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DISCRETE MECHANICS

L. INTRODUCTION

The subject of mechanics is one of the oldest and most fully
developed of the physical sciences, and yet its practical application
to dynamical problems is severely restricted by the absence of general
analytical methods for solving nonlinear differential equations. In this
paper we will reformulate the basic concepts, laws and equations of
Newtonian mechanics in a discrete fashion, thereby creating a physical
system which will be compatible with modern high speed digital computer
capabilities. Such an approach to physical problems has been of
occasional interest to mathematicians throughout the centuries, but only
with the development of the modern digital computer has it become a
source of exceptional power (see, e.g., references 1-6, 8-11). The
equations of our models, whether linear or nonlinear, will be easily
solvable with computable error bounds [7] by means only of arithmetic
processes, while the physically nonrealizable concept of infinity and
the convergence proofs required for continuous models will become
unnecessary.

Throughout, we will emphasize plane Newtonian mechanics, since
the concepts, laws and equations to be developed extend in a natural
way to n dimensions. And though we will modify the form of Newton's

Second Law in Section 8, we will in the present paper assume the validity



of the first and third laws.

2. IMPLICATIONS OF CONSTRAINTS ON MEASUREMENT

In the simplest of all possible worlds, experimental scientists use
three basic measuring instruments, one which measures time and will be
called a clock, one which measures weight and will be called a scale,
and ocne which measures length and will be called a ruler. Each instru-
ment has a limited accuracy and in practice is applied a finite number of
times to produce a finite set of data. Often hese data are combined by
arithmetic processes to determine certain additional scalar quantities,
like speed or work. At other times one may use the data to infer certain
equations associated with the system under consideration and then proceed
to solve the equations in some comprehensive way. In any event, a clock,
scale and ruler will always be considered as part of a given experiment,
and hence define a smallest meaningful time interval (which is positive), a
smallest meaningful weight (which is positive), and a smallest meaningful
length {which is positive). These smallest positive units are determined
by the precision of the clock, scale and ruler and no smaller units are
meaningful because they cannot be measured by the given instruments.

By necessity, then, the data of a given experiment consist of rational
numbers which have a finite number of significant digits, and it is important
to note that the arithmetic combination of such numbers is the primary

function of the high speed digital computer [7].




3. TFUNCTIONS
The concept of a function is fundamental in contemporary mathematical

thought and is defined as follows.

Definition 3.1

Let R and S be two nonempty sets. If to each element x in R
there corresponds by some rule { a unique element y in S, then one
says that { is a function of x on R with values v in 8, and one
writes y = f(x).

When the variable x in Definition 3.l represents time, one usually
replaces it with the letter t .

In order to incorporate the finite data and limited accuracy concepts
of Section 2, we will, unless otherwise stated, take R and S in
Definition 3.1 to be finite sets of rational numbers, in which case f
will be called a discrete function. For discrete functions (as, indeed, for
all functions), the set of points (x,vy) in the real plane, where x € R

and y = f(x), is called the graph of f .

Example.
6 , -6
Let R be the setof 10 + | rational numbers x, =k - 10O
k
k=0,L1,2,++", l06. (These may be considered as 106 + 1 numbers

which are each accurate to six decimal places.) On R the equation
2
y = 2x defines a discrete function f{ whose graph consists of the

6
107 4 1 points plotted in Figure 3.1 .
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With regard to the above example, note that the graph of the discrete
function appears to the naked eye to be identical with the graph of vy = sz,
xreal, 0 =< x =< 1. The idea of "packing" a large, but finite, number
of points sufficiently close so that each is physically indistinguishable
from others nearby is, of course, the basis of television reception, and
it reenforces the notion that finite sets can serve one's purposes just as
well, if not better, than infinite ones [4].

Of special interest from the digital computer point of view are the
rational, square root and trigonometric functions, which will be considered
next.

A rational discrete function is one whose values are determined from
the independent variable by a finite number of arithmetic operations (where,
of course, division by zero is not an arithmetic operation).

If f(x) is a discrete, nonnegative rational function, then the dis-
1

crete square root of f, denoted by F = [£]% , is defined as follows.
Let x be any element in a finite set R of rational numbers, each of

which has only a finite number of significant digits. Let f be defined

=

on R. Then [f(x)]° is thatrational number vy which has the same
number of significant digits as f(x) and whose square best approximates
f(x). Of course the actual determination of a square root can be accomplished

on a computer by means of the elementary square root algorithm found in

almost all books on arithmetic.



With regard to the geometry of a right triangle, it will be assumed
that, given measured lengths of any two sides, then the law of Pythagoras
and the definition of the square root function can be applied to yield the
length of the third side.

As regards trigonometric functions, a word must first be said about
the measurement of angles. Since a protractor can be constructed with
the aid of a ruler, it will be assumed for the present that the accuracy with
which one can measure angles is that defined by the ruler of a given experi-
ment. The trigonometric functions themselves will be treated in the usual
elementary fashion as ratios of various segments of right triangles, since
these definitions involve only rational functions and square roots.

Since the square root function is defined above only in terms of
arithmetic operations, and since the trigonometric functions are all ratios,

we assume that tables of these functions are available for our use.

4. PARTICLES, TIME AND MOTION

From a purely mathematical point of view, one can consider the terms

particle, time and motion as undefined and then proceed to define other

concepts in terms of these. Nevertheless, physically it is desirable to
have some intuition about these rudiments and our present purpose is to
develop such intuition.

For a given experiment, a particle of a given solid will be considered

to be the smallest spherical portion of the solid whose diameter can be measured




to the accuracy of the associated ruler and whose weight can be measured
to the accuracy of the associated scale. A plane particle, which is the
only kind with which we will deal, will be any great circle section of a
particle. The centroid of a plane particle is defined to be the center of
the associated great circle. By the position of a particle we will mean
the position of its centroid. The mass of a particle is defined in the usual
way in Newtonian mechanics. All plane figures are to be considered as
compositions of packed particles and are said to be of uniform density only
if each particle in its structure has the same mass.

The concept of time which we will use can be described as follows.
Let At be the smallest measureable time interval defined by a given

= kAt,

clock. On a real number axis, mark off the time positions tk

k=0,1,2,--+,n, where n 1is a fixed positive integer. The numbers

tO and tn may be considered to be initial and terminal times, respectively,

of some physical event. The passage of time between t_ and trl may be

0

thought of as follows. At first a small "packet" or "particle" of time

containing At units of time is located at t In Figure 4.1, this packet

0
is denoted by circle C with diameter At and center at to. After At

seconds, C 1is located with its center at t after 2At seconds with its

l’

center at t_, after 3At seconds with its center at t and so on, until

2 3’

after nAt seconds the packet is located with its center at tn. The

passage of time between t_, and tn is conceived then only as the presence

0
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of time packet C with its center at to, tl, ey tn at the respective times
0, At, ...,nAt. How packet C got from tO to tn can be idealized as
follows. C remains at tO (i.e., its center remains at to) until At

seconds have elapsed. It then makes an instantaneous jump, called a

quantum jump, to tl. It remains at ’cl until At additional seconds have

elapsed, at which time it makes a second quantum jump and locates at tz.

After n such quantum jumps, the center of C appears at tn .

That the above model of the passage of time is reasonable is a con-
sequence of the limitation that no time interval of length smaller than At
can be measured by the given clock.

Let us next examine how the above concept of time applies to the
development of the concept of motion. Let Ax be the smallest measurable
length defined by a given ruler and let At be the smallest measurable time

interval defined by a given clock. On a real x-axis, mark off Xy = kAx,

k=0,1,...,m, and on a real t-axis mark off tj = jAt, j=0,1,...,n,
as shown in Figure 4.2. For illustrative purposes, assume that a particle

C has center P which is located at XO when t =tO, at XL when t :t3,

at x when t=t andat x. when t=t . The motionof C from x
2 6 3 10 0

, X_ at respective

’XL’XZ 3

to X, is merely C's being with center P at X

times to’t3’t6’tlo' Thus the motion of C from X, to x3 is considered

to be a sequence of four "stills”. This concept of motion is physically
realized in motion pictures, where the eyes observe motion from a sequence

of stills. The question of how C actually relocated from x_, to x

0 L?
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from X to X, and finally from X, to X, can be described again in
terms of quantum jumps. Also, from the physical viewpoint, numbers

between X, and X. X, and X, and X, and X, are unrealistic

because they cannot be measured by the given ruler.

Motion of physical systems which consist of many particles will

be considered later.

5. ARC LENGTH

Let x,, %

| 2 Yy and Y, be four rational numbers. If (XL’ Yl) and

(XZ’ yz) are the centers of two plane particles, then the distance s between

the particles is given by

[
a8
[ ST

(5.1 s = [(xz—xl) + (v

On a computer, one may, however, have difficulty in calculating
2 2
the quantities (x2 - xl) and (y2 - yl) in (5.1), since each computer
has a limited word length and rounds off when this length is exceeded. To

show the computational methods which one can actually use in practice

to determine s, we next give a simple, illustrative example.

Example.

Suppose that the centers of two particles are given as (0.21, 0.13)
and (0.53, 2.81), where each coordinate is known to be correct to only
two decimal places, and that one wishes to calculate s. If the centers

of the particles are (Xl’ yl) and (x.,, yz), then one can say

2
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0.205 = x, = 0.215
0.125 <y = 0.135
0.525 = x, = 0.535
2.805 5y, = 2.815

Thus,
x, € [0.205, 0.215]
y, € [0.125, 0.135]
x. € [0.525, 0.535]

y, € [2.805 2.815] .

Substitution of these intervals for the corresponding variables in (5.1)

and computing in interval arithmetic [4, 7] implies

(5.2) 2.687 < s = 2,711

Choosing s to be the mid-value of the bounds in (5.2) implies that
s = 2.699 ,

which is in error by at most 0.012.

The length of a physical object, like a string; can ke defined next

as follows. Let x_,x

NESTREEEE 'Xn be an ordered set of distinct rational

numbers. Let v, = f(.xi), i=0,1,...,n, be a discrete function. The
points (Xi’ yi), i=0,1t,...,n, may be the centers of all the particles
which compose the string. Then the length s of the string, or,

equivalently, the length s of discrete function f, is defined by
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—

=
Do
Do

-

(5.3) s= 3 [ =% )+ v, -y, )]

6. AREA AND CENTROID

Let XO, Xl’ e Xn be an ordered set of distinct rational numbers.

Let yi = f(xi), i=0,1,2,.-.+,n be a discrete, non-negative function.
Again, the points (Xi’ yi), i=0,1,...,n may be considered to be the
centers of the particles which compose a string. Then the area under
the string, or, equivalently, the area under the discrete function f, is

defined to have measure A given by

n
(6. 1) A= B[ ) - %))

If the moment of a force is defined in the usual way, then the

centroid of the area under f 1is defined to be the point (X, y) whose

coordinates are given by

6.2 TA= + 3 L

(6.2) XA = 3 iél [f(Xl_l)(Xi “Xl_l)]
— [ L A

(6.3) YA = 32 f—::l {[f(Xl_l)] (2, =%, _ )}

7. VELOCITY AND ACCELERATION

Let £, t

or e tn be a linearly ordered set of distinct rational

numbers and suppose that a man driving an automobile in a fixed direction
measures and records the distance X, he has traveled at time ti . Then

at time ti , the driver will have recorded x -,xi, but not, say,

O,X).’
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and X, since these distances are still to be traversed. The

X
i+l Fig2 143’

driver has knowledge only of the present and of the past. Then assuming

that v_. is known (since all problems can be formulated so that v_ is

0 0
zero), it is reasonable to define vi = v(tl,), i=1,2,++-+,n, implicitly
by

X, - X v, +v
(7.1) tk—tk~1= : zk_l’ k=1,2,...,n.
k k-1
However, if for any set WO, W WZ, .. "Wn’ one defines the difference
A by
Aw =w, -w k=1,2, ,

then (7.1) is equivalent to the linear difference equation

(7.2) v, =2

which can be rewritten explicitly as

n-1 S S n
(7.3) v =2 5 [(—L)J -———l] + (- v, n=z 1
n - At 0
i=0 n-j
Acceleration ay = a(tk), however, is usually not known initially,

that is, at tO’ so that it is reasonable to define it by

Avk
= — =1 .o s
(7.4) ak Atk , k , 2 n

which, from (7.3) and (7.4), implies



1 4

2 [AXL ]
(7.52) 1= a0 L3 %
1 1
Ax -1 Ax
_ 2 J_'m n j H‘J'] n
(7.5b) a = T ATt zj:zl [(-1) AT ] T vz 2
n n-j

In certain later discussions, it will be of interest to allow all the

time intervals Atk to be equal, that is,

At

1
>
—
~

i
N
W
=

In such cases, formulas (7.3) and (7.5) reduce to

(7.6a) VIS A (xl "'XO) =Yy

(7.6b) v = ~—2—( + (-0 +2n£l (-1) )] + (-1 v > 2
. n= At Ixn X, > I: ! Xn—j o0 N2

and

7.7 = L [x -x -v_At]

(7.7a) T @2 LT %0 VYo

(7.7b) a. = —5— [x. -3x +2x +v At]
' 27 (ane Fp TR T X T Y

(7.7¢)  a =—%5 {x -3x  +2(-1)"x +4nz—;l[(—1)jx J+(-)"v At ,nz2
' n (A’c)2 n n-1 0 . n-j 0 T T

j=2

Formulas (7.3), (7.5), (7.6) and (7.7) are taken then to be the
formulas for the velocity and acceleration of a particle moving in a fixed
direction. The values X, are the coordinates of the centroid of the

particle at time ‘ci .
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Two dimensional motion of a particle can be developed now in a
natural way simply by delineating clearly between quantities which are
vectors and quantities which are scalars. This is done as follows.

Let t., t

0 TRERY tn be a linearly ordered set of rational numbers. At

time ti let a particle be located at (Xi’ yi), i=0,1,...,n. At time

tn the particle's x component of velocity Vx n and its y component

)

2

of velocity VY n are defined to be the scalars

n"]. ]-Axn_- n
. = 2 -1 -1 , > 1
J= n-j
n-1 : AY 3 n
(7.9) v =2 3 [(—1)'] WJ-LL] +(-1) v ., nzl
Y’n j:O Atn"'j Y,O

The velocity of the particle at time tn is defined to be the vector

10 v L
= =

(7.10) vn (Vx, o VY’ n), n
In the special case Atk = At, k=1,2,...,n, (7.8)and (7.9) reduce to
7.11 - £ [, = x.] -V
(7. 11a) Vi, T oAt L1 T %o %, 0
7.11Db) v = — [x +(—1)nx +2 n; [ —Lj )] +(—L)n n= 2
(7. x,n At (%, 0 i=1 ( )(Xn-—j J Ve, 00 7
(7.12a) v - 2 [y, =v.] -V

: v, 1 - at Yo v, 0
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n-1
y.+t2 2
0 jzl

2 n
(7.12Db) v = At {yn+(—l) n

v, 0 [(-I)J(yn_j)]}ﬂ—l)nv

y, 0’

The particle's x~component of acceleration a n and its y component

3

of acceleration a N are defined to be the scalars

(7.13a) 2 [Axl
. a - —— —— -
aX’ 1 Atl Atl VX, 0}
Ax n-1 AR
(7.13b) a - 2 — D125 [(—1)J 2 4 -t , nz 2
X, n Atn At . At X, 0
n J-l n—j
Ay
2 [ |
.1 = — | — -
(7.14a) ay,1 At, Atl Vy,()~
Ay n-1 . Ay
2 n j __.n_—J_] n
.1 = —— ~1 + (-1 , nz 2
(o) s =iz 3 [0 g 1"V,
n n j=l n-j

The acceleration of the particle at time tn is defined to be the vector
(7.15) a = (a

In the special case At, = At, k=1,2,...,n, (7.13)and (7.14)

k
reduce to
7.16a) a = —f— [x -x. - At]
(7. x, 1~ a2 1 7% " V%0
(7.16b) a g [x, -3x, +2x, + At]
: x,2  (an? tF2 TIPFL T ¥ T Ve 0

>

2.
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2 n n-—l .
7.16 = — -3 2 (-1 -1y
( %) %,n " (612 \n a1 (=1) xy+ 4 jéz L=1) Xn—j]
-i-(—l)n Vx,OAt , n=3
(7.17a) a = --——72 [v, - - At]
' v, 17 @02 Y1 7Y " y0
(7.17Db) a - [y. -3y, +2y. +v _ At]
‘ v,2 (ane Y TV T Y T Y 0
2 n n-l j
.1 = —Es -3 2 (-1 -1 .
(7.17¢) %n T 3o \'n v t2 =1y 4 jéz [(-1) yn_J]
+ (—l)n \Y% Aty , n=z=3

Of course in the special case when the motion of a particle is in a
fixed direction, say that of the x-axis, then (7.8), (7.11), (7.13) and
(7.16) reduce to (7.3), (7.6), (7.5) and (7.7), respectively, while (7.9)

and (7.14) impl = a = 0 > 1,
nd ( ) imply Vy,n _— , n

8. THE IAW OF MOTION

In the last section, it was shown, among other things, how one could
determine a particle's acceleration from a knowledge of its position at

t.,t o tn. In this and in the next sections, we consider the problem

(O S

of determining a particle's position from a knowledge of its acceleration

at times t,l’ tz, v e ey tn .
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Let to, tl, cees tn be a linearly ordered set of rational numbers.

At time ti, let a particle of mass m be located at (Xi’ yi), i=0,
—p

1,2,...,n, and let it be acted upon by a force F. Then the motion

of the particle is assumed to be governed by the vector equation

g ——r
F(t. ,,x, y=mal(t), i=1,2,...,n.

8.1 )
(8.1) i-1 Vi, i-17Vy, i1 i

i-1 Vi

Difference equation (8.1) is a generalized Newton's equation. The

e
components of F can be given either in tabular form from experimental
measurements or in the form of a mathematical expression, and in both
cases the equation can be handled with facility on a high speed digital

computer.

9. DAMPED MOTION IN A NONLINEAR FORCE FIELD

In order to illustrate the application of (8.1), we consider now a

prototype problem of nonlinear mechanics, and only because interest has
o

focused on F in the form of a mathematical expression will we do the same.
Consider, then, as shown in Figure 9.1, a particle of unit mass which
is constrained to move with its center Q on the x-axis. A displacement
of the particle such that the directed distance OQ is X, is opposed by
a field force of magnitude sin xi and a viscous damping force of magnitude

OLvi , where QO is a positive constant. Then the equation of motion, from

(8.1), is
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(9.1) ai + restoring force = 0,

which, takes the particular form

(9.2) ai+avi_ +sinx, =0, i=1,2,....

1 i-1

For constant At, one can rewrite (9.2) by means of (7.6) and (7.7) as

2
- _{ag” .
(9.3a) X, —xO+VOAt > [cxvo-!—sm xo]
an® 2
(9.3Db) X, = 3% - 2%, - VAt -5 {a[g{ (x, = %) —VO] + sin Xl]
- n-1 .
(9.3c) x_=(-att)x _ +(-) 2 -aAtx_ +(2abst-4) S [(-1)x ]
n n-1 0 j=2 -
2
-l _aAt _(At) )
+ (-1) (1 = ) voAt 5~ sin Xn—l’ nz3

Suppose now that the particle is displaced to a point Q which has

coordinate x,., is held rigid (so that v

0 0= 0), and is then released. We

wish to trace the subsequent motion of the particle and consider first the

il
particular set of parameters o = 0.3, At =0.01, x_= :l_ . For T = 150,

0
the solution (9.3) was generated on the UNIVAC 1108 in 33 seconds.

That portion of the solution between T =0 and T =25 is shown graphically
in Figure 9.2 and exhibits strong dampingand peak values of 0.754615,
-0.480136, 0.297837, -0.185740, 0.116061, -0,072585, 0,045407 and

-0.028421 which occur at times 0, 3.27, 6.48, 9.66, 12.84, 16.01,

19.19, and 22.36, respectively. The time required for the particle to
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travel from one peak value to the next decreased monotonically until
T = 66.44, at which time it was located at x = -0,000039 and had
relocated to this value from x = 0.000049 in 1.73 time units. Though
damped motion continued from T = 66.44 to T = 81.09, the time required
between the attainment of successive peak values behaved erratically.
However, from T = 81.09 until T = 150, damping ceased and the motion
became completely periodic, one period of which is shown graphically
in Figure 9.3.

A large variety of other examples were run with various combinations

of input parameters chosen from

m ' 3T 5
X =0 g g g T T
At = ,0001, ,00l, .0l, .02, .05, .1, |

=20, .0004, .0005, .00, .009, .01, .02, .024, .025,

.04, .05, .06, .1, .2, .3, .49, 1.

In all cases damped motion resulted for At < 20, while sequence (9.3)
usually diverged for At > 20. In all cases when At converged to 2a
from above, the rate of divergence of (9.3) decreased monotonically with
At when the solution diverged.

It is of interest to note that our solution of (9.2) in this section
coupled with the ideas of Section 13 enable the interested reader to

solve fully nonlinear pendulum problems.
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L0. WORK (I)

Let to, tl’ e tn be a linearly ordered set of rational numbers.
At time ti’ i=1,2,...,n, leta particle be located at point (Xi’ yi) which
is on the straight line through A(xo, yo) and B(Xn’ yn), one possible
arrangement of which is shown in Figure 10.1. Let f(ti),i =0,1,...,n,
s —
represent the component in the direction AB of a force F applied to the

particle. Then the work W done by ? in moving the particle from A

to B is defined to be

n

(10.1) wo= 3 f(t,_)As,
i=l
where As, = s, - 8, is the directed distance from (x, ,,v¥._,) to
i i i-1 i-1"7i~1
(%, v,).
11, ENERGY

With regard to the concept of work described in Section 10, it will
be conveneient in this section to let ai and v represent the acceleration
—p
and velocity, respectively,at (Xi’ yi), in the direction AB . Then, from

(8.1) and (10.1),
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B(anyn)

C(xn’yO)

FIGURE 10.1



w
Thus,
(11.1) W
The quantity
(L11.2) K,

1

26

n
= 3 f(t
R B
n
= m 2 a As,
i=1 b 1

n (vi —vi_l
= m EL [ T) (Si - Si—l)]
i

m I 2 2
2 2 v~y
mVZ m 2

= 2 2

_ L 2

= myy

is defined to be the kinetic energy of the particle at time ti . Equation

(11.1) states that the work done in moving the particle from A to B is

the difference of the kinetic energies at B and at A .

Neglecting friction, the force necessary to move a particle of mass

—
m only along the vertical component of AB must be equal to the weight

mg of the particle. Hence, the amount of work done along the vertical

component of the motion

W

is

= mq(yr1 - yo)

i

mgy, -mgyg .
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The value
11. =
(11.3) Vi mgy;

is called the gravitational potential energy of the particle at the point
(Xi’ Yi) .
If now a particle of mass m 1is moved from A to B as described

in Section 10, then, neglecting friction

(11.4) £(t,

1-—1) = m-ai + mg sin &,

v—
where 6 is the angle AB makes with the positive x-axis, as shown in

Figure 10.1. Then

S
>
1)

i

ma As, + mg sin 6 As,
i1 i

Hence,

i=l

In the special case when the external force acting on a particle is zero,

so that f = 0, the last result implies that

(L1.5) K +V =K +Vy

which is called the principle of conservation of energy.
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12, MOMENTUM

Suppose two particles move with their centers on an x-axis, as
shown in Figure 12,1, Let the first particle have center A, mass my
and velocity v(A), and let the second particle have center B, mass
mB and velocity v(B). We assume that the relative motion is such that

the two bodies collide. During the collision, let the force of the first

body on the second be F

X and that of the second on the first be FB .

These forces are equal and opposite, but are non-constant. Both are
small at first, increase to a maximum, and then decrease to zero, at
which time the bodies separate. Hence, at time ti during the period

of contact

(rz2.1) FA(ti—l) =m, ai(A) ,
so that
g I
2 [FA(ti-—l)Atl] = 1§L m‘A al(A)Atl
5
= m -
a2 vy -y el
and
' n
(12.2) ié[ [FA(ti—L)Atll = my [vn(A) —VO(A)].
Similarly,
n
(12.3) é [FB(ti_l)Ati] = mB[vn(B) = v (B)]
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If the impulse I of a force F during the time of contact is defined

to be

n
(12.4) I =3 [F(ti_L)At]
and if the momentum M at time ti of a particle of mass m is defined
by
(L2.5) M = m-v, ,

then (12.2) and (12.3) imply that the work done by either particle during

the collision is equal to its change in momentum. Moreover, since at

each time ‘ti, FA = -FB , substitution into (12.2) and (12.3) implies
my [v () =v @)] = -m [v (B) - v (B)],

or, equivalently, that

(12.6) m, VO(A) + my VO(B) =my Vn(A) + m Vn(B) ,

which is called the conservation law of linear momentum.

13, ANGUIAR VELOCITY AND ACCELERATION

Thus far we have treated only the motion of a particle. If one
wishes to study the motion of larger configurations, then, as is well
known, that motion can be described completely by the rotations of the
configuration and by the motion of its centroid. The motion of a centroid
is that of a particle whose mass is that of the larger body and whose centroid
is that of the larger body. Thus, our attention in the remainder of this

paper will be directed to fundamental concepts and laws relating to the
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rotation of a large configuration.
Let C be a circle whose center is 0 and whose radius is r

(see Figure 13.1). Let a central angle 8 be subtended from an arc of

length s . Then the radian measure of 6 is defined by
(13.1) s = 18

Of course, sine the length s in practice can be measured only to an accuracy
defined by a given ruler, the measurement of 6 is also limited to an accuracy
defined by the ruler and by r . Intuitively speaking, the length s of a
circular section can be measured by a straight ruler by considering the
curve to be a string, and by cutting it and laying it straight to be measured.
Note that, interestingly enough, with a given ruler the larger one can take
r the more accurately one can measure ¢ .

Next, let to, tl’ ce s tn be a linearly ordered set of rational numbers.
Let a particle be in motion on a circle of radius r and at time ti let
the angle subtended by the arc from (r, 0) to the centroid of the particle

i

be Gi . Then the angular velocity (ti) =w,, i1=12,...,n, is defined

implicitly by

(13.2) Ao, @ 4o

i
-
—
!
—
—
-
v
-

At, 2 ’
1

By analogy with (7.1) and (7.3), then

n-1 . Ag

[(—1)3——1‘-—"1] +(-1)" nzl
0 bt

13.3 w =2
(13.3) i,

™M

j



and

and

(13

angular acceleration Oc(ti)E OLi, i=1,2,...,n is defined explicitly
AW
—_
'4) Q'i"‘ At y 1L = L,Z,...,l’l,
i
by analogy with (7.4) and (7.5) one has
5a) L. 2 [f_fl )
-2 L7 oAt bAg o
Ap n-1 . Ap
2 n j n—}] n
= & (B - - (-1
. 5b) Obn At X +2-Z {( 1) N + (-1) Wy
n n j=1 n-j
In the case when all the Ati are equal to At, the formulas (13.3)
(13.5) become
6 - E e -6yl - o
+6a) ©p= At L8 T8 0
2 n n-1 j n
= = (- -1yYe ]I+ (-1)y w,., nz2
.6b) o =57 le +(=ley+2 Z) [he 1+ (-0 g
7a) a, = “—72 [6, - - W At]
: LT an? 91 7% "%
7b) Q ***22 [6, =36, + 26, + w At]
' 2 7 (At) 2 1 0" %o
2 n n-l j
= - -1 -1
.7¢) % = AR {en 36t 21y e 4 2 [(-1) en_j]

j=2
n
+ (-1) a)OAt}, n= 3.
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Note that from (7.3), (7.5), (13.1) and (13.5) one has

(13.8) v, = 1w, , k=12,...,n

(13.9) a, = ra , k=1,2,...,n

14, KINETIC ENERGY OF ROTATION

Consider now a rigid system of particles which is rotating about

the origin 0 of the xy-ccordinate system. The particles will be denoted

By means of a given ruler, we can measure more accurately the
angular velocity of those particles which are further from 0 than those
which are nearer. However, it seems reasonable to assume at present
that each particle has the same angular velocity, so that we define the
angular velocity of each Pj to be that of any one of the particles whose

distance from 0 is maximal.
For particle Pj , let mj denote its mass and rj its distance from

0. If Pj's angular velocity is wi at time ti, then the kinetic energy

k., . of P, at time t, is given by
1,) J 1

1 2 L 2 2
14,1 k = —m v, = _T-m, I, ®, .
( ) i,j 2 3 i 2 33 1

From (i4.1), the kinetic energy K(ti).:_ Ki of the system at time ti is
w .Z

T
14.2 = = e
(14.2) K 207 %y 2
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Defining the moment of intertia I of the system by

q
(14.3) I =3 mr

(14.4) K = - Iw,

5. WORK (II)

In the notation of Section 14, at time ti let force Fi j act upon

H

P. . Then the moment M, , of F, .  is
] 1,) 1,3

(15.1) M, =4d ,F .,

where d. . is the perpendicular distance from 0 to the line of action

i)

of F, ..
1,]

, subtend angle

-1

Now, at time ti—l’ let Pj have traveled Si

6,

T and be acted upon by force Fi— , whose line of action is

L,

perpendicular to the radius to P, . At time ti, let Pi have traveled
J

si and subtend angle ei . Then the work Wi i done in the time

b

interval At on P is
i

]

15.2 =

(15.2) W= () A
Hence

l. .3 " - - .
(15.3) Wi,y T Fiog, g R = My 508
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The total work Wi done on the system during the period Ati is

q
(15.4) w.o= 3 [M,_, .be],

while the total work W done on the system from the initial time tO until
final time t is
n

Lo, ]

n
15, =
(15.5) W=z 3 [Mi_l,j .

Since the work done is equal to the change in kinetic energy, it

follows from (14.4) and (15.4) that

15.6 : M Ag.] = L I ‘pt )
(15.6) ji [ i-1, § Gl] > T, -~y
But (15.6) implies

q AW At W, + o,

il 1 1 i-1
— . . = Q

. Mi—l,] I At, AgG, 2 I i?

J:]_ 1 1
so that

q
=10

(15.7) by Mi—l,j Ii s

j=1
which is the rotational analogue of (8.1).

q
The sum 3 Mi—
j=1

1 is called the torque of the given system at time
2
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6. ANGULAR MOMENTUM

The angular momentum Li of a given system at time ‘ti is

defined by

L = 1w

i i

Hence,

q ALi

2 M55 At

j=1 i
so that

q

M =

% [ i=1,7] Atl] AL:L

j=1
and

n a
16,1 = -
( ) % % [Mi—l,j Ati] Ln LO

i=l j=1
Thus, if the torque of the system is zero at each time tO’ tl’ ces

then from (16.1)

(16.2) L =1L,

which is called the law of conservation of angular momentum.
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