.
7

Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

PROOFS OF ALGORITHMS FOR ASYMPTOTIC
series‘!)

by

Ralph L. London(z)
and
john H. Halton(z)

Technical Report #54A

May 1969

(1) This research was supported by the National Science Foundation under
Grants GP 7069 and GJ 171, and by the Mathematics Research Center,
United States Army under Contract Number DA-31-124-ARO-D-462.

(2) Computer Sciences Department and Mathematics Research Center, United
States Army.

ABSTRACT

Six algorithms for computing asymptotic series as formulas are

proved to be correct.

Acknowledgement

We wish to thank Mrs. Laura Collins for her usual careful typing of
the manuscript (despite our efforts to render it illegible and confusing by
a mass of corrections, afterthoughts, and editorial rearrangements), and
especially for her patient and expert arrangement and execution of the
flowcharts, using mainly a typewriter--a machine that was never intended

to produce such copy.

PROOFS OF ALGORITHMS FOR ASYMPTOTIC SERIES
by

Ralph L. London
and
John H. Halton

In a previous paper [1], several algorithms appear, intended as
part of a proposed package in a formula-manipulation system, to compute
and to manipulate asymptotic series. The purpose of the present paper
is to prove that these algorithms meet their specifications and to there-
by remove lingering doubts about their correctness. The algorithms are
not complex (with the possible exception of the last one), and once
they are "understood," it is easy to "convince oneself" that they are
correct., Nevertheless, formal proofs of their dorréctness are quite ap-
propriate since they firmly establish the correctness of the algorithms,
or in other words, certify the algorithms in a new way. The question
of the algorithms' being correct reduces to the question of whether the
proofs are correct--certainly a significant advance. The question of
the correctness of proofs is, of course, the same issue that arises with
all proofs, and the point is that the present proofs are, of necessity,
subject to that question.

The present paper assumes the contents of [1]. (For the benefit
of readers unfamiliar with [1], we here include an Appendix containing

a minimum of essential prerequisites, including the algorithms.) Each

of the six algorithms to be proved calculates the first n non-zero
terms of an asymptotic series, The integer n is an input parameter
with the assumption that n > 1. Sufficient terms are assumed to exist
both for the answer and for any series needed in computing the answer,
In other words, there are no program checks or error exits to guard
against this contingency although they easily could be added (and
proved). It is clearly true but not proved here that all input series are
unaltered by computations involving them.

Since the answer is computed as a formula and not as a numeric
quantity, round-off problems do not exist. The proofs assume that all
formulas can be computed with no spacé problems, and the integer vari-
ables are assumed small enough to cause no overflow,

In order to facilitate the presentation of the proofs, each algorithm
is restated in a flowchart which is identical to the corresponding algo-
rithm in [1]. No simplifications or alterations have been made either
to the quantities computed or in the interconnection of the statements.
The only "difference" is in the placement of the boxes on the page to
avoid crossing of lines. While the proofs apply to the flowcharts, it
is clear by simply checking the flowchart against the algorithm, that
the proofs also apply to the algorithms in their original representation.

The proofs of correctness are given by a technique described,
with examples, in both [2] and [3]. The idea is that assertions con-

cerning the progress of the computation are made between boxes of the

flowchart, and the proof consists of demonstrating that each assertion
is true each time control passes that assertion, under the assumption
that the previously encountered assertions are true. It is essentially
an inductive technique that shows that there is no first false assertion.
Termination of the algorithm is shown separately. Also exploited are
strategies of proof which are discussed in [4], such as the table of
variable-value changes and sectioning.

Each box of a flowchart is given an integer number in order that
the proof may refer to that box. The assertions are numbered "n.m"
with “n" usually the number of the box preceding the assertion and
with "m" wused to distinguish several assertions made at the same
point. (See, for example, box 2 and assertions 2.1 and 2.2 in the
flowchart for algorithm (91) [numbers in parentheses refer to equations
in [1]; notation such as (¥1) refers to an equation in the present re-
port].) The variables of the assertions are the same as those of the
algorithm except for dummy variables which must be new,

The symbols "//" are used as an end of proof sign. We now
turn to a statement of the processing claimed for each algorithm and a

proof that the claim is realized.

Proofgs of the algorithms

The first algorithm to be proved is (97). While a complete proof
of this obvious algorithm is probably unnecessary, one is still given to

illustrate both the proof technique and the notation used in a proof.

Theorem: Algorithm (97) computes =z = Zl;:l ASTER(f;y:L;i).

Proof: The following flowchart represents (97), and it has the

assertions added.

———001: n Z l

[h«l,z-—o

--=-1l,1: 2z =0, h=1

Ll | z < z + ASTER(f;y;:L:h)

———2,1: 2z = Z?=l ASTER(f;y;L:i)

3
end of procedure ---3.1 z = Z?zlASTER(f;y;L;i)
4 V.
h«-h 4+ 1
_ <h-1 .
———4,l: 2 = Zi=l ASTER(f;y;L;1)

Flowchart for Algorithm (97)

Reasons for the truth of each assertion follow: (Since assertion
2.1 can be reached from either assertion 1.1 or 4.1, it is necessary
to consider both possibilities.)
0.1: Assumptiion on n.

1.1 By 1.

2.1: From 1.1: By 1.1 and 2, z = ASTER(f:y;L;1). From 4.1: By

4.1 and 2.

3,1 By 3, h =n, Hence 3.1 is 2.1 with h = n.
4,1: By 2.1 with change in h at 4.

(97) terminates since n > 1, h starts at 1, and h 1is stepped
by 1 (after testing); whence h must eventually equal the unchanged
n, and therefore the end of the procedure is reached. The desired
result of (97) is assertion 3.1.//

Algorithm (91) is more complicated to prove and requires additional
notation for use in the assertions. If s > 1, define =z = A(s) to
mean

z = 3 a, o where (1)

aj 0 for r=1,2,...,8 (0L j1 < i, <oool J'S),
(*2)
a, = 0 if 0<t< js and t # jr r=1,2,...,8).
If s = 0, define A(0) = 0, A(s) is (80) and the conditions (79) but
with different variables, and this is to avoid conflict with the variables
used in (91). Using the A(s) notation, (91) is to compute =z = A(n)
which is assertion 7.1 in the flowchart.

In order to be able to make the necessary assertions about the
coefficients as required by A(s), each quantity a that is computed

by box 4 will be denoted by a using the current value of j, as

j-17

shown in the flowchart at assertion 4.1. Similarly for each non-zero

coefficient a, assertion 6.1 defines the index jh (h > 1) needed to

be able to refer to the non-zero coefficients., Define = -1,

Yo
The INITIALIZE L and CALL L statements in [1] have been replaced
by the respective "Note" since that is the effect of the use of L.

Theorem: Algorithm (91) computes 2z = A(n).

Proof:
--=-0.1: n > 1
1
-0
2 /
h«—1, 220
2.,2: z =0 = A(0) = A(h-1)

3

Ll o — o(y), i —i+1

-==3.1: z = A(h-1)
3.2: a =0 for t =3, _;tl.ec.,i-2
4
- a ~— LIM ((f - z)/9; y)
5.1: z = A(h-1) ‘---4.1: Define aj-—l = a
5.2 a, =0 for Yes
; 6
t = +11000,
"h-1 A Z~—z+axo
i-1 | y---6.1: =z = A(h), define jh = j-1

end of procedure

:-7.1: z = A(n)

Flowchart for Algorithm (91)

0.1:

Reasons for the truth of each assertion follow:

Assumption on n.,

2.1-2.2: By 2 and definition of A(0).

3.1:

5.2

From 2.l: By 2.2, PFrom 5.1: By 5.1,

From 2.1: Since j0 = -1, and j =1 byb 1 and 3, the
range of t is null, From 5.1: By 5.2 with change in j at 3.
From 5 directly: By 3.1 and 5. From 8: By 6.1 with change in
h at 8.

Prom 5 directly: a = =0 by 5, so 3.2 also holds for

aj_1
t = j=-1 by 4.1. From 8: The range of t 1is null, since
j-1 = iy (at 6.1) = Jpo1 (at 5.2) by 6.1 and 8.

Assuming box 4 does give the desired coefficient, 6.1 follows
from 3.1, 3.2, 5(a#0), and 6.

By 7, h =n. Hence 7.1 is 6.1 with h = n,

(91) will terminate provided h reaches n. Since h starts at

1 and is stepped by 1, h will equal the fixed n > 1 unless h

stays fixed, i.e., unless the path from boxes 3 to 5 and (directly)

back to 3 is taken infinitely often. This corresponds to an infinite

succession of zero coefficients, a possibility that is ruled out by the

first paragraph on page 32 of [1].//

Algorithm (100) for computing the sum of asymptotic series is

proved next and, as a corollary, algorithm (99) is shown to be correct.

((100) is (99) suitably modified.) To compute (99) Lemma 12(i) is used,

i.e., formula (50) is computed. The inner sum from i =1 to k
reflects the collecting of like cpj terms into a single term. Hence
each coefficient aj in the asymptotic sum is

k
= 3 ®
aj =1 c a j o (3)

1f cpj does not appear in fi’ then the corresponding aij is zero.

In (99) k > 1 is the number of fi's being summed, so each aj
consists of k summands, counting zeros. In (100), which uses (51),
the indices kh (h > 0) provide an upper bound on the number of fi's
which must be checked to insure that all terms involving Py have

1

been included in the computation of Z;o_ Ciaij’ as explained in the

Appendix. Hence in (100), a suitable k for the analog of (¥3) is

k = max (kh) (*4)
-1<h <
where, to simplify the notation, k-—l is defined as max(l,ko) thus

guaranteeing that k > 1 for all k. This bound on k 1is needed to

insure termination,
The quantities hi and 21 in (100) are used to record the first

term in fi that has not already been included in the computation of
the result. hi gives the term number in fi with only non-zero terms
being counted, starting at 1; and Zi gives the index of the hi th o
according to the original numbering of the ¢ sequence, starting at O,

The notation B(s) will mean that hr and Er for r=1,2,...,8

are all set with the above meaning.

Assertions such as 3.2 and 5.2 which appear in the proof of (91)
have been omitted for brevity in the proof of (100) and in subsequent
proofs. In all cases the details are the same as in (91). Furthermore,
since all uses of ASCOF, ASTER and ASIND have certain parameters
identical, only the first and last parameters are written,

The assertions for this proof and for subsequent proofs do not
appear on the flowchart because of space problems. Instead notation
such as "3.1" or "7.1-7.4" is placed where the assertions belong, and
the actual assertions appear below the flowchart.

Theorem: Algorithm (100) computes =z of operation (90) with

o]

f= Zi“l Cifi assuming the existence of the indices kh as described

on page 34 of [1] and in the Appendix.

Lemma: Variables in (100) are changed in value only as follows:

10

Variable Changed at Box Number
a 7, l4a
a]. defined at assertion 15.3
c --
h 6, 20
hi 3, 10, 14b
J 6, 21
i 1, 5, 7, 16
k 2, 9
kh --
zi 3, 10, l4c
m 9, 12
n -
z 1, 18

Proof: Inspection of the flowchart.//
This table is useful in verifying that assertions remain unchanged,
especially over several boxes. The notation "--" emphasizes that the

variable is unchanged throughout.

Proof of theorem:

11

---0.1

z - 0, 1«1

---1.1
2 \
k -~ max(l,ko)

3

Llih, <« 1, £, < ASIND(f ;1)
1 1 1

f—-3.1

--13.1-13,2

A 14a a<—-a+ci><ASCOF(fi;hi)
j—i+1 -—--4,1-4,2

14blh,-h, +1
, i i
l4c ﬂi *—ASIND(fiihi)
~
“W---14,1-14,2
15 v
i=k °s
~--15,1-15,3
17
No aZo Yes
16 L
i1+l 18 z —z+axo,
No J

end of
procedure

:..-19‘1

21

Flowchart for Algorithm (100)

12

Below appear the assertion numbers, the actual assertions, and

the reasons why each assertion is true.

7.4:

n > 1: Assumption on n,

z =0, 1i=1: By 1,

B(i): From 1.1: i =1 so B(l) by 3. From 5: By 3.1, 5,
and 3.

B(k): By 3.1 with i=k. By 2, assertion 4.1 implies B(kO) and
B(1).

z = 0 = A(0): 2z is unchanged from 1.1,

z = A(h-1): From 4.1: By 4.2 since h = 1 at 6, From 20,1:
By 20.1,

B(k): From 4.1: Unchanged from 4,1. From 20.1: Unchanged
from 15.1,

a=20,1=1: By 7.

i

k max (k.): Recall that k , = max (l,ko). From 4.1:

-1<v<j-1 -l

By 6, j = 0, and by 2, k = k From 20.1: By 8.4 with

..]_°
change in j at 21.
B(k): From 8 directly: By 7.2. From 11: By 10.1 with m = k.

a =0, i=1: Unchanged from 7.3.

A(h-1): Unchanged from 7.1,

N
i

~
1}

max (k_): From 8 directly: By 7.4 and the test at 8.
LV
-1 v<]

Note by 2 and 8 that 8.4 is always reached directly from 8 if

j =0, From 11: By 7.4 (with j > 0), 8, and 9 (k<—kj).

13

10.1: B(m): From 9: By 7.2, 9(m = k+1), 10, and k < kj at 8. From

12: By 10.1, 12, and 10,

13,1: B(k): From 8.1l: By 8.1, From 16: Unchanged from 14.1.

i-1

13,2: a 2 : ¢ ASCOF(f :h })b,, , i.e., the term c_ ASCOF (f ;h)
u=1l"u u'u J;@u u u'u

]

appears iff j = Bu: From 8.1: By 8.2, vavcuous sum. From 16:
By 14.2 with change in i at 16.

14,1: B(k): TFrom 14: By 13.1, 14b, and l4c, since after 14a only both
hi and ﬂi must be reset, From 13 directly: Unchanged from 13.1.

st ¢ ASCOF(f ;h)b,, : From 14: By 13.1, 13.2, and
u u'u Jﬁ,u

H

14.2: a u=1
l4a. From 13 directly: By 13.1 and the test at 13 (Ei;!j) (means

cpj does not appear in fi)'

15.1: B(k): By 14.1.

15.2;: =z = A(h-1): Unchanged from 8.3.
k
. = . = 3 s
15.3: a Zu:lcuASCOP(fu,hu) Bjﬂu, define aj a by (%3): By 14.2

with i = k. By 8.4, the value of k is as required for (¥4).

18.1: =z = A(h): By 15,2, 15.3, and a # 0 at 17.
19.1: =z = A(n): By 18.1 with h = n,
20.1: =z = A(h-1): From 20: By 18.1 with change in h at 20, From

17 directly: By 15.1, and a = 0 at 17,
Termination for (100) follows as in (91). The path for unchang-
ing h is from boxes 7 to 17 to 21 to 7. The path from 7 must reach

17 in a finite number of steps. The path from 7 to 7 that avoids box

14

20 infinitely often is ruled out exactly as it is excluded in (91). Box
2 and assertions 7.4 and 8.4 insure k > 1 for all k, and therefore

the three loops ending at k (boxes 4, 11, and 15) do indeed termi-

nate.//

Corollary: Algorithm (99) computes =z of operation (90) with

f=3% of.
i=1 "ii

Proof: (99) is a proper subset of (100), namely boxes 2 and 8-12
are missing and box 7 connects directly to box 13, The k of (99) can

serve as the required kh for all h., With this choice of kh the

processing of (100) reduces to the processing of (99) since box 2 is
now a null operation and the test at 8 sends control from box 7 directly

to box 13. The proof of (100), being independent of the choice of kh,

therefore also proves (99).//
Algorithm (106), for computing the product of asymptotic series,

uses lemma 13, i.e., (56) below is computed. A review of the notation

is in order. Each fi comprising the product is of the form

oo
f =2

- *5
; r=1 aijircpj with a # 0 for all r (5)

ir 4 ir

ASIND(fi;r) = jir and ASCOF(fi;r) = a, For k > 1 the product

ij, °

ir
series is given by

pX

I f = all [EI,ZZ,.”,I,

(@,,8,, coely, @) P, 0o,)
kg 121 292 kﬂk ﬂl EZ ,Zk

k]

=2 (56), (*6)

t=0 Pt ¥y

15

Le€ey aiﬂi # 0 if and only if £, =j;. for some r.

The ptll/t notation expresses the use of the distributive law to
collect like z,l/t terms, For fixed t, the aim is to find all possible

products of k ¢'s, one from each fi’ that produce ¥ i.e., to

t'

find all k-tuples [ﬂl,ﬂz,...,ﬂk] such that P Pyee P = wt. Since

by (101) there are mﬂ_1 - mt such k-tuples,
m -1
s |
pt B 2"c=m ac (+7)
t
where
_ -k
8~ Hi=1au&i (*8)

with the Bi from the cth k-tuple, as described in (56).
The k-tuples are given (generated), consistent with the g-order-

ing, by qi(m) which denotes the ith entry in the mth k-tuple, i.e.,

k

a, = Hi=1aiqi(c)

in (%
in (*8)., If some cpqi(m), il.e., %il does not
appear in fi’ then the ac for the mth k-tuple is zero.
In (106) it will be necessary to remember where Py is located
i

in fi' The quantity 8, is used in (106) with the meaning that P,
i

is the s,th term in fi' i.e., 1, = An assertion is

) .
i i isi

needed saying that certain si's are properly set. Let C(d) mean

that Py is the suth term in fu for u=1,2,...,d.
u .

Theorem: Algorithm (106) computes 2z of operation (90) with

16

It is convenient to prove first a section of (106) as the following:

Lemma: Let m be fixed. The code in (106), from line (L2) up to
but not including (L5), given in the next flowchart, either (i) computes
the s (i =1,2,...,k) for the mth k-tuple such that C(k) holds,

and exits to (L6) from test 7; or else (ii) shows that am = 0, and

exits to (L5) from test 6.

Proof:
-—=0,1
. /
2 |11
<

———],1

2

L3 gq - qi(m), s, + 1
---2.1

3 \ v

Ly |1 — ASIND(f;is)

Flowchart for part of Algorithm (106)

17

Below appear the assertion numbers, the actual assertions and the
reasons why each assertion is true.
0.1: n > 1l: Assumption on n.
1.1: C(i-1): From 1: i =1 so C(0) is a null statement. From 6.1:
By 6.1 with cﬂénge in i at 8.
2.1: g = zi of the mth k-tuple: By definition of qi(m).

3.1: j = ASIND(fi;si): By 3.

3.2: g > ASIND(fi;su)(u 1,2,...,i-1): From 2.1: i =1 so range of

u is null. From 4.1: By 4.1 with change in Si at 5.

|1

4.1: q > ASIND(fi;Su)(u 1,2,...,i): By 3.2, 3.1, and the test at 4.

6.1: C(i): Assertion 1.1 holds at 6.1 since s ,s

1/50 00 i8Sy €

unaltered from 1.1, By the test at 6, si is set so C(i) holds.
7.1: C(k): By 6.1 with i = k.
9.1: ASIND(f;s,) > a: By the tests 4 (j>q) and 6(j#q).
9,2: a = 0: By 3.2 and 9.1; i.e., the index ji does not appear

m

in f,, whence o does not appear in f, and so a_ = 0.
i 21 i m
Possibility (i) is assertion 7.1 and possibility (ii) is assertion 9.2,
This section of code terminates since the two sourses of potential
unending loops both terminate. First, the loop from boxes 3 to 5 to 3
terminates, since q is fixed and j 1is increasing, whence j < q Iis
not possible indefinitely. Second, the loop from hoxes 3 to 6 to 8 to

3 terminates, since 1 starts at 1, is stepped by 1 after testing for

i =%k >1, and therefore i must eventually equal k.//

18

Lemma: Variables in (106) are changed in value only as follows:

Variable Changed at Box Number
a 4, 5
a_ defined at assertion 6.1
h 1, 14
i 3, 4, 8
j 3
k —_—
’m 1,9
m, -
m 1, 16
n -
p 2, 7
pt defined at assertion 10.1
q 3
Si 3
t 1, 15
z 1, 12

Proof: Inspection of the flowchart.//

Proof of theorem: Use the A(s) notation as defined for the proof
of (91) but with ¢ and p instead of ¢ and a. Also note that
m, = 0. Box 3 of the complete flowchart for (106) represents the flow-

chart of the lemma. The two exits from 3 are labelled to show the two

separate results.

L1

o

19

z-—O,h-~-1,t~—0,‘rrT~—-ml,m<—-O

---1.1

N

y \/
p~—20

--=2,1-2.,3

<
T

---3,1-3.3

\
LZ—LZB} rcode of lemma |

(i) C(k)

(ii) 8m ~©

0

——b.1

p — p+ta

T.1---

Z + Z+pX wt
--12,1
13 v
s end of
procedure
No ceeol3,1

Flowchart for Algorithm (106)

20

Below appear the assertion numbers, the actual assertions and the
reasons why each assertion is true.
1.1: z = A(0) = 0: By l.

2,1: m=m_: From 1.1: t =0 and m0=0=m. From 14.1: By

m . After the change

2.3 m = . mm = a :
m m t 10; so m 41

in t at 15, m = m_
2.2: z = A(h-1): From 1.1: By 1 and 1.1, From 14.1: By 14.1.

2.3: iﬁ=mt+1: From 1.1: t = 0 and E=ml by 1. From 14.1:

aC: From 2.1: By 2 and 2.1 giving null sum. From

9.1: By 9.1.

3,2: z = A(h-1): From 2.1: By 2.2, From 9.1: By 9.2.
3.3 m<m= mo g From 2.1: By 2.1, 2.3, and since m, is a
strictly increasing sequence, i.e., m = m, < m.q = m. From

9,1: By 9.3, and m # T at 10.

5.1: a =1 ASCOF(f ;s From 4: C(k), 4, and 5. From 8:

b)*

i

b=1

By 5.1, with change in i at 8, by 5, and by C(k).
k
b=

R - N ; - LY.
6.1: a a 1II‘SCOE‘(fb,.e‘,b), define a am by (*8): By 5.1 with
i= k.
7.1: p=3=" a: By 3.1, 6.1, and 7.
o ° C=mt C' 1 ’
9.1: p = zg‘:ri at From 7.1: By 7.1 and change in m at 9.
t

From 3.1: By 3.1, am = 0, and 9.

21

9,2: z = A(h-1): By 3.2 (from either 7.1 or 3.1).

9.3: m<<m=m

41 By 3.3 and 9 (from either 7.1 or 3.1).
M
10.1: p =23 _ a_, define p = p, by (*7): By 9.1, 10, and 9.3,
c=m, c t
12,1: =z = A(h): By 9.2, 10.1, 11, and 12,
13.1: =z = A(n): By 12.1 with h =n at 13,
14.1: =z = A(h-1): From 12.1: By 12.1 and change in h at 14.

From 10.1: By 9.2 and 11.

Termination for (106) follows as in (91). Note that there is no
unending loop from boxes 3 to 9 to 10 to 3 since at 9.3, m<m
and m, changed only at 9, is increasing.//

Algorithm (112) computes £ = gr, where r is a real number,
by using lemma 15 as discussed on pp. 38-40 of [1] and in the Appen-
dix. The proof of (112) uses the same techniques as the previous five
proofs, but the organization of the proof is different. The code for (112)
is broken into six sections, named A, B, ..., F. Each section, effec-
tively a subroutine, is proved, by a lemma, to accomplish a stated
computation. The six sections are then tied together in a flowchart
named G which represents the entire algorithm (112) and which is
proved using the lemmas as the main tools. Boxes and assertions are
numbered as before with the corresponding letter A-G prefixed. We
gstart with the table of variable-value changes.

Lemma: Variables in (112) are changed in value only as follows:
(A "sub" after a variable denotes a subscripted variable referenced by

more than one subscript expression.)

22

Variable Changed at Box Number
ao G2
b C4
f Al, A2
h B1, B4, C1, C10, D5, D11, E5, E8, Fl1, F10
i c5, C8, D1, D7, F1, F8, Fl1
j F6, G2
Jh C2
k G2, Gl0o, Gi3
)/ D5, D8, Fl12, G2
m B2, B5, E3, E9
sub
n ——
Peub D3, D8, D9, D12, Fi0
q C1, Cé
T [—
s G2, Gilo, G13
t Gb6
to G2
t D8, D9, D12, F10
sub
tsub o
w Al, A4
z F5, Gl, G2, Gl2
Proof: Inspection of the flowchart.//

23

Lemma A: If s > 1, then section A computes f = vﬂi:é(r—v), i.

assertion A3.1.

Proofi:

---A0,1

Al

Llf-—l,w«—-r

A2
L2

fefxw ---A4,1

Flowchart for Section A of (112)
A0.1: s > 1l: Assumption,

A2.1: f=1" "¢

T o r-v);: From Al: By Al and A2, w=r, so f=r.

From A4.1: By A4.1 and AZ2.

A3,1: £ = Hi;é(r—v): By A2,1 with w=r-s+1.
A1: f= WD ly): By A2.1 and Ad.

v=0
Termination: s > 1 implies r >r - s+ 1., Hence w, initially

r and decremented by 1, must eventually equal the fixed r-s+1.//

24

Lemma B: TFor fixed k and s with k > 1, section B computes

the initial k-tuple, [ml, mz,.,.,mk], as given by assertion B5.1,

Proof:

---B0.1

Flowchart for Section B of (112)
BO.1: k > 1: Assumption.
B2.,1: m = 0 for v=1,,..,h: ‘From Bl: By Bl, h = 1. From B4:

By B2.1, B4, and B2,

B3.1: mv =0 for v=1,,..,k-1: By B2.1 with h = k -1,

B5.1: m1 =g if k =1,
ml=s—1, m2=...=mk_1=0, mk=11fk>1: By
B3,1 and B5 for the two cases on k, i.e., m, = 1 or m, =

Termination: If h =1 >k - 1, then B terminates. Otherwise

h < k -1 and by B4 and B3, eventually h >k -1.//

25

Lemma C: For fixed a, #0, f, k>1, s> 1, and the k-tuple

[ml,m ,,..,mk] with non-negative elements, section C computes (,

2

namely formula (66), and also hV for v=1,2,...,k.

Proof:

Cl1

L4q~i—f,h<—-l

v V]

< ASIND(g; h+1)

czl
L5|’h

~---C2,1-2.2

G4l ASCOF(g; h+1)
\/
G350
Gé «\bxb/((m "% al)
6|94 h 0
-—-C6.1
c7
Yes
i<mh—1 '
C8 i+
(o]

C10
No ‘

h<«~h+1

---C9,1-9.2

TO Gb

Flowchart for Section C of (112)

26

f 3 I,

| 1 1
ml.mz....mh_l. ao ao ao

C2.1: g = Y(h-1) =

From Cl: By Cl, h =1, and hence gq = f as required. From
C10: By C7.1 and C10,
C2.2: hv set for v=1,...h: From Cl: By C2 and h=1. From C10:
By C2.2, C10, and C2.
a, \it+l

Y(h-1) n
mh(mh-—l) ove (mh—i) aO

Cb6b.1: q = From C5: By C3-C5, mh# 0,

b=aj , and i = 0; hence by C2.1. By C3 and C5, mh-i;é'O.
h
From C8: By Cé6.1, C8, and C6. By C7 and C8, m, -i> 1,
C7.1: q = Y(h): From C3 directly: Since my = 0, my contributes

—— 1] =1 and 0! =1, to C2,1., From C7: By Cé6.1 with

C9.1: g = Y(k): By C7.1 and C9, i.e., h=k. Y(k) is the expres-
sion (66).

Co9.2: hV set for v=l,.}..,k: By C2,2 with h=k by C9.

Termination: The outer loop on h: By Cl, h starts at 1 and
by C10 is increased. Since k > 1 is fixed, h > k eventually. The
inner loop on i: By C3, the fixed my > 1, by C5 i starts at O,

and by C8 i is increased; hence i >m -1 eventually.//

27

Let M(4) denote

tv for v=1,2,...,% exist,

t =0 and t <t for v=1,2,...,4,
0 v-1 A%

o) for v=1,2,...,4 exist,

p._ is the sum of all terms of fhe form (66) with
t= tv which have been computed but not yet
included in z.
Lemma D: If t > tO' if £ >0, if M(£) holds except for
g, and if t = index of q; then after section D, £ >1 and M(4)
holds, i.e., q has been added to the proper P,-

Proof:

Dir;

--=-D12.,1

TO E

Flowchart for Section D of (112)

29

DO0.1: M(L) except for d: Assumption.

DI.l: t > ‘cV for v=20,1,2,...,i-1: From Dl: null statement. From
D7: By D4.1 and D7.

D2.,1: t > tv for v=0,1,2,...,i-1 and t=ti: By D1.1 and D2,

D3.1: M(4): By D2.1 and D3.

D4.1: t > tv for v=20,1,2,...,i: By Dl.1, D2, and D4.

i

D5.1: t>'tV for v =0,1,2,...,1-1 and t<ti: By DI.1 and D4.

i

D6,1: t > tv for v 0,1,2,...,4: By D4.1 with i = £ by D6,

D8.1: M(%): By DO0.1, D6.1, and D8,

D9.1: P, and tv each become Py and tv+1 respectively for
v="h,...,0-1: From D5: By D9 since h = £ - 1. From DII:
By D9.1, D11, and D9.

D10.1: P, and tv each become Py and ’c\’,“_1 respectively for
v=i,00.,4-1: By D9.1 with h = i,

D12.1: M(4);: By D5.1, D10.1, and Dl12.

The three exits from section D (at D3.1, D12.1, and D8.1)
correspond to the three cases (i) t = tv, for some v, and q is
added to pv; (ii) t is a new index and appears just before tv, in
which case all the t's and p's, v and larger, are shifted to make
room for t and q; and (iii) t is a new index and larger than tz
(including the case Z = 0), in which case t and g are placed at
the end. If exit is from D12.1 or D8.1, then £ >1 by D5or D8. If

exit is from D3.1, then the input £ is unchanged. Furthermore, on

input, £>1, since, if £ =0, the exitis from D8.1, because t > to.

30

Termination: The loop on 1i: By D1, i starts at 0 and is
increased at D7. Since £ > 0 is fixed, i > £ eventually. The
loop on h: By D6 and D7, i< £ at D5,1, By D5, h starts at
Z > i and is decremented at Dl11. Since i is fixed in the h loop,
h <i eventually.//

Lemma E: For fixed k >1, s >1, and the k-tuple [ml,mz,.;,,mk]
with non-negative elements, section E computes, according to (109), the
next k-tuple, if it exists, for k énd s, and goes to L4, If there is

no further k-tuple, control goes to L10,.

31

TO G9

Yes
.
My -1 k-1
mk «— m, +1
TO G9 TO C
Yes
ps—Y

TO G9

Flowchart for Section E of (112)

32

Proof: If k =1, no further k-tuple for k and s exists. If
m # 0 then the next k-tuple is given by E3. If m o, = 0 and
k = 2, then no further k-tuple exists. Hence, after E5, h > 1. The

h loop seeks the firet non-zero m h <k -2, starting from m

h' k-2

(mk__1 is already zero by E2). 1If found, E9 gives the next k-tuple.
Note that h + 1 # k. 1If no non-zero element found, then no further
k-tuple exists. All computed k-tuples have only non-negative elements.
Termination: After E5, j > 1 and j 1is decremented at ES.
Hence eventually h < 1.//
Lemma F: Assume 2z has j terms counting ao¢0. Assume
L >1 and M(f). Section F adds to 2z all the P, such that
tv < %—k+2“ All remaining pairs pv, tv are compacted (moved up) so
that P, ’cV (v=1,2,...,4) are the terms not added to z. j and £
are updated, so that, on exit, z again has h terms, M(4) holds,

and £ > 1,

Proof:

33

J

i1, h=—20

Fi

o

~==Fl,1-1.2
/

F2

Yes P> 2

L11

Yes

F4

F2.1---
h-—h+1
Fi2 p, < D,
J -
L13 h h i
t -t
-—-F12.1-12.2 h i
---F10,1-10,2
TO G13

i--1+1

Fl1

Flowchart for Section F of (112)

34

F1.1: pv?l/t (v=1,2,.00,i-1) added to z: From Fl: By Fl, i=0,
v

so range of v is null. From F8: By Fl.1, F3, F4, F5, and
F8.

Fl1.2: =z has j terms: From Fl: Assumption. From F8: By F5
and Fé6.,

F2,1: =z has j terms: By Fl1.2 (no change).

F3.1: Define i, =1< £, P, (v = io,..'.,ﬂ) should not be added

yet to z: By F3 and definition of By F2, i < 4.

-fk+2'

i, +1,...,c have been

Let N(c) denote that P, tv’ for v = iO' 0

moved up to pX, tx' for x=1,2,...,h = c-i_+ 1, respectively.

0
F9.1: N(%), i = £+ 1: By F10.1, F9, and F11,
F9.2: h =4 -1i_ + 1: By F9.1, and F10.2 with F11 (here h = i - io).

F10,1: N(i): From F3.,1: By F3.1, Fl, and F10, h =1, so pi ,‘ci
0 0

are moved to pl,t respectively. From F11: By Fl10.1

ll
and Fl10,

F10.2: h = i~10+ 1: From F3.1: By Fl and F10, h = 1, and by

F3.1, i =i From F10.1: By F10.,2, Fl11, and F10,

0°

Fl2,.1: z has j terms: From F2.1: By F2.1. From F9.1: unchanged
from F1.2,

F12,2: M(#) and £ > 0: From F2.1: B;f F12, /. =h, and h =0
from F1. From F9.1: by F9.2, h =/ - iO + 1, the proper

value since io <4, £>1.

35

Termination: The loop in i through F4: By Fl, 1 starts at 1
and is incremented at F8, Since £ > 1 is fixed, 1 > £ eventually.
The loop on i through F1I By F2, i< £ at F3.1, and i is
incremented at F1l: Eventually i > £.//

Theorem: Algorithm (112) computes f = gr according to lemma

15 in [1].

G2

Gl1

Gl13

36

n=1 z «— [ASTER(g;)]

No
-Gl 1

end of procedure

z~1, j=—1, s«1, k=1, L0,

0

t «—0,

0

a, < ASCOF(g;1)

o

---G2.1-2.4

compute f

~---G3.1

compute initial k-tuple for [k,s]

-—-G4,1

compute a (66) term =

q

--=G5.1
4

/N

t<—gS (jl' m1 times;...;jk, m

k

times)

~--=G6,1
N

add g to proper pV

-——GT7,1-7,2

compute next k-tuple for [k,s]

possible

not possible
Gl0

Yes

N

Ns—s-1, k—k+ 1} >

-=--G9.1-9.3

add terms to z and
move up remaining pairs

enough

Gl2

more terms needed
-—-Gl1.,1-11,3

s —k+1, k -1

L

terms

7

2 - Z

[ASTER(g;1)]

end of procedure

°

:OOBGIZOI

Overall Flowchart for Algorithm (112)

Proof:

GO0.1:

Gl.1:

G2.1:

G2.2:

G2.3:

G2.4:

G3.1:

G4.1:

Gb5.1:

G6.1:

37

n > 1l: Assumption. Note if n=1, 2z 1is correct and (112)
exits.

n > 2: By GO.1 and GI.

z has j terms counting aowoz From G2: By G2, j = 1,
From G10: TUnchanged from G2.1, From Gl13: By Gll.1,.

s >1, k >1: From G2: By G2. From Gl0: By G9, s 2 2,
and by G10, s > 1. k >1 from G110 and G2.2. From Gl3:
By G13 and G2.2.

M(£): From G2: £ =0, so M(£) is null. From Gi10: Un-
changed from G7.1, From Gl13: By Gl1.2.

£ > 0: From G2: By G2. From G10: Unchanged from G7.2.
From G13: By Gl1.3.

f= H\S,;é (r-v): Since s > 1 by G2.2, lemma A.

Next k-tuple set for computing a (66) term: From G4: By
lemma B since k > 1 by G2.2., From G8: By G2.2 and
lemma E.

g =a (66) term: By lemma C since a, # 0 by (64), since
k>1 and s > 1 by G2.2, and since k-tuple has non-nega-
tive elements by G4.1.

t = index of q: By definition of t and by C9.2 for hi'

38

G7.1: M(£): By lemma D, since £ > 0 by G2.4, and since M(¥4)
except for q by G2.3. Also, by G2.2, k > 1, whence

there is a non-empty k-tuple with m_ > 0; and so in G6, we

k

get t > tO = 0 (since ?l/o = 1, corresponding to k = 0 and

empty k-tuple).

G7.2: £ > 1: By lemma D.

G7.3: k > 1: By G2.2.

G9.1: s = 1: By G9 and G2.2.

G9.2: z has j terms counting a Unchandged from G2.1,

%o
G9.3: £ >1 and M(£): Unchanged from G7.1-7.2.

Gll,1: z has j terms counting a :+ By lemma F and G9.3.

071/0
Gl1.2: M(4): By Lemma F.
Gl1.3: £ > 1: By Lemma F.

Gl2.1;: z = gr: z has j terms, by Lemma F, and j = n by meaning

r

of "enough terms." At G1l2 include overall factor aocpg and

halt.

Termination: Each box A-F terminates by the appropriate lemma.
The other boxes clearly terminate.

The loop from G5 to G8 to G5: There is only a finite number of
k~tuples for fixed [k,s].

The loop from G3 to G9 to G3: s is fixed at G3 and s is
only changed at G10. Hence eventually s = 1 and exit at G9.

The loop through G13: Assuming non-infinite set of zero terms pi

that can be added by virtue of —Ek+2 (cf. (91)), control exit through G12.//

39
APPENDIX

We list here the equations and algorithms of [1] which are referred
to in the present report. Any discrepancies, between the material in [1]
and that below, arise from corrections made after the earlier report was
published, many of them discovered in the process of proving the algo-
rithms. What we have here is a minimum of information, to enable the
reader to follow our discussion without reference to [1]. However, for
all details of definitions, proofs, etc., the reader must go to the first
report [1].

A sequence of functions cpo,cpl,cpz,.., is said to be an asymptotic
sequence for x — a@ in a@, where & is the intersection of the do-
mains of definition of all the functions and & 1is in the closure of &,

if cpk(x)/cPk_l(x)—vO as X —« in D, i.e.,

9, = oo), for k=1,2,3,---0 (36)

We write

f=23 (*9)

(o 0]
k=0 k%’

and say that the right-hand series is an asymptotic series for the func-

tion f, if [cpk]]o::O is an asymptotic sequehce and, when

_ om-1
Sm = Zk=0 % (40)
we have

- = Y 43
f-8 =ao +al), (43)

for m = 0,1,2,+»+ Then we have, for all m,
= - . 44
a lim {[f(x) - S m(X)]/ CPm(X)} (44)

X

40

If
£ = =0 a0 (*10)

for i=1,2,...,k, as x —a in ?, the intersection of & with the

domains of all the fi; then for any c 2, ""Ck
k 00 k
2121 G50 = 2 B 08 oy (50)

Further, if (*10) holds uniformly in i, for i =1,2,3,-.+; then

Zi=l cifi(x) = Zj=0 (Zl 1 1 1])cp (%), (51)

[s¢] [20]
so long as Zi=1 ci is absolutely convergent and Zi*lciaij converges

for j = 0,1,2,""
If (*#10) holds and if the set of functions H]i<=1ch , with each
i
ji ranging through 0,1,2,..., can be rearranged into an asymptotic

sequence [wt],:__o (i.e., for each [jl,jz,---,jk] we have a correspond-

ing t = gk(jl'jz.'”"jk)); then

H]i<=1 f = 2 n (56)
where pt is the sum of all products a1j a2j ”'akj for which
1 772 k
t = g(jl,jz,"‘,ik); i.e.,
p. =30 50 vee3® aa,. ceca, . B . .. (%#11)
t j; =0 3,0 § =0 1i, 2y, ki 190ydyeeeeid))

If the set of all products Hl;lcpj , with not only all ji ranging
i

through 0,1,2,¢-+, but also k ranging through 1,2,3,°+<, can be

41

ordered in an asymptotic sequence [V] and further if, for every

00
t t=0'

j and

1 j2 with ‘jl <j2, there is a power k such that cp?

= g(cpj),
1 2
. k
such that o, = o(p,);
32 - ‘]l

while for every jl and k, there is a j2

(0.0}
then we say that [cpj]j:O is a totally multiplicative sequence.

1f [cpj/cpo];o___o is a totally multiplicative asymptotic sequence and

if (*%9) holds, with a, # 0; then, for any real r,

oo}

r r
£ = 3y 99 Zy=g Py¥yr (65)
where P, is the sum of all terms
r(r=1)eee(r=i =i =°°°=i +1) [a i1 a i2 a ik
172 il b U R R (s 4 (66)
i 11 feeoi I '
11.12. ik. ao ao aO

[Note the correction to (66) from [1]] with each ij >0 for 1 <3<k,

but i‘k >1, and any k = 0,1,2,--., for which

times; *-+: k, i. times) =t (¥12)

11+12+- . °+1k

g times; 2, i

1

{(when k = 0; t = 0, Py = 0, and wo = 1),

In the algorithms, instructions end with a comma, and are executed
serially; "a = b" means that the variable a is given the value of the
expression b; the notation "GO TO label"” denotes an unconditional jump
(transfe; to labelled instruction next): a label, put in parentheses in the

left-hand margin, refers to the instruction immediately to its right; the

the notation "IF statement {instructions}" means that the instructions in

42 |

curly brackets are obeyed only if the statement is true, otherwise they
are omitted; "end of procedure"” is a jump to whatever is to be done
after the procedﬁre is completed.
We write
z - ASYMP (f; x, «; L; n) (78)

for the instruction assigning the first n non-zero terms of the asymptotic

series for f(x), as x — @, in terms of the asymptotic sequence

[cpk(x)]]"::o labelled L. If (*¥9) holds, with

3, A0 for h=Lzenn) <y <<y,

(79)
aj = 0 if j<jn and j#jh(hx::l,z,n-,n);
then the asymptotic package should return
z = Zgzlaj cpj (x) (80)
h “h
on execution of (78).
We write
z «— LIM (f;x) (81)
for the instruction which returns z = lim f(x), when such a limit

W e OO

exists. We assume that, by a change of variable, the asymptotic series
are made to have the limit @ = 4o, and the "a" is omitted from the

instruction (78). The instruction (78) then becomes

z <- ASYMP (f; y; L; n). (90)

43

The formal computation of (80) by (78) can now be written as an

algorithm:
j+—0, h-—1, 2z «— 0,
(L1) P ly), J— i+l A LIM ((f-2)/0; ¥),
IF a#0 {z-—2z+axao,
IF h=n {end of procedure},
GO TO L1,
We adopt notations, corresponding to (78),
a — ASCOF (f; x, ; L; h),
t «— ASTER (f; x, a; L; h),
j < ASIND (f; x, ; L; h);

for instructions which put a, for a, a, o, (x)
9 h 'h

h—h+1},

for

t,

and

j

h

(91)

(92)
(93)

(94)

for j, when (%¥9) holds with (79) (i.e. £(x) has the expansion (80)

in non-zero terms). Then (91) can be written as
h-—1, z-—0,
(L1) z <2 + ASTER (f; y; L; h),
IF h=n {end of procedure},

h«h+1, GO TO Ll.

To effect the summation expressed in (50), we

algorithms:

</

(97)

use the following

44

z -0, 1+1, N

(L1) hi — 1, 2i «ASIND(fi;y:L;l),

IF i=%k {GO TO L2}, i=~i+1, GO TO LI,

(L2) h—1, j-~0,
(L3) a+—0, i<1,
(L4) IF 4 =j (awa+c xASCOF(f;yiLh), > (99)

hi <—-hi +1, ﬂi «— ASIND (fi;y;L;hi)}‘
IF i=k (GO TO L5}, i<i+l, GO TO 14,
(L5) IF a#0 {z«z+a><(pJ.(Y):

IF h=n (end of procedure},

h-—h+1}, j=—j+1, GO TO L3. ~

[Note change of notation from [1]: j, replaced by Ei.] In general,

i

the infinite summations in (51) cannot be computed without appeal to a
limiting process (sometimes computable); but a specially tractable case

occurs when, for each index h, there is a known index kh’ such

that fi = Zoo (i.e., the first h+1 func-

j=ht1 aij cpj for all i > k

h
tions cpo,(pl,“ °,cph appear only in the asymptotic expansions of the

first k functions f ,f,,°°°,f

n 15 ") [Note corrections to [1]]. The

h

k

© j
Iy a 5 h b 0
sums Zixl Ciaij appearing in (51) can then be writien as Zizlciaij

and computed finitely. To compute (51), we use (99), modified by

respectively replacing the first line and the line labelled L3 by

45

z+0, 1+—1, k—max(l,k), h
- . .
and (1.3) a~—0, i«1, IF kaj (GO TO 14},
mek+ 1, k—k, > (100)
(L6) h_+1, £ <BASIND(f :viLi1),
_ IFm=k (GO TO L4}, m=m+ 1, GO TO L6, _

[Note corrections to [1]].

To compute the product (56), we first establish some notation. We

write g for the k-tuple of indices [qi]]i(=1 and suppose that these can

be ordered by a single index m in a sequence, determined by the func-

tions qi(m) (i=1,2,°°+,k),

co k co
so that every k-tuple g has a unique index m,

G(E(m)) gg(g(m')). We define

m, = min {m: g(q(m)) > t},

so that g(g(m)) =1t for m=mt, m, +1,°°°

t My~

values of m. [Note that, in [1], what is written

j.] We can now compute (56) by the algorithm:

(*13)

and if m<m' then

(101)

1, and for no other

g here was written

(L1)
(L2)

(L3)

(L4)

(L5)

(L6)

(L7)

(L8)

46

z+<0, h—1, t—0, m—m , m=0, ~

q - qi(m), s, 1,
j ~— ASIND (fi:y;"L";si),

IF j<a (s;=s;+l, GO TO L4},

i
IF j=q {IFi=k {GOTOL6}, i-—i+l, GO TO L3},

me—m+1, IFm=m (IF p# 0 {z~z+pXUly),

IF h = n {end of procedure},

GO TO L1}, GO TO L2,
a<+—1, i+-1,

a —a X ASCOF (fi;y;’f;si),

IF i=k {GO TO L8}, i—i+1, GO TO L7,

p—p+a, GO TO L5.

$ (106)

Finally to compute the power of an asymptotic series according to

(65), we use the algorithm (112), given below [Note several important

corrections to [1]].

crucial to the computation, is hierarchically defined as follows.

the k-tuple be [1j ,1j ,"',ij] = [ml,mz,---,mk] with all my >0

1 "2 k

Let

The ordering of the k-tuples of indices, which is

47

il

and m, > 1, where m i, is the power of o

i J occurring in a
h h

h
given term of the expansion, whose coefficient is given in (66); and

where the indices correspond to non-zero terms in the expansion

h

of f, as in (79) and (80). [Note: By an unfortunate oversight, in the

treatment of algorithm (112) in [1], the notation used was h, instead of

j

Here we have interchanged the letters j and h throughout (112)

k m
h=1 "h

Jh"

to restore consistency.] Let S = s, Then, first, all k-tuples

are ordered by non-decrease of the value of k + s. Secondly, for each
constant k + s, the order is that of non-decreasing k. Finally, for
each fixed pair [k,s], the order is reverse-lexicographic for the "word"

[mllm oeclm

21 This is expressed by saying that, if [ml,mz, --°,mk]

k]"

immediately precedes [m'l,m' , “',m]'<]; then either, for some

h=1,2,-++,k=2,

mh>0 and mh+1=mh+2=--o=mk__1=0, A
when My S Myt My) T My M T ML My S My
my Lo = --~=m)‘(_1=0, and m]'<=1; ? (*14)
or m > 0,
when mf(_l =my g 1, m]'(=my + 1; J
while if, instead, either k=1 or m1 =m, = cee = mk‘-l =0 (the only

other possibilities), then, for the given values of k and s, the k-

tuple [ml"”'mk] has no successor. [Note: (*14) is a simplified

and corrected version of (109) in [1].]

g(j

m timesg; » o -

48

For a given value of k + s =u, the least value of t =

), sm, times) is defined to be 't-u, [Compare (110)

and (111) of [1].] Then clearly ?u < ?u‘ if u < u', and we know

that terms with k + s > u cannot contribute to P, for t < E:l This

fact is used in the algorithm (between (L11) and (L12)) in determining

whether complete terms are collected. [Note considerable number of cor-

rections to [1].]

(L1)
(L.2)
(L3)
(L4)

(L5)

(L6)

(L15)

(L7)

IF n=1 {z-[ASTER(g;y;T;1)]", end of procedure}, N

z+—1, j+—1, s—1, k=1, £-0, ty0; a,+ASCOF (gey:L:l),

f—1, wer,
fefxw, IFWwW>r-s+l {wew-=-1, GOTO 12}, h+1,

m <0, IFh<k =1 (h«h+1, GO TO L3}, m, ~—l, m <m +s-1,

h 1 1

g«~—f, h-—1,

jh<- ASIND (g:y:L;h+1),

IF m_ = 0 (GO TO L15}, b= ASCOF (g;y;Lihtl), 10,

q«qxb/((mh—i)xao), IFi<m -1 {i—i+1, GO TO L6},

IF h<k (h«<h+1, GO TO L5},

t - gs(hl,mltlmes; hz,m2 times; o hk'mk times), i+ 0,

IF t=t {pi«pi+'q, GO TO L8}, Vv

> (112)

(L14)

(1.8)

(L9)

(L10)

(L11)

(L12)

(L13)

49

IFt <y (h—f, LeL¥1,
Phe1 Pt ther Ty
p,+-q, t -—t, GO TO L8},

IFi< ¢ (i=i+l, GOTO L7}, f=Ll+1, pyp<q, t,—t,

IF k=1 {GO TO L10}, IF mk_l'}(0 [mk_1‘<—- 1, m

T
GO TO L4},

k

IF k=2 {GO TO L10}, h—k-2,
IF m =0 {IF h>1 (h<h-1, GO TO L9}, GO TO L10},

m <~m =1, m

h h <—-mk, m <1, GO TO L4,

h+1 k
IFs>1 {s~s-1, kek+1, GO TO L1}, i—1, h+0,
IF i > £ {GO TO L13},

IF ti<tk+2 {IF pi;-"O [z«—z+pi><2//ti(y), j<—j+1,

IF j = n {z<2z X [ASTER (g;y;f;l)]r,
end of procedure}},
i+—i+1l, GO TO Ll11},

IF 1<% (h—h+1, p, ~p, t —t, i=—i+l, GO TO LI2},

L+—h, s<k+1, k<1, GO TO Ll.

“—m

IF h> i (h—h-1, GO TO L14},

k

+1,

?

(112)
(cont.)

50

References

10

Halton, J. H., Asymptotics for formula-manipulation. Computer
Sciences Technical Report No. 54, University of Wisconsin, 1969,
Also Proc, of IBM 1968 Summer Institute on Symbolic Manipulation,
Tobey, R. G. (Ed.), to appear.

Floyd, R. W,, Assigning meanings to programs. Proc. of a
Symposium in Applied Mathematics, Vol. 19--Mathematical Aspects
of Computer Science, Schwartz, J. T. (Ed.), American Mathematical
Society, Providence, R, I., 1967, 19-32,

Knuth, D. E., The Art of Computer Programming, Vol. 1--Funda-
mental Algorithms. Addison-Wesley, Reading, Mass., 1968,
section 1.2.1,

London, R. L., Computer programs can be proved correct. Proc.
of the Fourth Systems Symposium: Formal Systems and Non-
Numeric Problem Solving by Computers; Case Western Reserve
University, to appear.

