The research reported herein was partially supported by a grant
from the National Science Foundation (GP-7069). Use of the University
of Wisconsin Computing Center was made possible through support,
in part, from the National Science Foundation, other United States
Government agencies and the Wisconsin Alumni Research Foundation
(WARF) through the University of Wisconsin Research Committee.

A MEMORY NET STRUCTURE:
PRESENT IMPLEMENTATION AND A
PROPOSED LANGUAGE
by
Stuart C. Shapiro

Technical Report #53
December 1968

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

THE "MENS" STRUCTURE

CURRENT IMPLEMENTATION

PROCEDURES THAT HAVE BEEN WRITTEN

L.

Procedures to Manipulate ASLIP Lists

Basic System Procedures for the Memory Net
Procedures that Operate on Fields of Items
Procedures that Return Values of Fields
Procedures that Operate on the Net Structure

Main Programs

A PROPOSED NET MANIPULATING LANGUAGE

REFERENCES

L2

12

L3

L4

L6

L7

20

23

A MEMORY NET STRUCTURE:
PRESENT IMPLEMENTATION AND A PROPOSED LANGUAGE

Abstract

A memory net structure has been designed which is particularly
useful for storing, processing, and retrieving information of the type
used in semantic analysis of natural language, question answering and
theorem proving. The net consists of blocks, or items, each one of
which may be an unstructured unit or may represent a structure consisting
of an ordered pair or triple of items. Any given structure (or unstructured
unit) in the memory is represented by exactly one item no matter how many
other structures make use of it as a substructure. Any item may be
associated with an external print name. The structures are built using
symmetric links so that all structures which use a given item are reachable
from that item.

Procedures to manipulate this net and some to use it in a gquestion
answering system have been programmed in Burroughs B5500 Extended ALGOL,
also making use of ASLIP, a SLIP like package of list processing procedures.

A net manipulating programming language is proposed whose basic
data units are the items and structures of this net, just as the basic data

units of a list processing language are elements and lists.

INTRODUCTION

The memory net structure herein described (MENS) developed as a
generalization of the SAMENLAQ structure [l]. After almost all of the work
discussed here had been done, it was discovered that these structures are
very similar to the structures used in and proposed for the DEACON project.
The SEMENLAQ structure is similar to the ring structure described in DEACON
[2], and the MENS structure is similar to the triangle structure described by
Longyear [3]. In fact, the generalization process in both cases was very
similar. The major differences between the two structures is that the
DEACON connective rings are ordered but without a starting point, causing
Longyear to add extra triangle structures to identify the subject, attribute
and value, while the SAMENLAQ and MENS structures inherently distinguish
among left name, relation and right name; the MENS structure was approached
from a slightly different viewpoint than the triangle structure, resulting, I
believe, in the former's being more easily comprehensible as dealing with
building blocks of a complex net structure.

The MENS structure is precisely the proper one for the storage and
use of Simmons and Burger's "events" [4], which they describe as follows
[pp. 4f]:

The primitive elements of our model are
objects, events and relations. An event

is defined either as an object or as an
event-relation-event (E-R-E) triple. An
object is the ultimate primitive represented

by a labeled point or node (in a graph repre-
senting the structure). A relation can be an

object or an event... Any perception,
fact or happening, no matter how complex
can be expanded into a nested structure
of E-R-L triples.

Use of the MENS structure for this sort of model would be much more natural
than the use of lists and list processing languages. Also, since an item

of the MENS structure is a relational statement which is directly accessible
via the external print names of each of its elements, as well as its own
print name, the structure is better than most list structures for question-
answering and similar information retrieval systems [5-11]. In fact, in
order to directly access relational statements from as many different elements,
Levien and Maron had to store each relational statement in four different
files [13]. Since the same physical item is used to represent a given
structure or print name throughout the memory, substitution of a certain
value of all instances of a given variable in a statement is accomplished in

one step.

THE "MENS" STRUCTURE

One of the major concepts underlying the SAMELAQ structure is that
in the representation of a name-relation-name statement, the relation should
be represented in the same way as the names, and be distinguished as a
relation only by the way it is linked into the name-relation-name structure.
This provides two main benefits: the memory may be entered through a
relation as easily as through a name, in fact using the same procedures;

a term used as a relation in some statements may be used as a name in

others, e.g., to record its properties or its relation to other relational
terms. In the graphic representation of this structure (see fig. l), a pointer
goes from the left name through the relation to a slash name which has
pointers to all nodes which serve as right names in relational statements
with the given left name and relation.

It eventually became apparent that the SAMENLAQ structure was
insufficient to handle certain desirable structures, e.g., n-ary relations
where n > 2, such as "J. Krebb is Vice President in charge of production
of Acme Corp."; structures modifying other structures, such as "S. Jones
wasg hired as Production Manager of Acme Corp. in 1965"; storage of complex
statements which give information about relations and which may be inter-
preted as rules of inference for querying the memory, suchas "If R is
symmetric and xRy then yRx". The solution of these problems seemed to
be to represent an xRy statement in the same way that names and relations
are represented. Thus relational statements become names or relations in
other relational statements. That is what the MENS structure does.

The unit of the MENS structure is an "item", which may represent
an unstructured unit or an xRy triple or an Rx double (for unary relations).
To achieve this, every item has three pointers - a left name pointer (LNP),

a relation pointer (RLP) and a right name pointer (RNP). If an item represents
an unstructured unit, it has none of the pointers. If it represents an Rx
statement, it has an RLP and an RNP pointing to the items representing R

and x respectively. If it represents an xRy statement, it has an LNP,

i

LANG

J.
KREBB

o

JONES

PROD.
MNGCR.

FIG. 1

</

- An Example of SAMENLAQ Structure

VA

ACME
CORP.

/2

an RLP and an RNP pointing to the items representing x, R, and vy
respectively. In addition to these pointers there are reverse pointers so that
from an item, one can find all structures using that item. These are the left
name reverse pointer (LNRP), relation reverse pointer (RLRP) and right name
reverse pointer (RNRP). Whenever there is an LNP going from item 1 to

item j, there is an LNRP going from item j to item 1 . The RLNP's

and RNRP's are similarly related to the RLP's and RNP's respectively.

Thus, the MENS structure is a directed (generally non-planar) graph, whose
vertices are the items, and which has six different sets of arcs, whose existence
in the graph is subject to the constraints mentioned above.

We shall call LNP's RLP's and RNP's down pointers, and if either of

them go from item i to item j, we shall say that item i points down
to item j . Further if there is a path of down pointers of any length from

item 1 toitem j, we shall say that item j 1is in the structure represented

by item i or is used by that structure. Specifically, the structure represented

by item i consists of item i, all paths of down pointers starting at item i,
all items on those paths, and the reverse pointers for the down pointers on the
paths.

Since an item may have at most one of each of the down pointers, but
any number of the reverse points, the latter are stored on reverse pointer
lists. Each item has (of course) three reverse pointer lists, called LNRPL,

RLRPL and RNRPL.

Also needed is some way of distinguishing a complete relational
statement from a relational phrase. For example, if the statement ((LANG
PRESIDENT ACME) RESIGNED 1967) were stored in the net, we would not
want the statement (LANG PRESIDENT ACME) retrieved in answer to some
inquiry as to Mr. Lang's occupation. This is done with a FACT flag on each
item. If the FACT flag of item i has the value 1, itrepresents a structure

which is an independent statement of fact (as far as the memory net is con-

e
58
.

cerned)
In addition, each item has a MARK flag which may be used for various
purposes.
Now that the items have been completely described, we may picture
them and the MENS structure. Figure 2 shows an item and where the infor-
mation associated with it will appear. Figure 3 shows how the three trouble-

some examples mentioned above would appear in the MENS structure.

\,I
LNRPL RLRPL RNRPL
FACT PNME MARX
|
LNP RLP i RNP

Figure 2 - An Item

’PBy "independent statement of fact" I mean a statement that may be
typed out with no qualifiers. It was either entered in the form in which it
appears or was derived from other such statements. Alternatively, we may
say that an item block whose FACT flag has the value 1 is the head of a
complete structure even though it may also serve as a substructure in
another structure.

A 7y 3 1
v | [r v \ 2 v
J. KREBB L 1965
h \ A A P f
| RS |
wl [v [2 l v ¥
IN CHR(Q PROD
V. PRES. oF 1 S. JONES VINGR HIRED
v
PROD
1 4
v y [
IMP
\ \ A
v X q v
AND
a |4 \ $ 4 4 PO IS
y ¥ AL v ¥
IS SYMMETRIC R X Y

FIG. 3 - An E:ample of MENS Structure

CURRENT IMPLEMENTATION

As presently implemented, using Burroughs B5500 Extended ALGOL and
ASLIP, the items reside in the alpha array ISPCE [1:127, 1:255]. Each item
consists of five consecutive words in a row of the array, so that 51 items
fit in each of the 127 rows. The internal name of an item, used as a pointer
and for certain parameters, is formed in the following way: if the first word
of the item is in ISPCE[I, J] then the internal name of the item is the 15 bit
number formed by concatinating I & J. The nine fields of each item are

located in the five words as follows:

Word Word Part Field
L. [L:1] MARK
[2:1] FACT
[3:15] LNP
[18:15] RLP
[33:15] RNP
2. PNME
3. LNRPL
4. RLRPL
5. RNRPL

Words 2-5 contain the names of ASLIP lists which contain the appropriate
information. The print name is held in a list to allow it to be any number

of words of any length.

An available item list is kept, with the variable AVITLST containing
pointers to the first and last items on the list. Each item on the available
item list contains a pointer to the next one. At first, only the first row of
ISPCE is initialized and placed on the available item list. Succeeding rows
are added only as they are needed. The number of rows being used is stored
in ITROWSUSED. Garbage collection is automatic in that whenecer a pointer
is removed from an item, the item is checked to determine if it is empty (has
neither down pointers, nor reverse pointers nor a print name). If so, it is returned
to the available item list.

To find an item, given its print name, a symbol table is used. The table
is in the alpha array SYMTBL [0:1, 0:511]. It is so large in order to minimize
the number of names mapped into any entry. Normally a symbol table entry
will contain either 0 or a pointer to an item. If, however, two or more names
are mapped into one entry, an ASLIP list is created, its name is placed in the
symbol table entry and pointers to all the items whose print names were mapped
into the entry are placed on the list. The proper item for any print name is found
by reading down this list and testing the PNME of each item on it to find one that
contains the same name as the one being looked for.

The method cf finding a symbol table entry from a print name depends on the
fact that the name is stored in the right hand 30 bits of successive ASLIP list
elements. The method is:

1) add the list elements forming the name (mod 230)

2) add the 3 successive L0 bit numbers in the 30 bit result from

10
step 1 (mod 2)

10

3) the left hand bit is the first subscript of SYMTBL, the

remaining 9 bits, the second.

A relational statement, as it is structured in the net may be represented
in a list as follows: A statement is a list of two or three elements. Each
element is either a list containing a string of characters forming a print
name, or a statement. Thus the lists representing some of the examples used
above are:

((A. LANG)(PRES.)(ACME CORP.))

((PRES.){OUTRANKS)(VICE PRES.))

((J. KREBB)((V. PRES.)(IN CHRG. OF)(PROD.))(ACME CORP.))

(((S. JONES)(PROD. MNGR.)(ACME CORP.))(HIRED)(1965))

((((RWIS)(SYMMETRIC))(AND) ((X)(R)}(Y))) (IMP) ((Y)(R)(X)))

For communicating with a human at a teletype, the following abbreviations

are used when outputting lists and may be used when inputting lists:

[b for ((
b for 1))
*b for) (

(where "Db" stands for at least one blank)

So the last list above may appear:

[[R* IS* SYMMETRIC] (AND) [X# R¥ Y] * IMP* (Y* Rk X)].

The MENS structure representing a relational statement is constructed

from the list representing the statement. An item is never built that already

11

exists, instead the existing item is used in the structure representing the
(possibly) new sentence. The existence of needed items is determined in
two ways: (L) At the lowest level of a statement, we want an item with a
given print name. We find it, if it already exists, by looking the print
name up in the symbol table; (2) At higher levels, we want an item whose
down pointers point to a given double or triple of items. We simply take
the intersection of the appropriate reverse pointer lists of those items, and
if the intersection is nonempty we have the item we seek.

A problem that occurs in the MENS structure is to determine if a given
item is in the structure represented by a second given item. That is, if there
is a down path from the second item to the first. The straight - forward way
to do this would be to search the down paths from the second item and check
if the first item is ever reached. Since there are a finite number of items in
the structure, the search will end and the question will be decided. How-
ever, we may be able to save search time by starting from both items,
searching up from the first and down from the second. If they are, in fact,
connected, the two searches will meet in the middle. If they are not, we
will do extra work to find out. A further consideration, though, is that an
item has either zero, two or three down pointers, but may have any number
of reverse pointers. Making use of this, the search procedure used decides
at each step whether to extend the search down from the top or up from the
bottom depending on which has produced less items left to look at; i.e.,

which search has looked at items with a smaller average branching factor.

12

PROCEDURES THAT HAVE BEEN WRITTEN

l. Procedures to Manipulate ASLIP Lists*

PROCEDURE REMELT(ELT, LST)

Searches the list LST for an element with the same contents as ELT

and deletes it from the list.

INTEGER PROCEDURE LENGTH(L)

Returns the number of elements on the top level of the list L .

BOOLEAN PROCEDURE MEMBER(ELT, LST)

Returns TRUE if there is an element of the list LST whose contents

are the same as the contents of ELT, otherwise FALSE.

ALPHA PROCEDURE INTERSECT(LST!, LST2)

Returns the name of a newly created list which contains exactly those

elements of both lists LST! and LSTZ.

PROCEDURE LUNION(LSTL, LSTR)

Appends on the bottom of the list LSTL all elements of the list LSTR

that are not already on LSTL.

ALPHA PROCEDURE SECOND(LST)

Returns a copy of the second element of the list LST (the [3:15]

field zeroed out).

ste

i These are procedures that, at the time written, were not part of
the ASLIP package.

13

2. Basic System Procedures for the Memory Net

PROCEDURE INITIT

Initializes the next row of ISPCE by making it a chained available item
list with AVITLST pointing to the top and bottom of the chain. ITROWSUSED
is increased by one. If no more rows are available, an appropriate message

is typed out.

ALPHA PROCEDURE NUITEM

Returns a pointer to a new item; calls INITIT if necessary; initializes
the item by setting the first word to zero and putting empty lists in the

other four words.

PROCEDURE ERAITEM(ITEM)

Returns the item ITEM to the available item list, removing any
reference to it from the symbol table and erasing its PNME, LNRPL, RLRPL

and RNRPL lists.

BOOLEAN PROCEDURE ITEMMT(ITEM)

Returns TRUE if LNP = RLP = RNP = 0 and PNME, LNRPL, RLRPL,

and RNRPL are all empty, FALSE otherwise.

ALPHA PROCEDURE VSYMGEN

Returns a pointer to a new item and gives the item a unique print
name. The print name is a "V" followed by the three characters whose

internal machine code is the pointer to the item.

14

PROCEDURE INITCONS

Initializes those items that other procedures need to refer to (e.g.,

the items representing the quantifiers of predicate calculus).

PROCEDURE TYPSYMTBL

Types out on the teletype all entries in the symbol table, including
the address of the symbol table, the internal name of the item and the print

name.,

PROCEDURE TYPAVITLST

Types out on the teletype the contents of AVITLST in the format:
<last item on the available item list > , <first item on the available item

list >.

3. Procedures that Operate on Fields of Items

PROCEDURE SETMARK(ITEM)

Sets the MARK field of the item ITEM to 1.

PROCEDURE _SETFACT(ITEM)

Similar to SETMARK,

PROCEDURE REMMARK(ITEM)

Sets the MARK field of the item ITEM to 0.

PROCEDURE REMFACT(ITEM)

Similar to REMMARK.

15

PROCEDURE REMLNRP(ITEM, PNTR)

Removes the pointer PNTR from the LNRPL list of the item ITEM. If

the item is then empty, it is erased.

PROCEDURE REMRLRP(ITEM, PNTR)

Similar to REMLNRP.

PROCEDURE REMRNRP(ITEM, PNTR)

Similar to REMLNRP.

PROCEDURE ADDLNRP(ITEM, PNTR)

Adds the pointer PNTR to the bottom of the LNRPL list of the item ITEM.

PROCEDURE ADDRLRP(ITEM, PNTR)

Similar to ADDLNRP.

PROCEDURE ADDRNRP(ITEM, PNTR)

Similar to ADDLNRP.

PROCEDURE SETLNP(ITEM, PNTR)

If the LNP of the item ITEM is different from the pointer PNTR and not
0, the item it points to has the LNRP pointing to ITEM removed. The LNP
of ITEM is set to PNTR and if PNTR is not 0, a pointer to ITEM is added

to the LNRPL of the item PNTR.

PROCEDURE SETRLP(ITEM, PNTR)

Similar to SETLNP.

16

PROCEDURE SETRNRP(ITEM, PNTR)

Similar to SETLNP.

ALPHA PROCEDURE SETPNME(ITEM, NAME)

This sets the PNME of the item ITEM to be the contents of the list
NAME, and makes the appropriate entry in the symbol table. If NAME
already has an entry in the symbol table, then if ITEM and the item listed
in the symbol table have different down pointers, a message is typed out
that an attempt has been made to doubly define NAME, and nothing else is
done. If the down pointers are the same or one of the items has no down
pointers, the reverse pointers of ITEM are merged with those of the item in
the symbol table and one composite item is formed. The procedure returns

the internal name of the item whose print name is NAME.

4, Procedures that Return Values of Fields

ALPHA PROCEDURE LNP(ITEM)

Returns the LNP of the item ITEM.

ALPHA PROCEDURE RLP(ITEM)

Returns the RLP of the item ITEM.

ALPHA PROCEDURE RNP(ITEM)

Returns the RNP of the item ITEM.

ALPHA PROCEDURE PNME(ITEM)

Returns the PNME of the item ITEM.

L7

ALPHA PROCEDURE LNRPL(ITEM)

Returns the LNRPL of the item ITEM.

ALPHA PROCEDURE RLRPL(ITEM)

Returns the RLRPL of the item ITEM.

ALPHA PROCEDURE RNRPL(ITEM)

Returns the RNRPL of the item ITEM.

BOOLEAN PROCEDURE MARK(ITEM)

Returns TRUE if the MARK field of tle item ITEM is 1, FALSE otherwise.

BOOLEAN PROCEDURE FACT(ITEM)

Similar to the procedure MARK.

5. Procedures that Operate on the Net Structure

ALPHA PROCEDURE LERN(LN, RL, RN)

Returns a pointer to an item whose LNP points to the item LN, RLP

points to the item RL and RNP points to the item RN. LN may be zero.

PROCEDURE MARKSTRUCT(ITEM, ONOROTT)

Sets the MARK fields of all items in the structure represented by the
item ITEM to 1 if the Boolean parameter ONOROFF is TRUE, to 0 if

ONOROFF is FALSE.

ALPHA PROCEDURE DPRLST(ITEM)

Constructs an ASLIP list containing the relational statement expressing

the structure represented by the item ITEM, and returns the list's internal name.

18

PROCEDURE DNPRSTRDC(ITEM)

Causes the list DPRLST(ITEM) to be typed out on the teletype.

ALPHA PROCEDURE STRUCTURE (SENT)

Sets up the MENS structure representing the statement in the list SENT

and returns a pointer to the top item.

BOOLEAN PROCEDURE STRUCMEM(ITT, ITS)

Returns TRUE if the item ITT is in the structure represented by the

item ITS, FALSE otherwise.

PROCEDURE ERASE(ITEM)

Removes LNP, RLP and RNP of the item ITEM and the appropriate reverse
pointers. If any items are thereby made empty, they are returned to the avail-

able item list by ERAITEM.

ALPHA PROCEDURE COPYNSUB(STRUC, ITN, ITO)

Returns a pointer to an item which represents the same structure as does

the item STRUC, except the item ITO is replaced by the item ITN.

ALPHA PROCEDURE REWRITE(WTFT)

Changes the structure represented by the item WFF so that, interpreted
as a formula of the predicate calculus, all instances of each bound variable
are a new symbol created by VSYMGEN. The quantifiers are expected to be

represented by "A" and "E".

19

6. Main Programs

PROCEDURE MENTAL

This is the beginning of a basic question-answering program using
the MENS structure. The presently available inputs are:
(FACT <name >) <statement> .

Creates the MENS structure representing the statement contained as the
list <statement>, sets the FACT field of the top item to 1 and sets the PNME
of the top item to (<name>).

(REQUEST STOP) ()

Exit is made from MENTAL.
(REQUEST PRINT) (<name>)

Tne list expressing the structure represented by the item whose print
name is <name> is typed out.

(REQUEST REWRITE) (<name.>)
The procedure REWRITE is called with the argument being the item whose

print name is <name>.

The main program is a test program allowing all the procedures listed
above to be called from a remote teletype. Initially the user must type any
input. He may then call any of the above procedures by typing the name of
the procedure followed by a comma if the name is six or more letters long, or
enough blanks to make a total of six characters. This is followed by the de-

sired parameters typed as the eight BCI, characters which form the appropriate

20
computer word. The parameters are separated by commas. (This form of
input may not be the best, but it was never intended to be used by anyone
but myself.) When ALPHA or BOOLEAN procedures are called, their values
are typed out. Other procedures which do not themselves type something
have "DONE" typed to signify their completion. In addition to the above

procedures, the ASLIP procedures RDLSTDC(REFCNT) and PRLSTDC(LST)

may be called in this manner.

A PROPOSED NET MANIPULATING IANGUAGE

Although there already exists a set of procedures to manipulate the
MENS structure as described above, they were written to experiment with
the feasibility of the structure, rather than for general use in using it. There
reamin a number of questions to be resolved before building a programming
language to manipulate a MENS net.

The first question is: who will be the users of the language? They
will be the programmers who would now use lists and other data structures
for theorem proving, question-answering and semantic analysis of natural
languages. Thus we may expect programming sophistication and know-
ledge of other programming languages of our users. A different class of
users is the social scientists who construct, manipulate and query directed
graphs in their work. The MENS structure is also suitable for them, but

we cannot assume they have much programming sophistication.

21

The best thing for the latter users would be to use the net manipulating
language to build an interactive information storage and retrieval system that
they can interact with using their own jargon. I intend to build such a basic
system as a demonstration of the use of the net manipulating language.

The language will be a package of procedures imbedded in some other
high level language (e.g., ALGOL), thus giving the user full flexibility in
constructing his system. The package that already exists will be a start, but
must be revised so that each procedure does a single, well defined job as
efficiently as possible.

To get this maximum efficiency a new look will be taken at the basic
representation of the MENS structure. Certainly, list processing capabilities
will be needed. These are presently supplied by ASLIP, which was designed
so that it could be implemented quickly on the B5500. It is very possible that
a different type of list processor will be more efficient in the MENS system.

In fact, a very frequest process in the current method of working on MENS
is the intersection of reverse pointer lists when looking for items representing
certain structures. As presently done, intersecting lists is a rather slow process.
One possible improvement would be to have all reverse pointer lists ordered.
This would make searching a list faster, and the extra time needed for storing
a list element would be more than made up by the saving achieved when doing
the multiple searches necessary for intersecting. Perhaps, though, a more
basic change in the representation of an item would eliminate the need to

intersect lists entirely.

22

Other possibilities to be investigated when designing the language
are:

Keeping track of how many pointers are associated with an item would
eliminate checking for empty lists before replacing an item onto the available
item list.

Having special structures to represent numerals might be necessary.
We would want to be able to store and operate on numerical information with-
out having to represent all numbers.

Special arrangements may have to be made to represent and utilize
variables. We would want tobe able to build a structure with one or more
variable items to represent different structures with the variables replaced
with different items. We would want the system to have some natural way
of doing this, and of identifying from such a structure all items which could
replace the variable items in the structure.

With these things worked out, a net manipulating language could be
constructed which would be a highly useful aid for complex information

processing.

10,

23

REFERENCES

Shapiro, Stuart C., Woodmansee, G. H., Krueger, Myron W.,
"A Semantic Associational Memory Net that Learns and Answers
Questions (SAMENLAQ)", Computer Sciences Department
Technical Report #8, The University of Wisconsin, Madison,
Wisconsin, January, 1968.

Craig, James A., Berezner, Susan C., Carney, Homer C.,
Longyear, Christopher R., "DEACON: Direct English Access and
CONtrol", AFIPS, Vol. 29, Proceedings of the Fall Joint Computer
Conference, 1966, pp. 365-380,

Longyear, Christopher R., "Memory Structure in DEACON Natural
Language Question-Answering Systems", P-129, General Electric
Company, TEMPO, Santa Barbara, Calif., 1966,

Simmons, Robert F., Burger, John F., "A Semantic Analyzer for
English Sentences", SP-2987, System Development Corporation,
Santa Monica, California, 1967.

Elliott, R.ger W. "A Model for a Fact Retrieval System", unpublished
Ph.D. Dissertation, University of Texas, 1965.

Green, B. F., Wolf, A. K., Chomsky, C., Laughery, K., "Baseball:
An Automatic Question Answerer", in (12), pp. 207-216.

Levien, R., and Maron, M. E., "Relational Data File: A Tool for
Mechanized Inference Execution and Data Retrieval®, #RM=-4793-PR,
The RAND Corporation, Santa Monica, California. 1965,

Quillian, M. R., "Semantic Memory", unpublished Ph.D. dissertation,
Carnegie Institute of Technology, 1966. Also #AFCRL-66-189, Bolt
Beranek and Newman, Inc., Cambridge, Massachusetts, 1966.

Quillian, M. R., "The Teachable Language Comprehender: A Program
to Understand English"”, unpublished paper, Bolt Beranek and Newman,
Inc., Cambridge, Massachusetts, March, 1968.

Raphael, R., "Sir: A Computer Program for Semantic Information
Retrieval™, unpublished Ph.D. dissertation, Massachusetts Institute
of Technology. Also #TR-2, Project MAC, M.I.T., Cambridge, Mass.,
1964,

L,

L2,

24

Feigenbaum, E. A. and Feldman, J., (eds.) Computers and Thought,
McGraw-Hill, New York, 1963,

Levien, R. E. and Maron, M. E., "A Computer System for Inference
Execution and Data Retrieval", Communications of the A.C.M.,
Vol. 10, #11, November, 1967, pp. 715-21,

