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SINGULAR PERTURBATIONS OF NON-LINEAR BOUNDARY
VALUE PROBLEMS WITH TURNING POINTS

1, INTRODUCTION

This paper is concerned with the asymptotic behavior as € — 0+
of solutions u(t) = u(t, €) and v(t) = v(t, €) to non-linear boundary value

problems of the form

u" = f({t, u, v) (0 < t< 1)

ev" + g(t, u, u')v' - ¢(t,u,u')v =0 (0 < t< 1)
(1.2)

We assume that 0 < v, < v, et u') 2 0, and |f(t,u,v)| = fo(t, V).
We are particularly concerned with problems in which there is

exactly one interior turning péint for equation {1.2). That is, for each

€ > 0 there is a unique point @ € (0, 1) such that g(@, u{a),u'(a@)) =0,

and g(t, u(t), u'(t)) changes sign in a neighborhood of t =0a. In general

@ depends on €, and is not known a-priori. This behavior occurs, for

example, in the cases
(1.3) f(t,u,v) = +v, g(t,u,u") =u'

These problems may be considered as one-dimensional analogs of

the steady state Navier-Stokes equations in the form



Ay =~n in G
(1.4) AW + R(I,UX JJY - wy z.uX) = 0 _ in G

¥, L prescribed on 08G

where R = “é‘ is the Reynolds number. Problem (l.4) has been studied
numerically as R— + © by Greenspan [ 10]. With his choice of boundary
conditions the non-linear partial differential equation always has an
interior singular point ("stagnation point"), and the usual asymptotic
analysis does not apply (see [15]). The asymptotic behavior of solutions
to the Navier-Stokes equations has been studied by Batchelor [ 1-3] and
others [4, 5,8, 13,19]. These authors, however, make substantial use of
physical arguments as well as mathematical ones. In an effort to gain
insight into such problems, we have therefore turned to the one-dimen-
sional models (l.1) - (1.2).*

There is an extensive literature on singular perturbation and turning
point problems for ordinary differential equations. A comprehensive
bibliography is given in Wasow [22]. Specific examples of problems of
the type we consider have been treated by Wasow [20, 21] and Cochran [6].

Macki [16] and Harris [11] have treated similar non-linear first order

s
It is interesting to note that Batchelor's argument cannot be applied

in these one-dimensional problems, since it would require that
{t]u(t) = uy)} be a connected set for any constant uj .




systems in which one equation is reduced in order as €-— 0+ .

In Section 2 we collect some preliminary results. Section 3 is
devoted to the problems (1. 3) and their generalizations. Problems with
turning points at the ends of the interval are considered in Section 4.
In Section 5 we study problems for which c¢(t, u,u') = 4 > 0. In

Section 6 we collect some remarks on further applications of the methods

developed in this paper.



2. PRELIMINARY RESULTS

We first prove that the coupled boundary value problems (l.1l) -

(1.2) have solutions in CZ[O, 1] for each fixed € > 0. Assume that vO

and v, are two real numbers with 0 = o < v, . Define § = [0,1] x

[O’Vl]’ and let fo(x,y) € C(SL) with fo(x, y) 2 0. Choose M > 0

so that fO(X, v} £ M, and define

s, = [0, 1]x[~+M, +M] x [0,v,]

2 8 8
d S = [0,1]X[-=M, *M] X [-=M, = M]
an 3 = L0 X =M, g [-2 M. oM.

Assume that:
r (a) f(x,vy,2z) € C(SZ) and

|f(x, v, 2)| = £ (x,2) for (x,y,2) € S,

0

(2.1) < (by glx,v,2z) € C(S3)

(c) clx,v,2)¢€ C(S3) and

- c(x,y,2) =2 0

Under these conditions we have:

Theorem |. For each fixed € with 0 < € < o, there are solutions

u(t) = u(t, €) and v(t) = v(t, €) in CZ[O,l] to (L.l)y = (1.2).

Proof.  Choose constants M , M,, M, > 0 sothat |[f| = M, lg| = M.,

Define M, = v FEv M M2
efine 4“eXp(€ 2)[V.L v €V‘; Bexp(—-é—- ,

and |c| = M 0

3




| | | L
MS:eXp(eMZ) [M4+ €vll\/I3 exp(gMZ)], and M6: Z(M2M5+V1M3)'
Introduce a norm on C' [,O, 1] by setting ||u]| = max ( ||u “OO, | u |l )

and define the following two sets:

Kl: {ue CZ[O, 17] u(0) =u(l) =0, Hu“ms é‘M,

Jutf, = g™ = )

K, = {veCZ[O,l] | v(0) =v_, v(l)=v

IA
<

vl = Mg flvil, = Mg ]

. 1 1.
If we define K = Kl X K2 with atopology induced from that of C7[0,1]xC [0, 1],
then K is convex and compact by the Arzela-Ascoli Theorem [7, p. 266].
Define an operator T: K — CZ[O, L] % CZ[O, 1] by T(u,v) = (T, V), where

U(t), ¥(t) are solutions to the boundary value problems

u" = f(t, u, v) (0 <t < 1)
(2.2)

T(0) = u(l) = 0

ev" + g(t, u, u")¥V' - c(t,u,u")v =0 (0 <t < 1)
(2.3)

T is well-defined and continuous by the maximum principle for differ-
ential operators of the form appearing in (2.2) - (2.3) (see [18, p. 161]).
Furthermore, it is easy to show that T(E)C K, sothat T has a fixed

point (u,v) € K by the Schauder fixed point theorem [7, p. 456]. These

functions u(t), v(t) are then in C2 [0,1] and satisfy (L.1l) - (1.2).



Remark. It is clear that Theorem | can be applied to problems with
f(x,y,z) = fo(x, z) fl(Y) where fLW) is uniformly bounded. A slight modi-
fication of the proof shows that the result is also true for "mildly nonlinear"

problems. Let 84 = [0, 1] X (=, X [0, Vl]’ and assume that, instead

of (2.1a), we have:

() f(xy,2) e C(S,)
. of
2. - :
(2.4) { ) e Cy)

of _ _ 2

b%(c) 8yz o> -T ((x,y,z)€S4)

Let M, = max |f(x,0,2)| where S_=[0,1] X[0,v ]. We
1 5 1

(x,z)e—:S5

replace (2.2) with
™ = f(t, T, V) (0 < t<1)

(2.5)

Lees [ 14] has shown that (2.5) has a unique solution u(t), and further-

more HU“W < KM, , where K= 7T/.2(7T2 - 0). Wethenlet M, =

max |f(x,y,z)| where Séz[O,l]X[-KMl,KMl]X[O,vl], so that

S6
| “OO < %MZ and [[u"|_ = M, . The rest of the proof of Theorem |

‘follows as before with the use of the results of [ 14].

We note that the above remark allows us to prove the existence of

solutions to the problem




~J

u' = v(l + u)
(2.6)
ev" + g(t,u,u")yv' =0

with the usual boundary conditions. The theorems we prove in the
following sections generally require that f(t,u,v) # 0 if v > 0. For

2
(2.6), if v < 2(m7 +v ) we see that |ul < I, and hence

1
v(il +u) > 0 if v > 0.

In the following sections we need only be concerned with the
asymptotic behavior of v(t, €). For, assume that we have a sequence
En — 0 and a function v(t) such that lim v(t, € ) = ¥(t) pointwise

I = O n
almost everywhere (a.e.) on [0, 1] (this then implies that
v(t) € L [0, 1]). Notice that u(t, €) satisfies the integral equation
t
u(t, €) = (t-1) f (T, u(T,€), v{T, €) ) dT
0
l
-t [ (V-9f(t u{T €), v(T,€) }dT
hd

Since {u(t, en)] , fu'(t, En)], and {u"(t, en)} are all uniformly bounded,

by the Arzela-Ascoli Theorem there is a subsequence €n(k) of €. and

| .
a function U(t) € C [0, 1| such that

klinu u(t, En(k)) = u(t)
(2.8)
lim u' (t, en(k)) = u'(t)

K ey x



Furthermore, the convergence in (2.8) is uniform on [0, 1]. We

can then let € = €™ 0 in (2.7) to find that u(t) satisfies

it
u(t) = (t-1) [ (T, (1), v(t) ) dT
0
1
-t [ (l=-gf(1,q(t), V(1) )dT
't

In the event that the solution u(t) is unique, we can take En(k) = En

in (2.8). We also see from (2.9) that T(0) = TW(l) = 0, so the boundary

values of u{t) are alwavys preserved.

Motivated by these remarks, we define S0 to be the set of all
— 1
v(t) € L [0, 1] such that there exists a sequence € 0 with

lim v(t, € ) = v(t) pointwise a.e. on [0, L]. Then we have:
N e n

Theorem 2. (8) S0 is not empty.

l —
(b) Assume that g(x,y,z) e C (83). For any Vv(t) € SO ,
let T(t) be as in (2.8). Assume that there is an interval (a, b) < (0, 1)

with g(t,u(t), u'(t)) #0 for t e {(a,b). Then ¥(t) € Cl(a,b), and

(2.10) g(t, , T)¥ -c(t, T, u)v =20 (a < t< b

Proof. It follows from the maximum principle (see [18,p. 7]) that, if

there exists a t‘O € [0, 1) such that v'(to, €) =2 0, then v'(t,e) = 0

for t =t=< |, Let t

0 O(e) be the smallest zero of v'(t, €) if

v'(0, €} < 0, and let to(e) =0 if v'(0,€) =2 0., We then have




V' (t, €) <0 0=t < ty(e)

v

0 < t= |
to(e)

If we let V(h) be the total variation over [0, 1] of an arbitrary function
h(t), it follows that V(v(t, €)) = v, + Vo T Zv(to(e), €) . Since v(t,€) =z 0,

we have

(2.11) Viv(t, €)) = v + vO

Then (a) follows from the Helly selection Theorem [17, p. 222], and in
fact lim  v(t, en) = V(t) forall te[0,1]. To prove (b), define a

n—

differential operator E by

Eo¢(t) = g(t) ¢'(t) - (1) &(t) (a <t < b)
where g(t) = g(t, U(t), a'(t)) and c(t) = c(t, Tlt), u'(t) ). Let
d(t) € Coo(a,b) be such that support &(t) ©[c,d] with a <c<d <b
(we then write ¢(t) ¢ CO(; (a,b)). Using the inner product (p, q) =

b

f p(t) g(t)dt, it follows that
a

0= (¢, € v'" + gv' - cv)
= (0", v) = ({(g9)', v) = (co, V)
Since ||u" Hm < M, , we have ]u'(x,en) -u'(y, en)] s M, |x-y| . Thus

| T (x) - T (y)] M, |x-y|, so W(t) satisfies a uniform Lipschitz
condition on [0,1], and hence is absolutely continuous. Thus we see

that



LO

(2.12) ((@)\7) + (¢, %) = 0

The formal adjoint E¥ of E is defined by E*q) = (~(g¢)' - c¢). Thus
(2.12) is equivalent to (E ¢, v) = 0 forall ¢ € C\,(a,b). A density
argument then shows that (E'¢,%) =0 forall ¢ € cg(a,b). Let R'
be any interval of the form (a + 6,b - 8) with 6 > 0 but & small. “

e l
By a theorem of Friedrichs , there is a sequence vn(t) € Co(a, b) such

that:
(2.13) nlim ) v, - v|| 2wy = O
(2.14) im  |[Bv_|| r2@y - O

N wp OO

Equation (2.14) is the same as

(2.15) lim ngv'n-—'c':“vn“LZ(R.) = 0

Il w—y OO
Since |g(t)|z c, > 0 on R', it follows from (2.13) - (2.15) that
i v'n“ L2(R") s C,. An elementary argument then shows that v(t) is
absolutely continuous on R', and that (2.10) holds on R'. Since R'

is arbitrary, this completes the proof of Theorem 2.

ste

“We remark that the Friedrichs Theorem [9, p. !35] requires

T e Cl (a, b). However, it is clear in [9], and in the proof of this
result given by Hormander [12], that the cl requirement is needed
only to permit integration by parts. Thus the absolute continuity of

e |

0" is sufficient to make the theorem applicable.




Remarks. (1) Let g, u, v, and (a,b) satisfy the conditions of
Theorem 2(b). Then for any to € (a, b) we have

t

- c(n) L
(2.16) T(t) = v(to) exp (JC 30 dt) (a < t<bh)
0
Assume that:
[ (a) g > o for te (a,b)
2171 by hm st =0
§ (c) c(t) = <, > 0 in some interval [b-08,b],6 > 0

We can then conclude that v(t) = 0 for t e (a,b). For, suppose we fix
tO € (a,b). It is easy to show that g(t) satisfies a uniform Lipschitz

condition on [0, 1], and this fact together with (2.17) implies that

(-
lim f gﬂ dt = 4o . Since V(t) is bounded, we have v(t ) =0 .
0

A similar argument shows that v(t) = 0 for t € (a,b) if the following

hold:
f (a) g(t) <0 for te (a,b)
(b) lim g(t) = O
(2.18) 4 t— at
L (c) c(t) = 4 > 0 in some interval [a,a+6], 6 > O

(2) If we have more precise information about the form of
f(x,v,z) and g(x,vy,z), we can make a stronger statement. Assume

that g, U, and ¥V satisfy the conditions of Theorem 2(b), and that



in addition we have:

 (a) f(x,y,2)=2z2 f, (% v), and [f.(x,y)| 2 0> 0

1

(2190 { () gboy,2) =zq(xy), and if g (x,y) =0 then y =0

(c) clx,v,2) 2 c. > 0
\, 0

Also assume that:
(a) There exists an @ € (0, 1) such that u'(Q) =0
(2.20) (b) There exists an interval I = (a- 6,0) or I = (Q,a+ )

for 6 > 0 such that W(t) #0 if tel

We then conclude that V(t) = 0 for t € I. For, suppose v(t)=Z% 0 for

t € I. Then we must have U(t)Z 0 for t € I, and hence by the convexity
(or concavity, depending upon the sign of fl (x,v)) of u(t) we have

u(t) #0 for teI. Thus §(t) #0 for teI. Suppose I=(a- §,a), and

let t el and te (t.,a). Then

0 0
t o= V(LT (tel

(2.21)

u' gl(t,ﬁ)x‘/‘:a‘v (t € I)
Thus u(t) satisfies
(2.22) u" (1) - F()a' (1) = 0 (1:O < <t)
where F(t) = £ (t,U(t)) g (£, U(t)) V(1) (E(1)) . We can integrate (2.22)
to obtain

p— ‘t
(2.23) u'(t) = Ti‘(to) exp (/ F(1) dT)

vt




L3

Now U'(t) e C[0,1] and F € LL(I), so we let t— @ in (2.23) and
find that E‘(to) = 0. Since tO ¢ I is arbitrary we have T'(t) =0
for te I. The prooffor I=(q,a+ 8) follows in the same fashion,
and this completes the proof that v(t) =0 for te I.

(3) The results of the following sections will typically show
that v(t) = C for t e (a,b), where C is a constant and (a, b) < (0, 1).
If C> 0 itis also easy to show that nlim v'(t,en) =0 for te (a,b).

—_ ®

Furthermore, in both cases the convergence will be uniform on any

interval [c,d] with a <c<d <b.



3. PROBLEMS WITH INTERIOR TURNING POINTS

The problems we consider in this section are motivated by the
special cases g(t,u,u') = u' and f(t,u,v) = *v. It will be seen that
u'(t, €) has exactly one zero in [0,1], and this occurs at t = a(e) € (0, 1).
Furthermore, + u'(t,€) < 0 for 0 = t < a(e), and =#u'(t,e) > 0 for

o(e) < t = 1, Thus equations (L.l) - (L.2) have exactly one (unknown)

turning point at a(e).

Theorem 3. Let u(t) = u(t,e€) and v(t) = v(t, €) be solutions in CZ[O, 1]

to
P
u"(t) = v(t) (0 < t< 1)
u(0) = u(l)y =0
(3.1) <
ev'(t) +u'(t) v'(t) = 0 (0 <t < 1)
v(0) = VO’ v(l) = Vl

Let d=v /v , and a=(1 ~~vd) /(L -d). Then

VO 0=t<
(3.2) lim  wv{t,e) =
€ — 0 v, a<t=s 1
Proof. It follows from the maximum principle that wv(t) > 0 for

0 <t< L, sothat u'(0) < 0 and u'(l) > 0. This proves the existence
of a=a(e) € (0,1) such that u'(x(e€), €) = 0. The uniqueness of «(¢)
follows because u"(t) = v(t) > 0 for 0 < t < t. Furthermore, u"(a) > 0,

so that the unique minimum of u(t) occurs at t = @, We now state a




preliminary lemma:

Lemma |, There is a sequence en-—> 0 such that:
(a) f{u(t, €n)] converges uniformly to U(t) € Cl[O, L]
(b) fu'(t, en)] converges uniformly to u'(t) € C[O0, ]
(c) {Oé(en)} converges to @ ¢ [0, 1]

— I —_
(d) {v(t, en)] converges to ¥(t) € L [0, 1], and V(1)
is monotone non-decreasing.
Statements (a) and (b) follow from the Arzela-Ascoli Theorem, (c) follows

from the Bolzano-Weierstrass Theorem, and (d) follows from the Helly

selection Theorem.

Assume that T(t) Z 0. Then -u(a(en), en) [, en) HOO-> I HHOO ,

so u(a) = -||u]|_ . Since [|T] >0 and u(0)=7u(l) =0, we have
0 <a< 1., Wenow show that U'(t) =0 for 0 < t< 1 ifand only if
t = Q, Since u'(a(en), en) = 0, we have u'(®) = 0. Conversely, suppose

{?(to) = 0 for some tO e [0,a). Since u'(t, €) is monotone increasing,

by

u'(t) is monotone non-decreasing. Thus u'(t) =0 for tO <= t< . Let

1
6(t) € C [0,1] satisfy ¢(0) =0 and support ¢ < (to,a). Then

|
f u(t, € ) o(t)dt

W

L
v(t, € ) &(t) dt
[ vt

L

<

1
w'(t, € ) (1) dt

it
Lo T

A

to
u'(t, €q) &' (1) dt

-

it
Qo



Thus

Fl to
Povit)e(t)dt = / T (t)od'(t)dt = 0
“0 e

Since ¢(t) is arbitrary, v(t) =0 a.e. for t e [tO,OL]. But wv(t) is
monotone non-decreasing, so v(t) =0 a.e. for t ¢ [0,a]. It is easy

to show that

a(e )
(3.3) u(OL(en), en) = -:[(; t vi(t, en) dt
Thus
a
(3.4) E(a):-“’ﬁ“ooz—[ tv(t)dt = 0
. k—O

This contradicts T(t) Z 0, and shows that T(t) # 0 for 0=t < a,
The case in which U\(t) =0 for a < t = 1 leads to a similar contradiction.

We now show that, under the assumption that U(t) Z 0, we have

v 0=<t<a
(3.5) v(t) =
v a< t=s1

— 1 — —
Let t € (0,a), andset t = E(t + @), We then have u'(t)= u'(t) < 0
for T € [0,—{], so that for nz= N
(3.6) u'(t,e )= C <0 for Te [0, 1]
and the constant C 1is independent of n . Define ¢(1,¢€) by

C —_

(3.7) ¢(T.€) = (v(T, €) - v )exp (T(1-t))

Then ¢(7) = ¢(7,€) satisfies the differential equation




L7

VAN

a

]
_

€ 4" (1) + (w (1) - 2C)¢' (1) + < (C-u'(1))$(1) =0 (0
(3.8)
$(0) = 0, (T) =v(t) - Yo

Since GQ, (C - u'(T, en)) <0 for 0< T=t, we have

0= &(1) = (v(E) ~v,) = (v, -V But 0<t<t and C< O,

1 O)'

so by letting € = € > 0 in (3.7) we see that v(t) = o for 0=<t< a.

To show that v(t) = vy for a < t=s 1, we use a similar argument with the

comparison function

(3.9) d(r,€) = (v, - v(1,€)) exp (T (1 -T))
— 1 -
where t=“2‘(t+OL), and u'(T,E,n)Z C> 0 for tst<1 and n= N.

In the case that v0 = 0, we assume that U(t) Z 0 and get a contra-

diction. For, the above argument then shows that Vv(t) = 0 for 0=t <aq,

and by (3.4) we would then have || EHOO = 0. Thus u(t)= 0, so that.

)= 0 for 0=t < L, If lim v(t,e) =0 for 0 =t <l is false,
€ - 0
there is a point tO € (0, 1) and a sequence en-» 0 so that

lim  v(t_,e )# 0. By taking a subsequence so that the conclusions of
N —3 © 0 n

Lemma | hold, we repeat the above argument to find that lim v(to, en) =0,
e OO

This contradiction proves that lim  v(t,€) =0 for 0=t< 1.
€= O

If Yo > 0 we have v(t) =z v, > 0 so that u(t) 0. Thus to

complete the proof of the Theorem we need only determine the value of «.

To do this, we compute the general solution u(t):



(1 21(Q)
ZVOt(t—a+avo ) 0=t =aqa
(3.10) u(t) :{
1 2T(w) .
Vx(t'”(t"“J“(a-l)vl) =ts |
%

— l
Since ut)e C [0,1] and 1u'(a) = 0, we derive the additional conditions

(3.11) oy, =210 = (@ - 1)°

Solving (3.11) for a, we find that a= (1xVd)/(l -d) with d =v /v, .
Since d e (0,1) and @€ (0,1), we see that @ = (1 -vd)/(L -d).

The method of proof used in this Theorem easily leads to the following
generalizations. We assume in both Theorems that u(t) = u{t, €) and v(t) =

v(t, €) are solutions in CZ[O, 1] to (L.1) = (L.2) .

Theorem 4. Assume that:
(@) If z > 0 then f(x,y,z)> 0
(b) f(x,y,0) =0
(c) If z= 0 then g{x,v,2)=0

(dy If xe (0,1), vy=0, and g(x,v,2) =0, then z=20

Then lim v(t,e) =0 for 0= t< |,
€3 0
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Theorem 5. Assume that:
(@) f(x,vy,z) is independent of y (write
fix,vy,2) = fo(x, z))
(by If =z > 0 then fo(x,z) >0
() fo(x, 0) =0
(d) zglx,vy,2) 20
(e) If xe (0,1), y =0, and g(x, y,z) =0, then z =20
(f) clx,v,2)= 0

(9) v0> 0

In addition, assume that there is a unique solution @ € (0, 1) to

(0] 1
(3.12) tf (t,v. )dt = f(l—t)f(t,v)dt
0 0 J 0 1
0 o}
Then
v0 0=t<aa
(3.13) lim v(t,e) =
€—=0 vy a<t=s1l
Remark. It is clear that we can relax the restrictions on f(x, Vv, z) and

@, at the expense of the uniqueness of the limit function v(t). The
obvious generalization of Theorem 5 in that case provides a characterization
of SO for this problem.

In the preceding example with f(t, u, v) = v, we have seen that,
for Yo > 0, the limit function v(t) retains both boundarv conditions.

In the next case, f(t,u,v) = -v, the limit function loses both boundary

conditions:



Theorem 6, Let u(t) = u(t,€) and v(t) = v(t, €) be solutions in CZ[O, 1]

to
f’
u" (t) = =-v(t) (0 < t< 1)
u(0) = u(l) = 0
(3.14) ¢
ev'(t) +u'(t) v'(t) = 0 (0<t< 1)
v(0) =v_, v(l)=v
L 0 1

. 1 .
Then Eh._rzo v{t, €) = 2(V0+V1) for 0 <t< 1,

The proof of this Theorem proceeds with a sequence of Lemmas.
We first note that there is a unique a(€) € (0, 1) such that u'(¢(€), €) = 0.

If we let en, u(t), and ¥(t) be as in Lemma l, we then have:

Lemma 2. at)Z 0

Proof. This is trivial if Yo > 0, since then v(t) = v, > 0. Thus we

consider the case v0 = 0. We have the integral representation

t l

(3.15) v(t, €) = v, (f U(T,e)dT)(/‘U(T,e)dT)_l
" Yo o

where U(T, €)= exp (- é—u('c, €)). Let FP(t) = u(t) - u(l -t), so that

P(é) =F(l) =0 and F"(t) = v(l-1t) - v(t). Since v(t) is monotone

<=t= 1. Thus

l
increasing, F"(t) = 0 for >

<=t=s1

(3.16) u(t) = u(l -t) for

oo

L
Inserting this bound in (3. 15) immediately gives V(Té’, €) = SV,

—, L L
Thus v(-z—) = -V

>V and so u(t) £ 0.
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Define w(t, €} by

v(l -t,e) - v(t, €)

(3.17) w(t, €) = ~
Vi TV,
It is easy to show that
I -t l i
(3.18) wi(t,e) = | [ U(T, €)dT) ( F Ul(T, €)Yd1
i \JO

Lemma 3. There is a constant C > 0 such that, for 0 < e = |, we
have

1 -1 C
(3.19) 0 < (f U(t, €) dt) < *g

0

| 2
Proof. It is easy to show that u(t, €) = -Z—'Vl( t ~-t), so that

U(t,e) z exp (- — (t -t)). Thus
2€
1 L
Vi
fU(t,e)dtZ /f exp (- ——(t—tz))dt
UO Vo 2€
1
2 2l 2
= 2 exp (- (t-t)) dt
N 2€
0
1
> 2 /‘E y“l—t dt
= exp ( Ze)
“0
4e v
= (==Y {1 - - -t
(o)1 - e (=g
> &
C
4 Vi -1
= (— (l - -— .
for C (Vl (1 - exp ( 4)))
Lemma 4.  (a) lim w(t,e ) =0 for 0 <t<1.
n-— o«
— 1 )
(b) vit) = — (v +Vl) for 0 <t < 1.

20
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I
Proof. Since wi(t, €) = -w(l - t, €), it suffices to prove (a) for t e (0O, B ].
It follows from the convexity of u(t, €} that u(t) =0 ifand only if t =0
1
or t=1. Let te (O,E] be fixed. Since TU(t)# 0 for Te [t, L -t],

there is a constant Cl = Ci(t) such that

(3.20) u(ty =z C, > 0 for Te [t} -t]

But {u(T, en)} converges uniformly to u(T), so that there exists a constant

CZ = Cz(t) and an integer N such that for n 2= N we have

(3.21) u(T, en) > C2 > 0 for Te[t, L -t]

Thus for n=2 N

(3.22) 0 = wit, en) = cl -2t exp (- L C.)

This proves (a), which immediately implies that v(t) = constant for

— | 2
t € (0, 1). Denote this constant by C, and notice that u(t) = EC(t - t).

Since u(0, €) = u(l, €) we see that v'(0,¢€) = v'(l,€). Thus

L
(3.23) vlu'(l., €) = vou‘(O, €) —\J{; vZ(t,e) dt

Letting € = en-:» 0 in (3.23), we find that C satisfies the equation
c(z2C - Vo T vl) = 0. Since TU(t)x* 0 we have C > 0, so that

(v, + Vl)‘ The remainder of the proof of Theorem 6 follows in the

o j—

C = 0

same fashion as the proof of Theorem 3 .




Remark. Since [[u(t)| =1u(®) and TG(t) = i‘(v V) (t —tz), we see

o0

0

that lim (e} =
€ws 0

™

We state the following generalization of Theorem 6. The proof

differs only in details, and hence is omitted:

Theorem 7., Let u(t) = u(t,€) and v(t) = v(t, €) be solutions in CZ[O, L]
to (L.1) - (1.2) with c(x,y,2)= 0. Assume that:

(a) If z> 0O then f(x,vy,2z) <0

(b) £(x,v,0) =0

(c) zglx,v,2z) 2 0

(d) If xe(0,1), y=0, and g(x,v,2z) =0, then z =0.

Let v(t) € S,- Then there is a constant C € [VO’VL] such that v(t) = C

for 0 < t< I, If, in addition to the above, we have g(x,y,z) € C (83)
and
(3.24) nl_iinoo e (v'(0,€ ) - v'(l, e )) =0

then C satisfies

(3.25) v, g(l, 0,ul (1)) = v,9(0,0,T(0) )
1

e [ [Qﬂ ¥y kLT 0 Q—q] dt
Jo ox oy oz

The partial derivatives of g in (3.25) are evaluated at (t, u(ty, u' (t) ),

and u(t) satisfies
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=
=
~—
I
=
(s
<l
_—
o+
~
Q
~—

(0 < t< 1)
(3.26)

=
E
0
Al
=
i
o

Remark. If (3.24) holds for all sequences en-—+ 0, and if C 1is unique,
then lim vit,e) = C for 0 < t< 1.

€ i

The verification of condition (3.24) is not always an easy matter.
In the case of Theorem 6 we had v'(0, €) = v'(l, €), so that the question
did not arise. We now give a class of examples for which (3.24) can be
verified. We do not treat the example in its greatest generality, but it
is easily seen that the method of proof may be applied to more general

problems.

1
Example. Let f(t,u,v) = -v, c(t,u,u')= 0, and g(t,u,u') = (u')2K+

for some fixed integer K= 1. We will show that (3.24) is satisfied.

Let V(t) € S and let C ¢ [VO’VL] be such that v(t) = C for

0’
C(t - tz) . Using integration by

| —

t € (0,1). It then follows that u(t) =
parts, it is easy to show that

L 2K+1

lim en(v'(O, en) - v'(l, en) ) = (‘EC) (2C - Vo T vl)

T1 ey OO
If C =0 then (3.24) is clearly satisfied. Thus we assume that C > 0,
and hence u(t) # 0 .
t
Let Glt, €)= [‘ g(t, u(t, €), u'(t,€) ) dr, so that
Jo
t

1
tv, =vg) ([ Gotr e an ([ Gyl eran”

(3.27) vit,€) = v |
kO \,’0

0
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1
where GO(T, €) = exp (- g G(t,€)). For these examples we have

(' (t, €) )ZK-I—.L

[

G, €)

(3.28) 2K

G"(t, €) -(2K+ 1) v(t, €) (u'(t, €) )

Thus G"(t,€) = 0 for 0 =t= l. Using integration by parts, it is

easy to show that

K

(3.29) G(l,e) = - & C, I,
j::l J-l )

where

1

1 .
1 - f T j+l (u.)Z(K Dyt

(3.30) 0

41 iyl K-n
c =& 2" =)
) j+2 n=0

Thus G(1,¢) < 0, and so from (3.27) we see that v'(l,€) > v'(0, €).

Thus for K = | condition (3.24) is not satisfied trivially, as it is for

K= 0.
It is easy to see that there is a unique 7 = Y(e) e(a(e), 1) such
that
> 0 0<t<Yy
G(t) \ =0 t =0,y
< 0 Y <t =1

We now want to prove that G(l, €) = O(EZ) as €w-+ 0 (for the sake of
simplicity, we have deleted the subscript on € ). Since uft,€), u'(t, €),

and v(t, €) are uniformly bounded, we have {G(l,e)[ < C J(e), where
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1
(3.31) ] = J(e) = f vt €) ul(t, €) at
0

L

4
Let J = 'ZL ]j » where the regions of integration of the integrals Ij
J:

are (0,ve), Ve, y(e)-"e), (Y(e) -Ve, Y(e)), and (Y(€), 1). Since

u(t) # 0, we see that lim ¥(e) = 1. Thus the regions of integration
€ 0

are well defined for 0 < ¢ = 60 . Let C > 0 be a generic constant.

By the same method used in the proof of Lemma 3, we see that

(3.32) 0 < v'(t,e) = () exp (- G(t, €) )

m |0
m |-

If C0 > 0 is such that ¥(t) = CO for 0 < t< 1, then W(0) =
Thus for € small enough
(3.33) G(t, €) = Ct (0=ts Ve
Using the bound 0 = u(t,e€) = Ct, we find that

2

(3.34) 0<J = Ce

For the integral ]2, by using the convexity of G(t, €) and the fact that

T(t) # 0, it is easy to show that

(3.35) G(t,e) = CcVe Ve s tsv(e) -Ve)
Thus for € small enough

(3.36)

<

\
o
IA

C
= exp (- ‘J—‘g)




The technique used for ]1 , together with the estimate uf(t,e) = C(l - t),

can be used to show that

(3.37) 0<J, s C [(1_7)Z+e(l—7)+€2]

Finally, we note that can be bounded in the following way:

I4
i >
I4 = f u (t) v'(t)dt

Y
1 1

‘ -1
= o[ W Go(t,e)dt)(f Gyt €) dt)
o 0
L 2 ! -
< C(f u (t) Go(t,e)dt) ( Go(t,e)dt)
v Y
<= C max u (t)
yst=sl
L2
= C u (V)
Thus
2
(3.38) 0<], =C(l-v)
From the mean value theorem, we have G(l,€) = (L-7Y(e)) G'(T,¢),
where 7VY(e) < T < 1. Since 7Y(e)— 1 and G'(l,(—:)----e.(ﬁ"‘(l))ZKJrl < 0,

there exist constants Cl’ C2 > 0 so that, for € small enough, we have:

(3.39) c latal s [1-vi|s ¢l el

Combining all of the previous estimates, we have shown that:
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|G(L,e)| = C J(e)

2 1 &
C{e +€exp( J-)

€

IA

F -2 e -v)]

A

Ce® e, o) ((1-Y) +e)

Thus

|G(l,e)| = C el 4 “;“[G(l,e)[

for 0< € = El’ and hence

(3 .40) |G(1, e)] = Cez

The estimate (3.40) immediately shows that (3.24) is satisfied.
It is interesting to note that the integration in (3.25) can easily be

performed. Theorem 7 then shows the following:

N

(@) If v_ > 0, then lim vw(t,e)==(v_+ Vv, )
0 o o V1

for 0 < t< |

(b) If v =0 and ¥(t)e S, wehave T(t) = C, for

1
0 or C —Zvl.

- < 1 i
0 < t< 1, and either CO 0

We observe that, in the case vO =0 and Kz I, although we have not
eliminated the possibility of having a sequence {u(t, €n)] that converges

uniformly to 0, in that case the rate of convergence can not be too rapid.

Indeed, it can be shown that

(3.41) lim  — ut, € ) = o (0< £<1)

I =~ n
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4, PROBLEMS WITH TURNING POINTS AT THE ENDS OF THE INTERVAL

The problems we consider in this section are motivated by the
special cases g(t,u,u') =u and f(t,u,v) =+ v. Inthese examples
we no longer have an interior turning point, since lu(t, c—:)] > 0 for
t € (0, 1). However, we have u(t,€) =0 and {u'(t, e)l >0 for t=0
and t = |, so there are turning points at each end of the interval. The
asymptotic behavior is greatly simplified in this case: exactly one
boundary condition is lost, and the one retained is determined by the
sign of u(t,€) for t e (0,1). Because the proofs are essentially the
same, we state the theorems in a general form and include the specific
cases as examples. The functions u(t) = u(t, €) and v(t) = v(t, €)

are solutions in CZ[O,I] to (1.1) - (1.2) with c¢(x,y,2)= 0.

Theorem 8, Assume that:
(@) If z> 0 then f(x,y,2) > 0
(by If y = 0 then g(x,y,2)=0
(¢) If xe(0,1), y= 0, and g(x,vy,2) =0,

then vy =0,

Then lim v(t,e):vo for 0=t<1,
€ =0

Example.
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Proof. We write v(t, €) in the form

(4.1)

where

(4.2)

t
v(t, €) =VO+ (vl —vo) ( /;

(.

1
-1
GO(T, €)dT) (.‘:'Q GO(T, €)dT)

t
G(t,e) = [ g(t, u(t, €), u'(t,€))dr

i N
Go(t, €) = exp (- ‘E“G(t, €))

It is easy to see that wu(i, €)= 0, G(t,e) = 0, and G'(t,e) = 0. If

u(t) £ 0, (4.1) can be used directly to show that lim v{t,€) = v

for 0 <t <

€ - 0O 0

|. We omit the details. If Vo > 0 we automatically

have U(t)Z 0. If v, =0, we assume u(t) Z0. The above argument

0

then shows that ¥(t) = 0 for 0 = t < |, which cannot happen if

UW(t) # 0. We thus have u(t) = 0, and hence ¥(t) =0 for 0= t< 1L,

Theorem 9.

Then lim
€ — 0

Example

Assume that:
(@) If z> 0 then f£(x,y,2)< 0
(b) If y= 0 then g(x,vy,2)=0

(¢) If xe(0,1), y=z 0, and g(x,vy,2z) =0, then y =0.

v(t,€) = v for 0< t= 1,

!
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Proof. The proof is essentially the same as that of Theorem 8, and
the details are again omitted. We remark that we always have u(t) # 0.

| .
For v'"(t) = [—"e* g(t,u,u')v'] = 0, and hence

(4.3) v(t,e)2v0+(vl ~—v0)t (0=t=1)
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5. PROBLEMS WITH c(x,vy,2z) 2 o > 0

In this section we consider problems for which the following
conditions hold:

(a) c(x,v,2z) 2 <, >0
(5.1)

(b) glx vy, z) € C (S,)

3

These are included in a separate section because the asymptotic behavior

is not determined by the nature of the turning points. Rather, it depends

upon the fact that the reduced equations have no non-trivial solutions.
Let u(t) = u(t,€) and v(t) = v(t, €) be solutions in CZLO, I

to (l.!l) = (l.2). The theorems in this section give sufficient conditions

for the following conclusion:

(&) Ilim  v(t,e) =0 for 0<t< 1
€ wa O
Theorem 10, Assume that:

(a) If z#0 then f(x,y,2z)#0

(b) g(x,y,2z) =0 ifandonlyif y =0

Then (A) holds.

Examples. Theorem L0 can be applied to:
u' = v
(5.2)
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u' = -v
(5.3)
ev" + uv' - cv = 0
The proof of Theorem 10 follows directly from the remarks following
Theorem 2.
Remark. It is clear that condition (b) of Theorem 10 can be weakened

to one of the following (assuming U(t) Z 0):

g(0)

it

0 and g(t) <O for 0< <1

or (b), g(1) =0 and g(t)> 0 for 0<t<|

Condition (5.1a) can also be weakened in this case, since we require

c(x, v, z) 2 S, > 0 only in a neighborhood of 0 or 1 (depending

upon whether (b) or (b), holds). For the sake of simplicity, we do

l 2

not elaborate on this. Hcwever, the generality of (b)L - (b)2 allows
us to consider cases in which the singularity in the problem is caused by

the behavior of g(t,u,u') as a functionof t at t= 0 (or t=1),

instead of the behavior of u(t) at t=0 (or t=1).
For example, suppose g(x,vy,z) = g‘(x) gz(x, v, z) where

g(x, vy, z) satisfies:
(a) gl(x) =0 for 0<x < | ifandonlyif x=0
(5.4) (b) If gz(x, y,z) =0 then vy =20

(¢) g(x,v,2) <0
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We remark that the following can be substituted for (5.4 b-c):

(@) If z=2 0 then f(x,y,2)z0
(5.5) (b) If y=0 then g(x,vy,2)=0

(c) If xe(0,1), y=0, and g(x,y,z) =0, then y=20

Then condition (b)l is satisfied, and so (b) holds. An example for

which the above conditions are satisfied is:

u(t) = v(t)
(5.6)

(t)

evi(t) +te™ = 2) vi(t) - c(t,u, u')v(t) = 0

A similar result holds if (b)2 is to be satisfied. In that case,

conditions (5.4) - (5.5) are replaced by:

" (a) g, (x) =0 for 0<x=s 1l ifandonlyif =x=1

(5.7) < (by If gz(x, y,z) =0 then y =20
L (¢) glx,vy,2) 20
(@) If z=0 then f(x,y,z) =<0
(5.8) {( () If y=0 then g(xv,2) 20
. (c¢) If x e (0, l)f y 2 0, and g(x,y,z) =0, then y=20
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Theorem Li, Assume that:

/
O

(a) If z > 0 then f£(x,v,2z)<

(b) f(x,y,0)=0

1
<

(c) If z= 0 then g(x,v,2)2

(d) g{x,v,0)=0

(e) If xe(0,1), y=0, and g(x,y,2z) =0, then z=0

Then (A) holds.

Example. Theorem Il can be applied to:

n

ev'" 4+ u'vt -~ ¢cv = 0

Proof. Assume that TU(t) Z 0. Then, by taking a subsequence if
necessary, we have lim OL(en) = a e (0,1). By applying the remarks
N ey 0

following Theorem 2 on the interval (0, Q), we conclude that v(t) = 0

for 0 < t< a., But

i
E
2

Iull.,

1
)
-
Pl
Fand
c
=
=
A
e
o
—+

This contradiction implies that u(t) = 0, which proves that (A) holds.
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Theorem 12. Assume that;

() fx,y,z) =zf (x,y), and [f (xy)] = 9> 0

(b) g(x,v,2) =z gl(x, y), and if g, (% y) =0

for x € (0,1) then vy =0.

Then (A) holds.

Examples. Theorem 12 can be applied to:

u" = v

(5.11)
ev" + u'v' - ¢cv = 0
u' = -y

(5.12)
ev' 4+ u'vl - cv = 0

The proof of Theorem 12 follows in the same way as that of

Theorem 11,
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6. OTHER PROBLEMS

In this section we give several examples of problems not covered
by previous theorems. The proofs follow directly with the use of
techniques already developed, and hence are omitted. The first two
Theorems deal with problems in which g(t, u(t), u'(t)) is allowed to
have a zero, but the function does not change sign in a neighborhood
of this zero.

Let u(t) = u(t,€) and v(t) = v(t, €) be solutions in CZ[O, L] to

0.

H

(1.1) - (1.2) with c(x,v,2z)

Theorem 13. Assume that:

(a) If z# 0 then f(x,v,2) # 0

(b) f(x,v,0)=0

(c) g(x,v,2z)z 0

(d) If glx,y,z)=0 for x¢ (0, 1), then either

y=0 or z=20

Then lim v(‘t,e):vl for 0<t= 1.
€ — 0 ’
Examples. Theorem |3 can be applied to:
u" = v



Theorem 14,

Then lim
€ - 0

Examples.
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u' = -v
ev’ + (u')zv' = 0
u' = v
ev' 4+ u"v' = 0
u' = -v
ev' + u2 vi = 0
Assume that:
(a8 If z#0 then f(x,v,2z)#Z0
(b) f(x,y,0) = O
(c) g(x,v,2)=0
(d) If g{x,v,z)=0 for xe€ (0,1), then either
yv=0 or z=20
v(t, €) =V, for 0=t < L.

Theorem 14 can be applied to:

u’ = v
2

ev' - (u')y v' = 0

u' = ~v

ev" - (u')2 vi = 0
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u" = v
c V” - UZ Vl = 0
u' = -v
ev' - u2 vi = 0
Remark. The conclusion of Theorem 14 remains valid for the general
case c(x,y,z)= 0 if v_=0. The method of proof follows that of

0

Theorem 3.
The next theorem gives an example in which the equation for
u(t, €) is modified. The proof that solutions exist to this probiem

follows in the same way as the proof of Theorem 1.

Theorem L5, Fix a constant C = 0, and let u(t) = u(t, €) and

2
v(t) = v(t, €) be solutions in C [0, 1] to:

(ut() + Cu'(t) = -v(t) (0 < t< 1)
w(0) = u(l) = 0
(6.1)
ﬁ evi(t) + u'(D)v'(t) = 0 (0~ t< 1)
L v(0) = VO, v(l) = v,

Then we have:

(a) If v, > 0, then lim V(i €)= C  for
€ — 0
0 < t< 1, where
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— -1 )
(6.2) c = (ce” - 1)) [vo(x—eC + CeC)-vl(l-—eC+ C)]
(b) If v, = C =0, then lim vt ¢)= C for
N | € ws 0
0<t< |, where CC = "Z"v1

(c) If v.=0 and C > 0, we let v(t) € SO. Then

9!

such that ¥(t) = C for 0< t< 1, and

(ce®- 1) (v - - ol

there is a constant

either C = 0 or

Ql
T




L0,
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