CORRECTNESS OF THE ALGOL PROCEDURE
ASKFORHAND

by
Ralph L. London¥
Computer Sciences Technical Report #50
November, 1968

#*Computer Sciences Department and
Mathematics Research Center

Table of Contents

Abstract

Introduction

Definition of ASKFORHAND

Other procedures used by ASKFORHAND
Proof of correctness of ASKFORHAND
Concluding remarks

Acknowledgements

References

Appendix 1. Algol Listing of ASKFORHAND
Appendix 2. Variable Value Changes
Appendix 3. Flow Between Labels

(without passing an intermediate label)

Page

11
29
30
31
32

39

40

NOTE: Inside the back cover appears a second, but unbound, set of

Appendices that can be removed for easier reference.

ABSTRACT

Reasons are given to justify the writing of this particular proof
of correctness. They include (i) illustration of some new techniques
of proof, (ii) experimentation with a method of presenting a proof and
(iii) presentation of an example of a successful proof to encourage
more such proofs of other programs. The specific example is an Algol
procedure ASKFORHAND which is supposed to read a bridge hand from
a teletype. That task is defined and a proof is given that the proce-

dure properly performs this task.

CORRECTNESS OF THE ALGOL PROCEDURE ASKFORHAND
by

Ralph L. London

Introduction

This paper is one result in an on-going research effort aimed at
developing methods for proving the correctness of realistic computer
programs. Such programs are ones that are encountered in actual
practice, ones for which there is some interest in knowing that they
are correct and ones that are complex enough so that their correctness
is not immediately apparent.

The entire proofs of two of the several programs proved in this
effort were presented in previous papers. One of these programs makes
the opening bid for bridge hands [4]; the second faithfully performs the
four arithmetic operations of interval arithmetic [2].

A proof of the program ASKFORHAND is here presented for three
main reasons. First, since ASKFORHAND is significantly different from
the other programs, new and different techniques of proof are needed.
ASKFORHAND has a double loop (the other two programs have essen-
tially no loops), and thus the utility of mathematical induction in proofs
of correctness is demonstrated in this research effort for the first time.

ASKFORHAND is also different since it is basically two sections
of code carefully interleaved to gain both space and efficiency. As a

result, there is a large number of go to statements, and the flow of

control transfers from one part of the code to another with high fre-
quency. To follow the many transfers of control and to show that
neither section interferes with the other, two tables of information have
been prepared from the code (Appendices 2 and 3). These are a table
showing the places where each variable might be altered and a table
showing the flow of control between program labels. Compared to
working directly from the code, these tables permit easier demonstrating
that variables are unchanged between two points or changed only in
known ways, and that flow must get from one point to another under
given assumptions.

The first table has been used in limited ways before, but the
second table is entirely new. Also new with the proof of ASKFORHAND
is the extensive use of both tables.

The second reason for writing the current proof is that the proof
is intended as an experiment in presenting a complex proof of validity.
Can a complete proof be understood if it is a series of lemmas where
each lemma is proved by giving the necessary reasons in a standard
prose fashion? Should other methods of presentation be devised?

Since ASKFORHAND is a complicated program, the proof, although
comprehensible, is long and involved. The object of a proof, however,
is much more than explaining how the program works. The proof must
demonstrate why it works and must answer the many questions and

doubts that may arise. Issues of presentation are therefore relevant.

As with any lengthy proof, certain details have been 'left to the
reader." Hopefully this will not detract from the completeness and
credibility of the entire proof. These omissions are also part of the
experiment: what details can be safely omitted and what details are
essential to the reader's ability to accept the proof?

Third, the proof is an example of a successful proof of a realis-
tic program. It should encourage others to prove their own programs
and those of others, although it is doubtful that a reader will be able
immediately to prove correct an arbitrary realistic program from this
example alone. Some techniques are illustrated, but more work is
needed to abstract the essential features of the techniques. Later
papers are planned for this purpose. At this stage, however, examples
of successful proofs, particularly proofs of realistic programs, are one
way to answer the often asked, but seldom answered question, “"How
does one prove that a program does what it is supposed to do?"

Another paper [3] discusses the meaning, rationale and importance
of program proving, as well as techniques and strategies of program
proving. The paper also summarizes the salient features of the opening
bid proof, the interval arithmetic proof, the current proof and two
proofs by other workers [1, 5]. Its main conclusion is that it is in-
deed feasible and realistic to prove the correctness of actual computer

programs. More programs can and should be proved. The already

existing proofs are models indicating how one might proceed in this
creative process.
We now turn to ASKFORHAND and its definition.

Definition of ASKFORHAND

ASKFORHAND is a (Burroughs B5500) Algol procedure taken from a
bridge bidding program written by A. I. Wasserman [6] for purposes
unrelated to program proving. Only after it was written and running
was it considered as a convenient candidate for proving correctness.

The code for ASKFORHAND appears in Appendix 1. It is an
accurate copy of the running version except that input/output statements
have been replaced by comments, and some input/output variables have
been deleted entirely. No changes have been made in the program
logic, though, and no changes have been made in the code which would
have made the proof easier. The goal has been to take the program as
given and unalterable and then to prove that it is correct. Of course,
the code was changed when minor but outright errors were detected in
the attempt at proof. After an error was discovered the proof was
begun anew.

ASKFORHAND will first be informally defined in order that the
reader may understand generally what the Algol procedure is to do.
Then a formal definition will be given: the proof is based on the formal

definition.

ASKFORHAND is to read a bridge hand from a teletype as four
separate lines of input. Each line represents the cards of one suit,
and the order of the lines is the standard bridge ordering: spades,
hearts, diamonds, clubs, starting with spades. The cards of a suit
are represented as they are in bridge books, for example, A Q J 9 X
or even ACE QUEEN JACK NINE X. The hand is "read" by storing it in
the first thirteen locations of the array MYHAND, using the integers
from 1 to 52 as the internal data.

To input the hand consisting of king, jack, small spade, king,
queen, seven, six, two small hearts, no diamonds, and king, queen,
jack, deuce of clubs, one might type (where "< " denotes the end-of-

line character for the teletype):

KJ X<+ KING | X«

KQ 76X X« or K QUN SIX SEVEN X X<

o even VOID -

KQ7J 2« KINGOFCLUBS, 2 J. QUEEEENOFHARTS «

Cards must be separated by some punctuation or space. Only the first
character of a card, or if necessary the first two characters (e.g., SIX
and SEVEN), are checked to obtain an identification and the rest of the
characters are ignored.

This much of ASKFORHAND is worth proving, but the additional
capabilities of error recovery are what make ASKFORHAND an interesting

and challenging program to prove. If only 12 cards are given, there is

special provision for easily adding the 13th card without retyping the
entire hand. Similarly if 14 cards are given, it is easy to delete the
extra one. When 12 or 14 cards have been given, a card is specified
for addition or deletion, for example, as ACE OF SPADES or SPADE ACE
or ACE SPADES. Again only the first one or two characters of a word
are needed. Fewer than 12 or more than 14 cards requires that the
hand be retyped. An illegal symbol within a suit allows just that suit
to be retyped. Finally several errors can be corrected in a single call
of ASKFORHAND before the procedure will stop attempting to read the
hand and exit.

The task and processing that ASKFORHAND is to perform is now
formally defined. As previously stated the four ordered lines of input
correspond to the four ordered suits. From the four suits a total of
precisely 13 cards is expected although other totals are handled by the
error recovery facilities. The teletype representation of a single suit
is defined by a Backus Naur Form definition and additional qualifica-

tions that are in English:

<RANK 1D>::=A|K|lelz}314]5{6l7|8|9lx}N]EISElsleliFoiTﬂlTW\T
<SUIT HOLDING> ::=<RANK ID> |[<SUIT HOLDING>b<RANK ID>
LVOID> ::=V]|-

<SUIT INPUT> ::=<VOID> « | +— | <SUIT HOLDING> «

"b" denotes the character blank. "« " denotes the end-of-line
character or group mark for the teletype. The <RANK ID>s correspond
respectively to Ace, King, Queen,Jack, 10, 2, 3, 4, 5, 6, 7, 8, 9,
small (standard bridge notation), Nine, Eight, SEven, SIx, Flve, FOQur,
IHree, TWo, Ten. Naturally 9 and Nine are the same card and simi-
larly for the other pairs.

The additional qualifications are (i) the maximum number of total
characters in a <SUIT INPUT> is 80, i.e. one line of teletype input,

(ii) the maximum number of <RANK ID>s in a <SUIT HOLDING> is 13,
(iii) a card (not just a <RANK ID>) may appear at most once in a <SUIT
HOLDING>, and (iv) the number of Xs in a <SUIT HOLDING> is less than
the lowest ranked card minus one. The first restriction is a property

of the teletype and is part of the definition of the procedure GETNEXTLINE
(see next section). Violation of the other three restrictions will cause

the error recovery mechanism to be invoked.

The input under these restrictions constitutes simplified input.

The first sample input is simplified. Non-simplified or extended input

(the second sample)} allows the following less restrictive modifications.
Let blank (b), period (.) and comma (,) be the non-group mark delimiters.
Adjacent <RANK ID>s must always be separated by precisely one blank in
simplified input. But here any number of non-group mark delimiters is
allowed. Zero or more such delimiters may appear before the first

<RANK ID> and after the last <RANK ID>. Leading zeros on a <RANK ID>

are ignored. A <RANK ID> may be followed by any string of characters
not containing a non-group mark delimiter, for example ACE or ACX or
AQJ or ACEOFTRUMP all represent an ace. There is one exception: if
"It js a <RANK ID>, then the first character of any immediately follow-
ing string of characters must not be "W" or "H".

While expanded input can be similarly expressed in BNF notation,
it is confusing to do so. The English description is adequate and more
easily comprehended.

The internal representations of the cards are the integers 1 to 52

according to the formula 13 * SUITVALUE + RANKVALUE where

SUIT S{H|D|C

SUITVALUE |3 j2(1}0

and

RANK Al2|31415]6]17]819(10} 7T |Q | KX

RANKVALUE |12 }|3|4|5|6|7|8|9|10|11 12|13 |see below

Thus the jack of hearts is represented by 13 * 2 + 11 = 37 and the ace
of hearts by 13 % 2 + 1 = 27. The rank value of X 1is determined by
the rule that the first X encountered in a suit has rank value 2, the
second X has rank value 3, etc., up to a maximum rank value of 9.
The error recovery capabilities will be described formally later.

The following main theorem will be proved:

Theorem: All cards of the hand are read, converted to their inter-
nal representation, and stored as MYHAND[J] for J =1,2,...,13.
MYHANDI[J] > 0 will represent the Jth card; MYHAND[J] = 0 will indi-
cate that the Jth card has not been read. MYHAND is later ordered.

In addition to setting the array MYHAND, ASKFORHAND is to set the
Boolean parameter NOPE to false if the hand is successfully read
(including successful error recovery) and is to set NOPE to true if the
hand is not read for any reason.

As an illustration of the theorem, the previous sample hand will
be converted to the (ordered) MYHAND array below and with NOPE set

false.

] L2131 41516 78| 9[10f11}12]13

MYHANDIJ] |52 |50 (41 |39{38 33322928 |13]12]11] 2

Other procedures used by ASKFORHAND

ASKFORHAND uses six externally defined procedures: the effect of
each is given in English, but the code and proofs of these procedures
are omitted,

(i) GETNEXTLINE--Transfers the 80 or fewer characters of the input
text including the mandatory final "< " to TEXT[0],...,TEXT[J] where
J is the index of the first "< ", It is assumed that such a "« "

always exists and hence at most 80 characters are read, the last of

which is "< ",

10

(ii) GETCHAR(NUM, FLAG)--In general the first non-blank charac-
ter at or following TEXT[NUM+1] is sought, and FLAG is set true if
the character found is "« ". More precisely, let NUM0 be the input
value of NUM. The procedure assumes - 1 < NUI\/I0 < 79. Let CI
be the first non-blank character at or following TEXT[I]. The effect of

GETCHAR is explained by the following table giving all the possibili-

ties. NUM < 79 on output.

Input conditions Results
NUM, TEXT[NUMO] NUM on output FLAG(Boolean valued)
> 0 -~ NUM, true
> 0 not = index of CNUMOH : CNUMOH -
-1 —_— index of C0 C, = ~

(iii) FINDDELIMITER(NUM)--Assumes - 1 < NUM < 78. A de-
limiter is either a blank, a comma, a period or a "« ", Starting at
TEXT[NUM + 1], NUM < 79 on output is the index of the first delimiter.

(iv) ASORT(A, M)--Sorts the array A[1:M] into descending order.

(v) PRINTJUSTONE--Prints a hand.

(vi) CHECKFORNEGATIVE--Boolean valued, true if the reply to a

program-asked question is "No", false if "Yes".

11

Proof of correctness of ASKFORHAND

The proof that ASKFORHAND accomplishes what is stated in the
theorem is given at the level of the Algol code and makes no mention
of any hardware and software. The proof consists of a series of some
20 lemmas ordered so that when a lemma is needed it has already been
proved.

Each lemma accomplishes a small, convenient step in the proof.
Lemmas 1-7 together show that ASKFORHAND is correct under the as-
sumptions (i) that the input is legal--simplified or non-simplified--and
(ii) that no error recovery is necessary. Lemma 1 bounds the character
scanning. Lemma 2 shows that a single card of a suit is identified,
lemma 3 shows that all cards of a suit are identified, and lemma 4
shows that non-simplified input is handled. ILemma 5 covers the ini-
tializing, lemma 6 shows that all four suits are read, and lemma 7
handles the final checks and details.

The ordering of these lemmas corresponds to the so-called "inside-
out" strategy of programming--starting with the innermost code and
working out. Induction is explicitly used as a proof technique in
lemma 3 (for the inner loop of the double loop). Although not actually
needed in lemma 6 (for the outer loop), induction could have been used
there too.

Lemmas 8-20 cover the case where error recovery is needed to

read the hand successfully. The formal statements of the error recovery

12

capabilities are included as part of these lemmas (lemmas 8, 10 and
13 and also the definition preceeding lemma 17).

Highlights of the error recovery process follow. ILemma 9 covers
an illegal symbol in a suit, lemma 10 more than 14 cards, and lemma
13 fewer than 12 cards. Lemma 14 handles preparation fto read a card
for deletion if 14 cards were read while lemma 15 does likewise for
addition if only 12 cards were read. Lemma 17 shows that a card is
read correctly either for addition or deletion. The hand's being added
to or deleted from is covered by lemmas 19 and 20, respectively. The
ordering of these lemmas corresponds somewhat to the execution order
of the code.

In addition to Appendix 1 which contains the code of ASKFORHAND
(with sequence numbers so that the proof may refer to a line of code),
Appendices 2 and 3 contain useful information in the form of tables to
aid in the proof. There is a table listing for each variable all the
locations where that variable is changed in value and a table listing
for each label all the labels to which control could pass (without pass-
ing an intermediate label). The tables give faster access to this infor-
mation than does the code.

The proof that each table is correct consists of the phrase
"Examination of the code." These tables could be properly considered
as additional lemmas. They are invoked many times in the proofs of

the lemmas often without explicit mention. A statement that a certain

13

variable is unchanged between two points or changed in specified ways
is an appeal to Appendix 2. A statement about the flow of control is
an appeal to the information contained in Appendix 3.

The symbols "//" will signify "This completes the proof of the
lemma." The proof now begins with lemma 1, under the assumption
that the input is legal and no error recovery is needed.

The overall plan of ASKFORHAND is that the TEXT array will be
scanned starting at TEXT[0]. TEXT[I] will be the "current" character
under scan where I 1is a program variable,

Lemma 1: If the input is legal and error-free, then - 1<I< 79
throughout ASKFORHAND. This relation on I insures that no scanning
of the TEXT array is outside the limits of the array.

Proof: By the table of variable value changes (Appendix 2), I
may be set to -1 at 756 or 829 or I may be changed by the proce-
dures GETCHAR and FINDDELIMITER since the actual parameter I is
altered. From the definitions of these two procedures (i) no change to
I decreases its value and (ii) I < 79 on exit from these procedures.

One small detail remains. Since FINDDELIMITER assumes
I £ 78 on input, there might be an error if FINDDELIMITER were called
with I = 79. It can be shown that I # 79 when FINDDELIMITER is
called, but for brevity this proof is omitted. It is in this part of the
proof of the lemma that the assumption on the input is used. Alter-
natively the entire problem of I # 79 can be avoided by a simple

change in the definition of FINDDELIMITER.//

14

Lemma 2: From LASTRANK through 778 a card is recognized.
Specifically, if TEXT[I] is the first character of a <RANK ID>, and
if SUIT has value 3, 2, 1 or 0, then N > 0 at 778 is the internal
representation of the card.

Proof: I is set to TEXT[I]. Each <RANK ID> is identified,
possibly in conjunction with the second character, from 758 through
778 and the corresponding positive setting to N is the correct internal
representation of the card in all cases. N will be set exactly once
except that a <RANK ID> of TW or TH will be set at 760 and then
reset correctly at 776 to a rank value of 3 or at 777 to a rank value
of 2. The collating sequence does permit the test L>2 and LK 9
at 761.

Note that the second character (TEXT[I+1]) is always defined, at
worst "= ". That is, by Appendix 2 1 is unchanged from LASTRANK
through 778. Since TEXT[I] is, by assumption, the first character of
a <RANK ID>, at least the "« " must follow.

The handling of a <RANK ID> of an X needs special justifi-
cation since its rank value varies. The rank value is correctly deter-
mined by the variable SMALL, since by Appendix 2 SMALL is initially
2 at 756 and is incremented by 1 (after setting N) at 763 for each X
encountered. If SMALL > 11 at 763, then the current X was assigned
a rank value greater than 9, an error. Otherwise EXES[KARDS] is set
true. In this paper this fact is needed only in the error recovery pro-

cedure (see lemma 19) to note if the 13th card was read as an X.//

15

It will be convenient to refer to the MYHAND array and assert
that the first T - 1 cards have been read and that the Tth through
the 13th cards have not been read. For this purpose let SCANNED(T)
denote the two statements MYHAND[S] > 0 for S = 1,...,T-1 and
MYHAND[S] = 0 for S = T,...,13. In other words the argument of
SCANNED denotes the first unread or unscanned card.

The next lemma deals with the inner loop from REPEATSUIT to
ENDOFSUIT. The lemma states in essence that all the <RANK ID>s of
a single suit are recognized and are added to the hand.

Lemma 3: Assume that the <SUIT INPUT> is simplified and that
both ONETOGO and EXTRA are false. Further assume at REPEATSUIT the
following:

(i) initial value of KARDS < 14,

(ii) SUIT = 3, 2, 1 or O,

(iii) SOFAR has some initial value (unspecified),

(iv) SCANNED(KARDS) holds and

(v) there are P <RANK ID>s of the suit with 0 < P < 13.
Then control does reach ENDOFSUIT at which point KARDS has value
(KARDS + P) < 14, SCANNED(KARDS) holds and SOFAR is unchanged.

Proof: Line 756 (at REPEATSUIT) transfers the suit input to the
TEXT array, sets I to =1 to start the scan at TEXT[O] and sets
SMALL to 2 (see lemma 2). The proof continues by cases on the form

of <SUIT INPUT>.

16

Case 1. Input of the form «— . GETCHAR sets FLAG to true and
control goes to ENDOFSUIT. P = 0 and the conclusion is true, that
is no change to KARDS, SOFAR and MYHAND.

Case 2. Input of the form <VOID> <. GETCHAR locates the
W or "-" so FLAG is false. No test succeeds from 758 to 779 but
the test at 780 succeeds sending control to ENDOFSUIT. P =0 and
the conclusion is true.

Case 3. Input of the form <SUIT HOLDING> + . Use induction
on P. Cases 1 and 2 prove the lemma for P = 0. GETCHAR locates
the first character of the first <RANK ID> as TEXT[I] and sets FLAG
false. By lemma 2, at 778 N > 0 is the internal representation of
the first <RANK ID>. The tests at 779 and 780 fail but at 781, the
first <RANK ID> is added to the hand changing only MYHAN D[KARDS]
and therefore the statements of SCANNED. By assumption ONETOGO
and EXTRA are both false and N # 0 sends control to X. KARDS < 14
and by 798 KARDS < 15.

Since KARDS is initially 1 and stepped by 1 at 798 after reading
a card, KARDS after 798 represents one more than the number of cards
read.

If KARDS = 14 then legal input implies FINDDELIMITER must
locate a "< " which causes GETCHAR to set FLAG true and control

goes to ENDOFSUIT with the conclusion true.

17

KARDS = 15 is impossible. For if KARDS = 15 at 798, then it
must have been 14 at REPEATSUIT or at 798 at a previous time, This
is so because from REPEATSUIT to ENDOFSUIT KARDS is changed only
at 798 (Appendix 2). Hence KARDS was either 14 at the start at
REPEATSUIT or else it became 14 at 798, 1In the latter case, by the
argument for KARDS = 14, control would have gone to ENDOFSUIT and
not to 798 to make KARDS = 15. 1In the former case there can be no
more <RANK ID>s so GETCHAR must have found a "« " sending control
again to ENDOFSUIT and not to 798.

If KARDS < 13 FINDDELIMITER locates the blank character between
<RANK ID>s and then GETCHAR locates the first character of the next
<RANK ID>, if any. The induction assumption is true for strictly
smaller P and the conclusion follows. If there is no next <RANK ID>,
FINDDELIMITER locates the "« " and the conclusion follows as above
when KARDS = 14.

It should be noted that 1 is changed only by GETCHAR and
FINDDELIMITER so that no <RANK ID> is skipped. Similarly the
MYHAND array is changed precisely P times and so no <RANK D>
is "lost."

Note also that termination has been proved, that is control does
reach ENDOFSUIT. By the induction assumption the lemma, including
control's reaching ENDOFSUIT, is true for smaller P.//

Lemma 4: 1If in lemma 3 the assumption of simplified <SUIT

INPUT> is removed, lemma 3 still holds.

18

Proof: Fach case of non-simplified input will be considered, and
it will be shown that such characters are skipped. The net effect is
as if such characters were absent. Characters are scanned, that is
1 is changed, only by GETCHAR and by FINDDELIMITER (Appendix 2).
GETCHAR at 757 will skip any string of consecutive blanks, and
GETCHAR together with the test at 779 will skip any "." or any ",".
There can be at most 79 such skipped characters. Only L and N
are set but they will each be reset after the first character of the next
<RANK ID> is found by GETCHAR. If there is no next, then L and
N are no longer relevant. Thus extra non-group mark delimiters at
any place in the input cause no change in the conclusion of lemma 3.

Leading zeros will be skipped by GETCHAR together with the test
at 779. Any string of extra characters following a <RANK ID> are
skipped by FINDDELIMITER at 799,

Note that control is at GETCHAR at 757 before each <RANK ID>
including the first, and control is at GETCHAR after the last <RANK ID>.
Control is at FINDDELIMITER after each <RANK ID> with TEXT[I] the
first character of the <RANK ID>.//

Lemma 5: Starting at 743 and after 745 the following hold:

SCANNED(1), EXES[K] = false for K

1]

1,2,...,15;
ONETOGO, EXTRA and NOPE are all false.

Proof: Obvious.//

19

Lemma 6: Starting at GOAGAIN, the cards of each of the four
suits are read and control reaches 801 with KARDS = 14, SOFAR = 13
and SCANNED(14).

Proof: ILet S, H, D and C here denote the number of spades,
hearts, diamonds and clubs, respectively. S + H + D + C = 13 by
assumption of legal error-free input. Apply lemma 3 four times to
obtain the table below. Lemma 5 and 746 justify the assumptions of
lemma 3 the first time. The previous use of lemma 3 justifies the

assumptions for the remaining applications.

Time KARDS SUIT SOFAR MYHAND
prior to
requesting
SPADES 1<14 3 0 SCANNED(1)
HEARTS S+1<L14 2 S SCANNED(S+1)
DIAMONDS S+H+1<14 1 S+H SCANNED(S+H+1)
CLUBS S+H+D+1<14 0 S+H+D SCANNED(S+H+D+1)
at 801 S+H+D+C+1 -1 S+H+D+C SCANNED(14)

= 14 = 13

In the code covered by lemma 6, SUIT is changed only at 800,
The initial value of SUIT, the decrementing by 1 at 800, the failure of
the test at 800 and line 820 together show that lemma 3 is used pre-

cisely four times.//

20

Lemma 7: Control passes from 801 to the exit with the hand
successfully read. Thus NOPE is false and SCANNED(14), that is
MYHAND[S] > 0 for S =1,...,13.

Proof: Using lemma 6, KARDS is 13 after 801 and control reaches
DUP. A duplicate card which might be caused by too many Xs in
comparison to the lowest ranked card will be checked in 811-817. For
example, 4 X X X will cause a duplicate 4. Assuming no duplicate
cards, control reaches 818. This is so because M > K by 812 and
hence MYHAND[K] # MYHAND[M] each time at 813. K and M are
changed only at 811 and 812.

From 818 control reaches FINALLY. The hand is sorted (by ASORT)
and printed (by PRINTJUSTONE) in sorted order, and the user is asked
if it is correct. Assuming a reply of yes, that is CHECKFORNEGATIVE
is false, ASKFORHAND terminates. NOPE is unchanged from 745. The
conclusion of lemma 7 holds.//

This completes the proof of the main theorem under the assumption
that the input is legal and no error recovery is needed. There is still
the case when error recovery is required. It will be shown that correct
results always occur in this case, too.

Lemma 8: If control gets to GOOF and if RETRY > 2, control is
at the exit and NOPE is set true. At GOOF if RETRY < 1, messages
ask for the entire hand again and control is at GOAGAIN., Resetting of
variables gives the initial state of computation except for RETRY which

is incremented by 1 and except for EXES[15].

21

Proof: Obvious. RETRY keeps a count of the number of errors
before ASKFORHAND stops attempting to read the hand and so RETRY
should change. That EXES[15] need not be reset is explained in the
proof of lemma 9.//

Lemma 9: Assume ONETOGO and EXTRA are both false. Starting
at LASTRANK, if an illegal or unidentified symbol (one that is not a
delimiter nor a legal <RANK ID>) is encountered as part of a
<SUIT HOLDING>, the user is asked to retype the suit and control gets
to NEXTCARD ready to read the suit again., Another such error in that
suit sends control to GOOF (see lemma 8).

Proof: By definition of illegal symbol, starting at LASTRANK, none
of the tests through 780 succeed. Thus N, and by 781 MYHAND[KARDS],
are zero (from 758). Control is at 782 where ONETOGQO and EXTRA are
both false, and since MYHAND[KARDS] = 0, control is at 787. If
TWOSUIT is false from 745 (from an analysis of the flow of control using
Appendix 3 and the settings to TWOSUIT (Appendix 2), it can only be
true if a symbol was unidentified in a previous attempt to read this suit),
a message is given asking for the suit again and control goes to RESUIT
and hence to REPEATSUIT and then to NEXTCARD. The following variables
must be and are reset to ignore any cards of the offending suit already
recognized: those to make the conditions expressed by SCANNED(SOFAR + 1)
true and the proper EXES false are done at 821-822, KARDS is reset at

823, TWOSUIT at 824 and SMALL and I at 756. All others are already

22
correct or irrelevant so at NEXTCARD ASKFORHAND is ready to read the
suit again.

In particular, MYHAND[15] and EXES[15] will be initially set at
744 but surprisingly they need not be reinitialized for rereading. Briefly
this is because the 15th positions of MYHAND and EXES are used only
(i) to read a 15th card (causing the hand to be retyped, see lemma 10)
or (ii) used to identify the 14th card to be deleted (see lemmas 15 and
17). EXES[15] may be set but it will then never be used so it need
not be reset. MYHAND[15] will always be reset by identifying a card
before it is used to delete that card. (This and the definition of
FINDDELIMITER were the only instances where it was tempting to change
the code to ease the proof: those temptations were barely resisted.)

1f TWOSUIT is true when control reaches 787, a message is given
identifying the illegal symbol and control goes to GOOF.//

Lemma 10: Assume ONETOGO and EXTRA are false. TIf a 15th
card is read then KARDS = 15 and the hand must be retyped or else
complete failure.

Proof: Control is at 781 where, since the card was identified,

N > 0 and hence control goes from 786 to X. Since KARDS is initially
1 and stepped by 1 at 798 (Appendix 2) after reading a card, reading
a 15th card implies KARDS = 15. Hence control at X passes to

GOOF and the rest of the conclusion follows by lemma 8.//

23

The next lemma considers how control reaches 801 where the in-
tent is that all four suits have been completely read. Lemmas 9 and
10 cover two of the cases when the four suits are not completely read
and instead retyping is required. At 801 the hand may have as many
as 14 cards (see lemma 12) or the hand may contain too few cards.

Lemma 11: Assume ONETOGO and EXTRA are false. Starting at
the beginning at 743, control reaches ENDOFSUIT and then 801 after
all four suits have been read except for an illegal symbol (lemma 9),
15 cards (lemma 10) or too many Xs (end of proof of lemma 2).

Proof: Using Appendix 3 the conclusion follows by an analysis
of the flow of control from 743 to ENDOFSUIT and then to 801. The
analysis is aided by an argument similar to the proof of lemma 6 but
modified to allow for too few cards or 14 cards. As in lemma 6
SUIT < 0 implies all four suits have been read.//

Lemma 12: After KARDS is decremented at 801, KARDS represents
the number of cards identified. KARDS < 14.

Proof: KARDS must be decremented since there was no card cor-
responding to the last increment of KARDS at 798. By the test at X,
by 798 and by lemma 10 KARDS < 14.//

The next three lemmas assume control starts at 801,

Lemma 13: If 11 or fewer cards are identified (801), the hand
must be retyped or else complete failure.

Proof: The test at 801 causes a message (11 or less cards), and

control goes to GOOF.//

24

Lemma 14: If exactly 12 cards are identified (803), the user will
be asked to type the last card. The card is transferred to the TEXT
array, ONETOGO = true, KARDS = 13 and control passes to INTERPRET.

Proof: Obvious at 803-806.//

Lemma 15: If exactly 14 cards are identified (807), the user is
asked to remove a card. The card is transferred to the TEXT array,
EXTRA = true, KARDS = 15 and control passes to INTERPRET.

Proof: Obvious at 807-810.//

Lemma 16: If exactly 13 cards are identified, control reaches
DUP. A duplicate card causes retyping of the hand or else complete
failure,

Proof: By lemma 12, KARDS < 14. Hence to reach DUP, KARDS
must be 13. The case of no duplicate card has already been covered
in lemma 7. If there is a duplicate card, MYHAND[K] = MYHAND[M]
for some K and M and control goes to GOOF., 811-812 insures
that a duplicate card will be detected. (A more rigorous argument by
induction is easy to give.)//

It remains only to show that the 13th or 14th card is identified
and respectively added to or deleted from the hand. All of these opera-
tions start at INTERPRET where lemmas 14 and 15 left matters.

It is first necessary to define the input for specifying a card.
The <RANK ID>s will be as before. But means for specifying the suit

must be defined since the suit can no longer be determined from the

25

numbered line. An additional complexity is that "S" is the first letter
of "Spades" and also of "Six" and "Seven". The rule is that "S" will

be taken as '"Spades" if the next character is "P", "b" or "< ",

A Backus Naur Form definition for specifying cards with suits is:

<RANK ID> ::= as before
<SUIT ID> ::= S|SP|H|D|C
<CARD> ::= <SUIT ID>b<RANK ID> « |<RANK ID>b<SUIT ID> « |

<RANK ID>bOFbJ{SUIT ID> ~
The rank values and suit values are as before. The above is simplified
input; a form of non-simplified input also exists for specifying cards
with suits, but none of its properties will be proved. There is no
error correcting in specifying a card with suit.
Lemma 17: Starting at INTERPRET, a card will be identified from

<CARD> input. If ONETOGO is true (lemma 14), this card will be

MYHAND([13]. 1If EXTRA is true (lemma 15), this card will be MYHAND[15].

Control reaches 844.

Proof: Note that for control to reach INTERPRET, either ONETOGO
or EXTRA is true (see Appendix 3). Conversely ONETOGO or EXTRA is
true only if control passes through INTERPRET (see Appendix 2). The
proof of this lemma is by cases on the form of <CARD>. In all cases
GETCHAR locates the first character of the input.

Case 1. <CARD> is of the form <SUIT ID>b<RANK ID>. The suit

is identified at 830-834 and hence SUIT # 4. FIRST = true from 829,

26

control goes to ALMOST, FINDDELIMITER finds the "b", GETCHAR finds
the first character of <RANK ID>, FLAG is set false and control goes to
LASTRANK. An "X" will be taken as a 2 by 829. The <RANK ID> is
identified implying N > 0. Since (precisely) one of ONETOGO or EXTRA
is true, control reaches 783 with the card identified. Since SUIT # 4,
N < 52 and control goes to CALC and then to 844.

Case 2. <CARD> is of the form <RANK ID>b<JSUIT ID>. The suit
is not identified at 830-834 so SUIT = 4 and control goes to LASTRANK.
Again "X" will be taken as a 2, and the card is identified, but since
SUIT = 4, 53 < N £ 65, Control reaches 783, then ALMOST where the
'"b" is found and where GETCHAR finds the first character of <SUIT ID>.
Control goes to GETSUIT where the suit is obtained (SUIT = 3,2,1 or 0),
and then to CALC and then to 844,

Case 3. <CARD> is of the form with "OF" in it. This case is
the same as case 2 except for an additional return to ALMOST from 837
to read and to skip the "OF".

That the card is MYHAND[13] or MYHAND[15] follows from the
respective setting to KARDS in lemmas 14 and 15.//

Lemma 18: - 1 < I < 79 throughout ASKFORHAND.

Proof: The proof of lemma 1 holds except for showing that I # 79
when FINDDELIMITER is called. This is omitted here too.//

It is now necessary to show that the hand is suitably altered in

each case after the card is identified in lemma 17.

27

Lemma 19: Except in the cases delimited in the proof, if ONETOGO
is true, control gets from 844 to DUP after modifying the 13th card, if
necessary, before accepting it.

The lemma is false without the exception since sometimes an "X"
is not handled correctly. But let us proceed. EXTRA is false. If the
13th card was read in case 1 of lemma 17, MYHAND[13] < 52 and con-
trol reaches 847. 1If, however, the 13th card was read in cases 2 or 3,
53 < N £ 65 but now SUIT is the correct value of 3, 2, 1 or 0. Hence
846 gives MYHAND[13] the correct internal value. If the 13th card was
not an "X", control goes to DUP and the lemma is proved.

At 847 if the 13th card was an "X" it is necessary, to avoid
spurious duplication, to adjust the internal value to the smallest rank
of its suit that is absent (hopefully 2 through 9). Lines 848-851 do
this correctly if not all of the 2 through 9 of the suit are present in
MYHAND[J] for T =1,...,12, For suppose 2 through R - 1 are
present but not R (R < 9). The test at 849 will succeed (changing
MYHAND[13] by 1) for some J, 1 < J < 12, each of the first R - 2
times that the J loop is started. However, on the (R - 1l)st start
the test will fail for all J and hence control reaches 852 and then
DUP.

Thus MYHAND[13], if read as an "X", is reset to the smallest
missing rank R of the suit. If R > 9, however, that will be illegally
the 10, J, Q, K or even the Ace of the next higher suit. In the case

of spades the illegal value of 53 could be generated.//

28

Lemma 20: If EXTRA is true and if deleting the 14th card is pos-
sible, then control goes from 844 to DUP. If deleting is not possible,
control goes to GOOF.

Proof: As in the proof of lemma 19, but with EXTRA = true, con-
trol reaches ELIM. If MYHAND[15] # MYHAND[J] for J = 1,...,14,
control goes to GOOF. This could happen if the 15th card is not in
the hand, or seems not to be in the hand because the 15th card is an
nyu with the lowest rank of the suit already present being 3 through 9.

If, however, MYHAND[15] = MYHAND[J] for some J = 1,...,14,
then MYHAND[K] becomes MYHAND[K + 1] for K =17,...,14. Since
K starts at J, the original Jth card is deleted. In other words,
MYHAND[K + 1] 1is shifted to MYHAND[K], restoring the hand to 13
cards. Then control goes to DUP.//

Thus either by lemma 19 or by lemma 20 (and ignoring the possi-
bility of going to GOOF), MYHAND has 13 cards and control is at DUP.
The case of no duplicate cards is covered in lemma 7 while the case of
a duplicate card is covered by lemma 16.

This completes the proof of the main theorem.

Other properties of the error correcting capabilities of ASKFORHAND
are presented without proof. Control is sent to GOOF if (i) a symbol of
an (expected) <SUIT ID> or <RANK ID> cannot be identified as either,
for example the input is of the form <SUIT ID>DbLSUIT ID> or

<RANK ID>b<RANK ID>, (ii) an input ends before sufficient information

29

has been read (but see below), or (iii) the user replies that the hand
is incorrect when he is asked. Input of the form

<RANK ID>b...b<RANK ID>b<RANK ID>bJSSUIT ID>
causes no error, giving the underlined result. Other illegal combinations
may similarly be examined. Finally if the reply to a request for a
<CARD> is simply "< ", the request is repeated. A further reply of

-— " repeats the cycle.

Concluding remarks

The errors noted in lemmas 19 and 20 were all uncovered only in
the attempt to prove the correctness of the code. Although easily
remedied, they are deemed so pathological that they remain. None is
fatal because control goes to GOOF, or the user, when later asked,
can say the hand is incorrect. Several other minor errors, again un-
covered only by the proof process, were later fixed.

Incidentally, this should not be taken as criticism of the program-
mer; if anything it serves as praise. The program meets its design
criteria of performing efficiently a utility type task for a much larger
program in a "quick and dirty manner." It certainly was not designed
to be subjected to the detailed study and examination of the proof pro-
cess.,

Finally, the purpose of presenting the proof is not limited to
demonstrating that ASKFORHAND is correct, although that has been done.

As noted in the introduction, (i) the proof uses new techniques, (ii) the

30

proof, a complicated one, is presented as a series of lemmas and (iii)
the proof is an example of how one might proceed to prove correct a

realistic program.

Acknowledgments

This research is supported by NSF Grant GP-7069 and the Mathe-
matics Research Center, United States Army under Contract Number
DA-31-124-ARO-D-462.

I wish to thank Anthony I. Wasserman for providing ASKFORHAND
in the first place, for patiently explaining its operation to me when
questions arose and for not forbidding my displaying the code publicly.
Both he and Donald I. Good have provided useful suggestions in pre-
senting the proof. I, of course, am solely responsible for the accuracy

and form of the proof.

31

References

l.

Evans, A. Jr., Syntax analysis by a production language. Ph.D.
thesis, Carnegie-Mellon University, 1965.

Good, D. I. and London, R. L., Interval arithmetic for the
Burroughs B5500: Four Algol procedures and proofs of their
correctness. Computer Sciences Technical Report No. 26,
University of Wisconsin, 1968,

London, R. L., Computer programs can be proved correct. In
Proceedings of the Fourth Systems Symposium: Formal Systems
and Non-Numerical Problem Solving by Computers, Case Western
Reserve University, to appear.

London, R. L. and Wasserman A. I., The anatomy of an Algol
procedure, Computer Sciences Technical Report No. 5, University
of Wisconsin, 1967.

McCarthy, J. and Painter, J. A., Correctness of a compiler for
arithmetic expressions. In Proceedings of a Symposium in
Applied Mathematics, Vol. 19--Mathematical Aspects of Com-
puter Science, Schwarcz, J. T. (ed.), American Mathematical
Society, Providence, R. I., 1967, pp. 33-41.

Wasserman, A. I., Bridge bidding by computer. TUnpublished
research, University of Wisconsin, undated.

32

Appendix 1. Algol Listing of ASKFORHAND

iyea" £SEATI- ESIHIDI-F5F - SuhehF—+ S0 3y

0gnL T = LINS 41 3$73 SL¥VIH 1s3N0O3Y NIHL € = LINS 41 3S74 S3AVdS
Q- — -LGINOIU-NIHL € = LINS I1 31 ¢LINS LO3W¥0D LSINVIY LNIWWUDI$SIODIYIH

09t £09YV40S f€+L1INS £12SAYVHM INIVHVOD

— e (oINS IS X I T ON LD AN L RS B —

Ovnd fUNI §3STIVA3[r1S3X3 (0+ErJUNVHAW NIY3gd
: 6enz e 00 SV TILINN T -d3LS T+ ¥O4 -
0224 fVHLX3e SHIA°090L3IN0LINSOML OVT4 NVIT008
i Xy HT T IINHHI e dAX T3 8¢
00¢d £IUNTIVICATIVNIIC40090TIVICLSONTIVELINSLID L 4MdYILNT “L3SIU LINSIY
T g e T e TASAOON I ONYHLSY TeQHVILX INCLINS LV 3d IH S IOV IYIHNTVOVEDI3EVY o -
" 0814 fAYL3Y dyvdUS *TIYWS ¢ INS ¢SU¥YM HIDIAINT
= 0252 ST T T HONVHAN A vy H Y HNTNT O3
0914 340N NV3008 ¢(3dON) UNVHEO4XNSV 340035044
- T ORUZ e) - e B
0204 $ANI NI938 ¢3ATLVOINYOAMIIHI 3FuNd3duud NvI0QH
6962 CONTNFOFE—EINGLSAPENTd—FHAE 3900
0604 §AN3 NID38 ¢LT1V AvHHEY HIDIUAINI fW HIADILNI ¢CWev) LU0SV J¥NA3o04d
— S Q0L e e e e £ANT NTD3E fWNN ¥IDIINT (WANIYILTWITIEANT I 3UNaI50ud
0€04 fUN3 NID3H (9Vv1d NV3IT008 (WNN ¥3IDILNI ((HVIS sWANIHVYHILIY 38NA300yd
G £GNI-NEDI
0tud §1GTET1393X3 AvdYY NVI0QH
-0004 e $06480)LX3L AVHYY VHAIVY EN SW ¢ X ¢ 1 MADIAINI NID3H

0842 £aNT :
0244 (24LINSXETHN NIHL wMuzlT+11iXx4L 41

e |17 i A S fE+LINSXETHN NIHL wHe=0{1+431X3L 41 NI93g
0644 NIHL wlw=1 41
otrz2 £ON3 -
0€Ld U+ LINSXETHN NIHL wOu=LT+13L1X3L 41
02is —- — fS+LINSXETHN NIHL wla=z(31+i24X3L 41 NI93@
0144 NIHL wdu=T 4]
002 £GNT
0694 (94LINSXETHN NIHL wlusi1+I11Lx31 41
0892 e f2+4INSXETAN NIHL wIu=TT+1I4X3L 31T NI938-

% 0294 NIHL wSw=1 47

099Z eF e x ety NIt —wIn="13T
0694 £AN3
[AP A T - o o ;ttmrul?&:.ﬁig* Whl.ﬁxwa N
0€94 £4009 0L 09 N3IHL TTIZTIVAS 41 T+T1TVHSATIVAS §1IVNS+LINSXETPN NID3H
TN NI —wXasT4t
0192 (T+LINSXETHIN NIHL wVu=1 41 €T+LINSxETaN N3IHL 6>71 ONV 2< 41
0092 FE+LINSXETHN-NIHL wNa=1 31 €0T+LINSXETIN NIFL wiwsTHO whwnT 3T
0664 fTT4LINSXETHN NIHL wrw=" 41 £21+41INSxETaN NIHL wDau=1 4]
7A:0°7 2 OIS I E TN NI e e T I TN XS Sy
0464 f1INS400N3 0L U9 N3IHL 9VY14 41 ((YyT4¢IIHVHILIY 1 QHYILXAN
0962 e - fjer]l £2TIVRS (INTILXINLIY - LTINS LV IdIY -

6508 G IUAE NI G 09— E T S EU D INF HX NI — —_—
0108 ¢3NY42UY0L3NC
S oGO8 AUy 4SSy U004 HSy ONy SGUvId g1 ATIND JLIUM gNIWALD NID3E
0€08 NIHL 21=Sadvx 41
62048 (OGN 400904 09 FSOUVI-SSIT YO T 1-FLI UM LNIHNLINID3E
0108 N3HL 115S0¥yx 41 t1=-SUYVY 2SOHVM NID3Y
R 114 1 N3HL 0 >LINS 41 (1=SUHVI»NYI0S (1=14nS2LINSILINSIOANT
0664 §QUVILXIN OL 09 €C4)Y3LIWITIAUNIY
0862 SR ST
0464 (N3 74009 0L 09 ¢39vySS3IW SUYVI ANVW 00L 3LI¥M LNIWWUD NID3g
QP e e - NaH&- B I<SQUVH 411X
0 0064 £1INS3d Ul 09 ¢NIVOV LINS 3HL
o684 F5IAOIY—ANY—FOVSSIN—TIOBHAS—GIZINVBITUNA—H I UH—ENTHHET— —
0884 fON3 4009 01 09 €39vSSIAW TUEWAS CGIZINDQIIUNN FLI¥M LINIWWUD NIDIg
e e QR S e e N3N LT ASOML AT
0984 ¢X 0L 09 N3IHL 0# [SUYHVI] UNVHAW J]
0582 A
TP £3009 01 09 3S73 27v) Ol 09 N3HL O<[SOQYUVN4ONVHAW 41 3S73
o QgL o o 1SOWTIY 0L 09 NIHL ZS<ISUMVAIANVHAW 3T £3STHVAHLSHi4 NIodg -
02nd N3HL vdlxd 40 09UL3INO 41
oo £y b S OU YA T ONYHAN
0084 £11NS40ONT 0L 09 NAWL wewzT 80 sAus] 4]
R - - fAYVILXIAN 01 09 N3IHL w®u=1 ¥0 ws=1 40 wQuel 41

G6¢8 HTASHOONI 8469 NIHL- v -39y 1 YUV H 39 e L UM TN

08¢8 fNIVOVOD 04 09 357v4»(r1s3x3 U0 w1 ILNN ¥ d31S T »F ¥04

0 — e , £3SIVA+LINSOME+VELXIPUYOLIND

09¢8 {1+AMLIY2AYLIHO0+ [P IUNYHAN 0@ ST IINND T d31S 190 ¥04

06Z8 NIRRT 81 89— 3R IdON- ND I8 NI <3353

Ones £LINSLv3d3y 0L 0V €3NYL4+21INS0OMY
e otgs——— -~ m"+¢«ucw+mcm<x

0ccs fON3 $3STvd2(r1S3X3 €0+l IUNVHAN NID3g

CRza 88— HRANA— T H SRy G5 P YO HAS Y

00cs (S3UD3¥3H 0L 09

0648 T - AANF -

0 ogie EATIVNIS 04 09

6444 £QN3

oniw £4009 01 09 fU¥V) 3LVIITANG FONNUNNY INIWWOD NIvdg

GETE e NBHL [TANY HARZ EHFONVHAN -

oct

00 ET JIAINN T d3LS T+X »p yUL
c

C I 3y N
g Ity

L

sl
Tt

c\

4
-

<
R aal
L o3

d
VK]

Q@ O
o O
P e :
T o< o
|
]
i

FLIYJUIINT - 0L -BD FINEHXINEID
3

0808 (G12SUHYNEINYLIVHLX

CZ0% AT I3 38 01 ST HITHM Sy ONv SR TS T HMt—NTHNEI—N1938
0108 N3IHL pvI=S0y¥vx 41
090y - - S e ~EONI——

oHs8 - aNg
0058 (AN3 39NVHO UL 09 f1+[ETIUNYHANS[ELTIUNVHAN NIY3H

CooeYe T T T c © N3IHL [ETIONYHAWSErIONYHAR 41
08%8 00 21 TILNN | d31S TsF 804 NID3E :3IONYHD
vzs R = T o S e e b
09v8 (CLINS=)xEl= | ETIANVHANS[E T JUNVHAN
AR A S NIHL 2S<[SOUVMIUNVHAW 4]
onng (WI13 373 dNXIJd NIHL 2S<LSOUYXIONVHAW 41 OL 09 NIHL VHIx3 41
OES | £ON3
0zne £13S34 UL 09
O A - £ONI€3DYSSIN NIVOY L¥viS 3I4IdM INIWWUD Nlo3e -

- oonsg NIHL T5A¥AIY 41 NID3IE :4009
06E8 : NIHE— = A3+ 9
08€8 (YNVYLSYT 3573 LINS139 N3IHL v=LINS 41 0L 09

S 711 (LSOWTY OL U9 N3IHL wOuslIdtx3i o1 €3STVALSHIY
09ty £4009 0L 09 N3HL 9¥I4 J1(Ov14¢I)VHILID(CIIYILINITIAUNIS ¢ LSQNTY
O§E 83T B9 NIHT S HON T OIS 005 NI =1 TRS T
OrES £024INS NIHL wdw = [111X3L 4]

e QEER e e e - £19LINS NIHL wlw—= CIILX3L -4T-
02€s £2211nS NIHL wHw = L11 LX3L 41
o+£8 FEHLTAS NIt s (13440
00€8 » w3LT+111X3L Y0 wdu=[T+I1JL1X3L) ONV wSw=[1J1X3L 41 $1INgLl3Y

e e - - £22TIVHS £INBL+ESH L4020 1N0S

Oygg T : e GNT RN T

w 098 £40U9 0L U9 NIHL 3IAILVOINYOINOIHD 41

0298 FEIFHUBI S ONTH—HHSV—ENINHED
0194 £INOLSNCLNTYd

.... 0O9G o = £JOYSSIN G3dAL I8 THM-ONVH-ILTUM—ENINHOD -
0658 £CeTeONVHAKI LHOSY $ATTYNI S
0858 B0 N3
0158 £dNQ ol 09

e 0958 e o £ ANT ELTHXISAXTFENISIXT S LTHNIANVHARIEATUNVHAN NIS3E—
0558 00 #1 TILNA § 434S £ *x ¥04 NI193g

0€£58 fCLINSmIXET & [GTIONVHAWPISTIQUNYHAW $dNXId4
;:\\}Et\iii@\wai:Ill!ﬁ.il.f R S e . - B «\izms@%‘@w : R

39

Appendix 2. Variable Value Changes

Variable Changed at line numbers

EXES 744, 764, 822, 828, 856

EXTRA 745, 808, 827

FIRST 783, 829, 837

FLAG GETCHAR(757, 829, 836)

I 756, GETCHAR(757, 829, 836), FINDDELIMITER(799,
836), 829

J 743, 821, 826, 828, 848, 854,

K 811, 855

KARDS 746, 798, 801, 805, 808, 823

L 758

M FINDDELIMITER(799, 836), 812

MYHAND][] 744, 781, 822, 826, 846, 850, 853, 856

N 7582, 7592, 760%, 761%, 763, 766, 768, 169, 172,
773, 176, 777

NOPE 745, 825

ONETOGO 745, 804, 827

RETRY 745, 826

SMALL 756, 763, 829

SOFAR 746, 800

SUIT 746, 800, 829, 831, 832, 833, 834

TEXT[] GETNEXTLINE(756, 805, 809), CHECKFORNEGATIVE(863)

TWOSUIT 745, 824, 827

2

means twice in the same line.

40

Appendix 3. TFlow Between Labels

(without passing an intermediate label)

From label® To label(s)*

ALMOST(836) LASTRANK(758), ALMOST(836), GOOF(840), GETSUIT(830)

CALC(839) CHANGE(848), GOOF(840), FIXUP(853), ELIM(854),
DUP(811)

CHANGE (848) DUP(811), CHANGE(848)

DUP(811) GOOF(840), FINALLY(859)

ELIM(854) GOOF(840), DUP(811)

ENDOFSUIT(800) | INTERPRET(829), HEREGOES(747), GOOF(840), DUP(811)

FAILURE (864) "EXIT"

FINALLY(859) FAILURE(864)

FIXUP(853) ELIM(854)

GETSUIT(830) LASTRANK(758), CALC(839)

GOAGAIN(746) HEREGOES(747)

GOOF (840) RESET(825)

HEREGOES(747) REPEATSUIT(756)

INTERPRET(829) ENDQOFSUIT(800), GETSUIT(830)

LASTRANK(758) NEXTCARD(757), RESUIT(821), X(796), CALC(839),
ALMOST(836), GOOF(840)%, ENDOFSUIT(800)
NEXTCARD(757) LASTRANK(758), ENDOFSUIT(800)

REPEATSUIT(756) NEXTCARD(757)

RESET(825) GOAGAIN(746), FAILURE(864)
RESUIT(821) REPEATSUIT(756)
X(796) GOQF (840), NEXTCARD(757)

! numbers in parentheses are sequence numbers where the label is located.
?two separate paths exist.

3three separate paths exist.

