COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN 1210 West Dayton Street Madison, Wisconsin 53706

CONVERGENCE OF SOME GRADIENT-LIKE METHODS FOR CONSTRAINED MINIMIZATION

by

James W. Daniel

Computer Sciences Technical Report #65

July 1969

Prepared under Contract Number N00014-67-A-0128-0004 at the University of Wisconsin. Reproduction in whole or in part is permitted for any purpose of the United States Government.

			SEASON AND SEASON SEASO
			THE PROPERTY OF THE PROPERTY O
	· ·		
			AND ADDRESS OF THE PROPERTY OF

1. Introduction

For the problem of iteratively minimizing a nonlinear functional of over a real Hilbert space of the direction problem and the step-length problem has been given is some generality by a number of authors [1, 2, 5, 7, 15, 16, 17, 20]; to a somewhat lesser extent this has been accomplished for constrained problems [1, 2, 5, 6, 15, 20, 21, 25]. We shall take some steps in that direction by analyzing two basic step-length algorithms for general (feasible) directions and indicating the applicability of these results to the conditional gradient and variable metric projected gradient methods.

We wish to minimize a real valued Frechet differentiable functional form over a (often convex) subset C of a Hilbert space \mathbb{R} with inner product $\langle \cdot, \cdot \rangle$ by an iterative method generating a sequence $\{x_n\}$, taken to lie in C although more generality is possible [5, 20, 21, 22]. We shall generally think of the sequence being generated by moving certain step-lengths along directions p_n which point into C and along which form is non-increasing.

We shall prove that, under certain methods of choosing the step-length "along" p_n , we have $< p_n, \nabla f(x_n) >$ converging to zero; we shall then show how this condition can be made useful.

2. Step-length using Lipschitz continuity.

$$\begin{split} & \underline{\text{Theorem 2.1:}} \quad \text{Let} \quad f \quad \text{be bounded below on } C \,, \, \, \nabla f \, \, \text{satisfy} \\ & \| \nabla f(x) - \nabla f(y) \| \leq L \| \, x - y \| \quad \text{for } \, x, y \, \text{ in } \quad C \,, \, \text{and } \, p_n = p_n(x_n) \, \text{ be} \\ & \text{feasible directions.} \quad \text{Pick } \delta_1, \delta_2, \delta_3 \, \, \text{all greater than zero and let } \gamma_n \\ & \text{lie in } \left[\min \left(\delta_1, \frac{\delta_2 \| p_n \|^2}{- \langle \nabla f(x_n), p_n \rangle} \right) \,, \, \, \frac{2}{L} - \delta_3 \right] \, \, \text{for all } \, n \,. \, \, \text{For each } \, n \\ & \text{let } \, x_n'' = x_n + t_n \, p_n \, \, \text{where} \quad t_n \, \, \text{is defined via} \end{split}$$

$$t_n = \min (1, \frac{\gamma_n < -\nabla f(x_n), p_n >}{\|p_n\|^2})$$

and let \mathbf{x}_{n+1} in C satisfy $f(\mathbf{x}_{n+1}) \leq \beta f(\mathbf{x}_n'') + (1-\beta)f(\mathbf{x}_n)$ for a fixed β in (0,1]. Then $f(\mathbf{x}_n)$ decreases to a limit. If $\|\mathbf{p}_n\|$ is uniformly bounded, for example if C is bounded, then $\lim_{n \to \infty} \langle \nabla f(\mathbf{x}_n), \mathbf{p}_n \rangle = 0$. If $\|\mathbf{p}_n\| \to 0$ implies $\langle \nabla f(\mathbf{x}_n), \frac{\mathbf{p}_n}{\|\mathbf{p}_n\|} \rangle \to 0$, then $\lim_{n \to \infty} \langle \nabla f(\mathbf{x}_n), \frac{\mathbf{p}_n}{\|\mathbf{p}_n\|} \rangle = 0$.

Proof:

$$\frac{1}{\beta} [f(x_{n+k}) - f(x_{n})] \leq f(x_{n}^{"}) - f(x_{n}) \leq
\leq \langle \nabla f(x_{n}), x_{n}^{"} - x_{n} \rangle + \int_{0}^{1} \langle \nabla f(x_{n} + \lambda t_{n} p_{n}) - \nabla f(x_{n}), t_{n} p_{n} \rangle d\lambda
\leq \langle \nabla f(x_{n}), x_{n}^{"} - x_{n} \rangle + \frac{L}{2} t_{n}^{2} \|p_{n}\|^{2}
\leq -t_{n} \langle -\nabla f(x_{n}), p_{n} \rangle + \frac{L}{2} t_{n}^{2} \|p_{n}\|^{2} .$$

If
$$l \le \gamma_n \frac{\langle -\nabla f(\mathbf{x}_n), p_n \rangle}{\|\mathbf{p}_n\|^2}$$
 then $t_n = l$, \mathbf{x}''_n is in C , and

$$\begin{split} \frac{1}{\beta} \left[f(\mathbf{x}_{n+1}) - f(\mathbf{x}_n) \right] &\leq \langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle \left[-1 + \frac{L}{2} \, \frac{\left\| \, \mathbf{p}_n \, \right\|^2}{\left\langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle} \, \right] \\ &\leq \langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle \left[-1 + \frac{L\gamma_n}{2} \, \right] \leq \frac{\delta_3 L}{2} \, \left\langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle \leq 0 \, . \end{split}$$
 If however $1 > t_n = \gamma_n \, \frac{\langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle}{\left\| \, \mathbf{p}_n \, \right\|^2} \, , \quad \text{then } \mathbf{x}''_n \text{ is in } \mathbf{C} \text{ and} \\ \frac{1}{\beta} \left[f(\mathbf{x}_{n+1}) - f(\mathbf{x}_n) \right] \leq \gamma_n \, \frac{\langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle^2}{\left\| \, \mathbf{p}_n \, \right\|^2} + \frac{L}{2} \, \left\| \, \mathbf{p}_n \, \right\|^2 \, \gamma_n^2 \, \frac{\langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle^2}{\left\| \, \mathbf{p}_n \, \right\|^4} \\ \leq \frac{\langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle^2}{\left\| \, \mathbf{p}_n \, \right\|^2} \, \left[\, \frac{\gamma_n^2 \, L}{2} \, - \gamma_n \right] \leq \text{ either} \\ - \frac{\delta_1 \delta_3 L}{2} \, \frac{\langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle^2}{\left\| \, \mathbf{p}_n \, \right\|^2} \, \text{ or } \frac{-\delta_2 \delta_3 L}{2} \, \langle -\nabla f(\mathbf{x}_n), \, \mathbf{p}_n \rangle \, . \end{split}$

In either case $\frac{1}{\beta}[f(x_{n+1}) - f(x_n)] \le 0$ and $f(x_n)$ decreases to a limit. If $\|p_n\| = \|x_n' - x_n\|$ is bounded, then from the three inequalities bounding the decrease in f we obtain a $\delta > 0$ such that

$$f(x_n) - f(x_{n+1}) \ge \delta \le -\nabla f(x_n), p_n >^r$$
,

for r = 1 or r = 2, which implies $\lim_{n\to\infty} \langle -\nabla f(x_n), p_n \rangle = 0$. Since

$$\langle \! \bigtriangledown f(\mathbf{x}_n) \frac{\mathbf{p}_n}{\parallel \mathbf{p}_n \parallel} \rangle = \frac{\langle \! \bigtriangledown f(\mathbf{x}_n), \mathbf{p}_n \rangle}{\parallel \mathbf{p}_n \parallel} \text{ , the final conclusion also follows.}$$
 Q.E.D.

Remark If in particular one chooses x_{n+1} so as to minimize $f(x_n + t p_n) \text{ for } t \text{ with } x_n + t p_n \text{ in } C \text{, then certainly } f(x_{n+1}) \leq f(x_n'')$ and the theorem applies without <u>explicit</u> use of the Lipschitz constant;

this is also true of course if x_{n+1} minimizes f over some simplex such as that generated by x_{n-k} , x_{n-k+1} , ..., x_n+p_n . More generally one need only reduce f to nearly the value $f(x_n)$; thus if x_n is itself computed by some method it need not be computed exactly. Note that the step-size choice in this theorem has been well analyzed for unconstrained problems and partially so for constrained problems [1, 2, 5, 7, 20, 21].

3. Step-length using a range function.

The burden of the proof of Theorem 2.1 is to show that f "decreases enough," that is, in such a way as to force $\langle \nabla f(x_n), p_n \rangle$ to zero. As our second step-length algorithm we discuss a method developed for unconstrained problems which attains this sufficient decrease more directly [7,15,16,17].

Definition 3.1 A real valued function d defined on $[0,\infty)$ is called a forcing function if and only if $d(t) \ge 0$ whenever $t \ge 0$ and $\lim_{n \to \infty} d(t_n) = 0 \quad \text{if and only if} \quad \lim_{n \to \infty} t_n = 0.$

We shall determine admissible values of \ensuremath{t} in terms of a so-called range function

$$g(x, t, p) \equiv \frac{f(x) - f(x+tp)}{-t < \nabla f(x), p >}$$

which is continuous at t = 0 if we define $g(x,0,p) \equiv 1$. Given a feasible sequence $p_n \equiv p_n(x_n)$ satisfying, for the moment, $\|p_n\| = 1$, a real number δ in $(0,\frac{1}{2}]$ and a forcing function d with $d(t) \leq \delta t$, we move from x_n to

 x_{n+1} as follows. If, for $t_n = 1$ and $x_n' = x_n + p_n$ we find

$$g(x_n, t_n, p_n) \ge \frac{d(\langle -\nabla f(x_n), p_n \rangle)}{\langle -\nabla f(x_n), p_n \rangle}$$
(3.1)

we set $x_n'' = x_n'$; otherwise find t_n in (0,1) satisfying Equation 3.1 and also

$$|g(x_n, t_n, p_n) - 1| \ge \frac{d(\langle -\nabla f(x_n), p_n \rangle)}{\langle -\nabla f(x_n), p_n \rangle}$$
(3.2)

Finally x_{n+1} is any point in C with $f(x_{n+1}) \leq \beta f(x_n'') + (1-\beta) f(x_n)$ for a fixed β in (0,1]. We observe that the algorithm is well defined. Since $g(x_n,0,p_n)=1$ and $1-\frac{d(t)}{t}\geq \frac{d(t)}{t}$ for all t, if we have $g(x_n,1,p_n)<\frac{d(z)}{z}$ where $z=\langle -\nabla f(x_n),p_n\rangle$, then by the continuity of $g(x_n,t,p_n)$ in t and the fact that x_n+tp_n is in C for t in [0,1] since p_n is a feasible direction there exists t_n in (0,1) with $\frac{d(z)}{z}\leq g(x_n,t_n,p_n)\leq 1-\frac{d(z)}{z}$ which certainly satisfied Equations 3.1 and 3.2. We now prove the convergence of this method, following the proof for the unconstrained case [7].

Theorem 3.1: Let f be bounded below on C, ∇f be uniformly continuous on C, and $p_n \equiv p_n(x_n)$ be a feasible direction sequence with $\|p_n\| = 1$. Let d be a forcing function with $d(t) \leq \delta t$ for δ in $(0, \frac{1}{2}]$. Let the algorithm described above be applied. Then $\lim_{n \to \infty} \langle \nabla f(x_n), p_n \rangle = 0$.

Proof: Define the reverse modulus of continuity [7]

$$s(t) = \inf \{ \|x-y\|; \|\nabla f(x)-\nabla f(y)\| \ge t, x, y \text{ in } C \}$$
.

By the uniform continuity of ∇f on C, s is a monotonic decreasing forcing function. By Equation 3.1, $\{f(x_n)\}$ is decreasing and

$$\frac{1}{6} [f(x_n) - f(x_{n+1})] \ge f(x_n) - f(x_n'') \ge t_n d((-\nabla f(x_n), p_n)). \quad (3.3)$$

If infinitely often $\langle -\nabla f(x_n), p_n \rangle \ge \varepsilon > 0$, we cannot have $t_n = 1$ infinitely often for then, by Equation 3.3, $f(x_n)$ is not bounded below. Thus it must be that $t_n = 1$ does not satisfy Equation 3.1 and hence t_n is in (0,1). For these n, we write

$$f(x_n'') - f(x_n) = \langle \nabla f(x_n + \lambda_n t_n p_n), t_n p_n \rangle$$
 for some λ_n in (0,1).

Thus, from Equation 3.2,

$$\begin{split} \frac{\mathrm{d}(<-\nabla f(\mathbf{x}_n), \mathbf{p}_n^>)}{<-\nabla f(\mathbf{x}_n), \mathbf{p}_n^>)} &\leq & \left| g(\mathbf{x}_n, \mathbf{t}_n, \mathbf{p}_n) - 1 \right| \\ &\leq & \left| \frac{<\nabla f(\mathbf{x}_n + \lambda_n \mathbf{t}_n \mathbf{p}_n) - \nabla f(\mathbf{x}_n), \mathbf{p}_n^>}{<\nabla f(\mathbf{x}_n), \mathbf{p}_n^>} \right| \\ &\leq & \frac{\left\| \nabla f(\mathbf{x}_n + \lambda_n \mathbf{t}_n \mathbf{p}_n) - \nabla f(\mathbf{x}_n) \right\|}{<-\nabla f(\mathbf{x}_n), \mathbf{p}_n^>} \end{split}$$

Therefore $\|\nabla f(x_n + \lambda_n t_n p_n) - \nabla f(x_n)\| \ge d(\langle -\nabla f(x_n), p_n \rangle)$ and hence

$$t_{n} = \|x_{n+1} - x_{n}\| \ge \|\lambda_{n} t_{n} p_{n}\| \ge s(\|\nabla f(x_{n} + \lambda_{n} t_{n} p_{n}) - \nabla f(x_{n})\|)$$

$$\ge s(d(\langle -\nabla f(x_{n}), p_{n} \rangle))$$
(3.4)

Hence, using Equation 3.3, we conclude that

$$\frac{1}{\beta} \big[f(\mathbf{x}_n) - f(\mathbf{x}_{n+1}) \big] \ge f(\mathbf{x}_n) - f(\mathbf{x}_n'') \ge d(\langle -\nabla f(\mathbf{x}_n), \mathbf{p}_n \rangle) s(d(\langle -\nabla f(\mathbf{x}_n), \mathbf{p}_n \rangle))$$
 which implies that
$$\lim_{n \to \infty} \langle \nabla f(\mathbf{x}_n), \mathbf{p}_n \rangle = 0.$$

Q.E.D.

For problems in which C is not the whole space $\mathbb N$, that is, in which there are constraints, the restriction $\|\mathbf p_n\|=1$ is unrealistic; the following corollary shows that is is not needed so long as $\mathbf p_n$ cannot be "too small" compared to how "near" one is to a solution.

Corollary 3.1 Under the hypotheses of Theorem 3.1 above with the assumption $\|\mathbf{p}_{\mathbf{n}}\|=1$ replaced by

1)
$$\|\mathbf{p}_n\| \ge d_1(<-\nabla f(\mathbf{x}_n), \frac{\mathbf{p}_n}{\|\mathbf{p}_n\|}>)$$
 for a forcing function d_1 ,

2)
$$\langle -\nabla f(\mathbf{x}_n), \frac{\mathbf{p}_n}{\|\mathbf{p}_n\|} \rangle \to 0$$
 whenever $\frac{d(\langle -\nabla f(\mathbf{x}_n), \mathbf{p}_n \rangle)}{\|\mathbf{p}_n\|} \to 0$,

it follows that $\lim_{n \to \infty} \langle \nabla f(\mathbf{x}_n), \frac{\mathbf{p}_n}{\|\mathbf{p}_n\|} \rangle = 0$.

<u>Proof:</u> Under these hypotheses Equation 3.3 for $t_n = 1$ becomes

$$\begin{split} \frac{1}{\beta} \big[f(\mathbf{x}_n) - f(\mathbf{x}_{n+1}) \big] &\geq f(\mathbf{x}_n) - f(\mathbf{x}_n'') \geq d(< -\nabla f(\mathbf{x}_n), p_n >) = d(< -\nabla f(\mathbf{x}_n), p_n >) \\ \frac{p_n}{\|p_n\|} &\geq \|p_n\| \, \end{split}$$

so that either $\langle -\nabla f(\mathbf{x}_n), \frac{\mathbf{p}_n}{\|\mathbf{p}_n\|} \rangle$ or $\|\mathbf{p}_n\| \ge d_1(\langle -\nabla f(\mathbf{x}_n), \frac{\mathbf{p}_n}{\|\mathbf{p}_n\|} \rangle)$ tends to zero. On the other hand, for t_n in (0,1), Equation 3.4 becomes

$$t_n \| p_n \| \ge s \left(\frac{d(<-\nabla f(x_n), p_n>)}{\| p_n \|} \right)$$

and thereby

$$\frac{1}{\beta} \left[f(x_n) - f(x_{n+1}) \right] \ge s \left(\frac{d(\langle -\nabla f(x_n), p_n \rangle)}{\|p_n\|} \right) \frac{d(\langle -\nabla f(x_n), p_n \rangle)}{\|p_n\|}$$

which implies that $\frac{d(<-\nabla f(x_n),p_n>)}{\|p_n\|}$ tends to zero; the conclusion follows by 2) above.

Q.E.D.

Corollary 3.2 Under the assumptions on f, p, and C in Theorem 3.1 and Corollary 3.1, if x_{n+1} is chosen such that $f(x_{n+1}) = \min_{0 \le t \le 1} f(x_n + t p_n), \text{ the conclusions of that theorem and corollary are valid.}$

Remark. i) The assumption 2) in Corollary 3.1 is valid if for instance $\|p_n\|$ is bounded above or d(t) = qt for some $q \neq 0$. ii) If $\|p_n\|$ is bounded then also $\lim_{n \to \infty} \langle \nabla f(x_n), p_n \rangle = 0$.

The algorithm above is not computational in the sense that it may well be very difficult to locate a t_n in (0,1) satisfying Equations 3.1 and 3.2 when $t_n = 1$ does not satisfy Equation 3.1. A known algorithm [3,5,7] for handling this problem for unconstrained minimization fortunately carries over easily and yields a much more valuable computational scheme.

Theorem 3.2: Under the hypotheses of Theorem 3.1 and Corollary 3.1, t_n may be chosen as the first of the numbers α^0 , α^1 , α^2 ,... satisfying Equation 3.1 for a fixed α in (0,1) and then

$$\lim_{n \to \infty} \langle \nabla f(x_n), \frac{p_n}{\|p_n\|} \rangle = 0.$$

Proof: We note first that since α^j tends to zero a first such value α^j exists. As in the proofs of the previous theorem and corollary, the case $t_n=1$ is easily handled to show $\lim_{n\to\infty} \langle \nabla f(x_n), \frac{p_n}{\|p_n\|} \rangle = 0$ for those values of n; we consider the case in which $t_n=\alpha^j$, $j\geq 1$. Thus we have $x_n''=x_n+\alpha^j p_n$; let $x_n'''\equiv x_n+\alpha^{j-1} p_n$. Since α^j is the first value satisfying Equation 3.1, we have

$$f(x_n) - f(x_n^{(i)}) \le \alpha^{j-1} d(\le \nabla f(x_n), p_n \ge)$$

$$f(x_n) - f(x''_n) \ge \alpha^j d(\langle -\nabla f(x_n), p_n \rangle)$$
.

Therefore

$$f(x_n^n) - f(x_n^{(i)}) \le (1 - \alpha) \alpha^{j-1} d(\le -\nabla f(x_n), p_n \ge)$$
.

We can write

$$f(x_n'') - f(x_n'') = \langle \nabla f(\lambda_n x_n'') + (1 - \lambda_n) x_n'' \rangle, x_n'' - x_n'' \rangle$$

for some λ_n in (0, 1). This leads to

$$<-\nabla f(\lambda_n x_n^{\prime\prime\prime} + (1-\lambda_n)x_n^{\prime\prime}), p_n> < d(<-\nabla f(x_n), p_n>).$$

Recalling that $d(t) \le \delta t$ for some δ in $(0, \frac{1}{2}]$, we write

$$\begin{split} \| \, \mathbf{p}_n \| & \| \nabla \mathbf{f}(\lambda_n \, \mathbf{x}_n^{\prime\prime\prime} + (1 - \lambda_n) \mathbf{x}_n^{\prime\prime}) - \nabla \mathbf{f}(\mathbf{x}_n) \| \geq & \langle \nabla \mathbf{f}(\lambda_n \, \mathbf{x}_n^{\prime\prime\prime} + (1 - \lambda_n) \mathbf{x}_n^{\prime\prime}) - \nabla \mathbf{f}(\mathbf{x}_n), \, \mathbf{p}_n \rangle \\ & \geq & \langle -\nabla \mathbf{f}(\mathbf{x}_n), \, \mathbf{p}_n \rangle - \langle -\nabla \mathbf{f}(\lambda_n \, \mathbf{x}_n^{\prime\prime\prime} + (1 - \lambda_n) \mathbf{x}_n^{\prime\prime\prime}), \, \mathbf{p}_n \rangle \\ & \geq & \langle -\nabla \mathbf{f}(\mathbf{x}_n), \, \mathbf{p}_n \rangle - \, \mathrm{d}(\langle -\nabla \mathbf{f}(\mathbf{x}_n), \, \mathbf{p}_n \rangle) \\ & \geq & \langle 1 - \delta \rangle \, \langle -\nabla \mathbf{f}(\mathbf{x}_n), \, \mathbf{p}_n \rangle \, \, . \end{split}$$

Defining s as the reverse modulus of continuity of ∇f as in the proof of Theorem 3.1, we then have

$$\begin{aligned} \| \mathbf{x}_{n}^{"} - \mathbf{x}_{n} \| &= \alpha \| \mathbf{x}_{n}^{"} - \mathbf{x}_{n} \| \geq \alpha \| \lambda_{n} \mathbf{x}_{n}^{"} + (1 - \lambda_{n}) \mathbf{x}_{n}^{"} - \mathbf{x}_{n} \| \\ &\geq \alpha \, s(\, (1 - \delta) \, \langle -\nabla f(\mathbf{x}_{n}), \, \frac{\mathbf{p}_{n}}{\| \mathbf{p}_{n} \|} \geq) \, \, . \end{aligned}$$

From this and Equation 3.1 we have

$$\begin{split} \frac{1}{\beta} \big[f(\mathbf{x}_n) - f(\mathbf{x}_{n+1}) \big] &\geq f(\mathbf{x}_n) - f(\mathbf{x}_n'') \geq \alpha^j \, \mathrm{d}(\langle -\nabla f(\mathbf{x}_n), \mathbf{p}_n \rangle) \\ &\geq \|\mathbf{x}_n'' - \mathbf{x}_n\| \, \frac{\mathrm{d}(\langle -\nabla f(\mathbf{x}_n), \mathbf{p}_n \rangle)}{\|\mathbf{p}_n\|} \end{split}$$
 from which it follows that
$$\lim_{n \to \infty} \langle \nabla f(\mathbf{x}_n), \frac{\mathbf{p}_n}{\|\mathbf{p}_n\|} \rangle = 0 \; .$$

Q.E.D.

Using the step-length algorithms above, we conclude always that $\lim_{n\to\infty} \langle \nabla f(x_n), p_n \rangle = 0 \text{ or } \lim_{n\to\infty} \langle \nabla f(x_n), \frac{p_n}{\|p_n\|} \rangle = 0; \text{ for these to be useful results, the condition (for example) "} \langle \nabla f, p \rangle = 0 \text{ in the limit" should somehow be related to a necessary or sufficient condition for a minimizing}$

point. In unconstrained problems for example, one can take $p_n = -\nabla f(x_n)$ in which case the limiting condition $\nabla f(x) = 0$ is a necessary optimality condition. It appears in fact that any reasonable optimality condition of the form $\langle \nabla f, p \rangle = 0$ can be used to generate direction sequences for which the above step-length algorithms are useful. We consider two well known methods.

4. Conditional gradients.

Suppose that C is a convex set. Then a well known necessary condition for x^* to minimize f over C, one that is sufficient if f is convex, is that $\langle x-x^*, \nabla f(x^*) \rangle \geq 0$ for all x in C, that is, every direction into C is a direction of increase for f. If one has a point x_n which does not satisfy this condition, then it is reasonable to seek the x_n' which most violates this condition and then take $p_n = x_n' - x_n$; this method is well-known [5,6,9,10,20,25]. Thus we seek x_n' such that $\langle \nabla f(x_n), x_n' - x_n \rangle \leq \inf_{x \text{ in } C} \langle \nabla f(x_n), x_n \rangle + \epsilon_n$ for some positive ϵ_n tending to zero. If C is bounded we can always find x_n' ; if C is bounded and norm closed as well as convex then we can take $\epsilon_n = 0$ if desired, although this causes unnecessary computation.

Proposition 4.1: Let f be convex, bounded below on the bounded convex set C, and attain its minimum at some point x^* in C. Let x_n be a sequence in C such that $\langle \nabla f(x_n), p_n \rangle$ tends to zero, where $p_n \equiv x_n^! - x_n$

and x_n' satisfies $\langle \nabla f(x_n), x_n' - x_n \rangle \leq \inf_{x \text{ in } C} \langle \nabla f(x_n), x - x_n \rangle + \epsilon_n$ for a sequence of positive ϵ_n tending to zero. Then x_n is a minimizing sequence, that is, $\lim_{n \to \infty} f(x_n) = f(x^*)$.

Proof: We have, using the convexity of f,

$$0 \le f(x_n) - f(x^*) \le \langle \nabla f(x_n), x_n - x^* \rangle$$

$$\le \langle \nabla f(x_n), x_n - x_n' \rangle + \langle \nabla f(x_n), x_n' - x_n' \rangle - \langle \nabla f(x_n), x^* - x_n' \rangle$$

$$\le \langle -\nabla f(x_n), p_n \rangle + \varepsilon_n$$

which tends to zero.

Q.E.D

Remark. It is a simple matter to add hypotheses to f or C which guarantee that any minimizing sequence must in fact converge to x^* [5,20,21,22]. For example, this is true if f is a weakly lower semicontinuous uniformly quasi-convex functional [5,20,22].

Thus we clearly may apply the step-size algorithm of Theorem 2.1.

Corollary 4.1: Let f be convex, bounded below on the bounded convex set C, and attain its minimum over C at x^* . Let f satisfy $\|\nabla f(x) - \nabla f(y)\| \le L \|x-y\|$ for x, y in C, and for each x_n such that for some x in $C < \nabla f(x_n), x-x_n > < 0$ let x_n' satisfy $< \nabla f(x_n), x_n'-x_n > \le 0$ inf $< \nabla f(x_n), x-x_n > + \varepsilon_n$ for a sequence of positive ε_n converging to ε_n set $\varepsilon_n' = \varepsilon_n' - \varepsilon_n'$. If the minimization algorithm of theorem 2.1 is then applied, $\varepsilon_n' = \varepsilon_n' - \varepsilon_n'$ is a minimizing sequence.

To use the algorithms of Theorem 3.1 and 3.2 we note that if $\|\nabla f\| \text{ is bounded on } C \text{ then } \lim_{n\to -\infty} \|\mathbf{p}_n\| = 0 \text{ implies }$

 $\lim_{n\to\infty} \langle \nabla f(x_n),\, p_n\rangle = 0 \quad \text{and hence } \{x_n\} \text{ is a minimizing sequence.}$ $\lim_{n\to\infty} \infty$ If however $\|p_n\|$ is bounded away from zero then for those n the forcing function d_1 in Corollary 3.1 exists and we can argue as in that corollary. Thus we conclude

Corollary 4.2: Let f be convex, bounded below on the bounded convex set C, and attain its minimum over C at x^* ; let ∇f be uniformly continuous and $\|\nabla f(x)\|$ be uniformly bounded on C. Then the step-size algorithms of Theorems 3.1 and 3.2 applied to the direction algorithm of Corollary 4.1 yields a minimizing sequence $\{x_n\}$ for f over C.

5. Projected gradients.

The steepest descent method for unconstrained problems, in which $p_n = \neg \nabla f(x_n), \text{ has been a popular method for many years, for some applications undeservedly. For constrained problems that direction need not point into the constraint set <math display="inline">C$ so it is not directly applicable. Perhaps the most successful way of handling this has been to "project" the direction onto C; more precisely one proceeds in the direction $p_n = x_n' - x_n$ where x_n' is the orthogonal projection onto C of $x_n - \alpha_n \nabla f(x_n) \text{ for some scalar } \alpha_n > 0$. This is the well known gradient projection method [23, 24]. In view of the numerical evidence that so-called variable metric methods are much better than steepest descent for unconstrained problems [8]

and the growing interest in such methods for constrained problems [11,12,13,14], we consider an analogous variable metric projected gradient method. We suppose that $\{A_n\}$ is uniformly bounded, uniformly positive definite family of self-adjoint linear operators on \mathbb{R} , that is, that there are m>0, $M<\infty$ such that $m< x, x> \le A_n x, x> \le M< x, x>$ for all x in \mathbb{R} . For each n, let x'_n be the projection, with respect to the variable metric $x'_n>0$, of $x'_n-\alpha'_nA_n^{-1}\nabla f(x'_n)$ onto $x'_n-\alpha'_nA_n^{-1}\nabla f(x'_n)$ over x in x'_n . If $x'_n=x'_n-\alpha'_nA_n^{-1}\nabla f(x'_n)$, we know that for all x in $x'_n=x'_n-\alpha'_nA_n^{-1}\nabla f(x'_n)$, we know that for all x in $x'_n=x'_n$ we must have

$$\langle x - x'_n, A_n(x'_n - w_n) \rangle \ge 0.$$
 (5.1)

If we set $x \equiv x_n$ in this inequality, we obtain

$$0 \ge \langle \mathbf{x}_n - \mathbf{x}_n', \mathbf{A}_n(\mathbf{w}_n - \mathbf{x}_n') \rangle = \langle \mathbf{x}_n - \mathbf{x}_n', \mathbf{A}_n(\mathbf{w}_n - \mathbf{x}_n) \rangle + \langle \mathbf{x}_n - \mathbf{x}_n', \mathbf{A}_n(\mathbf{x}_n - \mathbf{x}_n') \rangle$$
 and since $\mathbf{w}_n - \mathbf{x}_n = -\alpha_n \mathbf{A}_n^{-1} \nabla f(\mathbf{x}_n)$ we obtain

$$<_{\mathbf{x}_{n}} - \mathbf{x}_{n}', -\alpha_{n} \nabla f(\mathbf{x}_{n}) > \leq - <\mathbf{x}_{n} - \mathbf{x}_{n}', \mathbb{A}_{n}(\mathbf{x}_{n} - \mathbf{x}_{n}') >$$

or

$$\alpha_{n} \langle -\nabla f(x_{n}), p_{n} \rangle \ge \langle p_{n}, A_{n} p_{n} \rangle.$$
 (5.2)

Therefore the direction sequence is feasible. We now show that the condition $\lim_{n\to\infty} \langle \nabla f(x_n), p_n \rangle = 0$ is useful.

Theorem 5.1: Let f be convex, bounded below on the norm closed, bounded, convex set C , and attain its minimum over C at x^* . Let

x be a sequence in C such that the projected gradient directions p satisfy $\lim_{n\to\infty} \langle \nabla f(x_n), p_n \rangle = 0$ and $\alpha_n \geq \epsilon > 0$. Then $\{x_n\}$ is a minimizing sequence.

Proof: We write

$$0 \le f(x_{n}) - f(x^{*}) \le \langle \nabla f(x_{n}), x_{n} - x^{*} \rangle$$

$$\le \langle \nabla f(x_{n}), x_{n} - x_{n}^{'} \rangle + \langle \nabla f(x_{n}), x_{n}^{'} - x^{*} \rangle$$

$$\le \langle -\nabla f(x_{n}), p_{n} \rangle + \frac{1}{\alpha_{n}} \langle x_{n} - \alpha_{n} A^{-1}_{n} \nabla f(x_{n}) - x_{n}^{'}, A_{n}(x^{*} - x_{n}^{'}) \rangle$$

$$+ \frac{1}{\alpha_{n}} \langle x_{n} - x_{n}^{'}, A_{n}(x_{n}^{'} - x^{*}) \rangle$$

$$\le \langle -\nabla f(x_{n}), p_{n} \rangle + \frac{1}{\alpha_{n}} \langle x_{n} - x_{n}^{'}, A_{n}(x_{n}^{'} - x^{*}) \rangle \text{ by Equation 5.1}$$

Therefore

$$0 \le f(x_n) - f(x^*) \le \langle -\nabla f(x_n), p_n \rangle + \frac{M \|x^* - x_n^*\|}{\varepsilon^{\frac{1}{2}} M^{\frac{1}{2}}} \left[\langle -\nabla f(x_n), p_n \rangle \right]^{\frac{1}{2}}$$

which tends to zero.

Thus it is reasonable to consider the application of our step-length algorithms to such direction sequences. We consider first the method of Theorem 2.1.

Corollary 5.1: Let f be bounded below on the norm closed, bounded, convex set C, and let $\|\nabla f(x) - \nabla f(y)\| \le L \|x-y\|$ for x, y in C. Let $p_n = x_n' - x_n$ where x_n' minimizes $(x-w_n) > x_n'$ for

x in C with $w_n \equiv x_n - \alpha_n A_n^{-1} \nabla f(x_n)$ with $\{A_n\}$ as described above, i.e., $m < x, x > \le \langle A_n x, x \rangle \le M < x, x >$. Set $x_n'' = x_n + t_n' p_n$ in C and let x_{n+1} be any point in C such that $f(x_{n+1}) \le \beta f(x_n'') + (1-\beta) f(x_n)$ for fixed β in (0,1]. If there exist positive constants ϵ_1, ϵ_2 such that

$$0 < \epsilon_1 \le t_n' \le \frac{m}{\alpha_n} \left[\frac{2}{L} - \epsilon_2 \right], t_n' \le 1$$
,

then $\langle -\nabla f(x_n), p_n \rangle$ tends to zero. If f is convex and $\alpha_n \geq \epsilon_3 > 0$ then $\{x_n\}$ is a minimizing sequence.

Proof: We seek to use Theorem 2.1. We define

$$\gamma_{n} \equiv \frac{t'_{n} \| p_{n} \|^{2}}{\langle -\nabla f(x_{n}), p_{n} \rangle}$$

and immediately see, since $t_n' \leq 1$, that our t_n' equals the t_n of Theorem 2.1; hence, if γ_n satisfies the hypotheses of that theorem, we can conclude that $\langle \nabla f(x_n), p_n \rangle$ tends to zero. For that question we have, by Equation 5.2,

$$\gamma_{n} = \frac{\left\| \mathbf{p}_{n} \right\|^{2}}{\langle -\nabla f(\mathbf{x}_{n}), \mathbf{p}_{n} \rangle} \mathbf{t}_{n}^{'} \leq \frac{\left\| \mathbf{p}_{n} \right\|^{2} \alpha_{n}}{\langle \mathbf{p}_{n}, \mathbf{A}_{n} \mathbf{p}_{n} \rangle} \mathbf{t}_{n}^{'} \leq \frac{\alpha_{n} \mathbf{t}_{n}^{'}}{m} \leq \frac{2}{L} - \varepsilon_{2}$$

as required. For the lower bound,

$$\gamma_{n} = \frac{\left\| p_{n} \right\|^{2}}{\langle -\nabla f(x_{n}), p_{n} \rangle} t_{n}' \geq \varepsilon_{1} \frac{\left\| p_{n} \right\|^{2}}{\langle -\nabla f(x_{n}), p_{n} \rangle}$$

as required. The final conclusions follow from Theorem 5.1.

Remark: If we take $0 < \epsilon_1 \le \alpha_n \le \frac{2}{L} - \epsilon_2$, $t'_n = 1$ for all n, $x_{n+1} = x''_n$, and $A_n = I$ we have the method presented in [20]. The problem with that version is computational; one must know the value of L so far as the first theorem derived for the method stated. Our corollary shows that any point along the gradient direction, so long as α_n is bounded above and away from zero, may be used if x_{n+1} is chosen well; in particular, if $f(x_{n+1}) = \min_{0 \le t \le 1} f(x_n + tp_n)$ the method works without knowledge of L.

Arguing as we did prior to Corollary 4.2 concerning the algorithms of Theorems 3.1 and 3.2, we easily prove the following.

Corollary 5.2: Let f be convex and bounded below on the norm closed, bounded, convex set C; let ∇f be uniformly continuous and $\|\nabla f(x)\|$ be uniformly bounded on C. Then the step-size algorithms of Theorems 3.1 and 3.2 applied to the direction algorithm of Corollary 5.1 yields a minimizing sequence $\{x_n\}$ for f over C.

We note that our projected gradient method for $A_n=I$, $H=\mathbb{R}^\ell$, and C a polyhedral set, is not quite the same as the gradient projection method originally described in [23,24] since that requires that x_n' be the projection onto one of the faces to which x_n belongs or, in some implementations [4], onto a small neighborhood of x_n in C. The <u>computational</u> versions of gradient projection in use apply a special technique near edges of C which turns out to be essentially equivalent to bounding α_n away

from zero but keeping it small enough so that the projection is always very near \boldsymbol{x}_n . Thus it is clear that a simple convergence proof for Rosen's original computational gradient projection method can be fashioned in this way from our results above; this has been done [19]. If one however does not take α_n small, one needs a good, efficient method for projection, in an arbitrary quadratic metric, onto a full polyhedral set. Such an algorithm has been brought to our attention [18] and raises the possibility of using larger α_n which may well be more powerful than the original gradient projection approach, at least far away from the solution.

References

- 1. Altman, M., "Generalized gradient methods of minimizing a functional," Bull. Acad. Polon. Sci., vol. 14, 313-318 (1966).
- 2. Altman, M., "A generalized gradient method for the conditional minimum of a functional," Bull. Acad. Polon. Sci., vol. 14, 445-451 (1966).
- 3. Armijo, L., "Minimization of functions having Lipschitz continuous first partial derivatives," Pacific J. Math., vol. 16, 1-3 (1966).
- 4. Cross, K. E., "A gradient projection method for constrained optimization," Union Carbide Nuclear Division Report K-1746 (1968).
- 5. Daniel, J.W., "Theory and methods for the approximate minimization of functionals," lecture notes from Ecole déte analyse numerique (1969).
- 6. Demyanov, V.F., Rubinov, A.M., "The minimization of a smooth convex functional on a convex set," J. SIAM Control, vol. 5 (1967), 280-294.
- 7. Elkin, R. M., "Convergence theorems for Gauss-Seidel and other minimization algorithms," Computer Sci. Report #68-59, U. of Maryland, College Park (1968).
- 8. Fletcher, R., Powell, M., "A rapidly convergent descent method for minimization," Computer J., vol. 6, 163-168 (1963).
- 9. Frank, M., Wolfe, P., "An algorithm for quadratic programming," Nav. Res. Log. Quar., vol. 3, 95-110 (1956).
- 10. Gilbert, E. G., "An iterative procedure for computing the minimum of a quadratic form on a convex set," SIAM J. Control, vol. 4, 61-81 (1966).
- 11. Goldfarb, D., "A conjugate gradient method for nonlinear programming," Dissertation, Princeton Univ. (1966).
- 12. Goldfarb, D., "Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints," to appear in SIAM J. Appl. Math. (1969).

- 13. Goldfarb, D., "Sufficient conditions for the convergence of a variable metric algorithm," to appear in Proc. Joint Conf. on Opt., U. of Keele (1969).
- 14. Goldfarb, D., Lapidus, L., "Conjugate gradient method for non-linear programming problems with linear constraints," I. and E. C. Fundamentals, vol. 7, 142-151 (1968).
- 15. Goldstein, A. A., "Convex programming in Hilbert space," Bull. Amer. Math. Soc., vol. 70, 709-710 (1964).
- 16. Goldstein, A. A., "Minimizing functionals on Hilbert space," 159-166 in Computing methods in optimization problems, ed. by Balakrishnan and Neustadt, Academic Press, New York (1964).
- 17. Goldstein, A. A., "Minimizing functionals on normed linear spaces," J. SIAM Control, vol. 4, 81-89 (1966).
- 18. Golub, G. H. (1969), private communication.
- 19. Kreuser, J., Mangasarian, O., private communication (1969).
- 20. Levitin, E. S., Poljak, B. T., "Constrained minimization methods," (Russian), Zh. vych. Mat. mat. Fiz., vol. 6, 787-823. Also translated in USSR Comput. Math. Math. Phys., vol. 6, 1-50 (1966).
- 21. Levitin, E. S., Poljak, B. T., "Convergence of minimizing sequences in conditional extremum problems," Soviet Math. Dokl., vol. 7, 764-767 (1966).
- Poljak, B. T., "Existence theorems and convergence of minimizing sequences in extremum problems with restrictions," Soviet Math. Dokl., vol. 7, 72-75 (1966).
- 23. Rosen, J. B., "The gradient projection method for nonlinear programming. Part I: linear constraints," J. SIAM, vol. 8, 181-217 (1960).
- 24. "_____. Part II: nonlinear constraints," J. SIAM, vol. 9, 514-532 (1961).
- 25. Topkis, D. M., Veinott, A. F., Jr., "On the convergence of some feasible direction algorithms for nonlinear programming," SIAM J. Control, vol. 5, 268-279 (1967).

DOCUMENT CONT	ROL DATA - R 8	L D						
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)								
1. ORIGINATING ACTIVITY (Corporate author)	28. REPORT SECURITY CLASSIFICATION							
		Unclassified						
University of Wisconsin		2b. GROUP						
			to the Management was a second management of the control of the state of the control of the second management of the seco					
3 REPORT TITLE	ADDITION DO		A TATTITA A CTATTA CHINA INC. A					
CONVERGENCE OF SOME GRADIENT-LIKE METHODS FOR CONSTRAINED MINIMIZATION								
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)								
Computer Sciences Technical Report, July	1969							
5 AUTHOR(S) (First name, middle initial, last name)								
James W. Daniel								
6 REPORT DATE	78. TOTAL NO. OF	PAGES	7b. NO. OF REFS					
July, 1969	22		25					
8a. CONTRACT OR GRANT NO		Computer Caion and Tachnina Denant (
N00014-67-A-0128-0004	Computer Sciences Technical Report 65							
b. PROJECT NO								
		7 10/5) (4						
c.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)							
d.								
10 DISTRIBUTION STATEMENT	<u> </u>							
Releasable without limitations on dissemin	ation							
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY							
	Mathematics Branch							
	Office of Naval Research							
	Washingtor	n. D. C.	20360					
13. ABSTRACT		-						

Some step-length algorithms are analyzed and convergence proved for a general class of feasible direction algorithms for constrained minimization. Applications are given to the conditional gradient and variable metric projected gradient methods.

DD FORM 1473

S/N 0101-807-6801

(PAGE 1) Unclassified

ي (د

Security Classification LINK A LINK B						LINKC	
KEY WORDS	ROLE	wT	ROLE	WT	ROLE	wT	
						iğhanda kanmatka marikta	
	ļ						
Constrained minimization							
tep-length algorithms							
Conditional gradients							
ariable metric							
rojected gradient							
Gradient methods							
addictive moundab							
			-	:			
			•				
					}		
	Ì						
		1					
]			
		İ					
			ļ	1			
		1		1			
		į					
		Į.					
		<u> </u>					
				1			
		1	1				
		1	1	1		1	
			ŀ				
				1			
			1	1			
	-						
		1		1	1	1	

DD FORM 1473 (BACK)
(PAGE 2)

Unclassified
Security Classification