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1., The Differential Equation

We consider a system of nonlinear ordinary differential equations

(1.1) < %ﬁg = Ay + f(x,v).

Here r is a positive real number, y is an n-dimensional vector
with real or complex components, x is a real variable, and A(x) is
an nxn matrix with real or complex entries which is continuous for

0 < x< b, vye Cn, with the properties

(1.2) £(0,0) = 0O,

(1.3) e,y )) = fey )l < Ty - v, |

where 71 = max {Hy1 ., | Y, |}. The Lipschitz factor L(n) satisfies

(1.4) lim L{n) = 0.
n—0+
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Our interest lies with continuous vector valued functions v{(x)

defined for 0 < x < a < b with
(1.5) y(0) = 0

and satisfying (1.1) for x > 0. 1In general no such functions exist
and if they do there is no guarantee that there is only one of them.
The scalar equation

dy 1

xa;=g(><), g(x) = log %, 0 <x<1,

0, x=20

has no such solution because for each x > 0 the integral

X ble ~log x
j(; Elogé ~ Jy logk& d¢g (log§dg = f g du= e

—co

On the other hand the equation

is satisfied by every linear function
y({x) = ax, « real,
and thus has infinitely many solutions of the specified type.

The following theorem provides sufficient conditions for (1.1) to
have exactly one solution satisfying (1.5). In addition it provides us
with a tool which will prove useful later when we consider a certain
numerical technique for solving (1.1). No particular originality is

claimed for the proof. (See, e.g., [1], p. 55ff.)




Theorem 1. Assume that all of the eigenvalues of A = A(0) have

negative real parts and that

T : Ccfo,a] — L” {0,a]

- is a mapping which satisfies

T(0) = O,

IT ) - TENN, < NIf, - 51,
where || “c denotes the "sup" norm on C[0,a], the space of con-
tinuous n-vector functions on [0,a], and || || denotes the "essential

[ee}
sup" norm on L [0,a]. Then, if a is a sufficiently small positive

number, there is exactly one function y € C[0,a] which satisfies

(1.5) and

~

1.6 o L= ay s TERC) () + £, yNE

for almost all x in (0,a], where
Ax) = A + A(x).
Remark. Choosing T to be the identity operator injecting C[0,a]

(2]
into L [0,a] we obtain the desired existence and uniqueness theorem

for the equation (1.1).

Proof of Theorem 1. We put

(1.7) K (x,6) = exp (li'( 1_ - 1)) , r# 1
X



and consider the mapping V:C[0,a]—C[0,a] defined by
X 1 ~
(1.8) V(y) (x) f\é K(X,E)?‘T(A(-)YM I,y () (8)dE,
which is, of course, inspired by the variation of parameters formula.,
A fixed point of V provides us with a solution of (1.5), (1.6). We
let Y denote the complete metric space
Y = {vecloa]l |yl < B}
The theorem will have been proved if we can show that V represents
a contraction mapping from Y into itself for a, B sufficiently small.

To show V:Y—Y we must compute

X 1 N
| V(y) (=) Hsf 1K B ITEC YY) + £, v(-) (&) | dE
0 2
N N 1
< IT@E)y(e) + f(-,y(~>))llmf0 ke, ) I ae

~ X 1
< IBCC) +eyeml [ ke lgae

0

Let us put

HA(-)“C = §5>0

and observe that we can make & as small as we wish by choosing a
small, since E(x) is continuous and .73:(0) = 0. The notation
IIE(»)”c refers, of course, to the norm of A(-) considered as a

linear operator on C[0,a]. On the other hand




IECoyenlly < HECoyen - 16,00+ 5,0

< L(B)B + Hf(-,O)HC < L(B)B + ¢

provided y € Y and a 1is chosen sufficiently small. Here we have
used (1.2), (1.3) and the continuity of f£(x,0).
Assuming for the moment that

(1.9) fx Ik, €) ]2 dt < K, x e [0,a]

0 Er
where K is some positive constant, we have

HV(y)Hc < K(8B + L(B)B + €)
for y e Y. Thus V:Y—Y if
(1.10) K(6B + L(B)B + €) < B,
Since & and € can be made as small as we wish by choosing a
small and, by (1.4), L(B)~0 as B—0, we can ensure (1.10) by

making a and B sufficiently small.

To establish the contracting property of V in Y we compute

X 1 ~
(1.1 vy - Vv ) ] o= Hfo R(x, €) 57 (TA(-)

(v, () = vy (0 + e,y () = Ly, () (E) dé |

(

Ity (0 =ty enll)

IN

LTI elizz ag) (1K v, 0 - vyl

0 >

-+

IN

K® + LBy, () - vyl



If a and B are sufficiently small we have
K(6+ L(B)) =a, 0< a< 1.

Then, since (1.11) holds for all x e [0,a] we have
V) = vl < e lly () - v,

and V:Y—Y is a contraction.

Thus, to complete the proof of the theorem, all that remains is
to prove (1.9).

Because the eigenvalues of A all have negative real parts there
are positive numbers M and 3 such that

lexp a1)]| < Me ™, > o.

x
Thus, in order to estimate f 1K (X,ﬁ)“‘é‘l‘fdg we need only evaluate
0

an integral of the form
X
fo exp (- A(f(x) - £(8))) f'(E)dé

where f(x) is monotone increasing for 0 < x < a. (cf. (1.7)).
Letting
S = f(x), o= f(&)

we have

P 1 0 =5 = f{x)
(1.12) f IIK(x,fi:’,)ll'é?dé < Mexp (-a(s - o))do
0

o = f(0+)
S M
< Mf exp(-A(s - 0))do = *?\— = K.

With this the proof of the theorem is complete.,




2. An Explicit First Order Method

We note first of all that the usual explicit first order (i.e.

Euler's) method

_ b
(2°1) yk+l - yk + r [A(Xk.)yk + f(xkl yk)]l
*k
where h = x - X is the step length, is, in general, of no use.

k+1 k
We might attempt to avoid the singularity at x = 0 by putting

y1 = 0 and carrying out (2.1) for k > 1. The example of the scalar
equation
r dy
2.2 = -
( ) X i vy + X

shows that this is futile. For this equation (2.1) becomes

h h
y =y 4+ [-y, + kh] =11 - -ty o+ -
k+1 k (k h) k (kh)r k (k h)r 1
Thus
y = 1 - + h
k+1 -1 (k‘h)r—l

-1
The highest power of h which occurs here occurs in just one term

and that term is

=

ro. - -
(_ (Jl) h r+l) h r+2 - o] kr+(k+1)
2

]

which approaches + « for r > 1 + i, h--0, k fixed. It follows

that if r > 1 the sequences ({y obtained by the use of this



method do not ever remain bounded as h—0 and thus cannot converge
to the true solution of (2.2).

We will now develop an explicit first order method based on the
integral equation (1.8) and we will show that the method is convergent
if the hypotheses of Theorem 1 are satisfied.

We note from (1.7) that K(x,£) satisfies

9K

(2.3)

K, _‘é_:_é?K'

Moreover, vy(x) satisfies

A OK _ -A
"

X

y(ka) = K(ka, xk) Y(Xk)

X
+f k+1K(Xk+1r€)’§f (AE)y(E) + £(E,y(E)))dE
*x

=~ K(Xkﬂ,xk)y(xk) +

+ f(><:k.y(xk)))°
Now (2.3) shows that
X
(2.4) f ktl K(xkﬂ,ﬁ)'é‘fd& = -

*x

N ¢ (%) - D).

It therefore becomes plausible to approximate y(xk) by Vi o

where the sequence {yk} is determined by




(2.5) ve = 0,

0

-1
Vi = KOG )y B IRGy ) - I
(A(xk)yk + f(xk,yk)), k < 0.

The proof of the convergence of this method proceeds as follows. We

define an operator
[o0]
Dh:C[O,a]»L [0,a],

called the discretization operator for step-length h, by

(2.6) (D, 9)(x) = glx ), x € [Xk.xkﬂ)-

We note that HDthoog Hg”c for all g ¢ C[0,a] and HDhH (as

an operator from C[0,a] into LOO[O,a]) = 1. Thus Dh satisfies the

hypotheses on T in Theorem 1. Replacing T by Dh in (1.8) we

see that the nonlinear operator defined by

2.7 V(" ‘j K(x, ﬁ)é‘;D B()y() + £, y(-M(E)dE

has a unique fixed point ? € Y. Now we compute

Xk+1
Fee, ) f Gy )7 DyECIFC) + £ TG A

ka+1 LE) =D (A()5(+) + £+, F(NE)VdE
. LS &1” Y ey

8" N . |
K<><k+1,xk>f0 Kig £ 35 D ECITC) + £ FEM @ de

-+

<
f K(x, ;€ grdé: (Alx )y0q ) + £ vy ) + Kl 0% )y (5 ).

e



10

Then from (2.4) we see that
~ _ ~ =l ~
(2.8)  vilx )= KRG o )v(x) + A [I<(xk+l,xk) I}

X (Bl )Vq) + 1(x, 70 ))
Comparing (2.8) with the second equation in (2.5) and noting that
;(O) is obviously zero, we see that yk and }7(xk) satisfy the same

recursion equation with the same initial condition and therefore

Yk = Y()<k)l k = Olllzlo.
Thus to estimate || y(xk) - ¥ ., k=0,1,2,--+ it will be sufficient

to estimate [y-y| o

If we put n_ =y and define

with V as given by (2.7) we know from the contraction property of

h
Vh in Y that
lim |nq, - ;'“ = 0,
K —» oo k c
Therefore
- = - <
@9y =¥l =1m vy - |_<

k———bOO
m (g =yl + Iny =yl + e +ln,_, - 1 )
k—-—POO

k-1 k-1
=i g =mp g+ IVytg) = vl k== v ) = vl
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IN

Lim | |2y = TEIRT
im ||n .- = |In .-n
K — 00 0 1"c 1=0 0 1Vc 1=0

Ing=ny Il
—Lie

Now
Ing=n I, = ly-n,ll, = V&) -V, D
V being given by (1.8) with T = the identity and Vh as defined

by (2.7). Now

X ~
(2.10)  ((V-V )y()(x) = [ K(X:é)’él‘f (AE)Y(E) + f(E,¥(E})
<0

- Dh@i(a)y(-) + E(e, y(NE)} dE.

Let €(8), 6> 0, be the modulus of continuity of the continuous

vector valued function A(x)y(x) + f(x,y(x)) for x ¢ [0,a], i.e.,

£(8) = sup. 86 Yy ) + £l L y()) - Beg vl ') = T0g 1,y (1) |
x,x'€[0,a]
|x-x']|< 8

From the uniform continuity of the function on [0,a] we know that

lim e€(8) = 0.
55— 0+

Then from (1.12), (2.6) and (2.10) we see that

|2

L e(h) = K e (h)

lv-vpvenel < 5

which gives
Ing-n, I, < Xem

and (2.9) then shows that



12

and the convergence has been proved.

The fact that the above arguments only prove the convergence of ‘
the numerical method in a “sufficiently small" interval [0,a] is not too
serious. For when x > a the equation (1.1) is no longer singular
and the usual techniques (such as in [2], e.g.,) can be used to study
the usefulness of this integration technique.

The most serious draw-back of this explicit numerical integration
method is the fact that one must continually evaluate I((}<]<+1'xk) as
given by (1.7). This could be time consuming. If A can be reduced
to Jordan form the nilpotent part of A should be combined with 'ZX(X)
so that we are left with a diagonal matrix A instead of A in (1.7).
This makes things much simpler but there is still the question of the
time required for the evaluation of the exponential function for large
arguments, some of which might well be complex.

For this and other reasons we shall now investigate an implicit
method for the numerical solution of (1.1) which requires no evaluation

of exponentials.

3. An Implicit First Order Method

The method we have in mind consists in approximating y(xk) =

y(kh), h > 0 being the step length, by yk, where {yk} is
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generated by the recursion equation

which we might call the implicit Euler's method. The plausibility of

this method rests on the fact that if vy(x) is twice differentiable,

then
(3.2) vlx, . = v(x) + = [AG, | ylx )+ Elx v )]
k+1) Tk r k1Y sl k+1"" k417
R+l
_n’ ¢
2 Yy
’ v(rh‘erre v is a vector whose components are second derivatives of

k

the corresponding components of y(x) evaluated at certain points in

the interval (Xk'xk+l)°

We assume that the hypotheses of Theorem 1 are valid so that
AX) = A+Ax)
where all of the eigenvalues of A have negative real parts and

lim A(x) = 0. A similarity transformation
X = 0+

P1AP =4 + aN
can be applied to A in such a way that A is a diagonal matrix
whose diagonal entries are the eigenvalues of A, N is a matrix
whose only non-zero entries are possible 1's in the first super-

diagonal and « > 0 is as small as we wish. If in (3.1) and (3.2)

we set
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Vi = sz, y(xk) = PZ(Xk)

we obtain new equations

(3.3) z,, = zZ + [(A+C(:><k+l))zk+1 by .z, 0
x
k+1
(3.4) z(x ) = z(x, ) + o [(a + C(ka))Z(ka)
k+1
hZ
ol ezl ) F R
where C(x) is continuous in [0,a] with
(3.5) C(0) = aN,
3 = ply and
K !
-1
g(x,z) = P f(x,Pz)
satisfies
o -1 ~
latx.2) - o6, 2)[| = P (5(x, P2) - £(x,P3) ]

< TP Le) ez - p2) < 127N fpln )|z - 3]
where p = max (||Pz|,||PZ|}. Thus
(3.6) llatx,2) - a6e,B) < Le) |z - 3|

where € = max (|[z],|z]l} and, by (1.4)

(3.7) lim L) = o0
X— 0+

Equations (3.3) and (3.4) may be rewritten




15

r

(3.8) ( I-hA)z = hC(x X’k+1 Zk'

) + hg(x ) +

et k+1 k+17%k+1 k41’ Zk+1

(3.9) (g, I-hMzle 1) = hOx )20 ) + holx ,.20q )

r 2
Xk+1 h A
e —— 7

+ . z{x, ) +
X1 2% 2 k

k+
If we put
R(hA, x) = (xI - ha) "
then, taking
- = max {Re(v)|v an eigenvalue of A},
and remembering that A is a diagonal matrix whose entries are the

eigenvalues of A, we have

1

xr+h}\

IRa, x| <

and so we may write

(3.10) R(hA,x) = E—S’Aﬁ{l ITtha,x| < 1.
X +hn

Then (3.8) and (3.9) become

B h
(3.11) 2z, 3 =77 Thb,x ) [C6, Dz, + 96y, 0z )]
b + h 3
K1
Xr
K+1
+ T(hA'Xk—l-l)Zk.'
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h
(3.12) z(x, ) = — Tt DICek, Dzt )+ 90y g o200 0]
Fepp T A
r r 2
X X _h R
+ —-ktl TthA,x )z(x, ) + ktl Z. .
X'+ ho Y A y K
k+1 kb1 T A
The equation (3.11) defines Zk+l implicitly in terms of zka

Because of (3.6), (3.7) together with the fact that a may be made

as small as we wish, (3.5) and (3.10) and the fact that

r

h 1

1
< =
r A r
xk+1+h7\ xk+l+h?\

easily verified that for sufficiently small xk-i—l and sufficiently small

<1, whenever h> 0, x > 0, it is

k+1

Zk (3.11) may be solved by repeated iterations

1 3
(3.13) Zk+1,2+1 = = ) h)\T(hA'Xk+l)[C(xk+l)zk+l,£ + g(ka,zkle)]
k+1
XI‘
f—F e e
Xr Fho k+1" "k
k+1
beginning with zkJrl 0" Zk‘ In actual practice the iterations would

be performed for the equation (3.1). It is not immediately clear from
(3.1) itself that the iteration procedure would work but the fact that
(3.13) works to solve (3.11) can be used to prove it. Tor (3.1) we

would set

+ hf(x

r ~
Cap T =08y gy = BAGY 1Yy g k+1 Vet 4

r
MRS ROT




The precise result concerning (3.13).has the following formulation

Lemma 1. Given any p > 0 there is an 71, p=>m > 0, such that

if ]Izk | <n and @ and a are sufficiently small, then the itera-

tion process (3.13) converges to a solution Zk+1 of (3.11) which
satisfies
Iz, 1< e

as long as X < a.

We will now examine the convergence of the yk to the Y(Xk)
via the equations (3.11) and (3.12) satisfied by the corresponding
vectors z,, z(x,). Assuming that H?’k | < K, 1i.e., that we have a
uniform bound on the second derivatives of the components of y(x)
for 0 < x < a, we have

~ -1
< .
12,0 < 1tk
If we assume a chosen sufficiently small we will have

lzx) || € V2, xe[o0,a]

We will follow the approximations Zk only so long as

(3.14) |z, - 206l <N/2, % <

This means that we shall always have

Iz, I < e

by Lemma 1.
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Subtracting (3.11) from (3.12) we have

h

l26q ) = 2z I < = —— (e, ) + Lo
Mep TRA
%
+1
<Nzt ) -z, I+ —H— lz¢c) - 2 |
Fap T RA
r 2
X h
2094y T A

If @, p and a are sufficiently small we can assume that
]]C(xk+l)H t Lip) < 5.
Then letting

e, = llzte) - 2|

we have
ha :
2 o 4 kil
k+1 T k+1 T k
k1 T RA Kepp T RA
r 2
X 1 1,
+ " P "k
2<Xk+1 + ha)
so that
r
X 2
k+1 h -1
(3.15) e, T (e, + = [Pk
*+1 T 2
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Since eo = 0 (3.15) implies

_a_._h_.z_ -1 _ (2 4ip-1
(3.16) e, < 5 IP7H[K = (G[|P=1]K)n.
If we require that
h < +
allp "Ik

then (3.14) will remain true as long as 0 < < a and thus the

> %
estimate (3.15) is also valid there. We see, therefore, that we have

proved the following theorem.

Theorem 2. For sufficiently small a, « the error in approximating

< a, 1is bounded

v(x, ) by Yk’ where yk satisfies (3.1) and Xk

k
by

lv6e) = v < (el e7H ] S

and the method (3.1) is therefore convergent.

4, An Application

Let us consider a nonhomogeneous linear system

(4.1) Xr dz

o = A(x)z + hx)

where r> 0, =z is an n-vector with complex components, A(x) is

a continuous complex nxn matrix valued function for 0 < x < XO

and h(x) is a complex n-vector valued function continuous for

0 < x< XO with h(0) = 0. We will assume that A = A(0) can be

written in the form
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where All is an n1 X nl matrix whose eigenvalues all have posi-

tive real parts and A22 ig an n2 X n2 matrix whose eigenvalues all

have negative real parts. If A is not already in this form it may be
possible to reduce it to this form by a similarity transformation., Of

course, n_+n, = n.
! 1 2

Given a with 0 < a < XO it can be shown that there is an

affine subspace Sa - R"  of dimension n, such that if z, € Sa

then the solution z(x) of (4.1) which satisfies z(@) = ZO also
satisfies

lim z(x) = 0,
X == 04

In general it is not easy to identify Sa by analytical procedures.
We will show, however, that the numerical techniques developed in
Sections 2 and 3 enable us to determine equations for Sa whose
coefficients are correct within any desired degree of accuracy.

We seek a nonsingular linear transformation

In 0 W
1 1
P(x) I w !
2P

(4.2) z = ,ls(x)w =

which transforms (4.1) into a system
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r dw
R

(4.3) ax

= B(x)w + g(x)

where B(x) has the special form

gBll(X) BIZ(X)

B(x) =
% 0 B%%(x)

and

Substituting (4.2) into (4.1) and comparing with (4.3) we see that we
need

r dP

o 9k = Pleaneo,

B(x) Blx) = A(x) P(x) - x

which leads to the following form equations for the blocks of the

matrices involved:

4.4) Bl = alts + 2% Pix),
B1%) = a'%(x),
Px) Bl x) = A% () + A%%(x)P(x) - x© —3—}%,

Px)B 2 (%) + BY%(x) = A% x).

If we substitute the right hand side of the first of these equations for

1] .
B 1(x) in the third equation we obtain an eqguation

rdb AZZ(X)P(X) - P(X)All(x) - P(X)Alz(x) P(x) + AZI(X).

The idea now is to solve (4.5) for the initial condition P(0) = 0

2 2
and then obtain Bll(x), B1 (x) and B2 (x) from the first, second

and fourth equations, respectively, in (4.4).
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The matrix P may be considered a vector of dimension ;nln2
and
22 ‘
T(P) = AP - PAll

n.n
a linear operator on C L 2, It is known (see, e.g. [3], Chap. VIII)

that, under our assumptions on All and AZZ, all eigenvalues of

T have negative real parts. Thus (4.5) is an equation of the type
(1.1) and, according to Theorem 1, has a unique solution P(x) defined
on [0,a] with P(0) = 0, provided a is sufficiently small. More-
over, P(x) can be approximated by the numerical techniques of

Sections 2 and 3,

Since

P(x) In, “Plx) In,

we may rewrite (4.3) in the form

11
r g Wl B T (x)
X

dx w2 0

w1 hl(x)

2 -P(X)hl(x) + hz(x)

The equation for w2 is

dw 2

(4.6) x’ _CT}::% = B 2(x)w2 - P(x)hl(x) + hz(x)

and may also be treated numerically by the methods of Sections 2 and

22 2
3 since B T(0) = A 2 has eigenvalues with negative real parts only,
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Note that we need the computed values of P(x) to perform this com-
putation. Preferably a common step length h should be used in
treating both (4.5) and (4.6). Once WZ(X) has been computed we
have
dw
1
r 1 B 1

4.7 x —T— =

= (x)w1 + Blz(x)wz(x) + hl(x).

1
Since B 1(O) = All, all of whose eigenvalues have positive real

parts, it can be shown that all solutions of (4.7) satisfy

lim wl(x) = 0,
x—0+

This equation can be treated by a number of methods, e.g., the
explicit Euler's method, starting at x = a and working in the nega-
tive direction. Note that previously computed values of wz(x) are
required.

Thus we see that if

wl(a)

w(a) = p
wz(a)

n
where wl(a) e C 1 s arbitrary, the solution w(x) of (4.3) assum-
ing such a value at a will satisfy

lim wix) = 0.
x-— 0+

Since

n w_(a):

a) InZA w_(a)
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we see that if

zlb)
(4.8) z(a) = | _ @ |z = ’ﬁ(a)zl(a) +w,(a)
2

then

lim z(x) = 0,
X—0+

Thus (4.8) provides us with the defining equation for Sa and, as we
have seen, the coefficients P(a), wz(a) may be computed with what-
ever accuracy is required by applying the methods of Sections 2 and 3

to the differential equations (4.5) and (4.6),

5. An Example

We consider the scalar second order equation

2
(5.1) Q__Z - 2y+_._1_.

=t
2
gt 1+t

and ask: what relationship should hold between y(1) and y'(1) in
order that

(5.2) lim  y(t) = 09
’t——>+00

The equivalent first order system

0
da (1) Z 184 . 1
dx y2 t 0 . yz 1+t

can be changed by the transformations
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X

into another system

2 1.2
3 4 z1 1 4+ —x —Zx z1
* dx i z - z
2 —"-l'xz -1 +‘l‘x2 .
2 ‘ 2
which is of the type ( ). It is clear that

z(x) -0 as x — 0+,

The equation for pi{x) is

e ool ) o
X ax {1+2X o) p1+2x P
or
3dp _ 1.22 1.2
(5.4) x ax 2p+2Xp - 5X
and the equation for W2 is
s M | L L2 (1)
b'e = 5% p(x 5 X w,
3 3
(x) X oX
P 2(x+1) 2(x+1)

or

dw

) holds if

N
¥
o~
S
o}
1
‘b—-x
bt
3%

2
(5.5) x e -l+—;:x é1+p(x)} W, —m (1 +p(x$§,
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We shall employ the numerical techniques of Section 3, i.e. the

implicit Euler method to solve these equations. Thus we have, for

(5.4),
3 2 2
et 1 h 41 2 et 1
Prer = ;{3 . 2n P * 73 . an 2 Pri1 T T2
K+1 erl

In general one must use iteration to obtain pk+1 here. For (5.5), a

linear equation, the implicit Euler method yields an equation which can

be solved explicitly for WZ,k+1° Thus
X3
3 k+1
41 W2k 20, +1) T+ p )
T

w -
2.k+1 - 3 1 2
et -ox . T +p )

These equations were used, with h = ,05, to obtain the following

table,
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k k 2,k
0 .00 . 000 -,000
1 .05 . 001 -.003
2 .10 002 -,.009
3 .15 . 006 -.028
4 .20 .010 -.061
5 .25 .015 -,111
6 .30 021 -,173
7 .35 .028 -.254
8 .40 .035 ~-.349
9 .45 . 043 -.,454
10 .50 . 051 ~.569
11 .55 . 060 -.693
12 .60 .070 ~-.826
13 .65 079 -.964
14 .70 .089 -1.108
15 .75 .098 -1.252
16 .80 .108 -1,400
17 .85 .118 -1.554
18 .90 . 128 -1.710
19 .95 . 138 -1.868
20 1.00 . 148 ~-2.025
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The equation (4.8) thus becomes

z,(1) = (-.148)z (1) + (-2.025)

whence, from (5, 3)

y. (1) + yz(l) , yl(l) - yz(l)

1 —
> = -.148 5 1

- 2,025

so that

v,(1) = -1.347 y (1) - 4.754,

that is, for (5.1)
y'(1) = =1.347 y(1) - 4.754
is approximately the relationship which should hold if we are to have

(5.2).
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