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I. Introduction

For the problem of iteratively minimizing a nonlinear functional £
over a real Hilbert space H by gradient-type methods a rather thorough
analysis of the direction problem and the step-length problem has been
given is some generality by a number of authors [1, 2,5,7, 15, 16,17, 201;
to a somewhat lesser extent this has been accomplished for constrained
problems [1, 2, 5,6, 15,20, 21,25]. We shall take some steps in that
direction by analyzing two basic step-length algorithms for general
(feasible) directions and indicating the applicability of these results
to the conditional gradient and variable metric projected gradient methods.

We wish to minimize a real valued Frechet differentiable functional
f over a (often convex) subset C of a Hilbert space } with inner
product <-, -> by an iterative method generating a sequence {xn) )
taken to lie in C although more generality is possible [5, 20, 21, 22].
We shall generally think of the sequence being generated by moving
certain step-lengths along directions pn which point into C and
along which { is non-increasing.

Definition 1.1 A direction sequence p = pn(xn) will be called
n

feasible (for the points Xn in C) if and only if P = x' -x where

n n
' o+ (1-2A)x_ isin C for A in [0,1] and <p ,Vilx ) > 0.
n n n n
We shall prove that, under certain methods of choosing the step-

length "along" P > we have <pn,Vf(Xn) > converging to zero; we

shall then show how this condition can be made useful.



2. Step-length using Lipschitz continuity.

Theorem 2.l: Let f be bounded below on C, VI satisfy

|| 7 £(x) - Vi) || = L|x-y|| for x,y in C, and P, = pn(xn) be

feasible directions. Pick él, 62, 63 all greater than zero and let 'yn

o, llp,lI° 2
liein [min (6, 2% n ), L (53] forall n . Foreach n
-< Vf(xn), pn>

let x' =x +t p where t_ is defined via
n n n n n

v SVEG) P>y

tn = min {1,
2
(R
. , < L - .
and let Xm_l in C satisfy f(xn-H) 5f(xn) + ( B)f(xn) for a fixed
g in (0, t]. Then f(xn) decreases to a limit. If “ pn“ is uniformly
bounded, for example if C 1is bounded, then lim < vf(x ), Py > =
N <
Py Py
if ||p_||— 0 implies < Vi(x ), H>—»o, then lim < Vf(x ), “__.,U> = 0.
n & Py n— Py
Proof:
1 m
5 [H0 ) = )] = H) - f(xn) s
s < VEx), x” -x >+ / <gflx tAtp ) - Vi)t p > dh
‘O
< fo(xn), X =% > +“ t Hp “
L .2
s -t <=V ) p 2t t el

< - vE(xg), Py .
If L=y then tnzl,xn is in C , and

no eI




2
L < <- L e,
p [f(an)—f(xn)]_ vk, p,” [-1+5 <—§7f(xn), p_>
n n
< & - _ Ly < 53L _ -
= < Vf(Xn),Pn>[ l+___2_r}_ ] = - <-Vi(x ) > = 0.

<7f(xp)s Pp>

If however | > tn =y , then X”n is in C and

no el
1 [ ] <‘\7f(Xn): pn>2 L “ nz 2 <~'Vf(Xn),pn>2
— [ f(x Yy-f(x )= > + = ip 0% .
+1 2 4
p U TR | oo e,
<Vi(x )p >° g
< n’ Pn [VnL -y_] £ either
e, 11 2 ’
pn
2
-6,8,L <-Vi(x_ ), p > =0,0,L
.123 “n “nz or 223___ <"Vf(Xn), b >
pn

1
.. L _ < o
In either case ﬁ[f(XnH) f(xn)] < 0 and f(xn) decreases to a limit,

‘- Xn H is bounded, then from the three inequalities

i o | =[x

bounding the decrease in f we obtain a & > 0 such that

r

- > 6 <~
f(x) fx_ . )) Vi(x ) e 2
for r=1 or r =2, which implies lim VE(x ),pn> =0 . Since
N - © n
’n <TE(x ), D>
<Vf(xn) ml > = n’"n_, the final conclusion also follows.
n
el Q.E.D.
Remark If in particular one chooses X .1 SO as to minimize

; ; . , < 1
f(xn+tpn) for t with xn+tpn in C, then certainly f(XnH)" f(xn)

and the theorem applies without explicit use of the Lipschitz constant;



this is also true of course if Xn minimizes f over some simplex such

+1

as that generated by x . Xn+pr1 .  More generally one need

y X s e
n-k n-k+l

only reduce f to nearly the value f(xr1 ); thus if x‘n is itself computed
by some method it need not be computed exactly. Note that the step-size
choice in this theorem has been well analyzed for unconstrained problems

and partially so for constrained problems [, 2,5,7, 20, 21]

3. Step-length using a range function.

The burden of the proof of Theorem 2.1 1is to show that £
"decreases enough, " that is, in such a way as to force <K7f(xn), pn> to
zero. As our second step-length algorithm we discuss a method developed
for unconstrained problems which attains this sufficient decrease more
directly [7, 15, 16, L7]

Definition 3.1 I real valued function d defined on [0, ®) is
called a forcing function if and only if d(t) = 0 whenever t = 0 and

lim d(tn) =0 if and only if lim tn =0 .

Ty OO ey O

We shall determine admissible values of tn in terms of a so-called

range function

f(x) - f(x+tp)

] t; =

9= L P) = TG (%), po

which is continuous at t = 0 if we define g(x,0,p)= L. Givena feasible

sequence p = p_(x_) satisfying, for the moment, e || =1, areal number
n n''n n

l
5 in (O,E] and a forcing function d with d(t) = 5t, we move from Xn to




X as follows. If, for t =1 and %' =x +p_ we find
n+l n n n n

a( < -Vi(xp), pp>)
< '“Vf(Xn)» pn>

|
o~
w

1)

x ,t, >
g(]n npn)

we set X = xn; otherwise find ’tn in (0, 1) satisfying Equation 3.1

and also
d(< -TE(x), P> )
- 2
Finally X rl is any point in C with I(Xn+l) < Bf(xn) + (lmﬁ)f(xn) for

a fixed p in (0,1]. We observe that the algorithm is well defined. Since

—%—t—lzd—iﬂforall t, if we have g(x,l,pn)i’g'g)“

-, 0, =1 L
g(xrl 0 pn) and -

where 2z =< -Vf(xn), pn> , then by the continuity of g(xn, 1, pn) in t and

the fact that :><n+1;pn isin C for t in [0, 1] since P, is a feasible

d(z) d(z ,

direction there exists t_ in (0, 1} with < g(x ,t,p )= L - ) which
n z n n'n z

certainly satisfied Equations 3.1 and 3.2 . We now prove the convergence

of this method, following the proof for the unconstrained case (71 .

Theorem 3.l: Let f be bounded below on C, <yf be uniformly

continuous on C , and an pn(xn) be a feasible direction sequence with

I pn“ - 1. Let d be a forcing function with d(t) = &t for § in (O,“lz“ ].

Let the algorithm described above be applied. Then lim <Vf(xn), pn> =0.

> 0

Proof: Define the reverse modulus of continuity [7]

s(t) = inf {Hx-y“; HVf(x%—Vf(y)HZ t, x,yin CJ .



By the uniform continuity of Vf on C, s isa monotonic decreasing

forcing function. By Equation 3.1, {f(xn)} is debcreasing and

L
5 [£(x) - f(x

n+l n

If infinitely often <-Vf(xn), pn> = £ > 0, we cannot have tn =1

)] =z f(x ) - f(x )= tnd(<—Vf(Xn),pn>) . (3.3)

infinitely often for then, by Equation 3.3, f(xn) is not bounded below.

Thus it must be that tn = 1 does not satisfy Equation 3.1 and hence

tn is in (0, 1). For these n, we write

1l _ o _ . 1y,
f(xn) f(xn) <Vf(xn+>\ntnpn), tnpn> for some )xn in (0,1)

Thus, from Eguation 3.2,

d(<-Vf(Xn), pn>)
<VEx),p.> = lg(xn, by pn) -1
n’’ ¥ n

<Vf(xn+ » toPp) - 'Vf(xn), P> |
Vi(x ), p > l

o Ve + 2t p) - Vi) ||
<-Vix ), b2

Therefore va(anr A EP) - Vf(xn) | = d(<- Vf(xn), p, >) and hence

v

to=flx gx = Irte ll = s Vi o tp ) - Vi) )

nnn

v

s(d(<-Vi(x ), p >))

(3.4)




Hence, using Equation 3.3, we conclude that

v

[£(x ) - fx_, )] 2 £x)~E6") = d(<=VEx ), p >)s(d(<VEx ), P >))

n+l n n

1
B

H

which implies that lim <Vf(xn),pn> 0.

n—s
Q.E.D.
For problems in which C is not the whole space H , that is, in
which there are constraints, the restriction || pn“ = 1 is unrealistic; the
following corollary shows that is is not needed so long as P cannot be

"too small" compared to how "near" one is to a solution.

Corollary 3.1 TUnder the hypotheses of Theorem 3. | above with the

assumption || pn“ = 1 replaced by

b

Dol pn“ > dl( <- Vf(xn), m >) for a forcing function dl ,

P, d(<-Vix ), p )
2) <-Vf(x ), 77> — 0 whenever - 0,
n” ol Ie_ll
Py
it follows that lim <Vf(x), 77> =0.
Lim <V, T

Proof: Under these hypotheses Equation 3.3 for tn = | becomes

1 " B _ R
'B“[f(xn)—f(xn+l)] = f(x )-f(x )= d(&"vf(xn), p ~) = d(< VE(x ),
b
n
>
[onl ~ 1Pl

p P
i -V — I 7 _n_
so that either < f(xn), i pn“ > or || pn” > d1(< f(xn), H an >) tends

to zero. On the other hand, for tn in (0, 1), Equation 3.4 becomes



8

d(<Vi(x ) p 2
lleal=e e

and thereby

d(<-Vi(x ), p ) A(<-T£(x_), p_>)
1 n n n n
g Libe )ty = e ) I,

d(<-Vi(x, ), p )
which implies that “p “ tends to zero; the conclusion follows
n

by 2) above.

Corollary 3.2 Under the assumptions on f, pn, and C in

Theorem 3.1 and Corollary 3.1, if Xn+l is chosen such that

f(an) = min  f(x +t pn), the conclusions of that theorem and corollary
0=t=1
are valid.
Remark. i) The assumption 2) in Corollary 3.1 is valid if for
instance n pnn is bounde‘d"r,(_above or d(t) = gt for some q # 0. 1ii) If

n pnn is bounded then also  lim <Vf(xn), pn> =0 .

[l O©

The algorithm above is not computational in the sense that it may
well be very difficult to locate a tn in (0,1) satisfying Equations 3. l ~and
3.2 when t = | does not satisfy Equation 3.1. A known algorithm [3,5,7]
for handling this problem for unconstrained minimization fortunately carries

over easily and yields a much more valuable computational scheme.




Theorem 3.2: Under the hypotheses of Theorem 3.1 and Corollary

0 1 2
3.1, tn may be chosen as the first of the numbers o , o , o , ...

satisfying Equation 3.1 for a fixed o in (0,1) and then

p
: _n -
lim <Vf(Xn), “ pn“ > =0 .

N =y ©

Proof: We note first that since oc] tends to zero a first such value

oLJ exists. As in the proofs of the previous theorem and corollary, the case

P
t_ =1 is easily handled to show  lim <Vi(x ), -—“Jl—“> = 0 for those
N — © n pl’l
values of n; we consider the case in which tn = q], jz L. Thus we have
n j o ]-]_ ) i .
x =x +qo p; let x =x +a P Since o is the first value
n n n n n =

satisfying Equation 3.1, we have

Therefore

We can write

) - fx ) = VIR x ot (1 -2 )x R >

for some >\n in (0, 1). This leads to

<R X (1-n x> <A<V ) ).
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Recalling that d(t) £ st for some § in (O,';?], we write

I an nvmn x”n' + (1 ~>\n)x';1)-Vf(xn) =< Vf()xnx';'l+(l~>\n)x';1)—Vf(xn), p_>

<=vix ), p >-<-VEQR x o+ (L-2 x>

v

v

<Vix ), p > - A(<VEGe ), P >)

i\

(-9 <~Vf(xn), pn> .

Defining s as the reverse modulus of continuity of Vi as in the proof of

Theorem 3.1, we then have

“x"n - Xn“ = a“xunl - Xn“ = a“xnx”n'-k (L-A)x - Xn“

P

2 as((l-s) Vi), I “>) .
I

From this and Equation 3.1 we have
Lo v PPN B
5 [f(xn) f<Xn+l” > f(xn) f(x n) > o d(< f(xn), pn>)

d(<_vf(xn) ’ pn> )

> ra ol TR
Py
from which it follows that lim <Vf(x ), ———‘““> =0 .
0 n u prl

Q.E.D.

Using the step-length algorithms above, we conclude always that

Pn
- = ' <Vf(x ), -— > = 0; for these to be useful
lim <Vf(xn),pn> 0 or lim ( n) “p “ s

1) wep OO T g OO n

results, the condition (for example) "<Vi, p> = 0 in the limit" should

somehow be related to a necessary or sufficient condition for a minimizing




Ll

point. In unconstrained problems for example, one can take p_ = --vf(xn)
in which case the limiting condition Vi(x) = 0 is a necessary optimality
condition. It appears in fact that any reasonable optimality condition of
the form <Vf,p> = 0 can be used to generate direction sequences for which
the above step-length algorithms are useful. We consider two well known

methods.

4. Conditional gradients.

Suppose that C is a convex set. Then a well known necessary
condition for x* to minimize f over C, one that is sufficient if f
is convex, is that <x-x*, TVi(x*)> = 0 forall x in C, thatis, every
direction into C 1is a direction of increase for f . If one has a point X
which does not satisfy this condition, then it is reasonable to seek the X‘n
which most violates this condition and then take pn = X‘n - xn; this method

is well-known [5,6,9,10,20,25]. Thus we seek X|n such that

<ViE(x ), < -x > = inf <Vif(x ), x-x_> + e_ for some positive €

n n ) n n n n
x in C .

tending to zero. If C s bounded we can always find xn; if C is

bounded and norm closed as well as convex then we can take En =0 if

desired, although this causes unnecessary computation.

Proposition 4.1 Let f be convex, bounded below on the bounded

. : c : b S
convex set C, and attain its minimum at some point x° in C. Let Xn

be a sequence in C such that <% f(xn), pn> tends to zero, where an Xn"

X

n



J . . < ' I < . -
and Xn satisfies Vf(xn),xn Xn> Xlrlnrf1 - <Vf(xn),x xn> + En for

a sequence of positive En tending to zero. Then Xn is @ minimizing
sequence, that is, lim f(xn) = f(x™).
Il = 0

Proof: We have, using the convexity of f,

_ sk LN
0= f(xn) f(x™) = <Vf(xn), X XD

A

<Vf(xn), X~ Xn> + <\Vf(xn), xn—xn> - <L'§7f(xn), X —xn>

1A

<—vf(xn), pn> toe

which tends to zero.

Q.E.D

Remark. It is a simple matter to add hypotheses to f or C which
guarantee that any minimizing sequence must in fact converge to =¥
[5,20,21,22]. For example, this is true if f is a weakly lower semi-
continuous uniformly quasi~convex functional [ 5, 20, 22].

Thus we clearly may apply the step-size algorithm of Theorem 2.1.

Corollary 4.1: Let f be convex, bounded below on the bounded

convex set C , and attain its minimum over C at x* ., Let f satisfy
| 7E(x) Viy)| = L|x-y|| for x vy in C, and for each x such that

for some x in C <WVi(x ), x-x_> <0 let x  satisfy <Vi(x ),xl -x > =
n n n n’“n n

inf <Vi(x ), x - x_ > +¢e_ for a sequence of positive € converging to
n n n n
x € C
]
zero; set pn = Xn - xn . If the minimization algorithm of theorem 2.1

is then applied, {xn} is a minimizing sequence.
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To use the algorithms of Theorem 3.1 and 3.2 we note that if

|V£|| is bounded on C then lim “pn“ = 0 implies

n-—

lim < vf(xn), pn> = 0 and hence {xn} is a minimizing sequence.
N~ ®©
If however || an is bounded away from zero then for those n the

forcing function dl in Corollary 3.1 exists and we can argue as in that

corollary. Thus we conclude

Corollary 4.2: Let f be convex, bounded below on the bounded

convex set C, and attain its minimum over C at x*; let YV be
uniformly continuous and || Vf(x)|| be uniformly bounded on C . Then

the step-size algorithms of Theorems 3.1 and 3.2 applied to the direction
algorithm of Corollary 4.1 vyields a minimizing sequence {xn} for f over

C.

5. Projected gradients.

The steepest descent method for unconstrained problems, in which
pm = -"Vf(.xn), has been a popular method for many years, for some appli-
cations undeservedly. For constrained problems that direction need not
point into the constraint set C so it is not directly applicable. Perhaps
the most successful way of handling this has been to "project” the
direction onto C ; more precisely one proceeds in the direction pn = X'n - xn
where X'n is the orthogonal projection onto C of X T oag Vf(xn) for
some scalar o > 0 . This is the well known gradient projection method

[23, 24]. In view of the numerical evidence that so-called variable metric

methods are much better than steepest descent for unconstrained problems [ 8]
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and the growing interest in such methods for constrained problems [11,12, 13, 14],
we consider an analogous variable metric projected gradient method. We
suppose that {]—\n} is uniformly bounded, uniformly positive definite family

of self-adjoint linear operators on } , thatis, that there are m > 0, M <
such that m<x, x> = <Anx, x> < M<x,x> forall x in }. Foreach n,

let Xln be the projection, with respect to the variable metric <., An- >,

of x -a A_l Vi(x_) onto C; that is, % minimizes
n n n n n
-1 | -1 |
<x-—(xn~o(,nA nVf(;x:n)), An[x (xn Ol.nA an(xn))] > over x in C.

‘ -1
If C 1is norm closed and convex a unique such Xn - Otn A N Vf(xn), we
know that for all x in C we must have

<x-=x b > 0. Bl
XX An(xn Wn)> (5.1)

"

X in this inequality, we obtain

If we set x

02 <x -%x , A (w -x' )> = <x -x' A (wo—x )0 +<x -x ,A (x -x' y>
n n "n n’'n n "n " n ' n'n n n"n"nn

and since w_-x_ = -0 A*l Vi(x ) we obtain
n n n n n

< _ ' - < - B 1 _ '
e OLan(Xn)> <xn X An(xn Xn)>
or
- S s < )
ana Vf(xn), pn> = «pn, An pn> . (5.2)
Therefore the direction sequence is feasible. We now show that the con-

dition lim <Vf(xn), pn> = 0 is useful.

n-— ©

Theorem 5.1: Let f be convex, bounded below on the norm closed,

bounded, convex set C , and attain its minimum over C at x* . Let
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Xn be a sequence in C such that the projected gradient directions pn
isf i < s =0 a = 0. i
satisfy lim Vf(xn) pn> and o = € > Then {xn) is a

L >
minimizing sequence.,

Proof: We write

sk

0= f(x) - £f(x™) = <Vix ), x_ - x>

< < -x < - %
Vf(xn),xn Xn> + Vf(xn), X "X >
“"1 i Sk L]
= <~ 1 <x - - x" =
Vf(xn),pn>+ - X OLnA nVf(xn) X An(x xn)>
1 . ' £ sk
+ 5 <xn- X An(xn~- X )2
n
]. ] ¥ ot
< <- —— <y - ¥ - |
< vf(xn), pn>+ o <xn X s An(xn x")> by Equation 5.
Therefore
M ¥ x| \
0= f(x ) -f(x™) = <-Vix ),p >+ 1T [<-Vix ), p >]°
n n n 82 Mg n n

which tends to zero.

Q.E.D.
Thus it is reasonable to consider the application of our step-length
algorithms to such direction sequences. We consider first the method of

Theorem 2.1 .

Corollary 5.1: Let f be bounded below on the norm closed,

bounded, convex set C, and let ||vi(x) - Vi(y)| = L||x~y| for x,vy in

] 1 . . .
C. Let p =x =-x_ where x_minimizes <x-w ,A (x-w_)> for
n n n n n’ n n
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xin C with w = x_ -0 A_l Uf(x ) with {A_} as described above,
n n n. n n n

iLe., m<x,x>< <A x,x> < M<x,x>. Set x =X +t p in C
n n n nn

and let X be any point in C such that f(xn_H) < Bf(x n) +(1- B)f(xn)

for fixed B in (0,1]. If there exist positive constants €,, €, such that

0<eg, =t_ =

m -
1 n - [ 82],1:51,
n

LY

N/

then <\—Vf(xn),pn> tends to zero. If f is convex and anz £ 0

3

then {xn) is a minimizing sequence.

Proof: We seek to use Theorem 2.1. We define

' 2
AN
“/n =
<"Vf(xn), pn>

and immediately see, since t'n < 1, that our t'n equals the tn of
Theorem 2.l; hence, if Yy satisfies the hypotheses of that theorem,

we can conclude that <vf(xn), pn> tends to zero. For that question

we have, by Equation 5.2,

N N

2
= t = —p = -
- < 2
n < Vf(xn), pn> n P An pn> n m L

R

as required. For the lower bound,

TN eI

nT <Ufx )p.> tno Fl <-Vi(x ),p_>
n’n n’ ' n

as required. The final conclusions follow from Theorem 5. 1.




L

t =1 forall n,

- £
2’ n

ey

Remark: If we take 0 < El < an <

X = x" , and A =1 we have the method presented in [20]. The
n+l n n

problem with that version is computational; one must know the value of
I so far as the first theorem derived for the method stated. Our corollary
shows that any point along the gradient direction, so long as OLn is bounded

above and away from zero, may be used if X is chosen well; in particular,

+1

if f(x ) = min f(xn+tpn) the method works without knowledge of L .

1
nt ost=<1

Arguing as we did prior to Corollary 4.2 concerning the algorithms

of Theorems 3.l and 3.2, we easily prove the following.

Corollary 5.2: Let f be convex and bounded below on the norm

closed, bounded, convex set C; let vf be uniformly continuous and
“Vf(x) | be uniformly bounded on C . Then the step-size algorithms of
Theorems 3.1 and 3.2 applied to the direction algorithm of Corollary 5.1
yields a minimizing sequence {xn} for f over C .

We note that our projected gradient method for An =1, H= IR!Z , and

C a polyhedral set, is not quite the same as the gradient projection method
originally described in [23, 24] since that requires that x'n be the pro-

jection onto one of the faces to which Xn belongs or, in some implementa-

tions [ 4], onto a small neighborhood of X in C . The computational
versions of gradient projection in use apply a special technique near edges

of C which turns out to be essentially equivalent to bounding OLn away
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from zero but keeping it small enough so that the projection is always very
near xn . Thus it is clear that a simple convergence proof for Rosen's
original computational gradient projection method can be fashioned in this
way from our results above; this has been done [19]. If one however does
not take an small, one needs a good, efficient method for projection, in
an arbitrary quadratic metric, onto a full polyhedral set. Such an algorithm
has been brought to our attention [18] and raises the possibility of using
larger onn which may well be more powerful than the original gradient

projection approach, at least far away from the solution.
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