
x{0) = Xy v(0) = Vi (2.3)




Since the right hand sides of (2.1) and (2.2) are Lipschitz continuous,
the solution x(t), v(t), exists for all t > 0. (Coddington and

Levinson [1, p. 20]).

Theorem 2.,1.

If x(t), v(t), is the solution of the initial value problem ({(2.1),

(2‘°Z)l (203)} then, as t—""' 00’

v(t) — O, (2.4)
and

x(t) — km, (2.5)
where k is an integer. In particular, if vy = 0 and ]xol < m,

then k = 0,

Proof:

Multiplying (2.2) by v, and using (2.1), we find that

(2.6)

where

E(t) = vZ/Z - CoSs X. (2.7)
Clearly, E(t) 1is the energy of the particle, and consists of the sum of
the kinetic energy, vZ/Z, and the potential energy, - COSs X.
integrating (2.6),

E(t) + F(t) = E(0), (2.8)
where

t
F(t) = af[v(s)]zds. (2.9)
0



Several important conclusions follow from (2.8). Since F(t) > 0,

2

E(t) = v /2 - cos x < E(0).

Hence,
) 1/2

lviy)] < V= [20+E@ON]" . (2.10)

Since E(t) > -1,
F(t) < 1+E(0).

Remembering that F(t) is a monotone increasing function of t, we

can conclude that F(t) converges monotonely to a finite constant L,

F(t)y t L. (2.11)

Finally, combining (2.1) and (2.10), we see that

|x(t) - x| L V|t -t (2.12)
for all t', t''.
We now prove (2.4), namely that v(t) — 0. Suppose that this is
not the case. Then there is a constant 8,
0< B < Ve, (2.13)

such that for any 1:1 > 0, there exists a tZ > tl such that

' 2
[v(tz)] > B. (2.14)
We prove (2.4) by showing that (2.14) leads to a contradiction.

From (2.11) it follows that is a £ such that

L-ap’/(32V) < F(t) < L, for t> t . (2.15)




Let tz > tl be such that (2.14) holds. Then, using (2.7),

(2.12), (2.13), (2.14), and (2.15),

[vi]?/2 = cos[x(t)] + E),

cos[x(t)] + E(0) - F(t),

i

1l

> - |x() - x(t,))| - @B°/32V) + B/2,
> -Vit-t,| - B/32 + B/2.

Setting

t, = t, + B/(8V),

we see from (2.16) that

{V(‘C)]2 > B/2, for t,{tLts.

Hence, noting (2.9) and (2.15),
ts
Pty = F(t,) + o [ [vis))” as,

2

S 1 - apl/2v) + aBP/(16V),
> L,
contradicting (2.15). We have thus proved (2.4).

To prove (2.5) we note that since F(t) — L and

follows from (2.7) and (2.8) that

cos[x(t)] ~—~ -E(0) + L.

(cos[x(1)] - cos[x(t,)]} + (F(t,) - F(1)} + [v(tz)]z/z,

v({t) — 0,

(2.8),

(2.16)

(2.17)

(2.18)

it

(2.19)



Together, (2.19) and (2.12) imply that

X(t) - XI (2020)
for some constant x. Thus from (2.2),

dv —
at sin x. (2.21)

Since v — 0, we see that sinx = 0, so that we have proved (2.5).
Finally, we consider the special case when VO = 0 and
Ixoi < m., Then, from (2.8) and (2.9), E(t) < E(0). Hence, from (2.7),

cos[x(t)] > —EO + [v(t)]z/Z = cos(xo) + [v(t)]Z/Z > -1,

Since x(t) is a continuous function, and |x(0)| = lxoi < w, it

follows that |x(t)| < m for all t. Hence, k = 0,

3, Discrete mechanics: convergence

For the problem considered, Greenspan [2, p. 20] used the com-

putational scheme,

n-1

x = (3 - ozAt)xn_l + (-1) (2 - ‘Q/At)xo
n-1 J
+ (2aat - 4) = [(-1Y'x_ ] (3.1)
j:z n-j
n-1 gAt)Z
— — 2 - . ) .
+ (1) (1 - apnt/ )V, Ot 5 sinx_

Noting equations (7.1), (7.4), and 9.2), of Greenspan [2], we see

that the scheme

1

)/2,

X + At(v 4+ v
n n

Xn+1 n+1

(3.2)

it

v v - At(ev_ + sinx ),
n+1 n n n

is equivalent to (3.1), and we will use (3.2) in our analysis.




The scheme (3.2) is clearly an approximation to the initial value
problem {{(2.1), (2.2), (2.3)}. Using the notation of Henrici [4], the
increment function ¢ (Henrici [4, p. 117]) is given by

v - At{av + sin x)/2
o (x,v; At) =
- (@v + sin x)
v
Since o (x,v; 0) = ,
- (@v 4 sin x)

the scheme (3.2) is consistent (Henrici [4, p. 124]) with (2.1), (2.2),
and (2.3).

From Henrici [4, p. 124] we obtain

Theorem 3.1,

The scheme (3.2) is convergent. That is,

lim Xn x(t)

At — 0 = ,

nAt =t Vo v(t)

where x(t), v(t), is the solution of the initial value problem {(2.1),

(2.2), (2.3)}.

4., Discrete mechanics: stability of the linearized model

In Theorem 2.1 we proved that, in certain cases, x(t) — 0 as
t — o, When analyzing the discrete mechanics model, it is therefore
reasonable to begin by considering the case when Xn is small. 1In

this case, equations (3.2) become, approximately,



i

/2,

X + At(v_ + v
n n

Xn+1 n+1

(4.1)

1

— Q! °
Vol Vn At( Vo + Xn)

The following theorem gives necessary and sufficient conditions for

the stability of the scheme (4.1):

Theorem 4.1.

The solution Xn’ v of (4.1) is bounded as n — for all

v iff

initial values x 0

OI
At < min(2a, 2/a), if a # 1,
(4.2)
At <2, if a=1,
Proof:

According to the standard theory of linear difference equations, if

A and

] are the zeros of the polynomial

2
2 2

A=1, =At(L+N/2]= 2"+ AM-2+aAt+ [At]7/2)

At, A-1l+aAt + (1 - aAt + [At]Z/Z), (4.3)

then the general solution of (4.1) is of the form

4 al n aZ
A, FBA, |y, | o foroAy 7 Ny
i 2
X
o= (4.4)
v
i n al n- aZ
A)\l b + nB7\1 b , for ?\1 = ?\2,
- 1 2
a a

2 ,
where bl and b are certain linearly independent vectors.




From (4.4) we see that x and Vo will be bounded as n — «

v iff

for all x 0’

Ol

(@ a1 Iyl <
(4.5)
(b) if b‘ll = 17\21 =1, then 3 # Ay

Using the results of the Appendix, we see that (4.5a) is satisfied
iff

|1 -~ ant + [At]2/2| < 1, (4.6)

and |-2 + ant + [At]Z/ZI < 2 -alht+ [At]Z/Z, (4.7)

Condition (4.6) is equivalent to the following sequence of inequalities:
2
-1 < 1-ant+ [At]/2 £ 1, (4.8)

[At]z/z < abt,

(4.9)
2 - alt + [At]Z/Z > 0,
(a) At £ 2a,
(4.10)
(b) 2 - ant + [At]z/z > 0,
Condition (4.7) is equivalent to
2 2
-2 + apt+ [At]T/2 < 2 -ant + [At]T/2,
(4.11)
2 - alAt - [At]z/z < 2 -alht + [At]Z/Z,
which is eqguivalent to
At £ 2/, (4.12)

Since (4.12) implies (4.10b), we have proved that (4.5a) is equivalent to

(@) ot < 2e,
(4.13)

B At < 2/a.
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To complete the proof of Theorem 4.1, we examine condition (4. 5b)

under the assumption that (4.5a) and (4.13) hold.

Then RN IENES IS Wt

A a,l = L

= |1 -aAt(l - At/2a)],

= @ +[at/2) - ant

Noting (4.13), it follows that |a.| = l7\2l = 1 iff

|
At = 2a, (4.14)

If (4.14) holds, (4.3) simplifies to

2 2
A+ A(-2 + 4a7) + 1. (4.15)
Remembering that « > 0, it is easily proved that the zeros of

(4.15) are equal iff « = 1, We have thus proved that (4.5b) is equiva-

lent to the statement,

If At =2e, then a # 1. (4.16)

Combining (4.13) and (4.16), we obtain (4.2).

5, Discrete mechanics: stability of the nonlinear model

We repeat equations (3.2):

tl

X

a1 /2, (5.1)

-+
Xn At(vrl + Vn+1

Vol Vo T At(a'vn + smxn). (5.2)

The following theorem gives sufficient conditions for the stability

of the scheme (5.1), (5.2):
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Theorem 5,1.

If Xn’ Vn’ is the solution of (5.1), (5.2), and

At < min {2a, 2/a}, (5.3)
then, as n — o,
- 5.4
A 0, (5.4)
and
X — kT, (5.5)
n

where k is some integer,

Proof:

The proof is a modification of the proof of Theorem 2.1 and also
uses some of the ideas connected with the "energy method" (Richtmyer
and Morton [6, p. 132]).

Multiplying (5.2) by (v + vn)/Z, and using (5.1),

n+l
(v 2 —vz)/Z = - (v + v YAt(av_ + sin x_)/2
n+l n n+l n n n”’ °
= = 2 - - i ° #
a At (vn+1 + vn) Vn/ (xn+1 Xn) sin x (%)

Applying Tavlor's series,

2
— — = - i - > v 2
(cos x cos xn) + (x Xn) sinx_ + [(Xn+1 xn) cos xn]/ ,

n+1 n+l

where X lies between x_ and X . Hence,
n n n+l

2
- - - i - 2. e
(cos X1 cos xn) < (an xn)sm X, + (an xn) / (%)
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Adding (x) and (%%), and using (5.1),

2 2
- 2 - -
(Vn+1 v Y/ (cos X cos xn)
< -—aldt(v +v)v /2 + (At)z(v + v )2/8
n+l n n n+l n !
_ At 2 2 ,
= g [Atvn+l + (Ot 4a)vn - (4a - ZAt)vnvn+l],
AT 2 2 2
= — - (2 - - .
8[ (2a - At) (Vn+1 + vn) + ?.oz(vn‘*_1 v )]
Hence,
2
En+l - En < - At(2a - At) (VnH + vn) /8, (5.6)
where,
2
E = - - c .
A (1 - aAt/2)/2 - cos X (5.7)
Summing (5.6), we find that
50
En + Fn < EO’ (5.8)
where
At n 2
= —2a - o 5,
Fn 8( a A’c)k§1 (vk + Vk—l) (5.9)

Up to this point the proof has parallelled the proof of Theorem 2.1,
equations (5.6) through (5.9) being discrete analogs of equations (2.6)
through (2.9). We have made no use of the stability condition (5.3).

In order to continue the proof we now assume that (5.3) holds so that
20 - At> 0 and 1 - apAt/2 > 0. We remark in passing that this is
the usual way in which stability conditions arise in the "energy method"

(see Richtmyer and Morton [6, p. 133]).
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As in Theorem 2.1, several important conclusions follow from (5.8):

2(1 + Bo)l/2
;vnl V= TTanz (5.10)
F ton, (5.11)
!Xn, - Xn"l < Vat|n' - n''|. (5.12)

From this point, the proof differs from the proof of Theorem 2.1,
the reason being that (2.8) is an equality while (5.8) is an inequality.

From (5.9) and (5.11) it follows that

+v - 0, (5.13)

v
n+1 n

so that, from (5.1),

X -x — 0. (5.14)

Adding to (5.2) the equation obtained from (5.2) by replacing n by

n+1l, and using (5.13),

sin X + sin x —- 0, (5.15)

n+l

It is easily seen from (5.14) and (5.15) that

sin x — 0, (5.16)
n

and that

X — kT, (56.17)

n

for some integer k. We have thus proved (5.5).
To prove (5.4) it suffices to observe that (5.2) may be rewritten
in the form

= (2 - - in ; .
vn+1 + v ( ozAt)vn At sin xn



14

Appendix

We prove that if )\1

egquation

)\2+2b}\+c=0,

then a necessary and sufficient condition that

Al <1 and [a,] <1,

is that

le] <1,

and

Ib| < (1+c)/2,

There are two cases to consider:

Case 1: b2 < C.

Necessity: Assume that (A.2) holds. Since
hold. Also,
b2 < ¢ = [2¢c + 2cl/4,
< [2c + 1+ 1/,
= 1+,

from which (A.4) follows.

Sufficiency: Assume that (A.3) and (A.4) hold. Since 7\1

are both complex, I?\l |2 = l?le ¢

Case 2: b2 2 C,

and A , are the zeros of the real quadratic

(A.1)

(A.2)

(A.3)

(A.4)

(A.3) must

and )\2

= |¢|, so that (A.2) holds.

Then )\1 and }\2 are both real. Hence (A.2) is equivalent to

each of the following systems of inequalities:
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2

I S P T R e

L1, (A.5)
b+ B - ol? <, |
(A.6)
+b + 2 - 0% <1,
|b| + % - c)l/2 <1, (A.7)
- %<1 - b,
(A.8)
Ib| <1,
b]% - c <1 -2[p| + |bl%,
(A.9)
Ib| < 1,
Ib] < (1 + c)/2,
(A.10)
Ib| < 1,
Ib] < (1 + ¢)/2,
(A.11)

le] < 1.

Therefore, (A.2) is equivalent to (A,3) and (A.4).

Since (A.1) is only a gquadratic, it was possible to derive (A.3)
and (A.4) directly. When analyzing the stability of more complicated

problems, (A.1l) is replaced by

2 a, A = 0, (A.12)
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while (A.2) is replaced by,
ly\k{ <1, for 1 <k <n. (A.13)

For such problems, when determining conditions upon the coefficients
ak which are equivalent to (A.13), it is necessary to use the general

theorems of Hurwitz or Schur-Cohn (see Marden [5, p. 194]).




[6]
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