PLEXIBLE PATTEI:N RECOGNITION
by
Leonaid Uhr

Technizal Report #56

February 1969

FLEXIBLE PATTERN RECOGNITION

_ABSTRACT

This paper presents and describes a sequence of three computer
programs that examine what "flexibility" might mean in the context
of pattern recognition. Flexibility is a vague, but important, concept,
and it is something that artificial intelligence programs have been
accused of being without. Various possible meanings of the concept are
discussed and programmed, Essentially, flexibility is taken to point
to a rich set of methods, which are decided upon and changed, as appro-
priate. In pattern recognition, this means making a sequence of parallel
characterizations, where the program decides, as a function of what it has
learned so far about the pattern instance it is trying to recognize, what
might be there, and what characterizers should therefore be applied next,

and where,

FLEXILLE PATTERH PLCOGHITION

Leonard Uhr

IHNTRODUCTION

This paper presents a sequence of three computer programs designed to exa-
mine what we might mean by "flexibility" in a pattern recognizer. Actual SNOBOL
prégrams and English-language descriptions (called "precis") are given, de-
scribed, and discussed. |

These programs can best be thought of as simulations of highly parallel
computers that would be far more appropriate for pattern recognition and, indeed,
for most artificial intelligence problems, than are our serial general purpose
computers. They also attempt to do pattern recognition the way living animals
appear to do it. They gather a little bit of information in the most likely
places, from this they infer whether to gather more information, and what kind
of information and where, or whether to decide upon a name to output. They thus
continue to gather and process information, in a sequential set of’parallel pPro-
grams, whether some characteristic is present somewhere in the pattern. But they
flexibly define a characteristic as a threshold element of many pieces, so that
many different things will satisfy it, they are flexible as to the position at
which the characterizer is to be assessed, and they are flexible as to whether

to decide, or to gather more information.

PROBLEM, BACKGROUND, MOTIVATION

Virtually all pattern recognition programs are organized as follows: A)
The input pattern is characterized by a set of tests, and B) a name is chosen as
a function of the outcome of these tests., Usually step A is parallel, with all
other characterizers being examined before the decision is made. (For example,
Bledsoe and Browning, 1959; Kamentsky and Liu, 1963; Marrill et al, 1963;
Prather and Uhr, 1964; Uhr and Vossler, 1961; and any program that transforms
inputs into points in some n-dimensional feature space that is then examined from

the point of view of cluster analysis, correlation, or the construction of

PLEXIBIE PATTERN RECOGHTTION

separating hyperplanes is parallel. See Uhr, 1963, 1967; and Nayy, 1968.)
Occasionally step A is serial, such that the outcome of one characterizer tells
the program which characterizer to use next. In all cases known to the author,
this is strictly serial, a single characterizer implying which single character-
izer to use next. (For example, Bomba, 1959; Feigenbaum, 1959; and all the
programs for "concept information™ (Hunt, 1962; Xochen, 1961) and "discrimination
nets" turn out to do this.)

There are two major reasons why neither the strictly parallel nor the
strictly serialuis either realistic or satisfactory, and there are several im-
provements that can be made, to both combine and extend them.

1) The nervous system of living animals, and the information-processing
syétem of man-made computer systems, are rarely if ever strictly parallel or
serial; rather they are parallel and serial. A computer system has a set of
input devices (e.g., card readers, teletypes), and each device is usually to
some extent parallel (e.g., the card reader inputs 80 alphanumeric symbols in
parallel.) The nervous system has nerve endings spread all over the surface
skin of the organism, with important parallel concentrations here and there
(e.g., roughly 10,000,000 receptor rods in each eye). Layered sequences of
computations are performed by nervous systems: for information flows back from
the skin, into and through the cortex, crossing a number of "synaptic junctions"
that seem to serve as extremely large and complex threshold elements to trans—
form their inputs. Computers are usually strictly serial in the way they transfer
information along memory banks and process information under the step-by-step
control of a central processing unit. But each transfer or computation often
involves a whole set of objects worked upon in parallel.

2) Neither a strictly parallel nor a strictly serial method is optimal.
Serial methods, since they force information flow through a single path of a
tranformation net, each node of this net (a characterizer test) deciding which

single node to go to next, suffer from being only as good as their poorest test,

PTEXTHLE PANTTERPI PRCOGHTTTON _
b

as Selfridge has pointed out (1959). bDut parellel methods, since they apply all
tests, whether or not they are needed, or even pertinent, for any particular
problem, can waste large amounts of time and possibly space. In fTact the
almost universal use of strictly parallel methods in pattern recognition re-
search, where almost all programs first apply all characterizers, and then
decide, points a suspicious finger at the toy aspects of the pattern sets upon
which they have been tested. For when they are asked to handle real-life
problems they_will almost certainly fall down (as many artificial intelligence
programs fall down) because computers are not big and fast enough to store and
perform tests that they will need. Worse - computers, even ideal computers,
could never be big and fast enough in the real world of physical particles,
with finite limits, such as the speed of light, as opposed to the timeless,
finite but potentially infinite world of mathematical machines. Nor could

brains be big enough if they used strictly parallel methods.

PROGRAMS FOR FLEXIBLE PATTERN RECOGNITION

Serial-parallel (or if you choose, parallei—serial) programs can rather
easily be developed, and these programs seem to benefit from most of the advan-
tages, and few of the disadvantages, of the two methods taken separately.

But several important things can be done in addition to simply combining
serial and parallel processing into a single program. In addition to implying
one or more names that might characterize an input and implying one or more
characterizers that might be applied next to the input, the outcome of a charac-
terizer might also imply what parts of the input to examine next, and what
general types of computations - regularizing transformations and parameters of
characterizers - to apply. (For example, a program might begin to suspect that
this was a fuzzy input, and therefore try to eliminate noise with some averaging
operations and sharpen its contours with some differencing operations; or it

might suspect that this was a midget input, and magnify it. Or it might decide

PREXTRLE PATTERID PLCOGHTTTON

to lower the threshold at which all characterizers were considered to succeed;
or, in order to handle inputs with curved corners, to lower the threshold at
which all angle-assessing characterizers were considered to succeed.)

A program might also give each characterizer the possibility of implying
larger whole characterizers, or names, that can themselves imply further charac-
terizations that should be made in order to reach a high enough level of cer-
tainty to decide to accept or reject this implication. For example, a charac-
terizer that picked up a short curving contour might imply two more complex
whole loop characterizers (one for a "D" and one for an "O") that would succeed
if this plus several other characterizers succeeded, and therefore tell the
pfogram to test out these other characterizers. Or a vertical-line characterizer
might imply "E,"™ "F," "D," etc., and the program would therefore be asked to
test out all the other characterizers that imply each of these particular
letters or all of these particular letters.

Finally, once a program has been given such abilities, it should, and can,
be asked to treat what we typically think of as the names that a pattern recog-
nition program is to output (for example, "A," "B," "plane," "table," "gene, M)
as inputs for further pattern recognition. Now a program might decide upon a
"D" and a nearby "G," transform the input into these symbols, and then decide
to conéider "DOG" or "DIG", which leads it to choose and apply further charac-
terizers. Thus the previous attitude and suggested extensions lead to the idea
of a heirarchical pattern recognizer that processes continﬁous, contextually in-
terrelated fields of more than one, heirarchically-organized, patterns. (Some
attempts have been made to handle such problems for one-dimensional strings of
natural language using methods rather different from those presented in the
present paper; see Uhr (1964), Sauvain and Uhr (1968), Siklossy (1968), and

Klein (1968),

FLEXIPLE PATTERI PRCOGHTTION

PPR-1 - STUPLEST PLOXIELE PATTLREN RECOGCHTTION

The following Program ("FPR~-1," for Flexible lattern Recognition-1) embeds
one of the central aspects of "flexibility" in the simplest interesting set of
procedures for pattern recognition that I have been éble to find. Essentially,
this program characterizes a pattern with a set of "piece~templates." The
piece-template is a string of symbols that, when it matches some substring of
the pattern, implies one or more possible pattern names, each with an associated
weilght, This program applies each piece-templates in turn, gets the implied
names of those that successfully match the input, combines the weight of all
these implications, and chooses the first name whose sun of weights exceeds a
"DECIDE" level,

r{Ehere are a large number of simple variations that can be made on programs
of this sort (See Uhr, 1969%a, 1969b). For simplicity, this program reads pat-
terns in as l-dimensional strings; but they could easily be handled in two
dimensions, as we will see in the next program. Piece-templates are considered
to be matched if found anywhere; but they might be restricted to a certain point,
or area, of the input, as in subsequent programs. Weights are combined by
simple summing, but more sophisticated functions could be used. The program
decides to output the first name whose sum of weights exceeds the level for
deciding; but it might insist that the chosen name be implied sufficiently Egég
highly than any of the other possible name%}

Flexibility is dintroduced into this rather traditional pattern recognition

program by having a characterizer imply not only a set of output names, but also

a set of "ACTS" that the program should effect. These acts will simply be some
more characterizers to apply. Now, instead of simply going through a set of
characterizers that will be applied to all inputs, the program must add the
implied acts to the set of characterizers it is looking for. Thus statement 7
of Program FPR-1 is the major variation on the traditional pattern recognition

prototype,

FLEXIBLE PATTEPN RPECOGNITION
6

“PPECIS I'PR-1. STMPLLST PROCRAM TN WHTICH CHARACTERIZERS THAT ARE POUND FPi-1
“IMPLY OTHER CHAPACTLIIZLRS 10 BE LOOKED FOR,
GO Let ATIEND contain the names of Primitive characterisors M1
Let each PI (name of a Primitive characterizer) contain its M1.1
Description, Implied names, and implied Acts.
Let each CI (name of a Compound characterizer) contain its M1.2
Description, Implied names, and implied Acts.
Let DECIDE (the level at which the program will decide to M2
choose a name to output) equal 20.
INIT Erase FOUND. 1
IN READ in the next INPUT (all on one line). (If no more, go to 2
END.)
INITCHAR Let LOOKFOR contain the names of the characterizers on ATTEND. 3

CHARACTERIZE Get the next CHARacterizer from LOOKFOR. (If no more, go to Ol.)4
Get the DESCRiption, IMPLIEDS, and ACTS for this CHARacterizer. 5
Look for the DESCRiption in the INPUT (anywhere), (If Fail to 6

find it, go to CHARACTERIZE,)

TODO Add any ACTS implied by this characterizer to the end of LOOKFOR. 7
IMPLY Get the next NAME and its WeighT from IMPLIEDS. (If no more, go 8
to CHARACTERIZE.)
If this NAME is on FOUND, remove it, and its SUM of weights. 9
(If not, go to I1.)
Add this SUM to the WeighT (WT). , 10
If this sum of WeighTs (WT is GreaterThan DECIDE, go to OUT.) 11
11 Put the NAME and its SUM on FOUND. Go to IMPLY. 12
ouT PRINT out the NAME decided on. Go to INIT. 13
01 PRINT out MIGHT BE- ' followed by whatever possible names 14

have been put on FOUND. Go to INIT.
END GO —_—

This program differs from traditional pattern recognition programs only in that
statement 7 puts any ACTS implied by the successful characterizer onto LOOKFOR, so that
the new characterizers stored in ACTS will be looked for in their turn. This entails
the use of the LOOKFOR list, which initially contains only what is in the primitive |
MEMORY, and the addition of the acts (signalled by 'A/=!' on the list of information
for each characterizer) and the augmented match of statement 5, which pulls them off
the characterizerts list,

If the program put the ACTS at the beginning, rather than at the end, of LOOKFOR,
its behavior would be radically different, It would be following up new leads and hence
going in new directions immediately, rather than making them wait their turn. A better
bprogram might have a number associated with each characterizer on MEMORY and in each
characterizer's list of ACTS that would reflect its value. Then characterizers could
be ordered on LOOKFOR from highest to lowest value, so that the program would apply therr
in that order. The program should also check to see if a characterizer is already on
LOOKFOR, so that it does not add it twice. (If it used values, it could then merge,

for example by adding or averaging, the several values for the same characterizer.)

FPLEXIRLL PATTERH FLCOGHTTION

-

M1 signifies Memory statement 1.

.A signifies an altered statement.

SPPOGRAM FPF-1. SIMILEST PROGRAM TN WHTICH CHARACTERTIZERS TMILY OTHEK Trppoy

*CHARACTERIZERS TO LOGK FOR,

GO ATTEND = TP1,P2,D3,...PN," 1z
P1 = 'D=01110/I=B-6,F-3,/A=C7,C12, /" M1 1
C7 = 'D=1000010001/T=B-7,F-2,/A=C15, /" M1, 2
DECIDE = 120! M2

INIT FOUND = 1

IN .READ *INPUT* °* ' /F(END) 2

INITCHAR LOOKFOR = ATTEND 3

CHARACTERIZE LOOKFOR *CHAR® ',' = /F(O1) . 4
$CHAR 'D=' *DESCR* '/I=! *IMPLIEDS® '/A=' ®ACTS* /! 5
INPUT DESCR /F(CHARACTERIZE) 6

TODO LOOKFOR = LOOKFOR ACTS 7

IMPLY IMPLIEDS *NAME® '-' ®RT* t ' = /P(CHARACTERIZE) 8
FOUND '/' NAME '-' ®SUM* ',t = /P(TL) 9
WT = WT + SUM 10
.GT(WT, DECIDE) /S(OUT) 11

T1 FOUND = FOUND '/! NAME '-' WT ',' /(IMPLY) 12

ouT _PRINT = 'THE PATTERN IS- ' NAME /(INTT) 13

01 _PRINT = 'MIGHT BE~ ' FOUND /(INTT) 14

END GO -

1

NOTES: DNumbers refer to Program named at the top of the column.

.2 signify inserted statements.

FPR-2. FLEXIBLE RECOGNITION OF 2-DIMENSIONAL INPUTS USING CONFIGURATION OF PIECE-

TEMPLATES.

We will now look at a program that inputs instances of patterns to be named

that are actually presented, stored, and processed in 2-dimensional form, Thus

this program allows for realistic handling of the real 2-dimensional problem.

The program also characterizes patterns by looking for matches of whole configu-

rations of piece-templates, that is, of sets of strings of symbols, where these

strings are to be matched in specified positaions,

Bach string has an associated

FIRE weight, and a name is implied if the sum of weights of found strings exceeds

its threshold. This is actually a relatively powerful kind of characterizer.

PLEXIBLE PATTERN RECOOHTTTON

-8~
Though simple to code and to understand, it appears to work about as well as
any other kind, in existing pattern recognition programs,

The program also reads in feedback as to the correct name it EBQEiQ have
chosen to output, and adjusts its DECIDE level as a function of this feedback:
If the program wrongly chose a wrong name, DECIDE is raised, so that the program
will be forced to collect more information before it makes decisions in the
future, to be less brash. If the program couldn't decide at all, DECIDE is
lowered, so that less information will be needed. This is a very simple form
of "learning" as a function of feedback, but it is so intimately related to
flexibility, and so easy to demonstrate, that it seems appropriate to present
it here.

The basic flexibility of characterigers implying not only names, but also
other characterizers, is handled exactly as in the first program, except that
characterizers are TRIED only once and, for variety, the implied ACTS that the
program is to LOOK FOR, along with the original set of characterizers it was

told to ATTEND are added to the beginning, not the end, of the ATTEND list,

RECIS FRP-2, SUCCESSFUL CHARACTERIZERS (2-DIMENSIONAL SETS OF POSITIONED F-PR-2

[ECE-TEMPLATES) IMPLY CHARACTERIZERS TO LOOK FOR.
Let ATTEND contain the names of characterizers to attend to first, Ml

Let P1,..,PN contain the information about chars on ATTEND. M1.1

Let C1,..,CN contain the information about chars pointed to. M1.2

Let the level at which the program DECIDES equal 20, M2
T Initialize FOUND to be empty, ROW to equal 0, 1-2

READ in the next LINE of the input. (If no more, go to END,) 3

If LINE contains '***! get the FeedBacK, and go to INITCHAR 4

(this input has been completed).

Or Add 1 to ROW, 5
Store this LINE under this ROW number as its name. Go to IN, 6
E PATTERN HAS BEEN INPUT. START TRYING TO RECOGNIZE IT.
TCHAR Let LOOKFOR contain the names of characterizers on ATTEND, 7
to start.

RACTERIZE Get the next CHARacterizer from LOOKFOR. (If no more, Go to 01.) 8
Get this CHARacterizer's DESCRiption, IMPLIEDS (pattern names), 9
and ACTS (other characterizers it implies should be tried).
Blank our FIRE. 10
Get the next PIECE from this DESCRiption, along with its ROW 11
and COLumn positions, and WeighT. (If no more, go to TODO,)

FLEXTBIE PATTERH PECOCNITTON
-9
-2
Look for this PILCE in the designated pPOW and starting at the ~ 12
designated COLumn. (If Fail, go to Cl to continue to nrocess
this characterizer.)

TODO Add the WeighT of this PIECE to total FIRED. Go to CL. 13
Put all ACTS implied by this successful characterizer at the 14

start of the list of things to LOOKFOR.
TMPLY Get the next THreshold, NAME and its WeighT from the list of 15

names IMPLIEDS by the characterizer. (If no more, go to
CHARACTERIZE.)

Is FIRED GreaterThan THreshcld? No - Fail to IMPLY. 16
Yes - Look for this NAME on the list of FOUND names and, if it 17
is found, remove it, along with its associated SUM of weights.

(If Fail, go to Il.)

Add the SUM of weights to the WeighT for this implication. 18
Is this new (sum of) WeighTs (WT) GreaterThan the number in 19
DECIDE? Yes - Go to Out.
Il Put this NAME and its WeighT (which may be a sum of weights) on 20
FOUND. Go to IMPLY,
our PRINT out the NAME that has been decided on. 21
See if the NAME EQUALS the FeedBacK (correct) name. Yes -~ go 22
to INIT.

No - Add 1 to DECIDE (so the program will consider more infor- 23
mation the next time). Go to INIT.

01 ' If no name has been implied with a sum of weights above DECIDE, 24
print out that there were no strong implications, and print
whatever is on FOUND.

Subtract 1 from DECIDE so that the program will be able to 25
decide a bit more quickly the next time. Go to INIT.

END GO : -~

*PROGRAM FPR-2. SUCCESSFUL CHARACTERIZERS (2-DIMENSIONAL SETS OF POSTTIONED
*PIECE~TEMPLATES) TO LOOK FOR., LEARNS WHEN TO 'DECIDE.' MATCHES OVER

*THRESHOLD. . FPR-1 FPR-2

GO ATTEND = 'P1,P2,P3,...,PN," M1 M1
Pl = 'D=01111%2-3%4,01100%4-3%2, /1=3%B-7,%E-5, / M1.1A M1.1

A=P7,C7,C12,/!
C7 = 'D=1001%3-4%3,010%7-2%4, /I=3%R-6,2%P-7,/ M1. 27 M1,2
A=(C9,C29,C81,/" A

DECIDE = '20' M2 M2

INIT FOUND = 1 1
ROW = 10! 1.1 2

*READ IN THE INPUT PATTERN, LINE BY LINE, '

IN .READ *LINE* ° ' /F(END) 2.7 3
LINE '¥%%t SpPBK* /S(INITCHAR) 2.1 4
ROW = ROW + '1! 2.2 5
S('R.' ROW) = LINE /(IN) 2.3 6

*APPLY THE CHARACTERIZERS TO THE INPUT PATTERN.

_INITCHAR LOOKFOR = ATTEND 3 7

CHARACTERIZE LOOKFOR *CHAR* *',' = /F(01) 4 8
SCHAR 'D=' ¥DESCR¥ '/I=' *IMPLIEDS® '/A=' *ACTS* /! 5 9
BLANK *FIRE¥ 5.1 10

Cl DE SCR S PIECE:‘: R ‘.':Rowz’: 1.1 :':COL:': vy :':WT:': H s T = 5 . 2 ll

. /F(TODO)
S('R.'" ROW) *LEFT/COL* PIECE /F(Cl) 6.4 12
FIRE = FIRE + WT /(Cl) 6.1 13

TODO LOOKFOR = ,GE(FIRE,'1') ACTS LOOKFOR 7.1 14

PLEXIRTE PNITRRL 000OGHTTTOH

~ 10~]'["I“-.i 1

P

IMPLY THPLILDS S var Spdps 1ot sy Yov = JP(CHARACTLE LA B.A

LCTCLEE Ty /Y CIMPLY) 8.1
FOUID v/% MAE t-t “gum@ Y,U = JE(IL) 9
WL = WT + SuUM 10
.GT(WT,DECIDE) /s(ouT) 11
FOUND = FOUND '/' NAME '-' WT ',t /(IMPLY) 12
.PRINT = "THE PATTERN IS~ ' NAME : 13.A
EQUALS(FBK,NAME) /S(INIT) 13.1
DECIDE = DECIDE + '1' /(INIT 13.2
- PRINT = 'NO STRONG IMPLIC, WEAK ONES = ' FOUND 14.A
DECIDE = DECIDE - '1' /(INIT) 14,1
GO

FPR-3, FLEXIBLE RECOGNITICN WITH HETRARCHICAL, RELATIVELY-POSITIONED CHARACTERIZER

LY
16
17
18
19
20
21
22
23

04
25

-

S

Rather than merely imply which further characterizers should be applied

to the input pattern, a characterizer that succeeds might also imply where

these characterizers should be applied. A found characterizerp might also be a
part of a heirarchically higher-level characterizer. In order to handle this
efficiently, it is now necessary for the program to put the names of the found
characterizers in the input, so that higher-level characterizers can refer and
look for these lower-level characterizers by name only. A piece of a confiqu-
rational characterizer can now be another characterizer's name. Implied names
now imply other characterizers than i%ply them, and those that have not as yet
been TRIED are added to the LOOK FOR list, so that the program will look furth
into the conjecture that the input is of the kind named. A more sophisticated
program would use weights associated with these names to merge them into the
LOOK FOR 1list, and further choose to apply characterizers that will be most
instrumental in deciding among the several most highly implied names,

Program FPR-3 also modifies the basic ATTEND list of the characterizers
that it should start looking for in each input, by moving characterizers that
matched to the beginning of ATTEND. [A more sophisticated program might move
the characterizer only a little bit toward the beginning, or in some other way
re-order characterizers as a function of matching, and/or of feedback as to th
helpfulness of this match., Quite a bit more difficult would be to have the
program decide to add characterizers to the ATTEND list, and to take them off

for this would entail checking whether a characterirzer was a part of some

er

e

FLEXIBTLE PATTURI PECOCHTTTION
-1~

higher-level characterizer, so that the proper order of applying characterizers
would always be observed:]

This program handles either positioned or unpositioned configurations, and
their pieces. It makes partial threshold matches. [@ better program would
(as shown in Jordan and Uhr, 1969) allow for a certain amount of wobble in the
matching of positioned pieces. It would also be extremely easy to have parts
of characterizers be names of subroutines or functions that could compute any
arbitrary characteristic for which the code was written (e.g., counts of line

crossings, angle detectors, edge, curve and loop detectorsi]

‘PROGRAM FPR-3. HEIRARCHICAL CHARACTERIZERS IMPLY RELATIVELY-POSITIONED WHOLES
*TO LOOK FOR NEXT, FPR-3

50 Let ATTEND contain the Primitive characterizers, each, optionally, M1
' with a position (relative to the upper-left of the matrix)
attached to it.

Let P1 (and P2,P3,...) contain information as to its Description, M2.1
what, if anything, it Implies, and the Acts it dmplies.

Let C1(C2,C3,...), which is a Compound characterizer the program M3.1
applies only when it has been implied as an Act by some other
characterizer, contain its Description, Implieds and implied Acts.

Let A(B,C,...,Z) contain the Primitive characterizers that imply it.M4.1

Let the level to DECIDE equal 20, M5
NIT Erase FOUND (this could be comnbined with the instruction below). 1
BLANK out anything in ROW and TRIED. 2
N READ in the next LINE of the input pattern. (If no more, go to 3
END.)

If this LINE contairs '***! get the FeedBacK, which follows, and 4
go to INITCHAR.
Or add 1 to ROW.
Store this LINE as the contents of this ROW. Go to IN.
‘NITCHAR Let LOOKFOR contain whatever characterizers (the primitives) are
stored on ATTEND.
'HARACTERIZE Get the next CHARacterizer and its POSition (which may be null) 8
from LOOKFOR. (If no more, go to 01.)
Add this CHARacterizer to the list of those TRIED, 9
If POSition contains a '-', let AROW contain what precedes the 10
-1 and ACOL contain what follows it, and go to C2. :
Or let AROW contain TANYWHERE' (unless a position is given, the 11
program will try to match the characterizer anywhere).

~ Oy

2 Get the DESCRiption, IMPLIEDS, and ACTS for this CHARacterizer. 12
BLANK out FIRE, WeighT. 13
Add WelghT to FIRE 14

1 Get the next PIECE, and its DROW and DCOLumn from the DESCRiption. 15

FLEXIBLE PATTERN PLCOGHITTON
-12-

(DFOW and DCOL, which give the difference in row and in
column, may be null), If fail, go to REORDLE,
Let DROW equal APON plus DROW and, if succeed, go to 4,
Or, if fail (because program couldn't add P"ANYWHERE', which
is not a number), Let F equal zero.

C3 Is R LessThan ROW? No - Go o CHARACTERTIZE (the entire input has
been searched, and this characterizer was not found).
Add 1 to R.

Look for this PIECE in this ROW. (If fail, go to C3.)

If found, let AROW equal R.

See if '/(' is found immediately to the RIGHT of the piece that
was found (which means it is a name that was inserted by the
program, with its position as a subscript, during this run),
get ACOL, which designates the position of this piece, and
go to (i,

Or let ACOLumn equal the SIZE of the part of this ROW to the
LEFT of the piece that matched. Go to C1.

*MMKP&QAI@&HHNH)PHEE,RMHM%WMNL@MD@ZWW%H&.
Cc4 Let DCOLumn equal ACOLumn plus DCOLumn.

Look in the DROW specified for the PIECE immediately followed by
the specified DCOL as its subscript. (If Succeed, go to C1).

Or look in the DROW specified at the DCOLumn specified (from the
left) for the PIECE. If Succeed, go to Cl, to get the next
PIECE of this characterizer. TIf Fail, go to CHARACTERIZE, to
get the next characterizer.

REORDER See if this CHARacterizer contains 'P! (which means it is a
Primitive). If not, go to TODO.

Yes - Put it at the beginning of ATTEND. (Thus primitive
characterizers that are found will be moved to the front of
ATTEND and therefore attended to more.)

TODO Get the next CHARacterizer from ACTS, (If Fail, go to ADDFOUND.)

Get the RelativeRow and RelativeCOLumn from this CHARacterizer
(if given), and add them to DROW and DCOLumn, respectively,
to position where this CHARacterizer as a whole should be
looked for,

If this CHARacterizer has already been TRIED, go directly to

TODO.
Add this CHARacterizer to the end of LOOKFOR. Go to TODO.
ADDFOUND Put this found CHARacterizer into the input, in the DROW

specified, at the end, subscripted by P{(DCOLumn) *.
“THE REST OF THE PROGRAM IS IDENTICAL TO STATEMENTS 15-25 OF FPL-2,
“EXCEPT THAT ALL CHARACTERIZERS OF AN IMPLIED NAME ARE PUT AT THE
*START OF LOOKFOR, (IF THEY HAVEN'T BEEN TRIED ALREADY). (STATEMENTS 37-40.)

|t

"1

L)

i

16
17

18
19
20

21
22

23
24

25

26
27
28

29
30

31

32
33

S,

IEEX TR PATTEDN PECOGHTITION

-1~
FPEOGPAI FPP-3, HEIPRPCHICAL CHARACTERIZERS IMPLY RELATIVELY-POSTTIOHLD
SWHOLES T0 LOOK FOR HEXT,. [PR-2 FPR-
GO ATTEND = TP1¥2.3 P2¥P3%, , PN*! M1
“PRIMITIVE CHARACTERIZERS CALLID PI, OTHERS CALLED CI.
Pl = 'D= 0110%2-3%2, 01%4. 4% °2,1111%5-2%3, /TI=3%E-1, /A=C7*, M2.1..
C12%3-4,/1
: M2. N
C7 = 1D=C3%-%3 (C2%2-3%4/I=4%E-3,5%F~5, /A=C12%, /1 M3.1..
. M3.N
*THE PRIMITIVES IMPLYING IT ARE STORED UNDER EACH NAME. M4.1..
A = 'P1¥2.3 P3%, pgw, ? M4, N
DECIDE = 207 M4 M5
INIT FOUND = 1 1
BLANK *ROW* *TRIED* 2 2
IN .READ “LINE* 1 ' /EF(END) 3 3
LINE T%#%®1 %pRK¥ /S(INITCHAR) 4 4
ROW = ROW + '17 5 5
$('R.' ROW) = LINE /(IN) 6 6
INITCHAR LOOKFOR = ATTEND 7 7
CHARACTERIZE LOOKFOR * C}AR* TRT%pOS® 't = /F(0L) 8 8
TRIED = TRIED CHAR ',? 9
POS *AROW® '-' *ACOL* = /S(C2) 10
AROW = 'ANYWHERE? 11
C2 SCHAR 'D=' *DESCR¥ '/I=' ¥IMPLIEDS* '/A=! *ACTS* 1/t 9 12
BLANK *FIRE* “*WwT* 10.2 13
Ccl FIRE = FIRE + WT 13.A 14
DESCR *PIECE® '#' *DROW* '-' ¥DCOL¥ T%! %WT* ' ¥ = /P(TODO)1l.A 15
DROW = AROW + DROW /S(C4) 16
*ADDITION FAILS WHEN AROW = TANYWHERE' (WHICH IS NON-NUMERIC). LOOKS ANYWHERE.
R=0 17
C3 .LT(R,ROW) /F(CHARACTERIZE) 18
R =R + 117 19
S('R.' R) *LEFT® PIECE *RIGHT* /F(C3) 12.A 20
AROW = - 21
RIGHT ANCHOR() '/(' *ACOL* ')*' /S(Cl) 22
ACOL = SIZE(LEFT) /(Cl) 23
*LOOK FOR A POSITIONED PIECE.
c4 DCOL = ACOL + DCOL 24
S('R.!' DROW) PIECE '/(' DCOL ™)' /S(C1) 25
“ S('R.' DROW) ANCHOR () *LEFT/DCOL* PIECE /S(CLl)F(CHARACTERIZE) 26
*CHARACTERIZER SUCCEEDED. MOVE IT UP ON ATTEND. ADD THINGS TODO TO LOOKFOR.
REORDER CHAR 'P' /F(TODO) 27
ATTEND *LEPT' CHAR '*' *REST* ' ' = CHAR '*' REST ',' LEFT 28
TODO ACTS t Y = /F(ADDFOUND) 29
*COMPUTES AND oPECIFIhS hELATIVE POSTTION (IF GIVEN) OF CHARACTERIZER POINTED TO.
CH ' *RROW" '~-% ¥RCOL¥ = '¥*' RROW + DROW '-' RCOL + DCOL 30
TRIED CH '," /S(TODO) 31
LOOKFOR = LOOKFOR CH *,% /(TODO) 14.A 39
“ADD TCHAR'! (THE FOUND CHARACTERTZER' 3 NAME), AND ITS POSITION, TO THE INPUT.
ADDFOUND S(IR, ! DROW) = @(TR ' DROW) C}AR v/(T DCOL Ty 33
IMPLY IMPLIEDS ®TH® ¥ @NAME® t-% *WT* ' t = /P(CHARACTERIZE) 15 34
.GT(FIRE,TH) /F(IMPLY) 16 35

PLEXIRLE PATTLEN PLCOGHTTTON
-1

POULID V/F MARL Y-t *gUm* 17 = /5(12) 17,4 36
“PUT THE PRIMITIVES THAT IMPLY THIS HAME ONTO LOOKFOR, _
SHAME “CHAR® 37
13 CHARS “CH* ', ' = JP(I2) 38
TRIED CH ',' /S(I3) 39
LOOKFOR = CH ',' LOOKFOR /(I3) . 40
I2 WT = WT + SuM 18, A 41
.GT(WT, DECIDE) /S(0UT) 19 4.9
Il FOUND = FOUND *'/" NAME '-' WT *,' /(IMPLY) 20 43
our .PRINT = 'THE PATTERN IS- ' NAME 21 44
‘ EQUALS(FBK, NAME) /S(INIT) 22 45
DECIDE = DECIDE + '1%' /(INIT) 23 46
0l .PRINT = 'NO STRONG IMPLIC, WEAK ONES = ' FOUND 24 47
DECIDE = DECIDE — '1!' /(INIT) 25 48
END GO -
DISCUSSION

What else should a "flexible" pattern recognition program do, and what
else might we mean by "flexibility¥ in this context? Tt seems proper to ask
this question now, for our situation is quite clear-cut, and the issues seem to
be relatively simple and well-delineated. The programs we have just examined
introduce flexibility and possibilities for variation at just about every point
in their memory structures and their flow of processing. Should they have more
structure and more decision points? Flexibility seems to boil down to peppering
the program with decision points as to each aspect of what it is doing, so that
it can and will at any moment change its direction of processing as a reflection
of information it has gathered up to that point in its processing. Flexibility
is thus closely related to learning. As the program learns about this input
that it is trying to recognize it continually assesses and changes its tactics
for recognition. It is self-reflective (self-conscious?) in that it decides
not only about what pattern name to output, as is the case with most pattern
recognition programs, but also about the various aspects of wha* to do next.

But this is not true learning, which modifies a program or an organism so
that the next time it processes the same or for that matter other inputs it
will behave differently. For the flexible programs erase all of the information

that they have temporarily built up about the input, re-initialize all their

FLEXIBLE PATILEN RECOGHTTTON
]

starting parameters and lists, and process subsequent inputs in exactly the
same way no matter what inputs were processed before. A variety of learning
techniques - for dinduction, hypothesis generation and discovery, and para-
meter adjusting and discovery - might be added to increase further the flexi-
bility of these programs. (See Jordan and Uhr, 1969, for a program that in-
corporates a large number of learning mechanisms.)

With the exception of learning, I am at a loss as to what else to add,
or where else to go with these programs, in order to make them more "flexible."
This is not at all to say that they exhibit the ultimate in flexibility, or
even that this is what we commonly mean, or ought to mean, by flexibility.
Rather the purpose of this paper is to pose the question of flexibiiity in
a clear and concrete manner, present some answers that have occurred to me,
and most important, urge, challenge, and seduce the reader into taking up the

problem and finding more and better answers.

SUMMARY

This paper presents and discusses a series of successively more complex
computer programs that: 1) use a parallel-serial organization of characterizers,
2) decide where to look for what type of characterizer as a function of the
outcome of previous tests, 3) change their level of assurance as to when to
decide, 4) characterize patterns using loosely positioned, partially matching
piece-templates, 5) develop conjectures as to what output names, or higher-
level characterizers might be appropriate, and therefore make further tests
designed to establish or deny these conjectures, and 6) heirarchically re-
cognize things that are themselves composed of previously-recognized things,
Actual running computer programs are presented to exhibit some, but not all
of the features that programs to handle the above problems might have. They

are designed to be as simple as possible, and they are presented in a high-

FLEXIBLE PATTEPH RECOGHITTON
16~

level pattern-matching and list-procecssing language (SNOBOL) that makes
communication, and coding and debugging, as simple as possible, They run
extremely slowly on the computer, and for extensive tests to determine their
power they should be recoded into a faster-running language. But they appear
to give a relatively good coverage of, and make quite clear, the above Prob-
ulems and the methods that can be used to attack them.

What else might we’mean by "flexible" in the context of pattern recog-
nition? What other functions should a computer program be given? Pattern
recognition seems to be a relatively simple and straightforward problem area,
but one in which a concept like "flexibility" has pertinence and meaning,

It would be very nice to exhaust all the possibilities for "flexibilify,”
to code them, and to thus demonstrate what this concept might mean. It
would be at least as interesting to discover meaningful aspects of flexibility

that could not be coded,

BIBLICGHAPHY

Bledsoe, W, W. and Browning, I., Pattern recognition and reading by machine,
Proc, Eastern Joint Comp, Conf,, 1959, 225.232,

Bomba, J. S., Alpha-numeric character recognition using local operations,
Proc. Eastern Joint Comp, Conf,, 1959, 218-224,

Feigenbaum, E., The simulation of verbal learning., Proc., Western Joint
Computer Conf., 1961,

Hunt, E. B., Concept Formation: An Information Processing Problem., New
York: Wiley, 1962,

Kamentsky, L. A. and Liu, C. N., Computer-automated design of multi-font
print recognition logic. IBM J. of Research and Devel,, 1963, 7, 2-13,

Klein, 8., Fabens, W., Herriot, W., Katke, R., Kuppin, M., and Towster,
The AUTOLING System, U, W. Comp. Sci. Dept. Tech. Report No. 43, 1968,

Kochen, M., An experimental program for the selection of "disjunctive
hypotheses," Proc, Western Joint Computer Conf,, 1961,

Marrill, T. et 4l., Cyclops-I: a second generation recognition system, ,
Proc., Fall Joint Computer Conf., 1963,

Nagy,lgéé 8§Zte of the art in pattern recognition, Proceedings of the IEEE,
> ot

Prather, Rebecca and Uhr, L., Discovery and learning techniques for pattern
recognition., Proec, 19th Annual Meeting of the ACM, 1964, '

Sauvain, R. and Uhr, L., A teachable pattern describing and recognizing
program, Pattern Recognition, 1969, in press,

Selfridge, 0. G., Pandemonium: a paradigm for learning., In: Mechanization
of Thought Processes (D. V., Blake and A, M. Uttley, Eds.), London:
H. M. Stationary Office, 1959,

Siklossy, L., Natural Language Learning by Computer, Unpublished Doctoral
Dissertation, Pittsburgh: Carnegie-Mellon Univ., 1968,

Uhr, L., Pattern-string learning programs, Behav, Sci., 1964, 9, 258-270.

Uhr, L., (Bditor) Pattern Recognition, New York: Wiley, 1967,

Uhr, L., Pattern recognition computers as models for form perception,
Psychol. Bull.,, 1963, 60, 40-73,

Uhr, L., A tutorial description of pattern recognition programs, Paper
submitted for publishing - 1909,

Uhr, L., Patrern Recognition, Problem-Solving, and Learning. 196Y9b. (In
preparation,) '

Uhr, L. and Jordan, Sara., The learning of parameters for generating com-
pound characterizers for pattern recognition, submitted for publi-
cation, 1969,

Uhr, L. and Vossler, C., A pattern recognition program that generates,
evaluates, and adjusts its own operators, Proc, Western Joint Computer

Conf., 1961, 555-569.

