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L. INTRODUCTION

In [4], Hartmanis and Stearns investigate properties of sets of
infinite sequences which can be defined by finite automata. In this paper
we consider various definitions forrnachiﬁes of this type, including ones
introduced by Buchi [1] and McNaughton [6]. For each type of machine
we classify the complexity of definable sets of sequences. More precise}y
let ZU) be the set of py~sequences on the finite set 3 . Consider the
Borel hierarchy with respect to the product topology on s | The complexity
of a subset of 3% is its position in the Borel hierarchy. It is shown that
increasing the complexity of requirements for a sequence to be accepted by
a finite automaton, raises the level in the Borel hierarchy at which definable
sets are found. Furthermore procedures are given for deciding the complexity
of sets defined by a large class of machines.

In [4], = 1is taken to be {0,1} and the usual topology on the real
line is considered. We use the product topology because it is more natural
when dealing with finite state machines in that it avoids the necessity of
identifying infinite sequences {(e.g., 100 .... equals 011 ... on the real

line). Moreover the product space 5% is in effect an infinite tree with
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paths through the tree corresponding in a 1-1 fashion with points of % .
We believe this analogy adds an intuitive flavor to the proofs.

In the second section we define the acceptance conditions (hence-
forth called output conditions) and topological properties to be considered.
Section 3 gives the hierarchy results. In the fourth section we give an
algorithm for deciding the complexity of sets defined by arbitrary machines.
Relationships between the various machine types are then explored. In
the last section we discuss reducibility relationships existing among various

undecidable properties of Turing machines which accept infinite sequences.

2. DEFINITIONS

Let 5 be a finite set, the input alphabet. Z#(Zw) is the set of all

finite (infinite) sequences on % . If x,y € %, =xy is the concatenation

of x and y. lLet =0 0,0 . (Oi € %) be a member of Em . Abbreviate

17273 °°

Ol 02. . .Gi by Ei and define the partial order 4 on s*u Zw by 6_1,4 Ej A«

for i < j<w . P(S) is the set of all subsets of the set S . Set inclusion
is indicated by < and proper set inclusion by © . c¢(A) is the cardinality

of the set A .

Definition 2.1. A finite automaton (f.a.) over 3 is a system Y} = <S, 8o M>

where S 1is a finite set, the set of states, M is a function M: SX3 — S

and SO € S is the initial state.

In the following M) = <8, 8¢ M > is a fixed but arbitrary f.a.



Definition 2. 2. M:SX5*— S is the extension of M given by M(s, x0} =

M(M(s, x),0) for ge 5, xe % | R,y isa function, R,M:Z#c — S, given

by Ry (x) = M (s , x), called the response function of M . (To simplify

0

the notation we omit the subscript M in R.m ..

Definition 2. 3. Rla is the function R restricted to {xsz{a € Zlb} .
Let In(a) = {s|s €S, c((R[a)_l(s)) =w). I.e., In(a) is the set of states

of 'W)which are entered infinitely often while reading o .

To simplify the proofs we always assume that all states of WL are accessible
from the initial state. Thatis for all s € § there is an x € % such that

R({x) =s .

To W) we may adjoin the following conditions for acceptance of sequences

£} X L .
Q = 01 UZ- .+« of 3 . The conditions are called output conditions or just

outputs.

l. Let D=S8. M accepts o with respectto D if (3 i)R(_c?i) e D.
I o oo "o vt (YR(0) € D.
2. " " " " oo ! "t In(a)n DFZ.
2'. Let ¥ < P(S). WMaccepts o with respect to ¥ if (3D ed) In(a)=D.

3, " 1 " " " n n " " 1] (BD E-B) In(a) = D.



Definition 2. 4. An i -f.a. is a f.a. augmented by an output of

type i . If Misan i-f.a., T(M), the set of sequences defined by M,
is {a]a € 5, o accepted by M }. (Of course the notion of acceptance
is with respect to the designated set D or set of sets & and the output
type. To simplify the text we use just ‘'accept' whenever the meaning is

clear.)

Definition 2.5. A S_Zw is i-definable if there is an i - f.a. which

defines it.

Definition 2.6, The i -f.a. M. is equivalent to thé j~f.a. m

1 2

if T(’ml) = T(7ﬂ2).

1' - f.a. were studied by Hartmanis and Stearns [4]. 2 - f.a. and
3 - f.a. were introduced by Buchi [1] and McNaughton [6] respectively.
In [ 1], non-deterministic 2 - f.a. were used to obtain a decision procedure
for the restricted second-order theory of the structure <N, '> where N is

' is the successor unctionon N . In [5],

the set of natural numbers and
non-deterministic 3 - f.a., non-deterministic 2 - f.a. and deterministic
3 - f.a. are shown to define the same sets. This theorem can be used to
simplify Buchi's decision procedure. In [2], a theorem about 3 - f.a. is
used together with the results of [ 1] and [6] to obtain an algorithm for

constructing finite automata from specifications given in the restricted

second-order language of <N, '> (see [7] for a discussion of these results.).




In [ 3], the hierarchy result below for 3 - f.a. is presented in a different
form and is used to obtain a classification for decision problems for the
restricted second-order theory of structures of the form <N,',Q>, Q a

recursive predicate.

Definition 2.7. TFor x e ¥ let N_={a|a 32", x< al. Acs® s

an open set of the product topology if there is a B ‘_:_Z* such that

A = UN
x€eBX

Hence {NX[X € Z* } is a basis for the product topology on Zm .

Definition 2.8. Let A be an open set. B EZ* is a basis for A if
A = Ny - B isa minimal basis for A if B is a basis and (V¥ x,y € B)
XE

[x4y 2 x =vy].

Let FO and GO denote the class of subsets of Z(D "which are both

open and closed. Fl (Gl) is the class of closed (open) sets. PZ (GZ) is

the class of sets which are denumerable unions (intersections) of closed (open)

sets. F_ (G

3 ) contains denumerable intersections (unions) of sets in FZ (G

3 2)'

Similarly define FS’ F o (GS’ G, ).

4 4
G, <G and

i i <
It is well known that for all i, Fi Pi+l’ i 41

F.uG < F n G,

. , . Also each F, and G, is closed under finite
i i i+l i+l i i

. . ol
unions and intersections and A € Pi if and only if A7 € Gi .



Dzfinition 2.9. A EZ(D is a Borel set if it belongs to U Fi = U Gi
i i

The hierarchies FO, Fl’ ... and GO’ Gl’ ... comprise the Borel hierarchy.

The complexity of a subset of Zw is given by its position in the
Borel hierarchy with respect to the product topology on Zw .

Intuitively Z(JJ is an infinite labelled tree where if c¢(Z) = n, then
each vertex has n successor vertices. Points of Z‘,(b correspond to infinite
paths of the tree. Vertices correspond to members of Z* . Nx (x € Z*) is
the set of all paths through the vertex corresponding to x . An open set is

the union of all paths through some set of vertices. The reader is urged to

use this correspondence as an aid in motivating the proofs.

LEMMA 2.1. A is a member of FO (GO) iff there are Xl’ Tty X such

that

Equivalently A € FO iff A has a finite minimal basis.

GZ can be characterized as follows.

LEMMA 2.2. A€ G, iff thereisa BS =* such that
o €A iff A x Ax A -+, x €B
1 2 i

and XiAoL i=12,-




PROOI,

L. Let A e G,. Then there are open sets Al 2 A

> = -+«- guch that

2
A = O Ai . Let Bl be a minimal basis for Al . Choose a minimal basis
BZ for AZ which satisfies B,N B, = # . This is done by first picking a
minimal basis §2 for AZ' If x e Bl n §2 replace x in EZ by

{x g xon{ ={o,--+,0 )} J. B, isthe modified B, . Similarly define

n 2 2 ‘
minimal bases B, B4, <+ for As, A4, *++ respectively where Bi+1 mj@l Bj =g .
Let B = LlJ Bi . If gqgehd, then a € Ai i=1,2,*** , Hence there
are x, € Bi i=1,2,+++ such that %, A« (Bi is a basis for Ai) and X, # x},
for 1 #j. Choose a subset {Xij] of {xi} so that xila( xiz<. -

If }le<xz—<"'<@: Xj € Bi-’ then ¢ € (]\AIJ . Then ¢q €A
J

because the Ai's are decreasing.

2. Let g € A iff 3x14x24 xieB, X 4 o i=1,2,°"

Let C1 = B and define Bi i=1,2,*+ as follows:
By ={x|xeC, (V9)yeCAvsx Dy =x]]

Assume Bi has been defined. Let Ci+l=C —Bi and

i
- \ - _
Bi+l {x|x € Ci+l’ (Nyily e CiH!\Y*(X y=x]]).

Then B =1J Bi and each Bi is a minimal basis for an open set Ai It
l .

is easy to show that A = () Ai so A€ G‘2 .
Q.E.D.



Definition 2.10., If A € GZ and B is as in Lemma 2.1, then B is a

Q_Z-basis for A .

3. HIERARCHY RESULTS

We show that I|-definable sets (l'-definable sets) are in Gl (Fl);

2-definable (2'-definable) sets are in GZ (F and; 3-definable sets are

Z)

in ba“Fs'

THEOREM 3.1. Every l-definable set is in Gl .

PROOF. Let A be l-definable. Thereisa | -f.a. M = <S,so, M, D>

such that A

i

T(M. Let B = {xiR(x)eD). Then A = J_N so B is a
Xx€B x

basis for A and A € Gl .

COROLLARY 3.2. Every l'-definable set is in FL .

PROOF. If A is l'-definable, then AC is Ll~definable.

Corollary 3.2 was proved in [ 4] for the usual topology on the real

line.

THEOREM 3.3 Every Z2-definable set is in G2 .

PROOF. Let A be 2-definable. There isa 2 - f.a. M = <s, g M, D>
such that A = T(M). Let B = {x|R(x) € D}. Then A = {a|In(a) N D # #)

and this is just the set of @'s for which there are xLA XZA *+* such that




X €B, x4 g 1i=1,2,-+-+- ., Hence B is a Gz—basis for A so

A e GZ
THEOREM 3.4. Every 2'-definable set is in Fz .

PROOF, Let A =TMM), M= <S,sO,M,_B’> a 2'-f.a. . Assume

I = {D}. Foreach x e ¥ let A = {o|x4 a Vy)[x4vy4a 2 R(y) € D] J.

It is easy to see that AX is closed. Then A = U/ ' AX so A is in PZ .
xes”

¥ b= {Dl’ sy Dn}, then A is a finite union of members of FZ so A

is still in F2 .
The following two theorems were proved in a different form in [3].
THEOREM 3.5. Every 3-definable set is in G3ﬂ F3

PROOF.  Let A:Tnm,/m:<s,so,1v[,3> a 3-f.a. . Assume § = {DJ].

Then by Theorem 3.4, AD = {a|In(a) € E} is in F,. For each EED,

c
= (o i ] i . - b i i
AE {a|In(@) € E} is also in PZ Hence A AD n (E 25 AE) is in the

Boolean algebra over FZ and therefore A ¢ I—‘3 N Gg. If ¥y = {Dl, RN Dn],

then A is a union of members of FS n G3 so A is in F3 n G‘:3 .
In the following assume 3 = {0, 1}J. This will simplify the notation.

Definition 3.1. Let AT consist of those members of Zw in which a

finite number of 1's occur. I.e., Al = {a]clx|x e >, x 14 a) <w) .
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LEMMA 3.1, AT is in Fd but not in GZ .

PROOF. Assume Al e G, with GZ-“basis B. Obtain a contradiction by

constructing an @ € 3° which contains an infinite number of elements of

B as initial segments but which is not in AT .
n

Choose 1r1l such that o 1 € B. nl exists because o/‘D € AT . Choose
n n‘z nl D T
nZ such that o " 1o € B. n, exists because o lo € A' . Choose n3 ,
nl l’la 1’13
ng similarly. Let @ =0 "lo "lo "l--- . c{xlx € B, x£ o) =w, but

a ¢ AT . Hence B 1is not a Gz—basis for Al and AT ¢ GZ .

C 3
Al ¢ G, with G,-basis {xl | x e 2" ).

C
LEMMA 3.2. Let A#:{OL{OAOL, a eAT}U{all/\a, aenl"),

NG

is in neither GZ nor FZ .

PROOF. Similar to proof of Lemma 3.1l.

It is easy to show
i 1° 5 #
THEOREM 3.6. Al is 2'-definable, A is 2-definable and A’ is

3-definable.

Theorem 3.6 demonstrates that Theorems 3.3-3.5 give the best
possible characterization of 2-, 2'- and 3-definability. In the next
section we give procedures for deciding the type set defined by an arbitrary
i -f.a. We also show that 2 -f.a. and 2' - f.a. differ from 3 - f.a. only

on GSﬂFS‘




L1

4. ALGORITHMS FOR DETERMINING COMPLEXITY

In this section we give an effective procedure for determining the
complexity (with respect to the Borel hierarchy) of a set defined by an
arbitrary 3 - f.a. The complexity of sets defined by other types of f.a.
can be calculated by first constructing an equivalent 3 - f.a. and then
applying the given decision method.

In the following let M = <3, S 5 M,.» > be a fixed but arbitrary 3 - f.a.

Definition 4.1. For x,y e 3% x4y, let R(x,v) = {R(z)|x42z4v]}. For

s€S let Ac(s) = {q|qgeS, @x)M(s,x) =q}. Call Ac(s) the get of states

accessible from s .

Definition 4.2. For ae§ let }a = {R(x y)|Rx)=Ry)=a, x,y € 3" )

THEOREM 4.1. T(M) is open iff every non-empty Js satisfies,
a) Hs nJg = ¢

or b) forall gelAc(s), Hg & X

PROOF.

L. Assume T(M) e G, and }Ns NP is non-empty. Then there is an

1

x € %¥ such that R(x) =s and Nx c TM). Let g € Ac(s) and D e Hqg.

Prove that D € ¥ . By the definition of Hq, Ac, there is a B of the form
‘ i i+] ,

Xy zJJ where R(xy) =g andforall i, R(xvy zl, Xy zl ) = D. Since

Nxf_:_'r(“rm, Ded .
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2. Assume a) or b) is true for any non-empty Hs. Let
B = {x[§(R(x) N #Z #). Prove that B 1is a basis for T(M) so T(M) € Gl .
Assume TN # & (the empty set is open). Let & e T(m so D =In(a) €2
Choose a y4 @ such that R(y) € D. Then D e H(R(y) AT so HREy))nIEr
is non~empty and y € B.

If @ eNy, yeB, then HN(R(Y) nY #4 soby b) forall
a € Ac(R(y)), Ha Eﬁ’ . Therefore In(o) e so ae T(M) and B is
a basis.

Q.E.D.

THEOREM 4.2. T(M) is in GZ iffforall seS, Dely N Hs and

Ee}s implies D U E ed .

PROOF.
1. A sume T(M) € GZ with Gz—basis B. Let se€8, Deg B n Hs
and Ee€ Ns. Prove DU E € ¥ . This is done by definihg an o € T(M)

for which In(a) = D U E. Choose x, Yo Wi Zp to satisfy R(x) = R(xyl) =

R(xylwl) =g, R(x, xyl) =D, @(xyl, xylwl) = E, and 2 € B, zl,A Xy,

vy Wy and z, exist because D, E e Hs, Ded and B isa GZ - basis

1

for D . Choose Y, W z_ such that R(xylwlyz) = R<XY1W1YZWZ) =53,

27 72

. &(xylwl, xylwlyz) = D, R(xylwlyz, xylwlyzwz) = E and Zy satisfies

VTR i = 3
zlA zzéxylwlyz, z, € B. Similarly choose Vi W 2y 4 , 4,

Let o&:xylwlyzwz--- . o e TN because zieB, zi/;- o i=12,""""

and B is a G, basis for T(7)). But In(@) = DU E so D UE e Y
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2. Assume for all s eS8, De .8’ n Hs, E e }Hs, implies

DuUE eﬂ. For s € S let

B = {x[R(X) =5, (F y4x) R(y) # 5]
BS ={le(x):s, (3y€Bl,s) [y<x A Ry, x eé& A
i+l '

(¥w) [y4<w<x @ RW) # sV f(y,w) ¢ 5 1]

Let B= U bB . Show B is a G, basis for T(M).
seS 1 2

a) Assume there are xll\ xz‘i *** such that X, 4 Q, X € B for

i=1,2,+++ . Prove a € T(W). Choose a subset yl/\y2< «++ of {.xi}

1
) = In{(a). But by the definition of the Bf sets

such that {yi}_c_i_ L/Bls for some s . Let 24224 -+« be a subset of
1

the {yi} such that 6x(zi, Zii

2 (Zi’ z. ) = In(®) is a union of sets in & nHs so In(a) €.y by the

i+l
hypothesis and a < T(M).

b) Assume o € T(M) and prove there are XIAXZA *++ such that

xiAOL, Xi € B for i=1,2,«-+ ., Let D= 1In(a) and fix s € D. Then

there is an Xl € Bls, xl Ao . Agsume xiA a, Xi € U BJ,s has been
J
determined and choose Xi+l as follows: Let z and vy be such that

xiAy4z, R{(z) =R(y) =s and R(y,z)=Dc¢e¢ ha il Since R(xi, y) and

® (y, z) are in }s, the hypothesis implies R (x,z) € ﬁ . Hence by the

definition of the BSJf sets some z, X, AZ4z is in %/BSJ - Let x ., be
Q.E.D.
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It is easy to see that

LEMMA 4.1. There is an effective procedure for obtaining the }s and

Ac(s) sets from M .

LEMMA 4.2. 1f WM = <S,s,M¥> then (M° = T(<8, 5, M, P(S) -5 >).

LEMMA 4.3. Givena l-, 1'-, 2- or 2'-f.a., an equivalent 3 - f.a.

can be effectively obtained.

Theorems 4-1 - 4.2 and Lemmas 4.1 - 4.2 imply

THEOREM 4.3. There is an effective procedure for deciding complexity of
T(M ), with respect to the Borel hierarchy, for any 3 -~ f.a. MM . l.e., we

can decide whether T(M) is in G,, F,, G,, F, or Gy Fy.

A 2’ T2

By Theorem 4.3 and Lemma 4.3

THEOREM 4. 4. There is an effective procedure for deciding the complexity
of T(M) forany i ~f.a.

The next two theorems obtain some relationships between the machine
types. They show that 2 - and 2'-1f.a. differ from 3 - f.a. only on

(::3ﬂF3.

THEOREM 4.5. If A e GZ iz 3-definable, then it is 2-definable.




PROOF.  Let T(M)e G,, M = 8,5, M, > a 3-fa. . A 2-f.a.
MW satisfying T(W) = T(M™) is defined as follows:

For each s € S, let < be a f.a. which for any input sequence
o satisfies.

a) ™ s enters a designated state e the first time WL would enter s
in reading o .

b} M s reenters € each time and only at such times that the set
of states entered by M in reading o, since the previous time m s was
in € , 1isin .

TLFE s ‘\'lﬁi”;’ﬁtsl s oo ox M s B*> where s = {s
is the usual product operation on machines and

D* = {(d}, -+-,d )| d, a state of W?si, (45)(d = )]

1
is the output condition.

Note that m is built into each Mts. It is clear that a finite automaton
can be designed to satisfy a) and b) . In the following In{a} and JHs
always refer to m.

1. (M) < T(WM*). Let a e T(M) and In(Q) € B . Choose

s € In(a). WM s enters e the first time M enters s, while reading o .
This occurs because s € In(a).

Assume WM s enters ¢ for the nth time at time t and let El’ EZ’ v

be the sets of states M enters between successively entering s after

time t (Ei AP i=1,2,... since s € In(a)). There is a finite sequence
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k
s . , e, h - - - . . i
Ej E]-H. Ej+k such that In(q) 2&: 1E3+£ But then since
i+k M
Hsn & ##, Theorem 4.2 implies that Ul E € . Hence s
L= g

enters € an n+l st time. This proves that if o € TO??), then some
™ g enters € infinitely often so Q€ T(M*).
2. T(M*)<S T(M). Let « e T(M*) so there is an s such that
s enters € infinitely often while reading o . Let Ei(i =1,2,+++) be
the set of states entered bym between the ith and i+ 1 st times WL s enters
€. Then E ¢ }sn D (i=1,2 ) by the definition of Ms. In(a)
must equal to a finite union of Ei‘s but since Hs n By} # #, Theorem 4.2
implies that any finite union of Ei‘s is in 552 . Hence a e T(M).
Q.E.D.

THEOREM 4.6. A is 2-definable iff A is 2'-definable.

PROOF. Let M = <8,s,, M, D> 2-define A . The 2' - f.a. <8, DO,M,P(S—D)>
2t - defines AS. I 2'-defines A firstobtaina 3 -f.a. "M which
defines A . Then modify 7}’\1 toa 3 -f.a. M 5 which 3-defines A°.

Ac € GZ so by Theorem 4.5 there is a 2-f.a. which defines it.

COROLLARY 4.7. If Ae FZ is 3-definable, then A is 2'-~definable.
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5. UNDECIDABLE PROBLEMS

In this section we consider Turing machines which define sets of
sequences. The model employed is the one-tape on-line Turing machine
augmented by the various output conditions of section 2. The problem of
classifying the Borel complexity of sets defined by these machines is shown
to be unsolvable. We also explore how various decision problems for these

machines are related with respect to Turing reducibility.

Definition 5.1. A one~tape on-line Turing machine (T.M.) over the input
alphabet X and work tape alphabet W is a systemM:< S,DO,M >  with
a single 2-way infinite work tape, a one way infinite input tape and a
single head for each tape. S is a finite set of states, So is 'a dis-

tinguished member of S called the initial state and

where M(s,o,w) = (s',w',¢ ,eZ) means that if 1 is in state s reading

1

o and w on its input tape and output tape respectively, then M :1.
enters s'; 2. writes w' over w on its work tape; 3. shifts the

work tape head left, right or not at all depending on whether el is

1,-1 or O and; 4. shifts the input tape head left if €5 is 1 and

not at all if ez is 0.
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An i-T.M. is a Turing machine augmented by an output of type
i (as in definition of an i-f.a.). Definitions 2.4 and 2.5 with T.M.
replacing f.a. define 'Turing machine ‘M i-defines Ac ch, and ‘A is
i-definable by a Turing machine'. In [3], it is shown that every 3-T.M.
defines a set in F3 n G3. In fact the method of proof in Theorems 3.1-
3.5 is immediately applicable to the class of T.M.'s and indeed to any
class of machines augmented by the corresponding output type.

We assume a recursive indexing of the set of all 3-T.M.'s. ’mx
is the x-th 3-T.M. under this indexing. Let P{(c) stand for the problem
of determining whether an arbitrary 3-T.M. defines a set in ¢ & P(Z(D).
Let T be the class of Turing machines which have a single two-way
infinite work-tape and no input tape. For “Ye1, T(J) is the set of finite
sequences over = on which 9 halts. f_¢ is the problem of deciding,
for an arbitrary J € 1, whether T(Z) is empty. Of course gq) is
undecidable. We reduce f_q) to problems on 3-T.M.'s to show the latter

undecidable. Note that problems on 1 are always underlined to distinguish

them from problems on 3-T.M.
THEOREM 5.1. P(Gi) is undecidable for i=0,1,2.

PROOQOFT.
1. P(GO): Let ¥ €. mg, is a 3-T.M. satisfying: For any input

tape o = alozz---,’YVL:), a) attempts to find a tape in T(Y); b) if a
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tape satisfying a) is found, ‘m%’ accepts « if and only if a is
000--+; <) if no tape satisfying a) is found, mg’ does not accept «
(i.e., continues forever to generate members of 3% and check if they

are in T(J)). Now 7)'13, defines a set in G if and only if TE) is

0
empty, so if P(GO) could be decided so could f_¢. Hence P(GO) is
undecidable. The same proof shows P(Gl) is undecidable.

2. P(GZ): Modify b) in 1. to read: if an input tape satisfying a)

is found, chg accepts « if and only if aeA+ (as in Lemma 3.1).
COROLIARY 5.2. P(Pi) is undecidable for i=0,1,2.

Hartmanis and Hopcroft [5] have investigated the relationship of un-
decidable problems for various types of machines with respect to Turing
reducibility. The following theorems compare problems for 3-T.M.'s with
problems, on extensions of 7.

7% is the class obtained from T by allowing machines to have an
oracle which, given an index x for a machine in T, decides whether
XeT(S'X). If P 1is a problem on T, then P% is the corresponding

problem for t*. P < P

, $F, means that problem P is (Turing) reducible

1
to P,. P =P if PISPZ and P2_<_P1.P<P, if Plg_P2 but

2 1 2 1 2
The proof of the next theorem employs the notion of a valid computa-
tion of of eT*. We define 'valid computation' informally and refer the reader

to [5] for a more precise definition.
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Definition 5.2. Let ‘If e 1%, Let ao#afl#--- #a/n be a finite sequence

satisfying 1. o is an instantaneous description of ¥ , 0 < i < n;

2, @y (ozn) is an initial (terminal) instantaneous description of J;
@ follows from a, by the execution of a single step by g . A

valid computation is obtained as follows: If follows from @ as a

o,
i+1
result of a 'yes' answer from the oracle (i.e., the oracle decides that some

a history of the computation of

L o .
X is in T(JX)), then insert before wi+1

. which shows xeT(STX).

Definition 5.3, gg, 'EZ* and P are respectively the problems of decid-

R

ing for an arbitrary J €1 whether TE) is finite, all of >% or recrusive.
THEOREM 5.3. P(Fi) = P(Gi) i =0,1,2.

PROOF. Obvious.

THEOREM 5.4. _I?_; < P(Gi) i=20,1,.

PROOF.

1. Let J etk. MU is a 3-T.M. satisfying: WL accepts aess
if there is an x $4 o such that x is a valid computation of g  and
$ec¢> does not appear in Xx. MM operates by first finding x and then
checking whether it is a valid computation. The only difficulty occurs in
verifying a 'no' answer by the oracle (x¢T (S’X)). To do this M simulates
‘q’fx on x. If x 1is ever found to be in ‘Z}'X, then M rejects «a.
Moreover if in any of its checking’n’l discovers that x is not a valid

!
computaton, thenm rejects .,
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Otherwise M cycles in a get of states which result in a being
accepted. If T(¥) 1is finite, there are a finite number of valid compu-

tations x If T(¥) is infinite,

0"

n
Pt Xy and T({p = ik:JINXi is in G

there are an infinite number of valid computations Xl’XZ’“ - and

T = %JNX,' Note that if x and vy are different valid computations,
then x ‘{. yl and y 4 y. It is easy to show that a set of the form
L?:lNXi, xi»ﬁ XJ. for i #j 1is not in GO. Hence T(Z¥) is finite if
and only if T{mMe GO.

2. The definitions of 3-T.M., GO and Gl imply P(GO) < P(Gl)‘

Hence P*¥ < P(G,).
3 1

5.5, * -
COROLLARY f_} < P(}?‘Z Fl)

PROOF. Modify M  in the proof of Theorem 5.4 to accept « if it is of

the form x$ 00.-. where x is a valid computation of & . Then T€&)

finite implies T(’7n)€11‘1 and Tey) infinite implies T(?ﬂ)ePZ—Fl.
THEOREM 5.6. P < P¢ (emptiness problem for 3-T.M.)

PROOF. Given %J €1 obtain a 3-T.M. which for any input @: 1. checks
each xeX* for membership in T(g) (of course ¢ will be checking more
than one x at a given time); whenever an xeT(§) is found, WL traverses
W

Ded; 2. while checking x's, ML stays in a subset of D. T is =

if T(J) is infinite and T(M) is empty if T(&) is finite.
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It is well known [5,8] that

By <Py = By < B ¥ =Ry

Qur results show that problems such as P(FO) are at least as difficult
as _ER. We have not been able to prove that 2:2‘2 < P(FO). A general

open problem is that of characterizing the degrees of unsolvability of

problems on 3-T.M. as well as their relationship to problems on .
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