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MONTE CARLO INTEGRATION WITH
SEQUENTIAL STRATIFICATION

INTRODUCTION

Monte Carlo integration estimates, by statistical sampling tech-
niques, the parameter
(1 G;Ff(g{_)dg, fe L )
‘R
where R is the region of integration and X is a k-dimensional
vector. The estimator 8 of 6 and the variance of E , var(@),

depend on the sampling technique, the nature of the integrand, and

the region of integration. Tue stratified sampling method corisists of

partitioning R into disjoint subregions Ri , i=1,...,h, so that
h
6 = e ,
(2) Zi:l i
where

o = | fxax
*R

i
Now each @i is estimated independently by éi using some Monte
Carlo technique, usually by crude Monte Carlo. (Note, it may be
possible to evaluate some of the 91 by direct evaluation.) If the
strata, Ri’ i=1,...,h, have already been assigned, then the variance
of 6 = Zir-l @i will be minimized when the number of sample points

for each stratum is directly proportional to the standard deviation of the



estimator for the stratum. This is the Tschuprow-Neyman theorem

(see [5] equation 8.1.) If the partition of R and the number of sub-
regions, h , were not choosen in advance, but instead allowed to vary,
then further reduction of Var(@) is possible. Dalenius and Hodges
[2] have given strong evidence that the minimization of var(é ) will be

nearly achieved if
(3) Var (Si) = constant, i=1,...,h.

Hammersley and Handscomb [4] have a detailed discussion of
stratified sampling.

The most recent numerical quadrature programs use adaptive
integration methods; that is, lhe points at which the integrand will be
evaluated are chosen according to the behavior of the integrand. And
in many cases, these programs use an iterative scheme which suc-
cessively approximates the integral until the desired accuracy is
achieved. McKeeman and Tesler [7] and Tavernini [ 8] have good
examples of programs of this type. The difficulty is that for multiple
integrals the number of function evaluations needed is Nk , Wwhere
N is the number of evaluations in each direction and k is the dimen-
sionality of the integral.

Monte Carlo integration with sequential stratified sampling is an
adaptive iterative scheme which attempts to minimize the variance of

the stratified Monte Carlo estimator. The scheme produces an




approximate optimal choice of strata by a recursive binary search pro-
cedure. The algorithm also yields a confidence interval for the estimate
of 6 less than or equal to the one desired. Halton [3] has a dis-

cussion of other sequential Monte Carlo schemes.

Monte Carlo Integration by Sequential Stratified Sampling

Desgcription of the scheme

This paper will deal with the single variable integration over a
finite domain, with the exception of a few remarks given to the multiple
integral at the conclusion. A subsequent paper will deal more fully with
the multiple integral [9].

The sequential stratified sampling scheme, for ithe estimation of

FB

6 = f(x) dx , consists of determining the location of stratification

‘A
points, or equivalently finding the size of each and every stratum, and
the number of points to be sampled in each stratum. The number of points
to be sampled per stratum for the estimate of the integral is dependent
upon the integrand and the desired size and significance level of the
probablistic confidence interval. A few basic definitions are in order

before the exposition of the procedure.

The decision rule is used to determine whether a given stratum

should be stratified. The stopping rule is used to test if more sampling

in a stratum is necessary to reach the desired accuracy.



The procedure begins with drawing a sample from the entire inter-
val of integration. The stopping rule is applied. If the condition is
satisfied, the search procedure stops and the estimate of the area is

calculated. (For simplicity, the authors use crude Monte Carlo). If

not, the decision rule is applied. If the decision rule signifies that
stratification is not advantageous, then sampling over the entire interval
is continued until the stopping rule is satisfied. If the decision rule rec-
ommends stratification, the entire interval is bisected (i.e., a stratifi-
cation point is chosen at the mid-point of the interval). Next the algorithm
in a recursive fashion examines the left half interval (or stratum). The
location of the right half interval is saved and stored in a last in-first
out (LIFO) list. {In trial calculations, the length of this list has
remained small.)

The procedure for the left half interval is the same as for the
entire interval. The stopping rule is applied first and if necessary, the
decision rule is applied. As before, if the decision is to stratify, then
this stratum is bisected, storing the right half's location in the LIFO
list and examining the left half. If stratification is not recommended
the sampling continues in the entire region being examined until the
stopping rule is satisfied. Afterwards, the unexamined stratum, whose
location has previously been stored in the LIFO list, is explored. This

process continues recursively until the entire region of integration is




abserved and the estimate of the integral for each stratum is calculated.
The sum of all these estimates is the estimate of the integral. (See
figure 1.) This process is no more than a recursive binary search
procedure. The decision rule indicates whether or not to branch, the
stopping rule determines the amount of sampling at each node of the

tree, and the LIFO list shows where the process should return to after the

end of a branch has been reached. (See figure 2).

The Decision Rule

To facilitate the explanation of the decision rule some notation

is introduced. Let

B
6 =f f(x) dx
fi\

and

0 = the sequential stratified sampling estimator of 6 .

Denote a stratum in [A, B) by the interval [a,b), where [a,b) < [A, B).

For each stratum [a,b), let c = 3 (a +b) and let:

To = (b -a) f(ﬁo) , where 6’0 ~ Ul(a, b) ,
(4) Tl = (c=-a) f(é;l) , where E‘l ~ Ula, ¢) ,

T, = (b ~c) f(@z) , where é;& ~ U(c, b),
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The sequential stratification scheme determined the stratification
I
r'\
points to be 0, 1/16, \/8, 1/4, 1/2, 1 in calculating log x dx
-0
with error bound of 0.1 and 1% significance level. Figure 2a

indicates the iree structure. The dotted line shows where to proceed
after reaching the end of a branch. Figure 2b shows the corresponding

strata and stratification points.



r fb dx b
o = Eltgl= | (b-a) 1 J7 = 6 dx,
c
(5) ( M, =El7 = g f(x) dx,
_ _rh
\LLZ—E[T&]— o f(x)dx ,
4 b b ,,
2 2 2
o, = Var[TO] :\Q[(b-a)f(x)] " Hy F (b—a)j; f (x)dx—-uO ,
2 rc
(6) < o = Var[’rl] = (CMa)‘af (x) d -
2 b 2 ;
o, = Var[t,] = (b—-c)f f(x) dx -
g 2 2 c 2

To establish the final version of the decision rule the following

two lemmas are needed.

2 2 2 2
2 = S
Lemma 1. 0’0 2(0*l + Gl )+ (0 | uz) ,
where 02 02 02 re defined above
e 0 ) | ) 2 ) U‘ L s LLZ are erin O .
Remark. In analysis of variance terminology, the quantity

2
2(0

L

2
+ 0’2 ) is referred to as the within stratum contribution to OO

2
and (!.Li - p,Z) is between strata contribution.

Proof.
(b-a) [bfz(x) dx = 2(012 4 0-22) 4 2(@12 +15), by (5) and (6) .
. |
2 2 2 2 |
hy = (ul+u2) =l +zulu2+u-2 , by (5) .
2 b, 2
o) = (bma) [ Pax - 1) by (6)

ta
2 2 2 2 . 2
T o) 20T AR, SR T2,

i}

2
2.(Cfl

2(0° + 05+ (1)~ -




Lemma 2. If nl and n2 are real numbers whose sum no is fixed,
then for n, € {0, no) ,
6] |
min E_l___ + 2 = - (O’l + OZ)
n
ns n2 n, n.2 0
is attained when
n
A_'0“+00 =12
S B

The optimum values, ﬁi , can be determined by Lagrangian

multipliers, or by elementary calculus in the following manner:

ag 2 ag 2 ol 2 2
0 1 2 . Sl %
on. o Thon | - " nZ TaoanT o
on ] 0 1 ! (ny-n)
2 g
%) %
since n_. =n, +n_; and so -t =0 atthe
0 L 2 n 2 (n.-n )2
L o
critical point.
Hence
f - o —0
1 1 Gl + OZ
Since . )
2 2
2 g 2 o 2 o] 9
d Lo, 2 S, 2 . o
2 - - 3 3 - ’
on, n 0o ™ ny (ny-n,)
ﬁl is the minimum value. We can easily find ﬁz by using
no = nl + Jn2 . Therefore we have
2 2
g o] l
At R, TE, Gt d
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. 2 2 , ‘
The quantity < /nl + o, /n. is the variance of the stratified

b 2
Monte Carlo estimator of / f(x) dx , where the interval [a, b) is
“'a
stratified into two strata of equal length, [a,c¢) and [¢,b), and n , n

L 2

are the number of points sampled in the respective strata ([4], p. 55).

For a fixed ﬁo =0, + n,, we can minimize this variance, in practice,

by choosing integers close to the theoretical values in lemma 2 .

f‘b

The crude Monte Carlo estimate of Gi = ' f(x)dx, using n
‘a

2 2
points, has variance % /no ([4] p. 51), where %,

0

is defined in (6).
2
If a variance of V 1is desired, then we want OO /no =V, therefore,

2
no = OO /V . If kc is the amount of computing time for the calculation

of a single crude Monte Carlo estimate, the amount of labor required

for n_ points is

0 }

2
o

0 .
(7) noke = W kc

For stratified Monte Carlo, where the stratum [a, b) is divided

into two equal strata, using ﬁ() = ﬁl + ﬁz points, ﬁl and ﬁz as

in lemma 2 , the variance is seen to be
4] 2 0 2
{ | 2
(8) =+ == T [(0o, +0) ],
n1 n2 no L 2

upon applying lemma 2 . Again if a variance V is desired, we need
- 2 . A . .

no = (U1 + 0‘2) /V points. Letting ks be the amount of time required
to evaluate each term of the stratified estimate, we find that the amount

of labor required for ﬁO points is




2
(uI + 0‘2)
(9) Ak = ————— Kk

Therefore, the labor required in stratification is less than crude Monte

Carlo when fi k < n. k . This is the basis for the
o S 0 ¢

Decision Rule. Stratification is recommended if
2 S 2 ks

1 . =

(10) OO K(G1 + GZ) , where K kc

Indeed, since ﬁo ks < n kc’ we should stratify if and only if, by

(7) and (9),
2
(ol + O;L . % ;
v S v c '’
that is,
!k_
CIO P k"“ (Ul Jr()”z)
!\ C

Equivalently, applying lemma | to (10}, we get

“n)i k-2 (0

2
L 2 | +02)+2K01‘G

(L1) (1 )

Turning, now, to a graphical interpretation of the decision rule, we let

n remain fixed and let x = nl/n0 = v, vary continuously. Define

the function d on [0, 1] by ,
o ° o °
2 L 2
(12) d(x) = 05 ~K |7 * T
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2 2
Clearly, lim d(x) = lim d(x) = -w, when Ql #0 and 0'2 £ 0
X o O Kot 1

Since K> L, d(x) > 0 for some x in [0, 1] if and only if the inequality

(10) holds, where Vl =x and n, = n, + nz . Hence, if (10) holds,

),

then by the continuity of d, there will be an interval of values, (Xl’ X,

for \Jl , in which stratification will be advantageous. In either case,

the function takes on its maximum value on [0,1] when

-

) ﬁl as in lemma 3 .

Graphically, this is described in figure 3 .
In order to decide if the bisection of the stratum is advantageous,

it is necessary to determine whether there exists any X = v1 for which

d(x) > 0 . However, this search can be eliminated by determining if

d(x) > 0 for the point x =v_, where d takes its maximum value,

!

i.e. d(%)= max {d(x)]}, % = 01, for all x on [0, 1l]. Substituting

(13) into (12), we get the equation

o
oy 2 | 2 o L
(14) d(x) = OO K(ol + GZ) , where X = o, + 5
If we apply lemma | to (14), then we get
Ay 2 2 2 .
(15) dR) = (1 \ uz) + (2 - K) (dl + uz) 2K 0102 .

Concerning the size of the labor ratio, K = ks/kc , a little

calculation shows that K is such that 1 < K < 2. The exact value




/bad case

W

Figure 3:

Graphs of d(x) =




1 4

of K depends on the number of multiplications required to evaluate the

. 2 2
integrand and the square root of o, and o, - Since the number of

evaluations of the integrand is the same for each integrand in the test,

n =n, +n., we have that as n_. increases or as the complexity of the

0 1 2 0

integrand increases, K tends toward | . (See the appendix.)

It should be noted that since, in practice, n, is an integer, it

is possible that d(X) > 0, but that d (;?") < 0 for all integers, n,
0
in [0, nO] . (This is the "bad" case referred to in figure 3.) However,

the chances of such an event occurring are very small, and the probability
of any resulting inefficiency being significant is negligible.

It is clear from (15), assuming n, and K fixed, that the

stratification criterion depends upon both the difference in the means
2 . . 2
between the strata, (U lﬁu' 2) and the size of the variances, Gi and

2 , i1
02 . Let us examine some of the possibilities.

2 2 A .
If LLL = LLZ and Ol = 02 , then we have, upon substituting into

(15) and using the fact that K > 1,
o 2
f(R) = 4l -Ko—~ < 0,

which implies stratification is not recommended, as expected. If

2 2 . . .
By #MZ and OL = GZ , then stratification is advantageous if

2
(m, -H)" > ak- 1) o




L5

2 2
On the other hand, if | =, and O, # 0, then we don't

stratify if

o .
9 2(K-1) 2VEK=L
g, #0 and 5, (L+ =5 ) | = -

The Stopping Rule

The stopping rule tests to determine if additional sampling in a
particular stratum is necessary to reduce the variance of the estimated
to the desired accuracy. The user of the algorithm determines the de-~
sired accuracy by specifying the length of the confidence interval and
the significance level he wants the estimate of the integral to have.

Let the length of the confidence interval wanted be 2e, and the

desired significance level be @ . Whatis required, then, is that,
(16) pr{|6-8lsel=1-a,
where ® is the sequential stratified estimate of

B
6 = F f(x) dx .
A

For a sufficiently large number of samples, N, we can apply

-

the central limit theorem ([6] p. 316) to (15), yielding that O is

distributed normally with mean © and variance GZ/N , where
B .
2 2 .
0% = (B-d) | f2(x)dx - 6° and N = Z‘]‘;o no(”
) =
“A
- 2
that the mean and variance of © are, indeed, ¢ and © /N,

Lemma 3 yields

respectively. Now, for all strata, [ai, bi), in [A, B), the estimators
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b,
- 1
Hi of (ji = r f(x)dx are independent random variables, where
S a
01, ..

[ai, bi)’ i= ., k, for some k, the number of strata, such that

(17) A=a0\b0=al<bl=a2&...<bk=B.
and
2 O‘(i)2
-~ g k - k 0
18 8y = — = e —
(18) Var(9) N Zi:O Var( 1_) Zi:O )
0

by the Bienaymé equality ([6] p. 234). Let tq be the normal critical level
for the confidence interval symmetric about the mean with a probability

1 -, then we want

g _
(19) RV

The relation (18) will hold if and only if
2 2
e
(20) - = () =T
N a

If we assume a uniform distribution of the desired accuracy, that is,

bi - ai
(21) Ti = Tga T;
then we get
‘ ok
(22) T = Zi:O Ti’

| X ) X
since 2‘1:0 Ti = T/(B-A) %

We can now state the




L7

Stopping Rule. Stop sampling in the i-th stratum, [ai, bi)’ when,

) O,Omz
(23) var(6,) = = T,

1 n 1

0
We have that
2

- g k

6 = — —_ et
(24) Var( 0) N Zi:O Ti T ,

by (18), (22), and (23), so that (20) holds. Hence we have the required

accuracy, for, by (16), (19), and (24),
(25) Pr[l@-éiSt “g'::e}zl—a.
a VN

We can now sum up the results by the basic

Theorem. If the sequential stratification algorithm is applied to
B
o = r f(x) dx , and if the strata [ai, bi)’ i=0,...,k, form the
‘A
stratification of [A, B) recommended by the procedure, then

(a) the estimator @i of B, = r lf(x) dx is such that,

-~ B.A
ey« — =
(26) Var( i) — T,
i i
where T is a constantand i=20,..., k;

(b) given e > 0 and 0 <a < 1, the sequential stratification

estimator of 6, @, is such that
Pr[]6~él <e}=1-q; and

(c) given K+ 1, the number of strata and N, the number of

samples, then the above choice of the strata, [ai, bi), i=0,...,k,



Ly

yields a greater increase in efficiency over crude Monte Carlo than any

other choice, by bisection process, of k + |l strata.

Proof.
Part (a) follows directly from (21) and (23).
Part (b) is a restatement of (25) .

Part (c¢) follows from the decision rule (10), by induction.

Remark. Part (c) of the theorem only holds for strata being chosen

by a bisection process, that is strata of length ZOP(B—A), where p

ranges through non-negative integers. The existence of an algorithm which

produces an exact optimum choice of strata is still an unsolved problem.
The bisection process used in the sequential stratification method was
chosen for its simplicity, but many other stratification schemes can
easily be used with the algorithm.

. . L 2 )

In practice, the quantities Mi and cri , 1i=0,1,2, are unknown
for all strata [a, b) of the range of integration [A, B). Therefore, we need

the following estimates:

. ng
(27) L . is estimated by m_ = b-a 5 f(£.), where €, ~U(a,b);
0 0 no j=1 ] J
5 5 ng 5
(28) 6 ° is estimated by s. = 1 = [(b-a)f(€) -m ] .
0 0 L -1 Ji= ] 0
0

2 2
, M., S

are similarly defined by m,m,, s, 5

Estimat for 0202
stimates 1or U—l,LLZ, 1 2

That these estimates are unbiased follows from
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Lemma 3. Let PR O‘iz, si2 be defined as above; then
2 2 ‘
E[m,] =1, and E[s. ] =0, 1i=0,1,2.
i i i i
Proof. The result will be shown for i = 0. The other cases follow
analogously.
1 o X
E[m, ] =E[— = _, (b-a) f{(£)], by (27),
0 n, j=1 ]
-1 Po
T 2 E[TO,]zuO, by (4) and (5) .
0 j:l J
B[s %] = —— 20 B[(((b-a)f(€) -y} - (my=i N1, by (28
0 n,-l j=1 i' To 0 0 ’ ’
__r Mo

ST EL) L)) )T Bl mg )T

gince E(m_ -k ) =0,

0 "o
2 1 2

Elb-a)i(t)) = 1g) ] = BL(L - 3 7oy = o))
1 2 2
= E[ zi(chi = By ]= L2 E[zimo. uo)]
0 0
TR (LNERTRLY
=z % BllTgm Hol 1o
0
since cross product terms vanish.
2 1 2 _ 1L 2
E[(mo—p,o) ] = n2 ng - OO == O'O
0 0
GZ
2 1 2 0 2
Elsgl= 77 "0 (0 =5 7) = 9% t
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In practice, the decision rule (10) becomes, stratify if

2 2 :
2 K= ;
(29) 5, > K(sl + 52) where K ks/kc ;

or equivalently (11) becomes,

2
)+stls

(30) (ml— m2)2> (K - 2) (sla+s2

5 -

The last relation was introduced as the test criterion to eliminate the
2

calculation of Sy - Similarly, the stopping rule (23) becomes, stop

sampling in stratum [a, b), when
2

S
(31) ~;19~— =T .
0 1

To determine the statistical estimates mi, si ,

random samples in the stratum [a, b) being considered must be drawn.

(© (@ _(© (0 (0

it .
Denote the initial samples by no ;L N, LBy is

the number of sample points in [a, ¢), [c, b) respectively, where

c = l-(a+b) and n (0) =n (0) +n (0) .

> 0 1 > Since the optimum values for

n, and n, . as in lemma 2, are unknown (because 9 and o, are

not known until they can be estimated by s

0 0
nl( ) = nz( ) to produce the estimates 1

i and Sz)’ we set

W (O, (O, (0 )

Using these estimates, the decision rule (30) determines where the
additional sampling is needed. The algorithm does not calculate the

~ - ) _ 2 2
values nl and nz, which minimize 0‘l /nt + 0'2 /n2 . What ls done,

is to locate the strata where the variation of the function f is




)
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considerable, as determined by the decision rule, and concentrate the
sampling on those strata to sce if further stratification Is necesgsary.
This, in fact, is approximately equivalent to finding ﬁl and ﬁz .

To see this, apply lemma 2, to yield ﬁ.l/ﬁ2 = 0‘1/02, which states
that the optimum sampling strategy is to draw a sample directly

for the stratum.

proportional to the standard error of the estimate of 6

This is precisely what the algorithm accomplishes, as is shown by the

result in (26).



Results:

Example
Number

w

Integrand
log x

2
X
8

2 3 2

[sin"(x)+cos(x"+1)e = ]

sin x

sin x

[A, B)

[0, 1)

[0,8)

[0, 2m)

[0, 2m)

[C.2)

[0, 1)

[0,1)

B
6= \, f(x)dx
YA

-1,000
14,913, 080.89

3,308.96

1.4162
.418

.418

(v}

-.9983

14,913,725.99 645,10 12, 280

3,329.91

.002

1.4136

.420

. 418

No. of
points
for
. No. of crude
_m..m“ points MC
L0017 360 mo_o
-
6x 10
4
20.95 3,300 8.6xl0
.002 3,431 18,900
. 0026 200 407
., 002 600 73,620
.000 3,080 736,200

desired

accuracy

.1

4

10

100.

.01

.001

3.0
std.
erro:

. 060+

U
-
o]
(@)

. 006

. 000¢



23

For the above examples the sequential stratification produced the

following stratifications:

Example No. Stratification Points
L (0, 1/16, 1/8, 1/4, 1/2, 1)
2 (0,2,3,3'*;,3%, 4,...,7%’2, 7%, 8)
3 (0, m, 5m/4, 3m/2, 131/8, /4, 15m/8, 2m)
4 (0, m, 2m)
5 (0, 1/2, L, 2)
6 (0, L/8, 1/4, ..., 1/8, 1)
7 (0, 1/32, ..., 31/32, 63/64, 1)
Remarks:

In each example, the actual error, [ 6-b |, was less than the
desired accuracy. The number of sample points necessary to achieve
the same desired accuracy for crude Monte Carlo is given and in each
case greater than that for stratification. If instead of the desired
accuracy, we used the number of samples needed to achieve the autual

error, the results would have been even more impres sive. Note that



24

the integrand, log x, has a singularity at x = 0, however this did not
cause us any trouble. IExamining the stratification points, we see that
the length of the stratum is inversely proportional to the variation of

the function, that is

_ _ b
[b{ f(x) - f]z dx, where f = (b-a) : F f(x)dx .
\a &'a

The authors have also estimated the 6 in example 2 by an

antithetic variate transformation using 180 sample points and obtained
an estimate with ten digit accuracy! An adaptive iterative Simpson's
rule program which yielded an estimate of six digit accuracy, for the €
in example 3, ran nine times faster than the Monte Carlo program; a
result which is not surprising, since Monte Carlo generally excels
classical quadrature only when applied to multiple integrals of
sufficiently large dimension. Examples 4 and 5, show how a change in
the value B, of the range of integration [A, B), affects the
stratification of the interval, while examples 6 and 7 show how a change

in the desired accuracy affects the stratification.
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Conclusions

The advantage of using the sequential stratification procedure is
in allowing the computer to search for an optimum placement of the
strata. The effect of the stratification is to concentrate the sampling
on the strata where the integrand has the greatest variation.

Further reduction in the variance of the estimator may be achieved,
if in each stratum control variates, importance sampling, or antithetic
variates were used instead of the crude Monte Carlo sampling. The
decision and stopping rules used here would have to be modified, but
the change is straight forward.

The extension to multiple integrals can be made by one of the
following schemes. The first is to use the iterated integral representation
for (1). Then, we can use the one dimensional scheme recursively to
estimate 6 . This method can be immediately ruled out, except when
the number of dimensions is small, because of the exponential increase
in the number of samples needed as the dimensionality of the integral
increases.

Let 0 = F f(x)dx as in (1), where R is a k-cell, thatis

‘R
R= {x:A =x sB, i=1,...,k}]. The second method consists of
stratifying a subregion, Rh , along the xj ~th's axis when éj = max, 51,
2 2

0i k(cli + 021) and

H
Q

i=1,...,k, and 6j> 0, where 61
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B B.
i 2 Hl .
) F f(x) dXi" [L £(x) dxi]z. If max éi « 0, then we don't
\A. N i
stratify. The thitd approach would be to apply the decision rule in a

o 2 = Vol (R

0i h
direction chosen randomly . This method would be necessary when the
dimensionality of the integral is very large. For these two methods,
we have that as the dimensionality of the integration increases, the
number of sample points needed increase only linearly.

The general idea is to isolate those subregions in which the function

varies considerably and concentrate our sampling there with the restriction
that the search produces a stratification that reduces the amount of

labor to vyield the desired accuracy.
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(MAIN Progra@

(A, B)= region of
integration
2e= length of con-

READ
A, B

fidence interval
o= significance level

CALL

SEQSTRAT

(SUBROUTINID
MEANVR

1
[C—Z(a+b)
m1=0
m2=0

PRINT
estimate of integral
calculated std. error

Calculate forj =1, ..., nO/Z

T].J = (C—a)f(é’lj)’ gl] ~ Ij(a: C)
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s
STOP )

QUNCTIQN F(X))

X
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integrand
f(x)

< RETURN )
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np/2
-
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m, =53 2
2
sl =0
2
sz =0
v
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2 ng/2 2
s, —23‘:1 (Ilj-ml)
2 Z“o/z( my?
Sz T2y VT

v
( RETURN )




< SUBROUTINL )
1T q r

Decision Rule Yes-stratify

0 = estimate of ¢ Initialize
k = labor ratio =0
T = desired accuracy k=1.5
(a, b) = stratum Var(6)=0
being examined T = (242
LEVEL = LIFO list t, )
_pointer LEVEL=0, n_=40
ng = initial number (a, b)=(A, B)
of samples

CALL C ;

MEANVR for
stratum (a, b)

T = desired Calculate
i b-a
accuracy for T = B_——A— T
the stratum .
(a, b) v
Calculate
Relationship
from Lemma |

Update estimates

6 GA+ (ml+m9) 5

Var(8) var(8)+°50_
0

Doe No

e Z.
. ~ i

No | don't stratify

Calculate estimates 6, & var(9 )
for stratum (a, b) using crude

Monte Carlo with Anscombe's M\
Sequential scheme [ 1]

Bisect stratum (a, b)

1
C = > (a+b)

Store right-half
(c, b) in LIFO list
and increment
LEVEL by 1

Set up new stratum

b=c
that is
(a: b) b (a: C)

VN

pane

Retrieve location
of next stratum i

EVEL = Q
2

Yes

( RETURN >

LIFO list decre-
ment LEVEL by |




29

APPENDIX

Calculation of the labor ratio.

Using the current convention, the labor required will be measured
by the number of multiplications and divisions. First, we will find kc,
the average amount of labor for a single crude Monte Carlo estimate.

Let r be the labor in generated a pseudo-random number uniformly
distributed on [0, 1], f be the labor required to evaluate f(x), and n

be the number of samples. Then

k = ;-+r+f+3,
c n

is the average amount of labor required to calculate ® and estimate its
variance. Next, we calculate ks , the average amount of labor for a
single stratified Monte Carlo estimate.

In addition to the above definitions, let s be the amount of

labor required to find the square root of a given number. Then

ko= 2EES i3,
S n

is average amount of labor required to calculate @S and estimate its

variance. Therefore,

is the labor ratio. Hence, K- 1 as n— « and we can now find an

upper bound for k .
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Assuming r=s, nz 2, and f=z= 1, we have that

2r+ 7

2r+8\2’

K= 1+

since r is finite.
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