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ABSTRACT

The utilization of space and the running speed of the buddy sys-
tem are considered. Equations are derived that give various siatistical
properties of the buddy system. The bottom level with Poisson requests
and exponential service times is investigated in great detail. Some
equations are also given for investigating all levels at the same time
and for non-Poisson requests. For the bottom level with Poisson re-
quests and exponential service times the expected amount of space
wasted by pairing full cells with empty cells and the amount of time
spent by the bot"com level requesting space from the next level is cal-
culated for many rates of request. Asymptotic formulas are found which
give a good fit tb the calculated values. The results of a number of
simulations of the buddy system are also given. These simulations
indicate the behavior of many characteristics of the buddy system which

can not be calculated in reasonable time with the formulas presented.
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1. INTRODUCTION

The buddy system is an example of a dynamic storage allocation
algorithm, It does the bookkeeping required for making available vari-
ous size blocks of memory to other routines in a computer [1]l. The
buddy system provides only blocks of memory whose size is a power of
two (times some basic size). It can, however, provide a block of
storage very quickly. Since there are many algorithms which provide
dynamic storage allocation, it is useful to analyze each algorithm to
determine how quickly it can allocate memory and how much space it
wastes. Knuth gives a description of several well-known methods of
storage allocation and a brief comparison of the methods [2]. He also
points out the need for additional analyses of the methods.

For most users of the buddy system the fact that memory is pro-
vided only in some multiple of the powers of two is a major cause of
inefficiency. If the user's needs are not the same as the sizes pro-
vided, the system provides him with more space than is necessary,
since the system must provide blocks of memory that are at least large
enough to meet his needs. If the distribution of the size of future re-
quests is known, the effect of this inefficiency is easy to calculate,
and we will say nothing more about it,

In this paper we will concentrate on the inefficiency that remains
even if the requests are always for blocks which are a power of two in

size, First we consider the relation between the demand for blocks on



the bottom level (blocks of the smallest or basic size are said to be
on the bottom level) and the number of cells that this demand makes
unavailable on the next level (that is, all blocks of twice the basic
size.) The results for the bottom level can be used on any level pro-
vided the demand for cells on the lower levels is so low that they do
not have a significant effect., After the analysis of the bottom level,
we show how to derive equations which describe the higher levels;
however these equations take much longer to solve in the interesting
cases. Once the various equations are derived we investigate the
solutions of the equations, again concentrating on the bottom level,
Finally the results of some simulations of the buddy system are given,
These throw light on the behavior of the upper levels.

The three basic ideas of the buddy system are as follows. (1) A
separate list of available blocks is kept for each size Zk, for
0 <k {m, where 2™ is the total amount of space. (2) When a
block of size 2k is requested, it is taken from the available space
list for that size, or if no block of that size is available, the system
requests a block of size Zk"'1 which it splits into two equal parts,
The resulting blocks are called buddies of each other., One half is
used to fill the original request and the other is put on the available
space list for size izk. If there is no space of size Zk‘l‘1 available then
the request for size Zk,dl~l will of course result in additional system re-

quests for larger sizes until either space is found or the method fails




because there is no block large enough for the original request. (3)
When a block of size Zk is returned it is combined with its buddy if
its buddy is not in use. The resulting block of size Zk+l is then
combined with its buddy if its buddy is free. This is continued until

a block is formed whose buddy is in use. The resulting block is added
to the available space list for its size. The method is feasible be-
cause the buddy of any block can be found quickly: If the cells are
numbered from zero to Zn—l, a block of size Zk will start with cell
iZk‘ for some integer i and its buddy will start at cell (iJ:-l)Zk if

i is even and at cell (i—l)Zk if i1 is odd. The block of size

Zn, of course, has no buddy, but in the algorithm we may think of
it as having a buddy which is always in use. A detailed description
of the algorithm for the buddy system is given by Knownton [1] and
also by Knuth [2]. The algorithm is such that its running time de-
pends only on the number of blocks that are requested by the user and

on the number of additional requests that the system makes to itself

because it does not have available a block of the required size.

2. ANALYSIS

2,1 Pairing on the bottom level

We will first consider a stochastic model where we keep track
only of the pairing of blocks on the botitom level, In this model, which

we shall call the restricted model, there are always 2n cells for



filling requests on the bottom level. Thus in this model we ignore the
fact that, in the original system, orders on the upper levels can change
the amount of space available for use by the bottom level., Orders are
ignored when all of the 2n cells are in use. When the number of
cells available is unlimited, we have what we call the unrestricted
model. The two models behave in nearly the same way when 2n is
sufficiently larger than the average number of cells needed to fill re-
quests. We shall assume that the requests for blocks follow a Poisson
process and that the lengths of time the blocks are used (service times)
are given by independent random variables with an exponential distribu-
tionTo This assumption causes the future development of the system to
depend only on the present state of the system and not on its previous
history. An analysis of this model will permit one to determine when
the system has enough cells to nearly always meet its requests, how
much space is tied up in the available space list for the bottom level
thus not being available for requests on the next level, and how often
the bottom level requests space from the next level. The behavior of

the model suggests how the system will behave when there are not

enough cells to meet most requests. Also the model can be used for

TA stochastic process Xt is called a Poisson process with intensity
A if the probability Prob{X,,, - Xg = K} = e”xt(xt)K/K! for any

s,t >0, and K=0,1,--- and also the random variables th - Xt .
0

n n-
0ty Lty £+ £ ty. A random variable Y is said to have an

th - th, eoe, X - Xt . are independent for any real numbers

exponential distribution with decay rate W if Prob{Y > t} = e Ht,




levels other than the bottom level so long as the rate of requests to
levels below the one being investigated is so low that they have only
a small effect on the level being studied.

The state of the model at time t is given by the bivariate
stochastic process Zt = {Et,Ft}, where E't is the number of pairs
in which one block is in use and its buddy is available, and Pt is
the number of pairs where both blocks (which are buddies of each other) -
are in use., We shall call Et the number of empty pairs and F_t the

number of full pairs. Let

P, ,(t) = Prob {Z = (k,£)} and
Q) = Prob {Z_ = (1,12, = (k, 0],

where 1i,j,k,£,t,h>0. For the restricted model, Zt- is a Markov
process with stationary transition probabilities satisfying the following
conditions:
1) 2, = (0,0)
th+ o(h) if i=1, k=0, j=£4, and j < n-1 or
if k=i+l, j=0f+1, and k+4< n;
i3 kikh+ o(th) if k=i+l, j=f, and k+Z < n;
2) Q) = ¢
' 2Luh+ o(h) if i=k+1, £=j+1, and k+L< n;
I-[M(k+22)ulh +o(h) if i=k, j=£, £<n-1, and

k+£2<n;

_ 1-2nkh + o(h) if i=k=o and j=/=n;



where A > 0 1is the rate of requests and K& > 0 is the decay (or
service) rate for a block that is in use. Then from the axioms of

probability, the process obeys the following set of equations:

, _ k4 Lok L
Pk/z‘t+h) - Pk—um Qk—z J4 (hy + PkH -1 (t) Qk-i—l -1 (h)
k2 Lk 4
TR g O Qg B PR, O, ()

K4,
+ P, (0 Q) () + ofh).

Taking the limit as h goes to zeéro and replacing the Q's by their
values we get the following differential equations for the system:

+ (k+1} P s (t) + [2(4+1) P

k+1 k-1 o1 Dir g >1

PP g Ol gy TP O]y

for k,£4>0 and k+£4<n
subject to the conditions
1 if k= 4= 0 and
Pkg(o} i 0 otherwise, and
sz(t)zo for k+/£4 > n.
The terms in brackets are included only when their conditions are
satisfied. The solutions to the equations also must satisfy the condi-

tions

2 Pk[,(t):l for all t > 0 and
k,£>0

P, ()20 for all k,f,t> 0.




We cannot say much about the distribution of Zt for finite t,
The quantity Et + ZPt in the unrestricted case, however, is a simple
birth and death process and has been studied in detail (see [31}.

It is well known that since ZJE is an irreducible continuous

parameter Markov chain the limit lim sz {ty = p exists. These

’t——-vOO

k2
limits, called the stationary probabilities, can be obtained by setting
the derivatives in the differential equations equal to zero to obtain the

recurrance equations:
3 { 7 =
'-“’kz]if o0 (k+2ljup, , S Y

tl2+Due, ol k>t t [Apy s o ki >1t Ao phis k=1

for k,2>0 and k+4£4<n.

The side conditions 1 and Py = 0 for k+ £ > n are

Z p promy
k, >0 “k4
needed for the solution. Similar equations hold for the unrestricted
model and can be found by setting n = « with the side condition
pkﬂ 2 0. Numerical solutions to these equations are given later.

To study the moments of Py it is useful to consider the ex-

ponential generating function

H(sl,sz) = 2 p eksl * Esz,
k,2>0

kb

i

With this generating function the coefficient of sl S,JZ gives the value
ij ,

of the moment I EZZO A Py g By multiplying the recurrance equations

for the unrestricted case by e and summing, one gets the

following partial differential equation:



_¢S2751 - Te S1-1fu2—
ANl -e ]H(sl,sz) [e 1]“551 H(s,,s,)

+ Z[e(sl_sz)-—l]ug%-}](sl,sz) + A[e51-e5275 1 H (ceo, g
2

)

where H(-OO,SZ) = 2D sz

2 O;Ze . The presence of this last term makes

it difficult to solve this equation. One can, however, obtain some use-
ful relations by letting

k £ 4
H{s,,s.,} = 2 a, ,5. 8 and H{(-»,s.,) = 2 b,s_ .
1772 K, 030 k£71 72 2 50 4

Then we get relations among the moments akﬂ’ and the moments along

k=0, bz, such as
319 = PPy
%11 7 %p B %pbo
%20 ~ %pbl B %pzbo * %p * %pbo
%11 7 é—pbl ¥ %pzbo -0+ ll?pbo

_l12 1 1z, .11
Qg2 = 4P T PPy T P byt 5P -5eby

where p =)/KL. Since a._+b_ = = p__ + 5 kp, , >
10 0 250 04 K, £>0 k4
3 = - = o
pkﬂ 1, the equation a0 pbO leads to the limits

k, 450

b0 > 1/(1 4+ p) and 2, > p/(1 + p) which are useful when p is

small,




2.2 Requests of space generated by the bottom level

We will now consider how often the bottom level requests cells

from the next level. Let the random variable S denote the total

k£

time elapsed from the time the system enters the state (k, £} until it

next requests a block from the next level (i.e. E,  + Ft iricreases).

-

Since Zt is a strong Markov process, we can describe Skﬁ as
follows:
S, , = inf {s: lim [E + F -E , -F 1> 0}
kit b0 t0+s+h to+s+h tyts t0+s
where Z = (k, %),
L
0
Let Gk g(t) be the Laplace transform of the density of Skﬂ {i.e.
G. (t) = E {e%sk‘g})Jf and let T be the time the system stays in
kt - k4 y y

state (k,4). Then S equals Tkﬂ plus the time from the next

kit
state until the next order. Now, in the untestricted system, a transi-
tion from state (k,#) is to (k+1,04-1) with probability 24uL/(A+ (k+20)L ,
to (k-1,4) with probability k/(A+(k+28)), if k > 0 to (k-1, Z+1)
with probability A/ (A\+(k+28)u), and if k=0 to (k+1,4) (causing a

request on the next level) with probability A/(A+244), Thus

_ -t Ty — kB
Cieg® = Ble 7K }[(M(mzz)u) Cpo1 g™ * <>\+(k+2£)u) Gy g ®

2bp |
+ (7\~i-(k+217,)u) Gk+1 E—l(t)] for k> 0 and

We use the notation E(X) or E{X} to denote the mathematical
expectation "(expected value) of the random variable X. We shall
denote the variance of X by wvar(X).
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} _ “tTog, | A 2hp
G,,(0) = E(e " 104y [(ﬁzw) + (Mzm) G m‘t’] ‘

Since Zt is a Markov process, and thus has exponential waiting times,

moen B Tg, | AtkE20)0
B le Ny T

a

Thus we find the equations

OV (RA2ZDR+D G (1) = AG . () + kG, @+2fuc o, 0

for k > 0, and

(>\+2£u+t)Goz(t)= ANF20LG (t),

1 £2-1

which can be solved recursively. By differentiating these equations and

letting
a, , = E(S, ) = - Q—c; (0) and
k4 Yxke T dr k4
2
_ 2, _ d_
bkz - E(Skz) B dt2<3kz(o)

we find that

(7\+(k+2£)u)akﬂ :D\ak-—l 41 T kuak_1 E]if k>1 + ZﬂuakH g1 T 1

and
(?‘+(k+2‘g)“)bk£“2aoz N [)\bk-l g1 T RED E]if k>1 * Zﬂubkﬂ £-1"
These equations can be solved to find E(Skg) =3 and var(Skz) =
2
Pre ~ kg

To find the mean and variance of the time between orders to the

next level once the process has become stationary let qﬂ be the
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stationary probability that we are in the state (1,4) given that an
order to the next level has just taken place. 1In other words

= lim r = ‘ = =
Jm prob (z = (1,MH|E,_ =0, B =1}

9y
Then qﬂ is proportional to the probability that we arrive at (1,4)
from (0,4} given that a transition takes place. This probability is

equal to Poy A/ (AF2£1).  Thus

Py A (A2 L)

s pOix/<>\+zw)
i>0

a4y

The mean time between requests to the next level is

> a q
>0 15 Eﬂ
and the variance is
> b ,q, - (2 a,, ¢ )2
>0 14 72 150 1478

Higher moments can be calculated in a similar manner. Numerical

results from solving these equations are given later.

2,3 Other statistics for the requests

Thus far we have assumed that the requests (arrivals) follow a
Poisson process; that is the interarrival times on the bottom level are
independent and exponentially distributed. We now drop the assump-
tion that they are exponentially distributed but will assume that they
are independently and identically distributed according to some arbitrary
distribution function G(t), with G(0) = 0, We still assume that the

service times are independent and exponentially distributed.
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Now if G(t) is not exponential, Zt is no longer a Markov

process. We do, however, have an embedded Markov chain. Let

tO = 0 and tn be the time of the n-th arrival on the boitom level.

The difference t -t has the distribution G. Let Z2 = Z, =
n n-1 n tﬁ

(E F ) define a discrete time stochastic process. In fact {Zn}

t= Tt
n n

is a Markov chain. To see this, let W’p be the number of pairs

which are full at time t;, both cells of which complete service before

time th; let Xn be the number of pairs which are full at time

one cell of which completes service before time th; and let Yn

+
t

I

be

the number of pairs which are (half) empty at time t; and which com-

lete service by time t .
P y um n+l

Since the service times are exponentially

distributed, the conditional probability distribution of (Wn,Xn,Yn) given

. Now

Z 3 3 o o o
n is independent of Zl,ZZ, 'Zn-—l

Z - (Y -X +1,W_+X -1) it E >0
n n n n n

t_.
n
Z =
ptl )y v x -1, W -X ) if E =0
n n n n n -
n
so the conditional probability distribution of Zn+1 given .Zn is
independent of Zl’uo’zn—-l’ and the chain [Zn} is Markov.
Let P]l:g = Prob [Zn+1 = (i,j)IZn = (k,2)}, the one-step transition

probabilities for [Zn}. Then

P

iy _ [ i
kﬂ_jo sz(t)dG(t), where
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i j —_— . . — - —— e — S
Pl (1) = Prob[Zn+l(1J)lZn = (k,4) and t . b= t],

Now for the unrestricted system

”~

o]

21\ (Bri-)\ (k-1\ m ~it 2(L=j)+k-inl ~W{2 3+t
} 27 |1-e
m

i)\ m ) \tm) °

if k>0, £+1>j, and 2L+k+1>2j+1;
13y = » N2l
P = (5 (z> (z i) (1 ) ,m (1__6 m:) J-REIHt

if k=0, £>j and 2f+1>2j+1; and

0 otherwise
.

where the sums are all finite because the binomal coeificients vanish

for extreme values of m., From these equations Plka can be found,

Letting ¢,, = lim’ Prob{Z = (i,j)}, the stationary distribution for the
ij n—-oo n

chain {Zn} can be found by solving

ij
q,, = 2 q P
ij K, £>0 k4 "kl
subject to
2 qi, =1,
i,j20

A similar analysis can be done if the service times are general
and the interarrival times are exponential. An embedded Markov chain
is then obtained by looking at the process only at times when service
is completed. Looking at the system only at these times, however, may
not always give an accurate picture of the behavior of the system, since
the distribution of times when service is completed will depend on the

state of the system.
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2.4 All the levels

We will now consider briefly how to obtain equations when all
levels are considered together. Such equations take much longer to
solve than the corresponding equations for the bottom level., First let
us consider the number of states the memory managed by the buddy
system can be in. Ii the system has one cell, there are two states:
the cell is either empty or full., We can number these states 0 and
1 respectively. Proceeding inductively, assume we have numbered
the possible states for systems with Zk cells, A system with Zk"‘1
cells can be viewed as a pair of subsystems, each with Zk cells,
Thus any state in the system corresponds to a pair of numbers (11,12),
where i1 is number of the state of the first subsystem, :'L2 is the

number of the second. Since the state (1,1 is equivalent to

1 Z)
(iz,il), we may assume that il_>__iz, We also have the additional

state where all 2k+1 cells are reserved in a single block. The states

S\ Ny +1 ,
may be numbered as (2> + i, and (kz )+1 where nk is the total
number of states for a system of Zk cells, We can see that the
number of states increases rapidly as the number of levels increases
(See table 1). We note that this model ignores the arrangement of

cells on the available space list. A model which represented this

aspect of the system would have a much larger number of states.
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The stationary probabilities for an n level buddy system obey

the following equations:

2 [x] s N
(.— [Xi‘if keS, + (' Nki R Py
L i i .

= 2 M,—' B, p, + 2 K ! A, By
LeU. 'k "i Tk Kiel k'k "1k
i ki ki

where
1) the sums on i have 0<i<n,
2) A, 1is the rate of requests for blocks of size Zi,
3) W, is the decay rate for blocks of size Z,i,

4y 8, is the set of states that have a free block of size 2!

or larger,
5) Nki is number of blocks of size 2" in use in state k,
6) Uki is set of states that can decay fo step k with a

single block of size 2! being made free,

77 M is the number of ways state k' can go to state k

k‘k

with a single decay,

8) Lki is the set of states that can go to state k by a single

request for a block of size 21, and

9) Kk'k is probability that state k' will go to state k when

a request arrives.
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A good approximation to K can be obtained by assuming the blocks

k'k

on each available space list are in random order. With this assumption

Bk”

K ={ 25 if k e A and
C. .. k'i

kl‘

0 otherwise,
where
1} 2i is the size of the request that takes k' to k,
2) Ak'i is the set of states that results when any free cell in
k' is used to fill the request of size Zi so long as the
block is of the smallest available gize {but no smaller than Zi),
3) Ck'i is the number of blocks of the smallest available size
(but no smaller than Zi) for state k, and
4) Bk‘k is the number of ways a block in state k' of smallest
available size (but no smaller than Zi) can be chosen for filling
such that state k 1is produced.
For systems with a small number of levels (say 3) it is feasible to
program a computer to produce and solve these equations, but more
work is needed to find a practical way to handle systems with a large
number of levels,
One can also find equations that keep track of the structure
within blocks below some level but do not keep track of the higher

levels (as we did for the bottom level). Keeping track of just two

levels, however results in (n—;fa) states where 4n is the number of
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cells available, Later we give a few results for a small sysﬁem where
we keep .track of 2 levels but only permit orders on the bottom level

" /n+5 . . o .

{here we have %\ 5 states}. Techniques similar to the ones used
here can also be applied to systems where those requests which arrive

when no space is available are not turned away, as in our model, but

are saved until space does become available.

3. NUMERICAL RESULTS

The éqﬁations tor the stationary distribution of the bottom level of
the restricted model with Poisson requests and exponential service times
can be solved in a time proportional to the number of variables, (n~§2>°
it was therefore possible to investigate the model under many conditions.

Table 2 shows the results of varying the ratio of the request rate
and the service time for systems which have enough cells to meet nearly
.all requests. For each value of p= /KL, which we shall call the
traffic intensity, we have checked to be sure that increasing the number
of cells (2n) by 20% does not change the tabulated numbers by more
than a few parts in 108. For all values of p of 0.4 or above, we
have found that reducing n by 20% will change the tabulated numberé ”
by at least several parts in 108, Thus these results should reflect
the behavior of the uﬁrestricted model,

We let M denote the expected number of blocks in use paired

E

with empty blocks, which measures how much unused space is tied up

{
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in the available space list for the bottom level and thus not available
for use on the next level, The values of bi = %ﬂipoﬂ can be used
in the formulas found from the exponential generating function to com-
pute the various moments of the number of empty pairs and the number
of full pairs. The mean waiting time Ifor orders to the next level, W,
indicates how fast the buddy system runs. The variance, V, of this
time may be useful in calculating the effect of the bottom level on the
next level.

For p =10 and p = 100 the probabilities of various

Py s
values of k and £ are given in figures 1, 2, 3, and 4.

One is usually interested in various characteristics of the buddy
system for large values of p. Table 3 shows the results of fitting the
original eight-significant-figure data that was used to prepare table 2

. . , 1/2 , :
with polynomials in p . The leading term was selected by noting
which half-integer power of p gave the best fit. Then fits were made
. . L 1/2
with 1, 2, 3, 4, and 5 terms of a decreasing power series in ¢
to the last 1, 2, 3, 4, and 5 values in table 2 for each item in table
3, the number of values always being the same as the number of terms.
Fits were also made to the next to last 1, 2, 3, 4, and 5 values.
Table 3 shows the results of the 4 parameter fit. The number of figures
reported has been chosen so that the coefficients do not differ by more

than 3 in the last figure in the three following situations: 1) 3 para-

meters are used in the fit, 2) 5 parameters are used in the fit, and
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3) 4 parameters are used, but the data starting with the next to last
entry (p = 200) is used. We therefore feel safe in using these series
with values of p other than those used in the fit. Table 4 gives
various moments of the numbers of full and empty pairs which can be
calculated with the fits to bO and bl" It should be noted that the
process cannot be asymptotically normal because the mean and variance
of the number of empty cells are of the same order for large p, while
the probability that the number of empty pairs is negative is zero.

If one wishes formulas for small values of p, he should find
algebraic solutions to the equations for a system with a small number
of cells. Table 2 shows that for p< .2, four pairs of cells is
enough to obtain very accurate solutions for any system with four or
more pairs of cells.

In table 5 the results for a complete buddy system with 8 cells

are given for the case that all orders come in on the bottom level and

p=1.

4, SIMUIATIONS

A number of simulations were run to investigate features of the buddy
system that were inconvenient or impossible to calculate directly. For the
. . i 25
simulations, a random number generator of the form xi+1«-—(7577 X xi+c)mod 2
was used. Various odd numbers were used for c¢. In all of the simula-
tions, the arrivals followed a Poisson process and the service times of

blocks were exponentially distributed.
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Since the simulation gives information about the system as a
function of time, it was necessary to investigate how rapidly the system
approaches stationarity so that the results of this section can be com-

pared with those of the previous section. Figures 5 and 6 show for

1

p 10 (all orders coming in on the bottom level}, Ei’ the mean
number of blocks with 2i cells (where some of those cells are in use)
that have a buddy which is empty. These results are shown as a func-
tion of the total number of orders received. The average is over the
entire length of the simulation up to that point. The error bars show
the standard deviation to be expected from one run. Under each error
bar the number of runs made is indicated. Figures 7 and 8 show simi-
lar information for p = 100. These figures show that we reach a
stationary distribution much faster for p = 10 than we do for p = 100,
By 10000 orders for p = 10 and by 50000 orders for p = 100 we
are so close to a stationary distribution that we can neglect any error
caused by the fact that we have not yet achieved stationarity; The
variation from one run to the next is much more significant than the
error due to a lack of stationarity.

Table 6 gives various statistics for p =1, 10, and 100 where
all of the orders were coming in on the bottom level, Figures 9 and 10
and tables 7, 8, and 9 give statistics for 7\0 + ?\1 =10, K. =1, and

LLl = 1 where ?‘0 is the arrival rate on the bottom level, }\1 is the
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arrival rate on the next level, LLO is the decay rate for the bottom
level, and Ml is the decay rate for the next level (for blocks that
were ordered from outside, thus LLl does not count the decay of
blocks that were split up to meet orders on the bottom levelj., Most
of those results of the simulation which can be compared with the cal-
culations of the previous section are in good agreement. The results
for Wl' the mean time between orders from the bottom level to the
next level, and for Vl' the variance of that time, however, while
close to the calculated values, are different by several standard devia-
tions. We suspect the difference is caused by a slight non-random
behavior of the random number generator.

There are three sets of results from the simulations that we would

like to call attention to in particular. First consider setting

A E+F\ W
Peff = L 1 (..9__...____0_) 1

Hy VYV

1

where is the rate of requests on the next to bottom level, W is

1 1

the decay rate on the next to bottom level, (E0+ PO)/Z is the mean
number of pairs of cells in use on the bottom level, W1 is the mean
time between orders from the bottom level to the next level, and Vl is the
variance of this time. If the resulting value of peff is somewhat bigger than -
one, then the mean number of blocks paired with empties on the next to bottom

level can be estimated using Pogr 1N place of p in the equation for the
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bottom level, and gives nearly the same answer for El as the simula-
tions. It would be interesting to know whether this formula would be

useful at values of ) o

A and Ml other than those we have

o "1 "o’

tested. Even from our data, it is clear that the method does not work
exactly. Second, while it is not clear what the relation is between

p on the bottom level and the rate at which the bottom level generates
requests which go above the next level, it is evident that the fraction
of requests that goes above the next level decreases as p increases,
Thus for large values of p we can get a good idea of how much time
the system will spend breaking up blocks by looking only at how much
time is spent breaking up blocks from just one level up., Third, the
mean time between orders from one level to the one above it depends
almost entirely on the rate at which that level receives orders, unless
the levels below it receive orders at a much higher rate. From just
our one set of runs one can not tell in general when the lower levels

will have a signiticant effect on this quantity.

5. CONCLUSIONS

We have given iormulas which permit one to calculate the effect
of the bottom level of the buddy system on the next level. These show
that for Poisson arrivals and exponential service times the mean number
of blocks tied up on the available space list for the bottom level is

proportional to the square root of the mean number of blocks it is using
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to fill requests. The rate at which it asks for blocks from the next
level is proportional to the square-root of the traffic intensity. The
simulations indicate that when the average rate of blocks being requested
on one level is not small with respect to the rate of blocks being re-
quested from lower levels, the rate at which that level orders blocks
from the next higher level is not greatly effected by the rate of orders
on the lower levels, Thus it appears a good indication of the running
time can be computed by considering each pair of levels independently.
There are also indications that the amount of space on the available

space lists can be calculated from the results on pairs of levels.
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TABLE 1
k nk
0 2
1 4
2 11
3 67
4 2279
5 2598061

The number of states, n in the memory managed by a buddy

kl

system as a function of the number of levels in the buddy system, k.




Table 2 shows the results of calculations of the stationary be-
havior of the restricted model for the boitom level of the buddy system
with Poisson requests at rate 7 and exponential service times with
decay rate .. The number of pairs of cells in the system is n. The
expected number of full blocks paired with empty blocks is ME. The

value of = £ p
//

to the next level is W and V is the variance of this time. In most

ol is given by bi' The mean iime between requests

cases only 4 significant figures are given.
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TABLE 3
Quantity Fit for large p = /W

by 0.53188 p"/% 4 0.087 570 - 0,122 o2
By 0.26594 o2+ 0,187 - 0.37 p /2
b, 0.13296 p3/2 + 0,166 p - 0.199 pl/z
b, 0.06647 7%+ 0.119 5% - 0.03 o2
Wh 1.8800 %~ o.68 ol 1 o0.g 2
v 1065 oY% = os0p7l 4 2.4 o"3/2

Table 3 gives the formulas which give the best fit to the calcula-

tions of bi' W, and V for large values of o
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TABLE 4
Quantity Fit from bO and b,
My 6.53185 o/ + 0.087 - 0.122 ¢ V/°
Mg gp - 0,26594 pl/Z - 0.043 + 0,061 p“l/z
M2 | 0.429 p + 0.15 p/°
Mpr 0.26596 p3/2 - 0,242 p + 0,01 pl/z
M2 iﬁpz - 26594 p3/2 + 1.539 p + 1,92 pl/z
Op2 0.157p + 0,07 pl/Z
Op2 1,511 p + 1.87 pl/z
Ppp O Op 0.154 p + 0.103 pl/z

Table 4 shows the mean of E, the number of pairs on the bottom
level where one block is in use and its buddy is not, the mean of F,
the number of pairs on the bottom level where both blocks of the buddy
pair are in use, the mean of Ez, the mean of EF, the mean of T,
the variance of E, the variance of F, and the product of the stand-
ard deviations and the correlation of E and F. These were calculated

from the fits to bO and blo
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Table 5 gives the probabilities of various contigurations in a 3
level buddy system when all orders are to the bottom level and p = 1.
The states are numbered in the way indicated in section 2.4 on
analysis. There would be 67 states if orders were permitted on all
levels. The example column shows a memory configuration in the
equivalence class of the state. A cell in use is indicated by a 1. A
free cell is indicated with a 0. For states 4, 11, and 12 the buddy
system permits one of several nonequivalent free cells to be filled, de-
pending on the order of cells on the available space list. In the
‘random" column the results of the model in the text where the available
space list is always in random order is given. In the "selective"
column the results are given for a model where, when there are several
blocks that the buddy system permits to be filled, the block that re-
sults in the highest numbered state is chosen. In the example column
we have underlined the cell that will be chosen in this model. An
algorithm for this model would pack the space more efficiently than the

original buddy system, but it would run much more slowly.



State

10

11

12

13

14

15

16

17

18

19

20

Example

00000000
10000000
10001000
10100000
10101000
10101010
11000000
11001000
11001010
11001100
11100000
11101000
11101010
11101100
11101110
11110000
11111000
11111010
11111100
11111110

11111111

30

TABLE 5

Blocks in Use

Probability for

Random

0.36788
0.36788
0.00211
0.03923
0.00138
0.00002
0.14260
0.00178
0.00036
0.00049
0.05815
0.00236
0.00005
0.00065
0.00005
0.01210
0.060237
0.00002
0.00044
0.00007

0.000009

p =1
Selective
0.36788
0.36788
0.00201
0.03933
0.00138
0.00002
0.14260
0.00163
0.00017
0.00041
0.05830
0,00255
0.00005
0.00040
0.00004
0.01218
0.00261
0.00003
0.00044
0.00007

0.000009




with
which are paired with empty blocks, (2)

passes between each order to level 1
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Table 6 shows for orders coming in only on the bottom level and

p=1,10, and 100 (1) Ei' mean number of blocks of size 2!

the variance of this time.

W,
1

stationarity within a very close approximation.

p =1

10000 orders
0.524 + 0.004(0.014)
0,519 + 0,004(0.014)
0.616 + 0,005(0.,017)
0.626 + 0,005(0,015)
0.626 + 0.005(0.015)
1.921 + 0,020(0.063)
2.623 + 0,023(0.072)
2.693 + 0,020(0.063)
2.693 + 0,020(0.063)
2,048 + 0,050(0.161)
4,42 + 0,20(0.63)
5.01 + 0,21(0.65)

5.01 + 0,21(0.65)

TABLE 6
p =10

10000 orders
1.724 + 0,015(0.037)
1,221 + 0,018(0,044)
0.806 + 0.018(0.045)
0.553 + 0.066(0,162)
0.640 + 0.042(0.102)
0.576 + 0.005(0.012)
2,276 + 0,05(0.124)
8,15+ 0.37(0.90)
18.3 +1.1(2.6)
0.343 + 0.005(0.012)
4,32 + 0,21(0.51)
56.1 + 6.0(14,6)

325 + 44(109)

from level

the mean time that

i-1, and (3} V ,

1

All runs were sufficiently long to achieve

p = 100
50000 orders
5.400 + 0,032(0,087)
4.930 + 0,051(0,134)
2.804 + 0,092(0.243)
1,47 + 0.15(0,.39)

1.032 + 0,064(0,170)

0.1827 4+ 0,0011(0,0030)

1.633 + 0,014(0,038)
11.28 + 0.55(1.45)

23,8 + 5,1(13.4)

0.1044 + 0.0019(0,0051)

6.72 + 0,12(0.32)
287 + 40(107)

3132 + 899(2379)
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Figure 1 shows the probabilities of various pairings of cells on
the bottom level of the buddy system for p = 10. Each curve connects
together the points where the total number of pairs of ceils being used
is constant. The probability of each pairing on the bottom level is

shown as a function of the number of cells paired with empty cells.
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Figure 2 shows the probabilities of various pairings of cells on
the bottom level of the buddy system for p = 10. Each curve con-
nects together the points where the total number of pairs of cells
being used is constant. The probability of each pairing on the bottom
ievel is stHown as a function of the number of cells paired with empty

cells,
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FIGURE 2
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Figure 3 shows the probabilities of various pairings of cells on

the bottom level of the buddy system for p = 100. Each curve con-
nects together the points where the total number of pairs of cells being

used is constant. The probability of each pairing on the bottom level

is shown as a function of the number of cells paired with empty cells.
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FIGURE 3
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Figure 4 shows the probabilities of various pairings of cells on
the bottom level of the buddy system for p = 100. Each curve con-
nects together the points where the total number of pairs of cells be-
ing used is constant. The probability of each pairing on the bottom
level is shown as a function of the number of cells paired with empty

cells.
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Figure 5 shows for p = 10 (all orders coming in on the bottom
level), Ei’ the mean number of blocks with Zi cells (where some
of those cells are in use) that have a buddy which is empty. These
results are shown as a function of the total number of orders received.
The average is taken over the entire length of the simulation up to
that point. The error bars show the standard deviation to be expected
from one run. Under each error bar the number of runs made is indi-
cated. To get the expected standard error in Ei at that point, the
standard deviation expected from one run should be divided by the
square-~root of the number of runs. Since the same set of runs was
used for many points, the error on adjacent points may be highly cor-
related. There were 3 runs of 900 orders, 3 runs of 1000 orders, and
1 run of 9000 orders which printed the results every 100 orders. There
were 6 runs of 10000 orders and 1 run of 3000 orders which printed the

results every 1000 orders.
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| Figure 6 shows for p = 10 (all orders coming in on the bottom
level}, Ei, the mean number of blocks with Zi cells (where some
of those cells are in use) that have a buddy which is empty. These
results are shown as a function of the total number of orders received,
The average is taken over the entire length of the simulation up to
that point. The error bars show the standard deviation to be expected
from one run. TUnder each error bar the number of runs made is indi-
cated. To get the expected standard error in Ei at that point, the
standard deviation expected from one run should be divided by the
square-root of the number of runs. Since the same set of runs was
used for many points, the error on adjacent points may be highly cor-
related. There were 3 runs of 900 orders, 3 runs of 1000 orders, and
1 run of 9000 orders which printed the results every 100 orders. There
were 6 runs of 10000 orders and 1 run of 3000 orders which printed

the results every 1000 orders.
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FIGURE 6
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Figure 7 shows the same information as figures 5 and 5 for p
equal to 100. There were 6 runs of 9000 orders which printed results
every 1000 orders and 7 runs of 50000 orders which printed results

every 10000 orders.

Mean Number of Boxes Paired with Empty Boxes

p = 100
6,0
E ()
‘ 0 9
SECES S T L S + 3By
s.0 L A5 7 7 7 7
6
400 4.J...
3.0 L T 7 - T
— 1 "2
L] )
7 7
7
2.0 1 7
e 7
1.0 + :{ in 54
+6 7 7
i 7
& A 7
0 4 ;

3

0 6 10000 20000 30000 40000 50000

Number of Orders

FIGURE 7



Figure 8 shows the same information as figures 5 and 6 for p
equal to 100, There were 6 runs of 9000 orders which printed results
every 1000 orders and 7 runs of 50000 orders which printed results

every 10000 orders.
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Figure 9 shows Ei’ the mean number of blocks with Zi celis
which have an empty buddy. Orders from the bottom level were at
rate 7\0 and from the next level at rate >\1, In both cases the
decay rate was one. Each run was for a total of 10000 orders. The
number of runs for each point is shown below it. The error bars indi-

cate the expected standard deviation from one run. To get the standard

deviation for the mean, divide by the square root of the number of runs.
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FIGURE 9
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Figure 10 shows Bi’ the mean number of blocks with 2i cells
which have an empty buddy. Orders from the bottom level were at
rate 7\0 and from the next level at rate 7\1" In both cases the
decay rate was one. Each run was for a total of 10000 orders. The
aumber of runs for each point is shown below it. The error bars indi-

cate the expected standard deviation from one run. To get the standard

deviation for the mean, divide by the square root of the number of runs.
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