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L,  INTRODUCTION

Problems related to the vibrations of an elastic string have been
studied for many years by mathematicians, physicists and engineers
(see, e.g., references [1]-[3], [6]~[10], and the references contained
therein). For such problems, we will develop in this paper a new approach
which is completely computer oriented, in the sense that both the model
and the equations of motion are discrete. Thereby, we will be able to
study nonlinear motion of a vibrating string by means only of arithmetic

processes.

2, THE DISCRETE STRING

A discrete siring is one which is composed of a finite number of
particles. It will be treated mathematically as an ordered set of n+2
circular, homogeneous particles Ck’ k=0, 1,2, ..., n,ntl, with respective

centers (x ,vy,), as shown typically in Figure 2.1, Of course, by the mole-

k' "k

cular theory of matter, real strings are discrete strings for which n is

i
Funds for the computations described in this paper were made
available by the Research Committee of the Graduate School of the
University of Wisconsin.
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relatively large.

Our problem will be that of describing the return of a discrete string
to a position of equilibrium from an arbitrary position of tension when n
is relatively small. The resulting motion can be considered as an approxi-
mation to that of a real string, the improvement of which is dependent largely
upon one's computer capability. It will be assumed throughout that CO and

C are fixed while Cl’ C

., C are free to move, and that
nt+l n

U

(2.1) X

3, VELOCITY AND ACCELERATION OF A PARTICLE

To facilitate dealing with the motion of a discrete vibrating string,
it will be convenient to develop first the concepts of velocity and acceleration
for a particle which moves in a fixed direction. Throughout, the location of
the particle will be identified with the location of the center of the particle.
For At > 0, let tk =kAt, k=0,1,...,9-1,q. At time tk‘ let a

particle which is in motion along an S axis have its center at Sy - We

wish to define the velocity Vi and acceleration a, of the particle at each

k
time tk, k=1,2,...,q. For this purpose, consider first the interval
tO < ts ‘tl . Suppose, as shown in Figure 3.1, one knows VO in addition
to S and S, - For example, when a particle's motion begins from a
position of rest, one would know that Vo T 0. Let us try to define v, = V(tl)

in a fashion that will use all the given data. Such is the case when one

defines vy implicitly by the smoothing formula



3.4 At 2

Note that if one were to define A by the backward difference formula

(3.2) v o= .._.l:......__...... ,

then the knowledge of v, would have been neglected. On the other hand,

0

if one were to define velocity by a forward difference formula, it would

follow that
S - 8

I S
(3.3) Vg = AT

and Vg = 0 would imply that Sy = 5 . However, it is undesirable physically

to imply that a particle whose initial velocity is zero cannot move during the
first time interval of length At .

The above considerations then motivate the general definition

S -8 v + v
-1 -1 :
(3.4) k k = k k: k’—‘l:zj---’Q:

for velocity Vi

a = T

= SR vy - 1,2,...,49.
(3.5) ak At a

From (3.4) and (3.5), it follows readily [4] that
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(3.6a) v = aplei el 7Y
2, k kel j k
(3.6b) Ve T As [sk+(-l) SOJrZJEl (-1) Sk-J]+(_l) Vg k=2
(3.7a) a = 2 [s -5 _-v_At]
: LT (Ane L %0 T Vo Bt
7 = —E [ - 38, + 25+ v_At]
(3.7b) a, = (At)z 527 7% 0 0
k-1 ‘
2 k i k
_ _ _ _ -1 +(-1 At),
(3.7¢) 8 i {sk 35, +2(-1) s0+4];>32[( ) sk_)] (-7 v, ]
k=3

4. THE 1AW OF MOTION

In terms of the definitions of Section 3, the motion of a particle is

assumed to be governed by a generalized Newton's equation of the form

(4.1) F(t

The form of (4.1) has particular computational value since the left side will

be a function only of SO’ S .5 S while the right side will be a linear

1 g-L’

combination of s _,8

oS ,sq_l,sq For then (4.1) can be solved explicitly

for Sq, and the particlds position can be generated easily on a digital com~
puter for a large number of time steps. From the resulting recursion formula
for Sq, one has immediately the existence and uniqueness of each sq for

and v, provided only that F is always defined.

given s, 0

The validity of the conservation laws for (4.1), which is in part related

to the stability of the numerical procedure to be followed, follows readily as

in [4].



5. EQUATIONS OF STRING VIBRATION

We will proceed under the popular assumption that each particle of a
discrete string can move in the vertical direction only. The string is then

said to exhibit transverse vibrations.

Let X o<x < x. Koo <x <x and x. - X = Ax,
0 1 2 n n+l d i i=1

i=1,2,...,n+tl. At time tk’ k=0,1,2,...,4, measured in seconds, let

Cj’ as shown in Figure 5.1, be a typical particle in motion. In order to

incorporate the time dependence of the centers of C Cj and Cj+1’ let

j-r

the respective centers of these particles at time tk be (Xj-l’ yj-l k),

(x., ), where each coordinate is measured in feet.

j yj,k), (xj“,yjﬂ’k

In studying the motion of Cj’ we will take into account only tensile,

viscous, and gravitational forces. For this purpose, let Tl be the tensile

force between Cj 1

and Cj’ let T2 be the tensile force between Cj and

Cj+l’ and let the viscosity vary with the velocity of the particle. Then (4.1)

takes the particular form

Vig, k-t 7Y k) Vi k=17 Vi1, 1)

! [(Ax)%+(

5.1 T .

o

2

Vigl, k=1 Y4, k-1 Yi k-1 Yiel, k-1 ]

--mg:ma M k:l,Z,B,.... )

Y .
i, k'’

i, k-1
where g= 0, o= 0 and m is the mass of Cj . By means of (3.6) and (3.7),

it follows readily from (5.1) that
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(5.2a) y. =y, +(1- %L A QU7 g L0 LD .
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t t At
5.2 = _ael - _adat _ _adt
( b)Y,2 (3 m)yi,l (2 m)y1,0 (L Zm)vl,OAt
. bn? Iz (Vi 17 Y 1
2 -
moE 0%y, oy P8R
vy (7Y .
- x ll 2 2 _1. - mg 12 1= l-, 2': )n
(002 + (v, | =y, P22
(5.2¢) y. = (3 -2%8b ST -kt
,k m i, k=1 m i, O
+2(2-——~—-O‘At k;[(—t)J’l ])+(-—1)k“(1 S8y o Ay
m )(]=2 Y, k-] 2m ' Vi, 0
. (anH® EX (yi+l, k-1~ Yy -1)
2 AR T
i (@02 4 (v g =Yy ) )2
(v, -y, )
k-1 -1, k-1 ,
- lTll 2‘l 1 5 % - mg k= 3, i=4,2,

[Ax)" + vy, =Y ) ]

Before proceeding to actual dynamical problems, it is worth noting that
in practige it is of value to know the steady state, or terminal position, of a
vibrating string. With this position available a priori, one can actually check
a particular computation to see whether or not it is converging or diverging.
The steady state can often be obtained by applying the generalized Newton's

method [ 5] to the algebraic system:




|T,] (v, - [T [y, -y, )
(5.3) 2 it 1 2 . 1 2% :mg; i: [,2’...’n’

[0+ v, - vp21F L6+ v, - v, )]

o

which results easily from (5.1) after setting g = Vi k-l =

6. EXAMPLES

A large number of examples using (5.2a)-(5.2c) were run at the University
of Wisconsin Computing Center. In this section we will discuss several which
are both illustrative and of physical interest. In all cases the output is given
graphically with 100 additional points interpolated linearly between each pair

of consecutive particles and the strings are all of approximately the same weight.

Example 1. ‘Consider an eleven particle string with X, = -l-l(-)- ,i=0,1,2,...,10;
with
B Y =Y v -y 2
(6.1) T, =T |1+] L k=l i’l’k"ll+ e [Zi k=l i-—l,k—-l) ]
. L 0 s.._‘ Ax 2 Ax

2
Yitlk-1 " Yi,k-tl , £ (yi+l,k~1 m Yy k—i> ] .
2 7

(6.2) T,=T,|1 +l Ax Ax

and with ¢ =0.6, m=0.1, T.=9, At=.002, Ax=0.1, n=9, g=32.2,

e = 0.0l. The string is placed in a position of tension by bringing the

center particle to the point (0.5, 0.5). The particles to the left of center

are positioned on the line y = x and those to the right of center on the line

y = =x+1. The resulting configuration is that shown for t = 0.00 in Figure 6. 1.
The string is released from its position of tension and its stable, strongly

damped motion is shown typically from t = 0,00 to t= 10.00 in Figure 6.1.
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At t = 10 the moving particles were oscillating no more than 2- 10_4 and

were located at (0.1, -0.1137), (0.2, -0.2023), (0.3, -0.2669), (0.4, -0.3080),
(0.5, =0.3236), (0.6, -0.3080), (0.7, -0.2669), (0.8, -0.2023), (0.9, -0.1137),
The steady state positions, found by a method to be described in the next example,
are (0.1, -0.1137), (0.2, -0.2022), (0.3, -0.2668), (0.4, -0.3079), (0.5, -0.3235),
(0.6, -0,3079), (0.7, -0.2668), (0.8, ~0.2022), (0.9, -0.1137). The total com-
puting time consumed on theUNIVAC 1108 was under 14 seconds.

i

Example 2. Consider now a twenty-one point string with X, = 75
i=0,1,2,...,20; with Tl and ’I‘_‘2 defined by (6.1)-(6.2); and with o= 0.15,

m = 0,05, TO =12,5 At=.00025 Ax=0.1, n

H

19, g=32.2, € =0.0l. The
string is placed in a position of tension by bringing the center particle to the
point (L, l). The particles to the left of center are positioned on vy = x and those
to the right of center on vy = -x+2. The resulting configuration is that shown

for t =0 in Figure 6.2. The string is released from its position of tension and
its downward motion from t =0 to t= .35 is shown typically in Figure 6.2,
while its upward motion from t = ,35to t = ,69 is shown typically in Figure 6. 3.
The lower curve in Figure 6.4 is the strinds position after six seconds, at which
time its maximum oscillation is less than .005. The upper curve in Figure 6.4,
labeled 8, is the steady state solution, which was obtained as follows. Sub-

stitution of the given parameters into (5. 3) yields the system
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Vi Y Yigp TY (Y, ~ Y
(6.3) (L2.5) [:[ + lmijm(l;“]‘”hl'*‘ (.005) (_....1....10 : i )] i+l i

Y, " VY. Y, " Y, ' (v, —v._)
-1 -1 -
-12.5 {1 + |-——l-—-6--11--— +(.005)( 10 11 )Z] S Ll ORI

' i=1,2,...,19

This system was replaced by an alternate system of ten equations in TR ZTRERE Y10
by applying the symmetry assumption v, = Y501 i=0,1,2,...,9 and the
"hanging chain" assumption v, > Vigp i=0,1,2,...,9 to(6.3). The

alternate system was solved by the generalized Newton's method [5] and

Yy YLZ’ e Y were then defined by symmetry. The resulting values of

19
Y oYy .,y19 were substituted finally into (6.3) and were verified to be the
required solution. At the end of six seconds, the particles of the string were
at most .0025 from steady state. The total UNIVAC 1108 computer time

consumed for six seconds of vibrations and for determination of the steady

state was under 50 seconds.

Example 3. The string in Example 2 was considered again but with a different
initial position. The first particle was placed at (0.1, 0.5), the second particle
at (0.2, 1), and the remaining particles on y = - *('95“ (x-2), as shown for t = .00
in Figure 6.5. The first 0.75 seconds of motion is shown typically in Figure

6.5. Convergence to steady state §, shown in Figure 6.4, was at a rate comparable

to that of Example 2.

Example 4. The string in Example 3 was considered again but without

gravity, thatis, with g = 0. The first 0.75 seconds of motion is shown
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typically in Figure 6.6. Convergence to the steady state solution y, = 0,
i

i=1,2,...,19 was at a rate comparable to that of Example 2.
Example 5. The string in Example 2 was considered again but with an

initial position defined as follows. The fifth particle was set at (0.5, -1)
and the fifteenth particle at (1.5, 1). The particles to the left of the fifth
were set on y = -2x, those between the fifth and the fifteenth on y = 2x -2,
and those to the right of the fifteenth on y = -2x + 4, The resulting
configuration is that shown for t = .00 in Figure 6.7, where the first
0.95 seconds of motion is shown. Convergence to steady state S shown

in Figure 6.4 was at a rate comparable to that of Example 2.

Example 6. Consider a forty-one particle string with X, = *i%, i=0,L,2,...,40;
with Tl and TZ defined by (6.1)-(6.2); and with o = 0.125, m = 0,025, TO = 10.0,
At = 0.00025, Ax =0.05 1i=239, g=32.2, € = .01, The string is placed in

a position of tension by bringing the center particle to (L, L), the particles to

the left of center to y = x, and the particles to the right of center to y = -x+2,

as shown for t = .00 in Figure 6.8. The need for greater accuracy than that
required of Examples 1-5 led to use of the CDC 3600 for the computation. The
volume of the output became so excessive that it was graphed directly, without
printout, by a Calcomp 570 digital plotter. The first .35 seconds of motion is
shown typically in Figure 6.8, as the string executes its initial movement
downward. A full four seconds of vibrations were graphed and showed a con-

vergence to steady state similar to that of Examples |-5. The entire computing
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time was under ten minutes.

7. REMARKS The intuition used in constructing the examples of Section 6
can be outlined as follows. A variety of initial conditions and parameters
are inserted into (5.2a)-(5.2c) and the computer is programmed to give 5-10
seconds of vibration. If no convergent cases result, then At and & are
decreased while o and m are increased. When a convergent case results, others
can be constructed with a steady state closer to the horizontal by decreasing
m a small amount, while still others with larger oscillations can be constructed
by decreasing ¢ a small amount. If a decrease in o or Ax results in diver-
gence, then At must also be decreased to retain the convergent behavior.

Other convergent examples, not seriously different in behavior from
those of Section 6, were obtained with € = 0.1, € = 0.00!, and with T defined
by raising the bracketed terms in (6.1) and (6.2) to the powers '12' and "32* .
Studies of light strings led to such rapid convergence that the graphical output
was relatively uninteresting. Nevertheless, it became apparent quickly that
the number and variety of interesting parameter choice and initial positions of
tension was so vast that no attempt could be made at present to study them all.
Initial studies of a 201 particle string with transverse oscillations only and of
a 21 particle string which allowed also for longitudenal motion resulted in

no significant results due to a shortage of available computing time.
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APPENDIX by David Schultg

PROGRAM FOR EXAMPLE 6

C

DIMENSION Y(ZOleB@)gZ(ll) sW{501) s WW(501)D(500)
INITIALIZE
T=10
R T e e
AM=o025

=39
B=1

e
N$S=80

A= UD
Mz2=21

=107 T

M3=M2+1

- .,..,_4.DAT.=_' g_o.o.oz.s_m_.,_._.,, e 1t s e b s vt 4 e s £ i i

N=50

R e o S i

DT2=DT*DT/(2%AM)

Ps=0
N1=NN+1

Fe=e Ol
DO 66 1= 19M1

66

W=
WW(T)=(I-1)%DX

e

WoT==3

W(l10)=3

SINTTTALTZE GRAPH STZE CoTme e T T
CALL GRAPHl(WW¢W9M1 93H6X594HAUT0914H STRING PROBo«@OeO)

I N R Y
W(10)=0
535t W = 4 B0
DO 1 J=1+54
e g P g PR

C INITIALIZE STRING POSITION

- DO T3 TETSMZ . R
W(I) ={(I-1)#DX)*B

13 YIS ITT=ETUT=1TT®DXT*B .
DO 22 I=M3sN1

TTTWUTY T E(Z=1UT-1)*DXT*B

22 Y(Is1)=(2=(1~1)#DX)*B
. T TTUGRAPH INITIAL POSTTION
CALL GRAPHL(WWsWsMLl $3H6X594HSAMEs14H STRING PROBees050)
G FIRST 1T1IME "STEV

J=1
DO 2 T=Z5NL
L=1-1
R
A= (Y (LsJd)=Y(IsJ))/(SQRT (LY (LoJ) =Y (LsJ))**2+DX*DX))

BETY (TSI T=Y RS IT T/ TSART TV T s JT =V (Ks JT T ¥FZFDXFDXT]
CC=(Y(KsJ)=Y (1sJ))/DX

RRETYTISIV=YTILsJ)) /DX




da ] 4 ABSIRR)
Cml4 ,
Y(IgZ)”Y(I@L)rD 2%
SECOND TIME STEP
J=2

(A#T#R~B

+<Efz@5%<acve
F{E/ 2018011
ETHC=AMEG)

U3
L=l-1
Ke=T1%1
A={Y(LoJ)~¥Y{1ed))/
Be(v{lsJi=Y{KsedI}
RR= (ITed)=Yi{lLoJ)3/DX

T=ZoN L

{SART LY L

FUSQRT YT

Led)~Y {lsd))®®Z2+DXHDX))

pJ) =Y (KsJ))#E24DXRDX))

CCTETYIKsIT=Y {5 ITT7DX

R=1+ ABS{RR)

C=1+ A%J€CC?

Y(iaB)?Y 1922}
1AMRGY

DO 15 I=13M1

F(E/26 ) ¥ (LY (1sJ)=Y(LsJ))/DX)*H#2)
FUE/26 VHLUIYIKSIY—Y(1oJ))/DX) %2

AA%DT/AM)wY(Ial)*(Z AA%DT/AM)+DT2*(A%T*R B#T #*C~

[u ¥
L

en T
[ WAL A RV

NSS=4

A

TIME STEPS GREATER THAN 2
NS= NUMBER OF GRAPHS

DO 28 ISETENS
DO 49 1PP=154

ENoD YN

i
=D )-Y{(1sJJ~2)
i

i

{ @d}~Y(19J;}/ma@RT(<

{1oJ)=Y{KsJ)})/ZLSQRT LY

(Y{Ksdi=Y{IsJ)I/DX

(Y(TLod)=Y{LesJ} /DX
ABS{RRY

+ ABS{CCH

{
{
{
.C
R
&

“OamWI/A U HOr R

T dTrey{tTso)

" CONTINUE
SET UP DATA FOR NEXT GRAPH
“SAVE DATA FOR NEXT TIME™ST
DO 29 I00=2sM1

(s y=y{Ts s 2FDXwDXry
(1oJ)=Y(KsJ))##*2+DX¥DX))

FLE/2 )% CLAY (T o)=Y (LsJ))/DX)H#3%2)
FE/2e 0¥ (({Y(KoJ)=Y(I1sJ))/DX)H*¥#2)

R B*T *C= AM%G)

EPS

M= AR DT A MY T T s T =T 3 o # 2= AR D T7AM P+ Dt Ty =
L ¥ (4=2%AARDT/AM) +DT 2% (ART*

30

g

WTo0 =Yy {I00sN)
Y{I00s3)=Y{I0QO0N~1)
T TIO0 e =Y {IU0 NG
MS=5
TNES=ST
N=5&4

&Y

CONTTRUE

CALL GRAPHW(WW9W9M1
CONTINUE
CONTINUE

9 IH6X

- ERD

5¢4HSAMEs 14H STRING PROBoes090)




C

PROGRAM FOR STEADY STATE IN EXAMPLE 2

T MENSTON YT Tryeyxtiyy o T TS T e

W=l

DX=e05

INITIALIZE SOLUTION VECTOR
DO 1 I=1,11

Y(I)=~(1~-1)#DX

UX=6el
=o005
CAMEL 05
T=1205
GE3Te2
B=DX#*DX

EEees 00007
BEGIN LOOP FOR SOLUTION
OO ETTE2YIITT T
C=Y(1)~-Y(I+1)
pEY TSI =Y LTy
AﬂB+C%C

A=SORTTAT
F=1+(D/DX) +F%D*D/B

A B SV PR
Al=SQRT(AL)

e e T C AR Y FERCRC/B

TEST TO SEE IF WE ARE AT MID-POINT

Lt“\l @cua l.l.) (&1 T03

S= T%A%F%D T%A_L%%Fl-)%(: AM-AG%A%AI

G ETTHRCHRF DY /R

SZ**T&A%D*((l/DX)+2%E*D/B)~T*A*F+(T*D*Fl*C)/Al
G FE=TRATHCH T CI7DXTFE #PRC/BY=THAL¥F 1™

Sh=( (AM®GH*DH*A) /ALY —( (AM#G*AL*C) /A)

GO TU 2
OBTAIN NEW SOLUTION AT MID=POINT

SEETHTHFRF RDHRD> SAMEAMEGRGRATI¥AL /G T
56_"2)"%"[%1"%;: %‘D%D‘K‘( ( l/DX )+2 X‘E*D/B ) ".T*T*F*F*Z*D"'AM*AM*(J*G*D/2

TTRTIYEY T
Y(I)=Y(1)=Wk(S5/56)

GO TU &
OBTAIN NEW SOLUTION AT ALL POINTS EXECPT MID-POINT
TRUTYEY(TY R ‘ '
Y(I)=Y(I)~W%(S/(51+SZ+S3+SQ))

“CONTINUE ™
PRINT To(Y(I)sI=1s11)

CHECKTOSEETE SOCUTTON HAS TCONVERGED
DO 5 I=1,11

TCTEABSIKTIN-Y(I))

IF(CT oLTe EPS) GO TO 5

GO TO 6 ’

CONTINUE

PRIFT T3 Ty {TTs1i=T311)
FORMATI{2X211F96¢4)

T END )







