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l. INTRODUCTION

In this paper we consider the nonlinear system of ordinary differential

equations
(L.1) x'(t) = g(x), 0=<t=s b,

where x(t) is the N-dimensional vector function with components Xi(t)’

and g(x) is the N-dimensional vector function with components gi(x),

i=1,...,N. Letthe boundary conditions have the form
(x(0),a) = b, i=1,2,...,k,
(1.2) i i
(x(b),ai) = bi’ i=k+1,...,N,

where a, are given vectors and the bi are given scalars, and (x,vy) as
i ‘
usual denotes the vector inner product

n
(1.3) (x,y) = %

X .

2 TiYi
It is our aim to obtain the solution for (l.l) and (l.2), when it exists.

The computational solution to be described is an iterative method in which

all the boundary conditions are satisfied at every iteration. This is accomplished

by what is essentially a Newton-Raphson method with a quadratic spline function



approximation solution at each iteration. In the present paper we are going
to show that the proposed method is convergent, and that the error estimate
can be obtained along with the numerical solution. In Section 4 of this
paper a numerical example is given to show how the method really works,
and in Section 5 we apply the method to the Hencky problem, which is a

difficult problem to solve numerically.

2s DESCRIPTION OF THE METHOD

2.1 Newtonian approximation

The material in this section is contained in [l, 2]. We conclude it here
for the sake of completeness.

Application of the Newton-Raphson method to (l.1) and (l.2), we generate
a sequence of vectors {xn) by means of linear equations.

dxm_l n n, , n+l n
(2. 1) Ei_t = g{x ) + J{x ) (x -x), n=0,1,2,...,

and the boundary conditions

(2.2)

with x° as initial guess. Here ](xn) is the Jacobian matrix defined by

n agi) . ,
: ‘ = |- j=1,...,N.
(2.3) J(x) <8Xj 0 i, ] , N




+1
If XnJr is the matrix solution of
n+l
dX n, n+l
(2.4) It = J{x )X
n+l
X (0y = 1,
and
1
pn+ ig the vector solution of
d n+l n, n+l n n, n
(2.5) g = I g - 1 x
n+1
p (0)=0,

(2.6) X = X c + p ,

n+l | , .
where the vector ¢ is determined by the system of N linear equations

(c , a,) = b, , i=1,2,...,k,
(2.7)
X" (ye 4+ p  (b),a) = b,, i=k+1,...,N.

Carrying out these operations requires the simultaneous solution of
2

N + N first order differential equations, and the solution of a set of N
simultaneous algebraic equations. There are so many standard methods to

n+l n+l o _ . o .
solve for X and p in (2.4) and (2.5) respectively, but it is our aim
in this paper to introduce the quadratic spline approximation method, which
we shall discuss in detail in section (2.2). However, before we leave section
(2.1) we shall state but not prove the following theorem, which will be useful,

as we shall see later, in proving the convergence of our method.
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8 .
Theorem 2.1, If gi(xl, XZ’ . .,xN) are continuous, and __ 94 are

n o

(‘xl,( Xj
bounded on [0,b] for i, j=1,..., N, then the sequence {x"} defined by

(2.6) and (2.7) converges duadratically to the solution of equations (l.1l) and

(L.2) assuming that b is sufficiently small.

2.2 Quadratic spline approximation

Spline function approximations for solutions of initial value problems
with a single ordinary differential equation has been discussed recently in
[3,4]. In this section we extend the idea to system of equations.

Let the system of differential equations be

IA
—
A
o

(2.8) y'(t) = £(t, y(1)), 0

and the initial conditions be
(2.9) v(0) =y

where

y(t) is the N-dimensional vector function with components yi(t),
i=1,2,...,N.; f{t,y(t)) is the N-dimensional vector function with com-
ponents fi(t, v(t)) i=1,2,...,N;: and Y, is the N-dimensional vector with
components YO, E i=1,...,N.

If ,g = {(t, y)f 0 =t=< b)) then we assume that f(t, y) is continuous on

45), and that it satisfied the Lipschitz condition

(2.10) l£t v) -2ty | = L)y -y7]| 0=t=b.




These assumptions on f(t, y) guarantee the existence of a unigque solution
to (2.8) and (2.9). The proof of which can be fourd in [5], and will not be
repeated here.

We are now going to approximate the solution for (2.8) and (2.9) by
quadratic spline functions. Our construction of the approximation solution
is as follows. Let the interval [0, b] be partitioned into m-subintervals:

0 :to < t Tee <tm:b, and let h =tk+1 —tk for k=0,1,...;m~ 1.
Let S(t) be a quadratic spline function, class Cl, and having its grids at
the points t=tk, k=1,2,...,m-1,

Define S(t) by

)+7k(t_tk)2, t < t<t

_ ko, ok,
(2.11) S(ty =q +pB(t-t , Kl

k
k  k _k . . .
where o, B,V  are unknown vectors of dimension N to be determined.

1
Since S(t) € C', then by spline continuity we have

k+l

(2.12) Q X

2
ak%-hgk-Fh v,

(2.13) gkt 8%+ 2n X,

il

Multiply (2.13) by h, and then subtract from two times of {2.12) gives
us

k+1 k h  k k+1
(2.14) a =OL+TZ'(B +B )y .

If we require S(t) to satisfy (2.8) at the grid point t = tk-H’ that is

5(

) = H o8 D))



which implies

k+1 k+1
L =
(2.15) B f(tk_H, Q )

Substitute (2.15) into (2.14), we obtain

k+1 k

(2.16) . . %(Bk”(t k+1 k+1

Kl @ )) = F (a )

One Lipschitz constant for Fh(t) is Lh/2, where L is the Lipschitz
constant for f(t,y). Hence for h < 2/L. we have that Fh(t) is a strong con-

. . {
traction mapping, and (2.16) has a unique fixed point ak+ , which may be
found by iteration.

) k k k ) .
In order that we can determine all g, B, ¥V by using the equations
0

(2.13), (2.15) and (2.16) we must first determine ¢ and BO . To do so we
require S(t) to satisfy (2.8) and (2.9) at t =t,, which gives us

0

0
L7 -
(2.17) a Yo

1

(2.18) B £ty v,)

It is obvious that the quadratic spline approximation function S(t) is
uniquely defined by the above construction. It should also be noted that if
the equation (2.8) is linear, that is, f(t,y) = A(t) y(t) +r(t), then we can express

k+l .
a explicitly in terms of ¢

: -1 i .
(2.19) ot - (I - %A(tkﬂ)) ]:(H bZ‘A(tk)> o+ %(r(tkﬂ) + r(tk)>]

Now we want to show that the above method is convergent. The proof

of such theorem require the following lemma.




Lemma 2.2 If

(2.20) Iz, I salz |+d for n=0,1,... n-1,

J

where a and d are certain nonnegative constants independent of n, then

o
FEE
=1, 2, ,
T AP " "
nd a=1

Proof. For n = L,(2.21) is identical with (2.20) and thus true by hypothesis.
Assuming the truth of (2,21) for a value n < N, then by applying (2.20) we

find (if a # 1)

Iz o]l s

i
)
g
5
N
<o
+
o
m’:’
l!l
’_‘r—
o
—
N
o

I
0)]
jo]
+
N
(=]

+
Fapann S
o

o)}
joo]
l!
-+
S~
Q.

11
[0}
3
+
N
o]
-
o)}
V) o}
+
' —
— 1!
=
Q.

which is (2.21) with n increased by | . A similar argument establishes the
result if a = 1. The statement of the lemma thus follows by induction.
2
Let y(t) be the exact solution to (2.8) and (2.9) and assume £(t, y(t)) e C

3
on J, then y e C [0,b] and so for te [tk, we can expand vy(t), y'(t),

bert ]
y''(t) respectively in Taylor's series about t = tk .

(2.22) (0 = (e )+ v () + LT g )2 R )2

(2.23) y'(t) = v (t,) +y"(h ) (-t ) 4+ T (t-t

(2.24) y'(t) = v () vy (e (-t



where y'”(et) is the N-dimensional vector with components y'l”(ei), cue, yi\'l'(ai\r);
INR - ‘ d 3 : Fste l ity N
y (Et) is the N-dimensional vector with components Y (€ t) tee, yN (Et );
y"'('gt) is the N-dimensional vector with components v ”(Ei) cee yi\'r'(rgtN);
oo i i~ ‘
and t < g ' 1= 1,2,..., N.
n K Et’ Et’ Et <t for i s 2y N
Since ak = S(t, ) 5k = S'(t,) ”Yk = 8"t ) ]2' therefore for t e [t ,t )
k! k' k " k’ k+1

we can express S(t), S'(t), S''(t) as

. _ . _ CSY(ty) . L2
(2.25) S(t) = S(tk) + S (tk)(t tk) + sz (t tk) ,
(2.26) S'(t) = S'(tk) + S"(tk) (t - tk) ,
(2.27) S'(t) = S"(tk)

Define error vector function E(t) by
E(t) = v(t) - S(t)

where te [t , k=0,1,. .'., m -1, then we obtain the equation

K k-H] for
for E(t) by subtracting (2.25) from (2.22), the equation for E'(t) by sub-
tracting (2.26) from (2.23); and the equation for E''(t) by subtracting (2.27)

from (2.24):

(2.28) E(t) = E(t ) + E'(t )(t-t, ) + F_”_(_kl( )2+Z'—:E-Q (t-t .)3»
ey , 0 v (EL)

(2.29) E'(t) = E (tk) +E (tk)(t-—tk) + — £ (-t )

(2.30) E'(t) = E''(t,) + y"'('e“t)(t—tk)

Letting t = tk+l in (2.28) and (2.29) respectively gives us




. E'"ty) 2 (e ) 3
l = S Y tk+1
(2.31) E(tk+l) E(tk) + E (tk) h +___2_!,___ h™ + _._._._5,__.__.. h™
- 1 1 LIR Ry y'l‘lé ) 2
- = / tk'i‘i
(2.32) EHC Bl +E) R+ T )

Since both y(t) and S(t) satisfy (2.8) at the grid point t = tk+l ,
(2.33) E'(

H vt ) - ey S

which implies

(2.34) “E'(tkﬂ)“ = LB, D] -

Multiply equation (2. 32) by h and subtract two times of equation (2. 31)
we have

(2.35) E(t,, ) = E(t,) +

h
k' T2

. -

' . v (Etgy) y”‘(‘étk+1)> 3
(E(tk+l)+E(t))+( 6 VRS

By using (2.34) we obtain from (2. 35) that

N “yul(etk.*. ) ylll(gtk+L)“
< 1tz t 6 T a3
(2.36) Bt ] = — ME(tk)“ + n h
L - > L L - > L
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Since for k =0, 1,2, ..., m, Bt )] = o(n), “E'(tk) | = 0(h%), and
“E"(tk)“ = 0(h), it is obvious from equations (2.28), (2.29) and (2. 30) that for

te [0, b]

lE®] = om?,
[E" @] = o),
and so we have proved the following theorem.

2 .
Theorem 2.2. If f(t, y(t) ) € C on g‘!?, then there exists a constant

K such that for h < 2/L
[yt - s < kn*,
[v'(t) - s < Kh®,
[v''(ty - S'"'(t)]] < Kh,

for t e [0,b], provided S(tk), S'(tk), S“(tk) are given by equations (2. 16),

(2.15), and (2.13).

3. CONVERGENCE AND ERROR ESTIMATE
L
Assume that X2+ is the quadratic spline approximation to the exact
. 1 1
solution Xn+ in (2.4), and P:+ is the quadratic spline approximation

, n+l | e
to the exact solution p in (2.5), then it is easy to show that

(3.1) S = X c + P

1 ) , ,
is the quadratic spline approximation to xn+ » which is the exact solution of

(2.1) and (2.2).




b

In order to discuss convergence and to give error estimate we assume
that there exist solution to the given problem and the approximating linear
problems.

Since by Theorem 2.l, the sequence {xn} converges to the solution
x of equation (l.1) and (1.2), therefore given € > 0 there exists a number

N(e, x) such that for all n > N(g, x)
(3.2) “x - xn“ < g/2 .

Suppose the interval [0, b] was divided into m subintervals, and if
h =b/m. Itis clear that h-s 0 if and only if m-—s », Now let Sn denoted

n n
by Sm . Since by Theorem 2.2 for any fixed n, § converges to xn, SO given
m

e > 0, there exists a number M(g, t) such that for all m > M{e, t)
n n
(3.3) <" -8 | < ez
But by triangular inequalities
n n n n
(3.4) R N P N P

so given € > 0,

Ix-s | < e/2 + e/2= ¢

forall n > N{(g, t), and all m > M(e, t).

Hence we have proved the following theorem.

Theorem 3.1. If g(x) given in equation (l.l) is such that g(x) € C3 [0,b],

then the sequence {Sn(t)} generated by (3. 1) converges to the solution x of

equation (l.1) and (l.2) as n— «, and h— 0, and if b is sufficiently small.



Let S(t) be the spline approximation to the solution x(t) of (l.l) and
(L.2). Since S(t) does not satisfy (l.1) but satisfies (l.2) exactly we have

for te [0,b]

(3.4) S'(t) = g(S(t) ) - o1),
and

(S(0), &) = b, i=1,2,...,k
(3.5) ! 1

(S(b), &) = b, i=k+l, ..., N,

where &(t) is the residue.

. 3
Since g(x) € C’, therefore by mean value theorem, we have

(3.6) g(x) = g(S) + J(8) (x - 8) ,

where ] is the Jacobian matrix as defined in (2. 3).
Define the error function e(t) by e(t) = x(t) - S(t}). Subtracting equation

(3.4) from (L.1), and (3.5) from (l.2) respectively, and using (3.6) we have
approximately ~

(3.7) e'(t) = J(S(t) ) e(t) + 9o(t), te[0,b],
with

(e(0), a.) = 0, i=1,2,...,k,
(3.8) !

(e(b), ai) = 0, i=k+l, , N

Since S(t) is known and O&(t) can be computed from equation (3.4),
therefore e(t) can be approximated by exactly the same technique as we
approximate the exact solution of the problem with the exception that we

have to reduce the step-size h, and use double precision on 6(t).




Remark: Our numerical procedure considered above produces smooth,
accurate, global approximation to the solution of (2.8) and (2.9). In
particular, the step-size h can be changed at any step, if necessary,

without added complications.

4. A NUMERICAL EXAMPLE

As a test problem let us consider the following problem whose solution
is known. This example is also contained in [6]. The authors of which had
solved the problem by linear programming technique.

Equation:
11 - 3
(4.1) v = 2y, t ef[o,1],

with boundary conditions

i
(@]

y(0) + y'(0)
(4.2)

il
o
wn

y(l)

The exact solution is: vy(t) = (1 +t)

To obtain the solution of this problem we first convert (4.1) and (4. 2)
into ‘he form of (l.1) and (1.2), so that our method can be applied. Then
for each step-size h=1./64., h=1./128., h=1./256., we take So(t) =
I - 0.5t as initial guess and compute Sl(t)’ Sz(t) and 83(1:). The numerical

results are summerized in the following tables.
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TABLE 4.1 (h = 1./64.)

ﬁ 51 8,(1 3, (1 5,1 vl |0 -5 (0 | SoROR
0. 1.0000000f 1.0056713 1.00001330.9999763| 1.0000000]2.3x 10> | 2.2 x 10™>
0.125 1 0.9375000] 0.8940661 | 0.8889059 | 0,8888580| 0.8888889 | 3.1 x 10> | 3.0 x 10>
0.250 | 0.8750000] 0.8049158| 0.7999967 | 0.7999684| 0.8000000 | 3.1 x 10 > | 3.1 x 10°°
0.375 | 0.8125000) 0.7318516 0.7272676 | 0.7272437 | 0.7272727 | 2.9x 10> | 2.8 x 10>
0.500 | 0.7500000] 0.6706739| 0.6666613 | 0.6666419| 0.6666667 ,N.M;x_o;m 2.4x 107°
0.625 | 0.6875000] 0.6185707| 0.6153797 | 0.6153652| 0.6153846| 1.9 x 107> 1.9x 10>
0.750 | 0.6250000| 0.5736145| 0.5714247 | 0.5714151 | 0,5714286 | 1.3%x 10> | 1.3%x 10
0.875 ) 0.5625000| 0.5344343| 0.5333312 | 0.5333264|0,5333333]6.9x 10 ° | 6.6 x 10°°
1.000 | 0.5000000{ 0.5000000{ 0.5000000 0.5000000 | 0.5000000 0 iiio




L5

TABLE 4.2 (h=1.,/128.)
t 8,() S, (1) 5, (1) 8,4(t) y(t) y(t) - 8,(1)
0, 1.0000000{ 1.0056848 | 1,0000311 {0.,9999941 | 1,0000000 | 5.9 x WOIO
0.125 0.9375000) 0,8940858 0.8889137 | 0,8888117]0,8888889 7.7 x wono
I}oﬂwmo 0.8750000 | 0.8049369| 6,8000204 | 0.7999921 | 0.800000C | 7.9 x Hoao
0.375 0.8125000 | 0,7318713| 0,7272894 | 0.7272655 | 0.7272727 | 7.3 x woku
0.500 0.7500000 | 0.6706908| 0,.6666798 1 0.6666605] 0.6666667 @.IN X .rono
0.625 0.6875000 }0.6185839 o.ohmweﬁw 0.6153798 1 0.6153846 4.8 x wono
6,750 0.6250000 | 0,5736236{ 0,5714348 | 0,5714252{0.5714286 | 3.4 x Po..o
0.875 0.5625000 {0.5344389| 0.533336310.5333316}0.5333333 (1.7 x _oum
1,000 0.5000000 | 0.5000000f 0,5000000 j 6.5000000{ 0.5000000 0
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TABLE 4.3 (h =1.,/256.)

i 5,(1) 5, (0 5, (1) 5,1 G ECERE
0. 1,0000000{ 1.0056882) 1.0000355 0.9999985 | 1,0000000} 1.5 x »o;.o
0.125 | 0.9375000 | 0. 8940908 0.8889195 | 0.8888869 |0.8888889| 1.9 x 10°°
0,250 0.8750000 ] 0,8049421} 0.8000263 0.7999980 | 0.80000001 2.0 x HOIO
0,375 0.8125000 0,7318762 0.7272948 10,7272709 |0.72727271 1.8 x hOImv
0,500 0.7500000 | 0.6706950] 0.6666844 |0.6666651 0.66666671 1.5 x% wOlo
0.625 0.6875000]0.6185873 0.6153979 | 0.6153834 {0.6153846 1,2 x :ulmu
0.750 0.6250000|0,5736258 0.5714373 (0,5714277 10.5714286 8.4 x hou..w
0.875 0,5625000 | 0.5344401 0.5333377 10.5333329 {0.5333333 4,3 x HO|<
1,000 0..5000000 | 0.5000000} 0.5000000 0.5000000 | 0.5000000 0
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5. APPLICATION TO THE HENCKY PROBLEM

5.1 Statement of the problem

In this section we are going to consider the foiiowing problem

[ 4 ...:.3_. ' -...—._2‘-.... e
(5.1) X't + 3 x(t)+X(t)z =0, tef0,1],
subject to

x'(0) = O,
(5.2)

x(t)y = A,

where A is any constant greater than 0 .

Existence and unigueness of the solution to this problem is discussed
recently in [7] and [8]. Numerical solution is also presented in [ 7] for
Az 0.4. Using our numerical procedure offered no difficulty in solving the
Hencky problem for a wide range of values of A . Before we present the
numerical results, it is important to make a brief analysis on how we approach

the solution of this problem.

5.2. Analysis

(A). Conversion of (5.1) and (5.2) to the form of (1. 1) and (L.2), so

that our method can be apiolied.

Let X =% X, = x', then (5.!) becomes

x, (t) = gl(xl,xz),

b
™y
=
S
[
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where

9, (x5 %) 2

2
g, (x,, %) -,
271772 t XZl

with boundary conditions

x (0) = 0,
(5.4) 2
Xl(l) = A,

(B). Since the equation (5.1) has a singularity at t = 0, approximation
of gZ(XL(t)’ xz(t) ) at t =0 is necessary in the procedure.

Since the equivalent non-linear integral equation to (5.1) is

1 3 t 3 1
T or7 dr L : T TdT
5.5 x(t) =x - | AL, L / drt + / NN

(5.6) (1) 2 | o ar
° x = - T —
t3 dO E’E)
and so
t
3o 22
(5.7) t x't) = 14 g ;_2-(_;)- T

As t— 0 equation (5.7) implies

o+ Jw

. 3 L
()= - 2 *2(0)

Hence at t = 0, we can approximate gz(xl(t), xz(t) ) by




= =0, S/XT(O)

(C). Choice of the initial approximation.

Based on the informations supplied in [7], we guess that X (0) will
be in the neighborhood of | . On the other hand le(l) = A, therefore for a
given A we let

1+ (0 -1)t

b
[a—ry
—~
—
~—
1

xz(t) = A

be the initial approximation.
(D). Choice of the step-size h .
The step-size h should be chosen véry small at both ends of the

interval [0, 1], because

, . 3 R _
(1) We approximate ; xz(t) by > ;%—(—0) at t=0.
(ii) The slope of Xl(t) becomes very large as t— 1, especially

for X small.
In the method proposed there will be no added complication to such

variation of h .

5.3 Numerical results.

In this section we are going to include results for A = 1, 0. 5, 0.1,
0.05, and 0.0l. For each X\, numerical solution S(t), along with its

first two derivatives, residue, and error estimate are tabulated in Table 5.1
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to Table 5.5. In Figure 5.1 the solution S(t) is shown for various values

of M.




TABLE 5.1 (x = 1)

. - Qg ERROR
t mAﬁv S Arv S :v RESIDUE ESTIMATE
-1 -
0. 1.19446366 0 -3.5044843 x 10 0 -1, 7x 10 6
-2 - 1 . 10 7
0.125 1.19170706 -4,3941594 x 10 -3,5368802 x IC -1, i x 10 2.7x 10
(02 2l % -1 . -10 -7
0,250 1,18342981 -8.8701592 x 10 ~-3.6363606 x IO 1,2 x 10 2.9 x 10
4 -1 -1 ] -10 -7
0,375 1.16946091 -1,3516209 x 10 ~3,8107748 x 10 ~-1.,4x 10 3.2x 10
-1 . =1 -10 -7
0.500 1,14988402 -1,.8365535 x 10 -4,1066026 x 10 -1,2x 10 3.1 x 10
-1 -1 -10 -7
0.625 1,12363613 -2.3805143 x 10 -4,4623857 x 10 2.3x 10 1,6 x 10
-1 -1 -10 -7
0.750 1,09039433 -2.9590454 x 10 -4,9852451 x 10 t,4x 10 1.1 x 10
-1 -t -1l -8
0.875 1.04968293 -3.6215691 x 10 -5,7347420 x 10 -8.7x 10 5.1 x 10
-1 -1 -1
1,000 1,00000000 ~4,3968i93 x 10 -6,.8095420 x 10 1.7x 10 0 0




TABLE 5.2 (» = 0.5)
ERROR
¥ 1t la)

t S(t) S'{t) SHH(t) RESIDUE ESTIMATE
~1 -6
0. 0.91009787 0 -6.0366195 x 10 0 -3.4x 10 6
- -2 -1 -9

0.125 0.90534025 ~7.5987929 x 10 -6.1638246 x 10 0 4,7x 10
-1 -1 -11 -8

0.250 0.89094072 -1,5524117 x 10 -6.5671033 x 10 -5.8x 10 4.5x 10
-1 -1 -10 -7

0.375 0.86623457 -2.4162653 x 10 -7.3236677 x 10 -1.1x 19 1.4x 10
i ~1 -1 ~-10 =7

0.500 0.8306789 -3.390027& % 10 -8.6441823 x 10 -2.3x 10 1.9 x 10
-] 0 -10 -9

0.625 0.78107808 -4.5897684 x 10 -1.0751537 % 10 -1, 7x 10 -6.,0x 10
-1 0 -10 -8

0.750 0.71446082 -6.1482155 % 10 -1.4587926 x 10 -2.9x 10 -1.7x 10
0 0 -10 ,.—8

0,875 0.62536066 -8.3795389 % 10 -2.2411112x 10 2.3x 10 -1,0x 10

0 —_
1.000 0.50000000 -1.22168492 -4.3349452 x 10 2.7x 19 ? 0
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ERROR
s! ES
t S(t) (t) RESIDUE ESTIMATE
Iw —
0. G.81265103 0 -7.5711495 x 10 -5.3x 10 6
-1 -10 -6
0.125 0,80667547 -9,5576559 x -7.7965600 x 10 10 -1.0x 10
-1 -11 -7
0.250 0.78848365 -1,9700906 x ~-8,5284337 x 10 10 -9.9 x 10
R ~1 -10 -7
0.375 0.75687475 ~3,1172689 x -9.9744300 x 10 10 -8.9 x 10
0 -10 =7
0.500 0,71040122 -4,4917560 x -1.2679323x 10 10 -8.4x 10
0 -10 -6
0.625 0.64324990 -6.3582519 x -1,7816359 x 10 10 -1, 1l x 10
0 ~10 -6
0.750 0.54743183 -G,2183666 x -2.9864027 x 10 1o -1,2x 10
.0 -9 -6
0.875 0,40309275 -1.4883380 x -7.2060488 x 10 10 -1,2x 10
1,000 0.10000000 -5,2039840 x -1,8438805 x wow ponu 0
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TABLE 5.4 (A = 0.05)
——
ERRCR
1 ottt m
t S(t) S'(t) S (1) RESIDUE ESTIMATE
-1 -6
0. 0.80838081 0 -7.6513485 x 10 0 -5,7x 10
- -1 -6
0,125 0.80234152 -9.6604246 x 10 2 -7.8828509 x 10 0 ~-1,4x 10
« -1 -1 -10 _ -6
0.250 0.78394953 -1.9922673 x 10 -8.6355071 x 10 -1,1x190 -i,4x 10
-1 0 -10 -6
0.375 0.75197005 -3.1553202 x 10 -1.,0126936 x 10 -3.4x 10 -1.3x 10
) 0 ~-10 -6
0.500 0.70489319 -4.5537441 x 10 -1,2929155 % 10 -3.4x 10 -1,3x 10
-1 0 -10 )
0,625 0.63672441 -6,4639431 x 10 -1,8304876 x 10 5.8 x 10 -1,7x 10
-1 0 -10 -6
0.750 0.53906376 -9.4231172 x 10 ~3.1133085 x 10 ~5.8x 10 -1,9x 10
, 0 0 -9 -6
0.850 0.39056222 -1,5440i87 x 10 ~-7.8176349 x 10 7.4 x 10 ~2.2x 10
0 2 -6
1,000 0.05000000 -8.0695549 x 10 =7.7579132 x 10 -2.0x 10 0
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TABLE 5.5 (A = 0.01)

: , ERROR
.ﬁ 1 m._ : m

S(t) S'(t) (1) RESIDUE ESTIMATE
0. 0.80642657 0 ~7.6884774 % 10" 0 —l.1x10 7
-2 -1 -¢
0.125 0.80035771 -9.7081616 x 10 -7.92283388 x L0 0 6.1x 10 °
- -1 -6

0.250 0.7818730! ~2.0025465 x 10" -8.6852418 x 10 0 -6.3x 10
-1 0 ~10 -6

0.375 0.74972162 -3.17298788 x 10 -1.019806t x 10 4.1 x10 -6.6 x 10
. -1 0 -10 -6

0.500 0.70236422 -4.5826082 x 10 -1.3046352x 10 -2.3x 10 -7.3x 10
-1 0 -10 -6

0.625 0.63372043 -6.5134098 x 10 -1.8536233x 10 6.9 x 10 -8.8x 10
] -1 0 -9 =5

0.750 0.53519309 ~9.5199336 x 10 -3.1744950 x 10 -1.0x 10 1.1 x 10
. . 0 0 -9 -5

0.875 0.38469596 -1.5711241 % 10 -8.1276254x 10 -3.0x 10 1.6 x 10

{ —
1.000 0.01000000 -1.98236408 x 10 21.9940530x10% ~3.2x 10> 0
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Computational results give us a set of 5 points (A, x(0) ).

We use polyhiomial curve fitting by least square method and obtain

P(A) = 0.36070481° + 0.0275942 X + 0.8061575

The results are tabulated in Table 5.6, and the curve is plotted

in Figure 5.2

TABLE 5.6
A S(0) P(\) - S(0)
1.00 L. 19446366 7.x1078
0.50 0.91009787 3.2x 1070
0.10 0.81265103 “1.2x10?
0.05 0.80838084 5.8 x 107°
0.0l 0.80642657 4.3x107°

It is interesting to note that as A —» 0,

by 0.8061575.

x(0)

can be approximated




27

S(t) 1is the numerical solution of

Ty e L3 2
x (1) = =7 x(t) *(0)2
x (C) =0
x(l) = AN(A=1.0,0.5,0.1,0.05,0.01)
S(t)
N
1.2
1.1
L.0 A =1.0
0.9 "

FIGURE 5.1



p(r)
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Polynomial Curve Fiting (By Least Square Method)
p(r) = 0.3607048 22 + 0.0275942)\ + 0.8061575

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 5.2




29
ACKNOWLEDGMENT
The author is indebted to Professor J. B. Rosen for his instruction

and guidance. Gratitude is also expressed to T. Y. Cheung for many

valuable discussions during the preparation of this report.



[L]

[2]

[3]

[ 4]

[5]

[6]

[7]

[8]

30

REFERENCES

Bellma‘n, R. E. and Kalaba R. E. Quasilinearization and Nonlmear
Boundary-value Problem, Amemcan Elsevier Publishing Co., Inc. ,
New York, 1965,

Kalaba, R. E., "On Nonlinear Differential Equations, The Maximum
Operator, and Monotone Convergence' J. Math. Mech., 8 (1959)
pp. 519-574,

Loscalzo, F. and Talbot, T.,"Spline Function Approximations for
Solutions of Ordinary Differential Equations." J. SIAM Numer. Anal.
Vol. 4. No. 3, 1967,

Loscalzo, F. and Schoenberg, 1. J.,"The Use of Spline Functions for
the Approximation of Solutions of Ordinary Differential Equations."
MRC Technical Summary Report #723, 1967.

Henrici, P., Discrete Variable Methods in Ordmary Differential
Equations, John Wiley, New York, 1962.

Rosen, J. B. and Meyer, R., "Solution of Nonlinear Two-points Boundary -
value Problems by Linear Programming." Comp. Sci. Technical Report
#1, University of Wisconsin, Jan. 1967.

Dickey, R. W., "The Plane Circular Elastic Surface under Normal
Pressure in Achive for Rational Mechanics and Analysis." Vol. 26,
No. 3, 1967, pp. 219-236,

Callegari, A. and Reiss, E., "Nonlinear Boundary Value Problem for
the Circular Membrane." Technical Report. Feb. 1968, Courant
Institute of Mathematical Sciences, New York University, New York.




