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l. INTRODUCTION

Many theoretical and computaiional problems either arise or can
be formulated as one of locating a minimizing point of some real valued
(nonlinear) functional over a certain set; such variational settings often

lead to existence theorems as well as to computational methods for solving

i
t .

the problems in question. Computationally, however, one is generally
forced to deal with discrete data in place of the original functional; it is
therefore necessary to analyze the relationships between variational prob-
lems and their discretized analogues.

In [7, Sectidn 4], we first studied under certain equicontinuity
assumptions the question of approximately minimizing one functional by
minimizing a sequence of nearby functionals. In this present note we
state the problem generally, give some convergence theorems, and des-

cribe some particular examples.

2. MINIMIZATION OVER W-COMPACT SLTS

Let E be a normed linear space and let f be a real valued (non-
linear functional on E. Let tho@ be another notion of convergence (i.e.,
a topology) in E in addition to norm-convergence, W -continuity, W-
compactness, etc. For example, if E is a reflexive Banach space, the
W -topology might be the weak-topology. We wish to minimize { over

a W-compact set B .



Definition 2.1 A discretization for the functional f on E con-

sists of a family of normed linear spaces En,f a family of real valued
functionals fn on En’ a family of mappings pn of En into E, and

a family of mappings I of E into Bn .

Definition 2.2 A discretization for £ on E is consistent if:

L) lim sup fn (r u) =< f(4) if @ minimizes f over the set in question,

I} ~p 0O n
2) L f - <
) n1.-r2 _ sup [ (pnun) fn(un)] 0 for any sequence u € En such that

pnun remains in the set B over which we wish to minimize f .

Remark. Generally one would demonstrate that 1) is valid for G
by proving its validity for all u in E .

We now state the basic minimization problem over B(MPB): Let £

be W-lower semicontinuous and bounded below on a W-compact set B;
find @ € B such that f(4) = f(u) for all ue B.
Remark. At least one such U exists [17]. Recall that lower
semicontinuity means f(u)= lim inf f(un) whenever 1,1n W-converges to u .
We wish to find O solving MPB by solving similar problems for

fn on Er . Thus consider the basic approximating minimization problem
1

over

En(MPBn): Let fn be bounded below on sets Bn satisfying

< < ; fi i ¢ uch that £ (G,) = f (u)+ €
P Brl B and rn B Bn find un Bn S n( 1)i) n( n) n
forall u € B, e > 0 converging to zero.
n n n
We can now prove the following fundamental theorem on the approxi-

mate minimization of functionals.




Theorem 2.l Let f be W-lower semicontinuous anél bounded

below on a W-compact set B and suppose fn’ E, pn, rn gives a con-

n

sistent discretization for £ on E with sets BnCEn satisfying P, BnC B,
rn B < Bn' Then there exists @ and ﬁn solving MPB and MPBn . For

any such solutions, lim  f(p ﬁn) = lim f (G n) = (i) and all W-limit
Ny n N OO n
points of puﬁn , at least one of which exists, solve MPB. If MPB has

a unique solution, then pn ﬁn W -~ converges to it.

Proof. The existence of U was noted earlier; the existence of Gn is

obvious. Since O solves MPB, for all n we have f(ﬁ)sf(pnﬁn) = fn(ﬁn)
) - fn(un) satisfies lim sup um < 0 by part
ey 00

two of the consistency assumption. On the other hand, ﬁn solves MPBn

+ T]n where T]n': f(pnun

in the sense that f (4 )< inf f (u )+ e_; therefore we have £(Q) = f(p i) =
n' n g o on n n n
n

a < i ‘ < a) + + i 11
fn(un) + 'r)n anf fn(un) + e + T]n fn(rn 4) e T]n , the latter inequality

n
resulting from the fact that r G e Bn' By part one of the consistency assumption

lim sup fn(rn i) = f(Q); therefore by letting n tend to infinity in the last

T} b

string of inequalities we obtain lim f(pn ﬁn) = lim fn(ﬁn) = f(4) . Since B
N o N—s o0

is W-compact and pnﬁn € B, there exists at least one W-limit point of

p Gn in B; let u' be any such point associated with a subsequence py 4, -
n , .
J
The W -lower semi-continuity of f yiclds f£(0)= f(u') = lim inf f(p, uy) =
[lmmpp |
f(1), so u' solves MPB; if the solution to MPB is unigue, the sequence
pn Gn clearly is W-convergent to it. Q.E.D.

This theorem is a strengthening of Proposition 1, Section 4, in [7],

which is concerned with collective compactness and thereby with approximate



solutions of integral equations. Somewhat similar results, in essence directed
toward Hammerstein equations, were obtained in unpublished notes by
J.~P. Aubin and J. L. Lions [4]; their results, other than those giving explicit
conditions on the Hammerstein operators which guarantee the satisfaction of
the assumptions of our theorems, are contained in Theorem 2.1. The general
ideas concerning discretizati.n schemes are those of [ 2, 3], in which examples
of pn and rn are given.

In practice it is often necessary to minimize a given functional over
the entire space D ; under further restrictions on the discretization scheme,

we can handle this case also.

5. MINIMIZATION OVER E

Consider the following global minimization problem over E (MPE):

Let f be W-lower semicontinuous and bounded below on E: find G
such that f(4) = f(u) forall uekE.
Remark A solution to MPE need not exist.

We approximate this problem by the following approximating global

minimization problem over

E—n (MPEH): Let fn be bounded below on En .
rind 4 suchthat f (0 )< f {u)+:¢ forall u €E , where ¢ > 0
n n' n n' n n n n n
converges to zero.
Remark I\/IPEm always has a solution.

We now wish to study situations in which solutions to MPE exist and

can be obtained via solutions to 1\/[1?’En . The type of condition that usually




is imposed to guarantee the existence of a solution to MPE is a growth
condition enabling us to restrict ourselves to bounded sets and then use

results for that case. Therefore we now assume that solid spheres in E are

W-compact, i.e., for all real R, SR = {uj“uns R} is W-compact.

Definition 3.l The functional f is said to satisfy a T-condition

if there exists an R > 0 and u, in E with “uO“ < R such that ||u]] >R
implies f(u) > f(uo).
Remark If there exists a real number b and a monotone function s(t)
such that lim s(t) = « and such that f(u)z b + s(||ul|), then f satisfies
oy 0 :
a T-condition.

Thus, for a functional satisfying a T-condition, problem MPE can be

R’ for which we know

reduced to problem MPB over the W-compact set B= S
a solution exists. It is possible, however, to have a consistent discretization
for a functional f satisfying a T-condition but such that the points Gn gsatisfy
IEER I pnan}i = w : thus we need further conditions in order to solve MPE

11 ey W

via I\/IPEn . What we need is a type of uniform growth condition on the

functionals fn and a stability condition on the discretization.

Definition 3.2 A discretization for f on E satisfies a uniform growth

condition if lim sup f (u ) =« whenever lim sup [u | =«
1) - O n n I — 0 n'n

Definition 3.3 A discretization for £ on E is stable if there exists

a constant A such that |p u || = Alu | forall u €E_ forall n.
nn n''n n n

Now we can prove the following theorem on solving MPE via MPEn



Theorem 3.1 Let solid spheres in E be W-compact. Let the

W-lower semicontinuous functional f be bounded. below on E and satisfy

a T-condition with R = 430. Let the given discretization for f on E be
stable and consistent (condition 2 must hold if I pnun“ is bounded) and
satisfy a uniform growth condition; suppose each frl is bounded below on

En . Then solutions @ and ﬁn exist solving MPE and MPEn respectively.
For any such solutions nlir*nm f(pnﬁn) = n1-.i_r»nOO fn(ﬁn) = £(4), and all W-limit
points of pnﬁn, at least one of which exists, solve MPE . If the solution to
MPE is unique, then pnﬁn W -converges to it.

Proof: By owr assumptions, U and U exist. Since rnﬂ € En’
n

we have fn(ﬁn)s fn(rnﬁ) and nl._i“‘r’nc>o sup fn(rnﬁ)s f(4) by the consistency
assumption; therefore there exists a constant C such that fn(ﬁn) < C for
all u and hence, because of the uniform growth condition, there exists a
constant D such that || Gn“n < D . Therefore, by stability, || pnﬁn“' <
Affu_|l_ = AD. Let R = max (Ry-AD). Let B = {ugifju || =DJ, B= Sp =
{u;[[u]] = R}. The theorem now follows by applying Theorem 2.l with the
sets Bn and B as defined above, recalling that B is W-compact, Q.E.D.
It is quite straightforward to apply our two main theorems to generate
results concerning, for example, the approximate solution of nonlinear
operator equations (by looking at conditions guaranteeing that 4 is an interior
point of B or of E and deducing that the derivative of f must vanish there)

and the approximate solution of nonlinear eigenvalue-eigenvector problems

(by guaranteeing G to be on the boundary of B for certain types of sets B




and applying. the extended Lagrange multiplier theorem). Results of this

type are contained in Sections 4 and 5 of [7]; we pursue this no further
here. Instead we look briefly at a number of methods currently in use

for solving certain types of problems to see how they fit into the above theory
aﬁd how the theory indicates the necessary characteristics of the particular

methods.

4., EXAMPLES

I. Rayleigh-Ritz.
Perhaps the simplest and oldest example is that of the Rayleigh-Ritz
procedure. Here we let E be a Hilbert space with complete basis

P . q)n, -++ and for each n let En be the subspace of E spanned by

1
v, ¢ , with p u =u considered as an elementof E, and r u =
l n nn n n

éﬁl <u,fg’>i > q”i where <u,v > is the inner product on E; the inner product

on En is the one induced by <+, *> on E . Given a functional f, let

fn =f for all n . Such a discretization is stable and, if f is norm continuous,
it i1s consistent. A great deal of interest has arisen lately in the application

of this method to the numerical solution of differential equations using various

hases *, that is, differentfinitedimensional subspaces En . In

i 1 y
particular, in [5] it is shown how very good error bounds can be computed;
essentially this approach assumes that f has a differentiable gradient J = Vf

with uniformly positive definite derivative J'. If (Gn) minimizes f (fn) on

E(En) then J(4) = 0 and '~-LI(ﬁn), b, > =0, 1=1,-++n; hence



) o= <G - B ) = (1 - 0 3 - 0 icy
0 J() ](un), P, > =<J (un + (0 un)) (G un),(pi > which states

that Gn is the projection under the inner product [u,v]= <I'(ﬁn + Y

(a—ﬁn))u,v> of 4 onto En . Thus [G-T ,0 -1 ]S[ﬁ—ur

n n ,u—un]

1
for all un € En which provides an error estimate. Details and extensions
of this approach are contained in [5,6].

One difficulty not mentioned in the above papers is that of minimizing
fn over E.; in this case fn is an integral of a complicated differential
form, often nonlinear. In practice this is discretized by a quadrature sum

so that we do not in fact have fn =t . The difficulties therein created are

treated 1n [9].

II. Regularization.
Often one seeks not just any arbitrary minimizing point to a functional
but one which, in some sense, is smoothest or most regular. For example,

Izt f and g be weakly lower semicontinuous functionals on a reflexive Banach

space L, and let g be nonncgative. Let EI = E, pn = rn = the identity,
3!
f f+a g where an > 0 converges to zero. Let B be a weakly compact
n n
selin I with [ bounded below on B . The consistency condition 1) becomes

Lim sup [f(Q) + a g(Q)| = f(u) which clearly is satisfied. Condition 2)
ll PR L0

becomes lim sup -a_g(u_)= 0 which follows from the nonnegativity of
1N — & n n

IA

dn and g . For future reference we note that f(ﬁn) + an g(ﬁn) < f(4) + a, g(Q)

- f(Dn) k ang(a), implying g(ﬂn) < g(a). It follows then from Theorem 2.1

1 - . . . - .
watoany weal limit point u of {un] minimizes f over B; moreover, since




g(u') = lim inf g(u ) = g{u), g(u') is the minimum value of g over the set
n— © n

of minimizing points of f in B . One says that the minimizing point has been

regularized by g[ll, 16]; if B is convex and g is uniformly convex, then

u' is in fact a norm limit point and moreover if f is quasi-convex [l2], the

. . 1 .
entire sequence {un] converges in norm to u [l1].

III. Chebyshev Solution of Differential Equations.

Suppose one seeks to solve Au =b where A is a uniformly elliptic
linear differential operator in two variables over a bounded domain D, under
the condition u =0 on T, the boundary of D, assumed to be sufficiently
smooth; more general types of equativns may also be treated by the method
to be presented. A numerical method of recent popularity [ 10, L 4] given a
szguence of functions {tpi) satisfying the boundary data, consists in choosing

- a to minimize max |[A(Z a ©.)](x,) - b(x))|

numbers a , ,
n, ! n, n I<jsM i=1 n, i j )

where the M points {xj} form a "grid" over D . Strictly for convenience
wo take M = 4n and suppose that the grid is such that any point in D is at
s distance of at most hn from a grid point x], . We wish to find conditions

n
2 a
i=1

i

under which Gn cpi will converge, in some sense, to the solution

n, i
u of our problem.

Since we seek to minimize a supremum norm, the norm must be defined,

solet E={uiu=0 on r , all partial derivatives of u through second

srder are continuous on D = DU r); for ueE, let [ul| = |u]

o

max |u(x)|. Let f(u) = ||Au - bl _» where we now need to assume that b
D



10

is bounded on D. Let En be that subset of E spanned by the functions

oM . cpn, assumed to lie in E; let pn be the identity mapping, and rn

I

be at the moment undefined. Define f (u ) = |Au_ - b = max
n n n 4n,®  |<i<4p
| [Aun](xi) - b(xi)] i we now seek conditions for consistency. Consider 2)

of our Definition 2.2. f(p u ) - f(u) = “Aun -bf - “Aun - b|| PR

Since this quantity is always non-negative, the requirement nlim(x sup
Py

)

[f(pnu ) - fn(u )] = 0 in fact demands convergence; in order to conpare

n n

suprema over discrete and continuous sets, we need to know something about
the growth of the functions Aun - b between grid points. Hence we now need
to assume that A(pi satisfies a Lipschitz condition with Lipschitz constant

>\i (this restricts A somewhat also) and that b satisfies one with a constant

n
From this it follows that |f(p u ) -f (u)| =h = |a
nn n' n n =g

| | |. For

n
a =1 . Thus we need next a growth condition on 2 la 5

n, 0 i=0 n, i

n
example, the conditions that i) there exists a constant C such that by
i=0

= C forall n, and ii) hn An tends to zero, where An = max . ,

la
l<isn 1

n, ij

would be sufficient; in practice the An do in fact become large, while the

restriction on the an i is easy to implement. In essence, the above restrictions
3

n
are defining B , i.e., B ={u; = |a .| = CJ.
n n noytomd
Next consider condition 1) of Definition 2.2, where rn is to be
defined. We require lim sup fn(rnu) < f(u). Now fn(rnu)s f(rnu), 50 we need

Ty 00

only require that lim sup f(r_u) = f(u); this is certainly true if r u is
N —s o0 n n

an approximation method in which Arnu converges uniformly to Au, for




11

example, if rnu and all its partial derivatives through second order converge

uniformly to those for u . We remark that it is necessary to have r u in B .
‘'n n -

Under the above conditions, it follows from Theorem 2,1 andn its proof

[

that lim f (4 )= 1lim f(p

) = £f(4) = 0, where U solves Al =b and
Nesp 0 N N 1} =3 nn

lies in E; the conditions on W-compactness and W-lower semicontinuity
are needed only to prove convergence for pnun, a problem easily handled

differently here. We know that “Aﬁn - b“oo = f(pnun) converges to zero. By

a simple use of the maximum principle [13], we deduce || u - G| S
HAﬁn ~ b“u Hw“ where w solves Aw = -1 in D, w =0 on p: therefore

(11 converges uniformly to the solution G .
X

The application of the theory in Section 2 to this problem indicates the
type of approach necessary to prove convergence for this numerical method.
One requires: |} smooth functions cpi with Lipschitz constants \i for
A that do not grow too rapidly, 2) results from approximation theory that

i
state that if one approximates functions b by combinations of functions
n

AN, the sums 3 idn il reamin bounded, and 3} functions b can be
approximated by functiohs Acpi . The requirements 1) and 3) here are
probably less difficull; gencralized Bessel ineqguality results like 2), however,
are notl known to this author for general casos. While numerical work with
this method proceeds, theoretical resulls ol the type suggested by our

throrem should be sought.



IV. Calculus of Variations

Consider the problem of minimizing the functional f(u) =

l
r

. . du .
g(t, u, u)dt, u(0) = u(l) = 0, where 0 = 5’{ . The following simple
=0
case of a general numerical method has been suggested [8]: minimize
I Ynpi - Yn il

f (u = h t u 2 2 = = =

n( n) .2::1 i 9 i-17 "n,i-1° hi b “h, 0 “n,n ! hi
t. -t ., where the minimization is over the set of values of u st u ;

i i-1 n, ! n, n-l

this method can be fit neatly into the theory of Theorem 2.l. In [8], under

the assumption that there exist unique minimizing points for f (in C'[O, ]

a . -4
n,i n,i-t
1 m |
i
constant A independent of n, it was purportedly proved that pn ﬁn , the

and fn satisfying the "spike" condition = A for some
piecewise linear interpolation to Gn, converges uniformly to { ; because
th2 authors inadvertently left out an assumption guaranteeing a lower semi-
continuity property for the functional f, the proof is in fact incorrect. How -
cver, as we shall show below by use of Theorem 2.1, the usual assumptions
guarantecing a unique minimizing point for f, in conjunction with an assump-
tion guarantecing the satisfaction of a type of spike condition, yield a con-
vergence proof .,
| , )
For convenience let us take hi =h = N forall i . For a fixed

p>1, let E={wu(0)=u(l)=0, u is absolutely continuous on [0, 1],

Fl . L/p
ue L L0, 1] for ueE, let |uf = “ilnp ={ |0ty Pdt) . For each
0
n, let En be (n-l)-dimensional Euclidean space, where u € En has the
n D lL/p
norm “un”n = {h i§1 Hun,i - un,i—l“ J , where E . 0 by




L3

definition. Let pn be the mapping defined by piecewise linear joining

of the values u i at the points ti = ih, thus pnun € E. Define the mapping

3

rn via (rnu)i =uft), i=1,--n-1. Define W-convergence as follows: a

i
(n) AL

seguence u in E W-converges to u in E if u - u)v dt converges
\..'O

L l
to zero for every function v(t) € Lq(o, ), 5 + E =1,

: n
Proposition 4.1 Solid spheres in E are W-compact. If u( ) W-con-

verges to u, then u(n) converges to u uniformly, i.e., in the supremum
norm.
Proof: If we take any sequence o™i B with Hu(n) =1l (™ Hp < R,
(nj)

then, by Alaoglu's Theorem [ 15, p. 228], there exists a subsequence u

t
and a function s in L, such that for all v in Lq, r (fl(nizs)v dt. tends to

P
[t PRINEN
zoro. Let u(t) = s(t) dt; it follows that ue E and u j° W-converges
0
to u . [lor the second part of the proofl, we note first that “u(n)H is

bounded, by the uniform boundedness principle [ 15, p. 202]. Thus

. l/p L/a
‘ (n) L2, ty . (n)P
T A L I A L RO R LR B
T oah Y
T u(n);l |t2 ’] /a ,  which implies that the sequence u(n) is uniformly
bounded and equicontinuous. If u(n) does not converge uniformly to u,

n,
then there exists € > 0 and a sequence t], such that lu( J)(tj) - u(t~)] > g;

J

applying Ascoli's theorem [ 15, p. 276] to the bounded, equicontinuous
sequence u(nj) vields a contradiction. Q.E.D.

We nowmake the standard type of assumption in the calculus of variations

in order to guarantee the existence of a minimizing point for f(u).
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Assumptions: i) g(t,u,w) is jointly continuous in its variables

for 0 st=1 and - «=< u,w = «, ii) there exist constants a,b with
b > 0 such that g(t,u,w) = a+ b [w[p forall t in [0,l], u finite.
iii) g is differentiably convex in w, i.e., g(t, U’Wl) - g(t, u, WZ) >
(wl - WZ) gw(t, u,wa).

Proposition 4.2 The functional f is W-lower semicontinuous on E,

bounded below, and satisfies a T-condition.

N
Proof: For the last two statements, note that f(u) = [ g(t, u, u) dt =
N "0
! [a +Db }L’l]p] dt =a +b ||ul P The proof of the W-lower semicontinuity
~0
is straightforward using the convexity of g ; details may be found in [l, p. 137~

139]. Q.E.D.

Proposition 4.3 The discretization scheme defined above is stable

.d satisfies a unitorm growth condition.

o

P ! D noopl p
Proof: || pnunll - “pnun) |“dt= = ](pnun)' |” dt = h
-0 i=1 ti-l
n IU A ; I p n u .~ u .
- n,i n,i-1" . p _ n, i n, i-1
! [ h b=l un”n ' fn(un) =h iél alty “n, 17 h )
n u . —u . p
- n, i n, i-1 v, p
> h ii[a +b| - | ] —a+bHuan Q.E.D.

The only remaining ingredient for application of Theorem 3.l is the
consistency; in [8], the spike condition was needed for this. In our case,
we must make the following assumptions.

Assumptions iv) Some solution @ minimizing f(u) lies in C [0, 1],

i.c., 07 is continuous, v) There exist constants ¢ and d and a continuous

function s(t, v) such that |g(l,!,v|, z) - g(t[v),z) ] < (c+d lzlp)
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|s(tl, Vl) - s(t&, v&)] where tl’ tZ arce arbitrary points in [0, 1] and
vl, VZ, z are arbitrary real numbers.
we
Remark. If g(t,u,w) = Py + r{t,u), then (v) is satisfied with

s=r. If g(t,u,w)= £(w) m(t,u) with |g(w)] = c+d ]W}p, then (v)
is satisfied with r = m; many actual problems are of the above types.

Proposition 4.4 The discretization is consistent.

Proof: For condition 1), we prove lim ]f (r 4) - f(ﬁ)l =0 .
Il = ®© n

Since, by assumption, @ is in CE[O, L], given e, for sufficiently large

a, - 1

5 -0 < i - i i-1 <
n, }u(ti_L) ()] < e and [G°(1) —— | < e for b Stst .
n
For convenience, we write merely u for 4 . lf(u) - fn(rnu)} = ¥
i=1
Y SRt
/f lg(t, u, u) - g(ti—l’ ui——l’ “——T"m )i dt. But, by uniform continuity
\_.t "

=1

of g, given & > 0 there exists € > 0 and then N such thut n > N

t
n .
implies [f(u) - fn(rnu)\ s 3 i 6dt=0. Since 6> 0 was arbitrary,
=l Yt
i-1

condition 1) is proved. For condition 2), we show that lim [f(pnun) -
' [l =

n 1
f(u)| =0 if [p u, [l is bounded. [f(p u ) - (u)][=h b C)
u

i=1 ¢
Ynoi T Yninl ni tn,i-l
gty )+ oh fma) u by Fou h bl Uy h )
1 u_ - u_ p
n n, i n, i-1l
|da = h b F (c +d | m | )]s(ti_1+qh, (1 - uog
i=1 v'0
- i) - S(ti-l’ u, i—l” da . Now | uan = | pnun][ is bounded, lun’ i& is
bounded, and |u ., -u | < hl_l/p flu_ |l Thus, using the uniform
n, i n,i-1 n'n

continuity of s(t,u), given ¢ > 0 there exists N such that n > N implies
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n Fl un i - Un: Q-]
[f(Pnun) - fn(un)] < h ii LA/O (c +d] : -

p P
| ) eda = ¢[c+ dHun“n I;

since e > 0 was arbitrary, condition 2) follows. Q.E.D.
We now can state the following theorem which follows immediately
from Theorem 3.1 and the above propositions.

Theorem 4.1 Let Assumptions (i) - (v) be valid and let the discretization

method described above be used. Then all W-limit points of pnﬁn (at least
one of which exists) minimize f . If the solution U is unique, then in
particular pnﬁn converges uniformly to @ and the derivatives converge Lp-—

weakly.
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