# BOUNDARY CONTROLLABILITY OF NONLINEAR HYPERBOLIC SYSTEMS

by

Marco Cirinà

Technical Report #40

October, 1968

|  | Cooper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | A 1974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|  | A contract of the contract of  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  | The second secon |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  | To come you                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  | Try makes Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|  | With the second  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### BOUNDARY CONTROLLABILITY OF NONLINEAR

#### HYPERBOLIC SYSTEMS\*

#### Marco Cirina\*\*

#### 1. INTRODUCTION

Russell has shown in [12] that if T>0 is a real number not too small, it is possible to find a real valued function u=u(t) on [0,T], called boundary control, such that there is a function w=w(x,t) defined on  $\Re=[0,1]\times[0,T]$  which satisfies

(1.1) 
$$w_{tt} = c(x) w_{xx}, (x,t) \in \Re$$

(1.2) 
$$w(x,0) = f(x)$$
,  $w_{+}(x,0) = h(x)$ ,  $x \in [0,1]$ 

(1.3) 
$$w(0,t) = 0$$
,  $w_{x}(1,t) = u(t)$ ,  $t \in [0,T]$ 

$$(1.4) w(x,T) = 0 , x \in [0,1] ,$$

where c, f, h are appropriately given functions. Results on the boundary controllability of linear equations are also given in [1] for the simplest wave equation, and in [5] for general equations including the case of many space variables. See also [9], [3].

<sup>\*</sup> Supported in part by the National Science Foundation under Grant GP 6070

<sup>\*\*</sup>Present address: Department of Mathematics, New York University, New York, N.Y.

In this paper we prove the existence of boundary controls for non-linear first order hyperbolic systems in two independent variables, which include the system formulation of (1.1) as a particular case. The data and the coefficient of the equations will always be assumed to have continuous first derivatives and so the solutions will be  $C^1$  functions satisfying the equations everywhere on their domain of definition. One important difference between linear and nonlinear hyperbolic problems is that conditions insuring the existence of a local solution are not sufficient, in general, to guarantee the existence of a solution of the latter problems on a set of preassigned size. On the other hand, in a initial value problem the data determine the solution completely on a certain set. Hence, in the nonlinear case, for the existence of boundary controls it is necessary that the solution of the relevant hyperbolic problem can be extended to sets of given size.

Some such extensions have been studied in [2], and the conditions found there, strengthened so as to make the time-like and the space-like variables interchangeable, will be seen to be sufficient for the existence of boundary controls in the nonlinear case. Also for the analogue of (1.1) to (1.4) it will be proved that if T is not too small, then in an appropriate Banach space there is an open set of initial data which can be brought to zero in time T.

### 2. DEFINITIONS, ZERO CONTROLLABILITY

Let m>0, n>0 be integers; R, R, R, m, m are respectively the real numbers, the m-dimensional euclidean space and the space of real matrices with m rows and n columns.

NORMS Throughout this paper, |.| denotes sup-norms; so |h| = absolute value of h if h  $\in$  R, |h| = max {|h<sub>i</sub>| : i=1,...,m} if h = (h<sub>i</sub>)  $\in$  R<sub>m</sub>, |h| = max { $\sum_{j=1}^{n} |h_{ij}| : i=1,...,m$ } if h = (h<sub>ij</sub>)  $\in$  R<sub>m</sub> × n and |h| = sup {|h(x)| : x  $\in$  X} if h is a function defined on a set X and taking values in either R, or R<sub>m</sub>, or R<sub>m×n</sub>.

From now on m,  $\underline{m}$  denote positive integers. Fix  $m=m+\underline{m}$ ; if  $h=(h_{\underline{i}})\in R_{\underline{m}}$ ,  $\overline{h}$  and  $\underline{h}$  are the points of  $R_{\underline{m}}$ ,  $R_{\underline{m}}$  whose components are defined by

$$\overline{h}_{i} = h_{i}$$
  $i=1,\ldots,\overline{m}$ ;  $\underline{h}_{i} = h_{i+m}$   $i=1,\ldots,\underline{m}$ ;

analogously if  $h=(h_{ij})\in R_{m\times m}$ ,  $\overline{h}$  is the submatrix of h formed by the first  $\overline{m}$  rows of h, and  $\underline{h}$  that formed by the last  $\underline{m}$  rows; if h is a function taking values in  $R_{\overline{m}}$  or  $R_{\overline{m}\times m}$ ,  $\overline{h}$  and  $\underline{h}$  are defined similarly. If  $\alpha$  is a positive real and  $\Re \subset R_2$ ,  $\Re \alpha$  is the set defined by

$$\Re _{\alpha} = \{(x,t,w): (x,t) \in \Re \ , \ w \in R_{m}, |w| \leq \alpha \} \ ;$$
 if a, T  $\in$  (0,  $\infty$ ],  $\Re = \Re (a,T)$  is the set 
$$\Re = \{(x,t): 0 \leq x \leq a \ , \ x \, \ddagger \, \infty, \ 0 \leq t \leq T, \ t \, \ddagger \, \infty \};$$

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The second secon |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Management of the Control of the Con |
| The Total Control of the Control of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

In (iii) and throughout this paper  $S^{-1}$  is the map  $(x,t,w) \rightarrow (S(x,t,w))^{-1}$ , where the last object is the inverse of S(x,t,w) in  $R_{m\times m}$ ;  $A^{-1}$  and  $D^{-1}$  are defined analogously. Note that (i) (i)' amount to the definition of "the system (2.1) is hyperbolic on  $R_{\alpha}$ , and (ii) (ii)' are usual conditions in dealing with hyperbolic mixed boundary problems; also if R is compact, (iii) is redundant and it suffices that (i) (ii) 'hold for  $\delta = 0$ .

THE CLASS  $C^1(X,Y)$  We write  $z \in C^1(X,Y)$  as an abbreviation of "z is a continuously differentiable Y-valued function on X"; in absence of ambiguity the range space Y will be omitted. If X is an interval,  $C^1(X,R_m)$  is given the following more special meaning. Let  $I \in R$  be a compact interval;  $C^1(I,R_m)$  is the set of  $R_m$ -valued continuous functions  $\phi$  on I possessing a continuous derivative on I, endowed with its usual algebraic structure and normed by

$$\| \phi \| = | \phi | + | \phi' |$$

where  $\phi$ ' is the derivative of  $\phi$ .  $C_o^1 = C_o^1([0,1],R_m)$  is the subspace of  $C^1 = C^1([0,1],R_m)$  defined by

$$C_0^1 = \{ \phi : \phi \in C^1, \phi(0) = \phi'(0) = 0 \}.$$

So  $C^{1}$ ,  $C_{0}^{1}$  are both Banach spaces.

ZERO CONTROLLABILITY Put  $\Re = \Re (1,\infty)$ ; suppose A = A(x,t,w),  $f = f(x,t,w) \text{ are functions defined on } \Re_{\alpha}, A \text{ is } R_{m \times m} \text{ valued,}$ 

f is  $R_{\text{m}}$  valued. We say that the system

(2.1) 
$$z_t + A(x,t,z)z_x = f(x,t,z)$$

is zero controllable with one boundary control if  $m=\overline{m}+\underline{m}$ , some  $\overline{m}$   $\underline{m}$ , and there is an open set  $\Omega \in C^1_O([0,1],R_{\overline{m}})$  such that for each  $\emptyset \in \Omega$  there exist a real number T>0 and a function  $\underline{u}=\underline{u}(t)$  from [0,T] to  $R_{\underline{m}}$  so that the solution z=z(x,t) of

(2.2) 
$$z_t + A(x,t,z)z_x = f(x,t,z)$$
,  $(x,t) \in \Re$  (1,T)

(2.3) 
$$z(x,0) = \phi(x)$$
,  $0 \le x \le 1$ 

(2.4) 
$$\overline{z}(0,t) = 0$$
 ,  $\underline{z}(1,t) = \underline{u}(t)$  ,  $0 \le t \le T$ 

exists and satisfies

(2.5) 
$$z(x,T) = 0, 0 \le x \le 1$$
.

Analogously, we say that (2.1) is zero controllable with two boundary controls if  $m = \overline{m} + \underline{m}$ , some  $\overline{m}$   $\underline{m}$ , and there is an open set  $\Omega \in C^1([0,1],R_m)$  such that for each  $\phi \in \Omega$  there exists a real number T>0 and functions  $\overline{u}=\overline{u}(t)$ ,  $\underline{u}=\underline{u}(t)$  from [0,T] to  $R_{\overline{m}}$  and  $R_{\underline{m}}$  respectively, so that the solution z=z(x,t) of

(2.6) 
$$z_t + A(x,t,z)z_x = f(x,t,z)$$
,  $(x,t) \in \Re(1,T)$ 

(2.7) 
$$z(x,0) = \phi(x)$$
,  $0 \le x \le 1$ 

(2.8) 
$$\overline{z}(0,t) = \overline{u}(t)$$
,  $\underline{z}(1,t) = \underline{u}(t)$ ,  $0 \le t \le T$ ,

exists and satisfies

$$z(x,T) = 0 , 0 \le x \le 1.$$

#### 3. THE MAIN RESULT

If A is of class  $\overline{\Sigma}$  then (3.1) is zero controllable with one boundary control. This assertion is a particular case of our main result, theorem 3.III, which will be seen to follow mainly from the fact that if  $A \in \Sigma$  then the solution of (3.1) to (3.3) below exists on a preassigned rectangle whenever the data  $\phi$   $\overline{u}$   $\underline{u}$  are conveniently restricted. For  $m = \overline{m} + \underline{m}$  consider the following mixed boundary problem

(3.1) 
$$z_t + A(x,t,z)z_x = 0$$
 ,  $(x,t) \in \mathbb{R}$  (a,T)

(3.2) 
$$z(x,0) = \phi(x)$$
,  $x \in [0,a]$ 

(3.3) 
$$\overline{z}(0,t) = \overline{u}(t)$$
,  $\underline{z}(a,t) = \underline{u}(t)$ ,  $t \in [0,T]$ 

where

(3.4) 
$$\phi \in C^1([0,a],R_{\underline{m}})$$
 ,  $\overline{u} \in C^1([0,T],R_{\overline{m}})$  ,  $\underline{u} \in C^1([0,T],R_{\underline{m}})$  and  $\phi \overline{u} \underline{u}$  satisfy the compatibility conditions

(i) 
$$\overline{u}(0) = \overline{\phi}(0)$$
,  $\overline{u}'(0) + \overline{A}(0,0,\phi(0))\phi'(0) = 0$ 

(ii) 
$$\underline{\mathbf{u}}(0) = \underline{\phi}(a)$$
,  $\underline{\mathbf{u}}'(0) + \underline{\mathbf{A}}(a,0,\phi(a))\phi'(a) = 0$ .

3.I REMARK Suppose z satisfies (3.1),  $0 \le t < T$ , and for  $i=1,\ldots,\overline{m}$  let  $\xi_i = \xi_i(s)$  be defined by

$$\frac{d}{ds} \xi_{i}(s) = d_{i}(\xi_{i}(s), s, z(\xi_{i}(s), s)), s > t, \xi_{i}(t) = 0,$$

where  $d_i$  is the ith diagonal element of  $D = SAS^{-1}$ . If  $d_i > 0$  then at s = t the curve  $(\xi_i(s), s)$   $s \ge t$ , called the ith characteristic of (3.1) through (0,t), enters the rectangle  $\Re = \Re$  (a,T). So

if  $A \in \overline{\Sigma}$  (R, m, a), the first of (3.3) amount to fixing on the boundary x = 0 of R, exactly those components of z which correspond to characteristics entering R there.

The following continuation result is known, see [2] theorems 5.III and 5.I.

3.II LEMMA Fix  $0 < c_0 < \alpha$ ,  $0 < T < \infty$  all real,  $m = \overline{m} + \underline{m}$ ,  $0 < \varepsilon < b \le \infty$ ,  $\Re = \Re(b,\infty)$  and  $A = S^{-1}DS \in \overline{\Sigma}$  ( $\Re$ ,  $m,\alpha$ ). Conclusion: there are real numbers c > 0, N > 0 such that if  $a \in R \cap [\varepsilon,b]$ ,  $\phi \ \overline{u} \ \underline{u}$  satisfy (3.4),  $|\phi| \le c_0$  and  $\max(|\phi'|,|\overline{u}'|,|\underline{u}'|) \le c$  then on  $\Re(a,T)$  there is a (unique) function z of class  $C^1$  which satisfy (3.1) to (3.3), and  $|z_x| \le N(|\phi'| + |\overline{u}'| + |\underline{u}'|)$ ; moreover for  $0 < T_1 \le \min(T, \frac{a}{|D|})$  the restriction of z to the triangle  $\tau(a,T_1)$  is independent of the choice of  $\underline{u}$ .

Lemma 3.II is the main tool for proving the following  $3.III \ THEOREM \ Put \ \mathcal{R} = \mathcal{R} \ (1,\infty); \ fix \ m = \overline{m} + \underline{m} \ , \ A = S^{-1}DS \in \overline{\Sigma} (R,m,\alpha), \\ 0 < c_{_{\scriptsize O}} < \alpha \ \text{ and } \overline{u} \in C^1([0,\infty],R_{\overline{m}}) \ \text{ with bounded support.}$  Conclusion: there is c>0 real such that if  $\phi \in C^1([0,1],R_{\underline{m}})$ ,  $\phi \ \overline{u} \ \text{ satisfy } (3.4) \ (i), \ |\phi| \leq c_{_{\scriptsize O}} \ \text{ and } \ \max(|\phi'|,|\overline{u}'|) \leq c, \ \text{then there}$  exist  $0 < T < \infty$ ,  $\underline{u} \in C^1([0,T],R_{\underline{m}})$  so that the solution z=z(x,t) of

(3.1) to (3.3) with a = 1 exists in  $C^1(\Re(1,T),R_m)$  is unique there, and moreover satisfies

(1) 
$$z(x,T) = 0$$
, all  $x \in [0,1]$ ;  $|z| \le \min(\alpha, 2C_0)$ 

PROOF Fix  $c_1$ ,  $c_2$ ,  $t_0$  real so that

(2) 
$$c_0 < c_1 < c_2 < \min(\alpha, 2c_0)$$
;  $\overline{u}(t) = 0$  all  $t \ge t_0 \ge 0$ ; and define

(3) 
$$T_0 = |\underline{D}|^{-1}, T_1 = |\underline{D}|^{-1}$$
;

note that  $T_{o}$ ,  $T_{1}$  are real, positive and  $T_{o} \leq T_{1}$ .

For each real  $\delta > 0$ , fix a real number  $\Delta = \Delta(\delta)$  such that if h satisfies

(4) 
$$h \in C^{1}([0,T_{1}],R_{\overline{m}}), |h(T_{1})| \leq c_{1}, |h'(T_{1})| \leq \delta$$

then h has a  $C^1$  extension H to  $[0,\infty)$  satisfying  $|H| \leq c_1 + \delta, \ |H'| \leq \delta, \ H(t) = 0 \ \text{all} \ t \geq T_1 + \Delta.$ 

 $(\alpha 1)$  Consider the mixed boundary problem

(5) 
$$z_x + A^{-1}(x,t,z)z_t = 0$$
,  $(x,t) \in \Re (1,T)$ 

(6) 
$$z(0,t) = \psi(t), t \in [0,T]$$

(7) 
$$\overline{z}(x,0) = \overline{\phi}(x)$$
,  $\underline{z}(x,T) = 0$ ,  $x \in [0,1]$ .

As it is easily checked  $A^{-1} \in \overline{\Sigma}$  (R,m,a); hence by

3.II there is  $\delta_2$ 

(8) 
$$0 < \delta_2 \le \min(\frac{c_1 - c_0}{T_1}, c_2 - c_1)$$

such that if

(9) 
$$T_{0} \leq T < \infty, \ \psi \in C^{1}([0,T],R_{m}) \ ; \ \psi(T) = \psi'(T) = 0,$$

$$\overline{\psi}(0) = \overline{\phi}(0), \ \overline{\phi}'(0) + \overline{A^{-1}}(0,0,\psi(0))\psi'(0) = 0 \ ;$$

$$|\psi| \leq c_{2} \quad \text{and} \quad \max(|\psi'|,|\overline{\phi}'|) \leq \delta_{2}$$

there is a (unique)  $z \in C^1((1,T))$  satisfying (5) to (7) and

(10) 
$$|z| \leq \min(\alpha, 2c_0)$$
.

(
$$\alpha$$
2) For  $\underline{v} = \underline{v}(t)$  satisfying

(11) 
$$\underline{v} \in C^1([0,T_1],R_{\underline{m}})$$
,  $v(0) = \underline{\phi}(1)$ ,  $\underline{v}'(0) + \underline{A}(1,0,\phi(1))\phi'(1) = 0$  consider the mixed boundary problem

(12) 
$$w_t + A(x,t,w)w_x = 0$$
,  $(x,t) \in \Re(1,T_1)$ 

(13) 
$$w(x, 0) = \phi(x), x \in [0, 1]$$

(14) 
$$\overline{w}(0,t) = \overline{u}(t)$$
,  $\underline{w}(1,t) = \underline{v}(t)$ ,  $t \in [0,T_1]$ .

Since A  $\in$   $\overline{\Sigma}$  (R,m,a), Lemma 3.II implies that there is  $\delta_1 \ > \ 0 \quad \text{such that whenever}$ 

$$\phi$$
 ,  $\overline{u}$  ,  $\underline{v}$  satisfy (3.4) for a = 1 T = T \_1 , (11) ,  $|\phi| \leq c_O$  and  $\max(|\phi'|,|\overline{u}'|,|\underline{v}'|) \leq \delta_1$ 

there is a function  $w \in C^1(\Re(1,T_1),R_m)$  satisfying (12), (13), (14) and

(15) 
$$|w_t| \le \delta_2$$
,  $|w| \le c_1$ .

Hence there is c,  $0 < c \le \delta_2$ , so that if  $\phi, \overline{u}$  are as in the hypotheses of the theorem, there is v satisfying (11) and (a unique)  $w \in C^1(\Re(1,T_1),R_m)$  satisfying (12) to (15). Indeed c can be taken to be any number satisfying

$$0 < c \le \min(\delta_2, \delta_1)$$
,  $|\underline{A}| c \le \delta_1$ ,

and  $\underline{v}$  any function satisfying (11) and  $|\underline{v}'| \leq c$ , for instance  $\underline{v}(t) = \underline{\phi}(1) + t \underline{A}(1,0,\phi(1))\phi'(1).$ 

It will now be proved that for this c the conclusion of the theorem holds. To this end, let  $\phi, \overline{u}$  be as in the hypotheses; fix  $\underline{v}$  as said in ( $\alpha 2$ ) and let w be the function satisfying (12) to (15). Define

$$T_2 = T_1 + \Delta(\delta_2)$$
;  $h(t) = \underline{w}(0,t)$ ,  $t \in [0,T_1]$ ;

in view of (8) and the definition of  $\Delta(\delta_2)$ , h has a  $C^1$  extension H to  $[0,\infty]$  with  $|H|\leq c_2$ ,  $|H'|\leq \delta_2$  and H(t)=0 all  $t\geq T_2$ . Let

$$T'_2 = \max(T_2, t_0) ; T = T'_2 + |(D^{-1})|$$

and define the function  $\psi = \psi(t)$  by

$$\overline{\psi}(t) = \overline{u}(t)$$
 ,  $\underline{\psi}(t) = H(t)$  ,  $t \in [0,T]$  ;

then  $\psi$  (t) = 0 for  $T_2' \le t \le T$  and  $\psi$  satisfies (9). So let z\*=z\*(x,t) be the only function in  $C^1(\Re(1,T),R_m)$  satisfying (5) (6) (7) (10).

It will now be shown that z\* satisfies also

(16) 
$$z*(x,T) = 0$$
, all  $x \in [0,1]$ 

(17) 
$$z*(x,0) = \phi(x)$$
, all  $x \in [0,1]$ .

To this end let  $\tau \subset \mathbb{R}$  (1,T) be the triangle

$$\tau_{o} = \{(x,t) : 0 \le x \le 1, T'_{2} + (T'_{2}-T)x \le t \le T\}$$

and consider the mixed boundary problems

(18) 
$$z_x + A^{-1}(x,t,z)z_t = 0$$

(19) 
$$z(0,t) = 0$$
,  $t \in [T'_2,T]$ 

(20) 
$$\underline{z}(x,T) = 0$$
 ,  $x \in [0,1]$ ;

the zero function on  $\tau_{\rm O}$  and the restriction of z\* to  $\tau_{\rm O}$  both satisfy (18) on  $\tau_{\rm O'}$  (19) and (20); also since  $T - T_2' = |(D^{-1})|$ , the last assertion in 3.II implies that on  $\tau_{\rm O}$  there is at most one function in  $C^1(\tau_{\rm O},R_{\rm m})$  which satisfies (21) to (23); hence (16) holds because

$$z*(x,t) = 0$$
 , all  $(x,t) \in \tau_0$ .

Analogously, let

$$\tau = \{(x,t) : 0 \le x \le 1, 0 \le t \le T_1 - T_1 x\}$$

and consider the mixed boundary problem

(21) 
$$z_t + A^{-1}(x,t,z)z_x = 0$$

(22) 
$$z(0,t) = \psi(t), t \in [0,T_1]$$

(23) 
$$\overline{z}(x,0) = \overline{\phi}(x)$$
,  $x \in [0,1]$ ;

In view of the definitions of  $\psi$ , w, z\*, it is easily seen that the restrictions  $w|_{\tau}$  and  $z*|_{\tau}$  both belong to  $C^1(\tau,R_m)$  and satisfy (21) on  $\tau$ , (22), (23); since  $T_1=|(\underline{D}^{-1})|$ , on  $\tau$  uniqueness prevails, and hence

$$w \mid_{\tau} = z * \mid_{\tau} ;$$

this proves (17).

Define

$$u(t) = \underline{z}*(1,t) , t \in [0,T];$$

then  $\underline{u} \in C^1([0,T],R_{\underline{m}})$ . Since z = z\* satisfies (5) to (7), (10), (16), (17), from the definition of  $\psi$ ,  $\underline{u}$  follows that z\* is the solution of (3.1) to (3.3) with a = 1, and satisfies (1). This completes the proof.

### 4. CONTROLLABILITY OF $z_t + A(x,t,z)z_x = 0$

Let us first note that the existence proof of the boundary control  $\underline{u}$ , as given in 3.III, is constructive and, as it will be indicated later in this section, it is well suited as a basis for the numerical computation of such control. Some consequences of the main result will now be made explicit. The special case of 3.III for  $\overline{u}=0$  can be restated as 4.I THEOREM Suppose  $\Re=\Re\left(1,\infty\right)$ ,  $m=\overline{m}+\underline{m}$  and  $A\in\overline{\Sigma}$   $(\Re,m,\alpha)$ . Then  $z_t+A(x,t,z)z_x=0$  is zero controllable with one boundary control.

Fix m, c<sub>o</sub> as in 3.III and let c > 0 be as given there for  $\overline{u}=0$ ; put  $C^1=C^1([0,1],R_m)$  and define  $\Omega_o=\Omega_o(c_o,c)$  by  $\Omega_o=\{\phi: \phi\in C^1, \ \overline{\phi}(0)=0\ , \ |\phi|\leq c_o, \ |\phi'|\leq c\}.$ 

Then  $\Omega_{_{\scriptsize O}}$  contains non trivial open sets of  $C_{_{\scriptsize O}}^1([0,1],R_{_{\scriptsize m}})$ , and from the proof of 3.III it is clear that the real number T>0 produced there does not depend on the choice of  $\phi$  in  $\Omega_{_{\scriptsize O}}$ , i.e. any  $\phi$  in  $\Omega$  can be brought to zero in time T; furthermore T cannot be too small. This is formalized in the following

4.II COROLLARY Suppose the hypotheses of 4.I hold, and fix  $0 < c_{_{\mbox{\scriptsize O}}} < \alpha \,. \label{eq:corollary}$  Then

- (i) there are real numbers c<0 T<0 such that if  $\phi \in \Omega_o(c_o,c) \text{ there exist } \underline{u} \in C^1([0,T],R_{\underline{m}}) \text{ and }$   $z \in C^1(R(1,T),R_m) \text{ satisfying }$ 
  - $(1) \quad z_{t} + A(x,t,z)z_{x} = 0 , (x,t) \in \Re(1,T)$
  - (2)  $z(x,0) = \phi(x)$ ,  $x \in [0,1]$
  - (3)  $\overline{z}(0,t) = 0$  ,  $\underline{z}(1,t) = \underline{u}(t)$  ,  $t \in [0,T]$
  - (4) z(x,T) = 0,  $x \in [0,1]$ ;
- (ii) if c, T is any such pair, then  $T \ge \left| \underline{D} \right|^{-1}$ ;
- (iii) if c is sufficiently small, there are c, T having the properties in (i) and in addition  $T \leq \left|\frac{(D^{-1})}{D}\right| + 1 + \left|\frac{(D^{-1})}{D}\right|.$
- PROOF (i) has already been seen, (iii) follows immediately from the proof of 3.III for  $\overline{u}=0$ , and to establish (ii) it suffices to notice that in  $\Omega_{O}(c_{O},c)$  there are initial data (for instance  $\overline{\phi}=0$ ,  $\underline{\phi}=\frac{c_{O}}{2}$ ) for which on the triangle  $\tau(1,|\underline{D}|^{-1})$  the solution of (1) (2) and the first part of (3) is a non zero constant.
- 4.III REMARK For a given  $\phi \in \Omega(c_0,c)$  the control function  $\underline{u}$  is by no means unique. This is due to the fact that in the construction of  $\underline{u}$ , see proof of 3.III, one can choose  $\underline{v}$  among infinitely many functions and extend  $h(t) = \underline{w}(0,t)$  in infinitely many ways. For

instance it is easily seen that h can be usefully extended by using any function in some closed convex set contained in  $C^1([T_1,T_2],R_{\underline{m}})$  and containing more than one element, hence infinitely many; also in the proof of 3.III it is shown that to each such extension H of h there correspond  $\underline{u} \in C^1([0,T],R_{\underline{m}})$  such that (1) to (4) in 4.II hold; on the other hand from the uniqueness of solution of the mixed boundary problem (1) to (3) in 4.II follows that the map  $H \rightarrow \underline{u}$  is one to one; whence there are infinitely many  $\underline{u}$  which bring the given  $\phi$  to zero in finite time.

It will now be shown that the hyperbolic system studied so far is also zero controllable with two boundary controls. This is a consequence of the continuation result 3.II and the proof of 3.III. For  $^{\rm C}_{\rm O}>0$  c > 0 real and  $^{\rm C}_{\rm O}={\rm C}^{\rm C}_{\rm O}$ , define  $\Omega=\Omega$  ( $^{\rm C}_{\rm O}$ ,c), a subset of  $^{\rm C}_{\rm O}$  with non trivial interior, by

$$\Omega = \{ \phi : \phi \in C^1, |\phi| \le c_0, |\phi'| \le c \}.$$

4.IV THEOREM Put  $\Re = \Re (1,\infty)$ , fix  $m = \overline{m} + \underline{m}$ ,  $0 < c_0 < \alpha < \infty$  and suppose  $A = S^{-1}DS \in \overline{\Sigma} (\Re,m,\alpha)$ .

Conclusion: there is c>0 real such that if  $\phi\in\Omega(c_{_{\scriptsize O}},c)$  there are  $0< T<\infty$ ,  $\overline{u}\in C^1([0,T],R_{\overline{m}})$ ,  $\underline{u}\in C^1([0,T],R_{\underline{m}})$  so that the solution z=z(x,t) of (3.1) to (3.3) with a = 1 exists in  $C^1(\Re(1,T),R_{\underline{m}})$  and satisfies

(1) 
$$z(x,T) = 0$$
, all  $x \in [0,1]$ ;  $|z| \leq \min(\alpha, 2c_0)$ .

Thus  $z_t + A(x,t,z)z_x = 0$  is zero controllable with two boundary controls.

PROOF Fix  $c_0 < c_1 < c_2 < \min(\alpha, 2c_0)$  and define

(2) 
$$T_0 = \frac{|D|^{-1}}{2}$$
,  $T_1 = \frac{|D^{-1}|}{2}$ 

where, it is recalled,  $D^{-1}$  is the map  $(x,t,w) \rightarrow (D(x,t,v))^{-1}$ ; so  $T_0$ ,  $T_1$  are real and  $T_0 \leq T_1$ .

For each real  $\delta > 0$ , fix a real number  $\Delta = \Delta(\delta)$  such that if h satisfies

(3) 
$$h \in C^{1}([0,T_{1}],R_{m}), |h| \leq c_{1}, |h'| \leq \delta$$

then h has a  $C^1$  extension H to  $[0,\infty]$  satisfying

$$|H| \le c_1 + \delta$$
 ,  $|H| \le \delta$  ,  $H(t) = 0$  all  $t \ge T_1 + \Delta$ .

( $\alpha$ 1) Consider the pair of mixed boundary problems

(4) 
$$z_x + A^{-1}(x,t,z)z_t = 0$$
,  $(x,t) \in \mathbb{R}^- = [0,\frac{1}{2}] \times [0,T]$ 

(5) 
$$z(\frac{1}{2},t) = \psi(t), t \in [0,T]$$

(6) 
$$\underline{z}(x,0) = \underline{\phi}(x)$$
,  $\overline{z}(x,T) = 0$ ,  $x \in [0,\frac{1}{2}]$ 

(4') 
$$z_x + A^{-1}(x,t,z)z_t = 0$$
,  $(x,t) \in \mathbb{R}^+ = [\frac{1}{2},1] \times [0,T]$ 

(5') 
$$z(\frac{1}{2},t) = \psi(t), t \in [0,T]$$

(6') 
$$\overline{z}(x,0) = \overline{\phi}(x)$$
,  $\underline{z}(x,T) = 0$ ,  $x \in [\frac{1}{2},1]$ .

Since  $A^{-1} \in \overline{\Sigma}$  (R,m,a), lemma 3.II implies that there is  $\delta_2$ 

(7) 
$$0 < \delta_2 \le \min(\frac{c_1 - c_0}{T_1}, c_2 - c_1)$$

such that if

$$\begin{array}{lll} \text{(8)} & \text{$T\in[T_{0},\infty)$, $\psi\in C^{1}([0,T],R_{m})$, $\phi\in C^{1}([0,1],R_{m})$,} \\ & \psi \text{ and } & \phi \text{ satisfy the compatibility conditions $\psi(T)=\psi'(T)=0$,} \\ & \psi(0)=\phi(\frac{1}{2})\text{ , $\phi'(\frac{1}{2})+A^{-1}(\frac{1}{2},0,\phi(\frac{1}{2}))\psi'(0)=0$, and} \\ & |\psi|\leq c_{2}\text{ , $\max(|\psi'|,|\phi'|)\leq\delta_{2}$} \end{aligned}$$

then there is a unique pair of functions  $z_{\epsilon} \in C^{1}(\mathbb{R}^{-}, \mathbb{R}_{m})$  satisfying (4) to (6),  $z_{\epsilon} \in C^{1}(\mathbb{R}^{+}, \mathbb{R}_{m})$  satisfying (4') to (6') and moreover

(9) 
$$|z_{-}|, |z_{+}| \leq \min(\alpha, 2c_{0}).$$

( $\alpha$ 2) For  $\overline{v}$ ,  $\underline{v}$  satisfying

$$(10) \quad \overline{\mathbf{v}} \in \mathbf{C}^{1}([0,T_{1}],\mathbf{R}_{\overline{\mathbf{m}}}) \ , \ \overline{\mathbf{v}}(0) = \overline{\boldsymbol{\phi}}(0) \ , \ \overline{\mathbf{v}}'(0) + \overline{\mathbf{A}}(0,0,\boldsymbol{\phi}(0))\boldsymbol{\phi}'(0) = 0$$

$$\underline{\mathbf{v}} \in \mathbf{C}^{1}([0,T_{1}],\mathbf{R}_{\underline{\mathbf{m}}}) \ , \ \underline{\mathbf{v}}(0) = \underline{\boldsymbol{\phi}}(1) \ , \ \underline{\mathbf{v}}'(0) + \underline{\mathbf{A}}(1,0,\boldsymbol{\phi}(1))\boldsymbol{\phi}'(1) = 0$$

$$\text{consider the mixed boundary problems}$$

(11) 
$$w_t + A(x,t,z)w_x = 0$$
,  $(x,t) \in \Re (1,T_1)$ 

(12) 
$$w(x,0) = \phi(x), x \in [0,1]$$

(13) 
$$\overline{w}(0,t) = \overline{v}(t)$$
,  $\underline{w}(1,t) = \underline{v}(t)$ ,  $t \in [0,T_1]$ .

Since  $A \in \overline{\Sigma}$   $(\Re, m, \alpha)$ , lemma 3.II, in view of the reasoning made in  $(\alpha 2)$  of 3.III, implies that there is c,  $0 < c < \delta_2$ , such that if  $\emptyset \in \Omega$   $(c_0, c)$  there exist  $\overline{v}$ ,  $\underline{v}$  satisfying (10) and  $w \in C^1(\Re(1, T_1), R_m)$  satisfying (11) (12) (13) and

(14) 
$$|w_t| \le \delta_2$$
,  $|w| \le c_1$ .

To see that for this c the conclusion of the theorem holds, let  $\phi \in \Omega(c_0,c)$ , fix  $\overline{v},\underline{v}$  so that what has been said in ( $\alpha 2$ ) holds, and let w be the function satisfying (11) to (14). Define

$$T_2 = T_1 + \Delta(\delta_2)$$
,  $T = T_2 + \frac{|D^{-1}|}{2}$ 

$$h(t) = w(\frac{1}{2}, t) , t \in [0, T_1].$$

Since h satisfies (3), from the definition of  $\Delta(\delta_2)$  and (7) follows that we can fix a function  $\psi \in C^1([0,T],R_m)$  which extends h and satisfies  $|\psi| \leq c_2$ ,  $|\psi'| \leq \delta_2$   $\psi(t) = 0$  if  $t \in [T_2,T]$ . So T,  $\psi$ ,  $\phi$  satisfy (8); let  $z_-$ ,  $z_+$  be the solutions of (4) to (6) and (4') to (6') respectively. Define

$$\overline{u}(t) = \overline{z}_{-}(0,t)$$
,  $\underline{u} = \underline{z}_{+}(0,t)$ ,  $t \in [0,T]$ ;

then  $\overline{u} \in C^1([0,T],R_{\overline{m}})$ ,  $\underline{u} \in C^1([0,T],R_{\underline{m}})$ . By using the same uniqueness arguments already used in the proof of 3.III, it follows that  $z_-$  is the solution of

$$z_{t} + A(x,t,z)z_{x} = 0 , (x,t) \in \mathbb{R}^{-}$$

$$z(x,0) = \phi(x) , x \in \left[0,\frac{1}{2}\right]$$

$$\overline{z}(0,t) = \overline{u}(t) , \underline{z}(\frac{1}{2},t) = \underline{\psi}(t) , t \in \left[0,T\right]$$

and satisfies

$$z_{x,T} = 0$$
,  $x \in [0, \frac{1}{2}]$ ;  $|z_{x}| \le \min(\alpha, 2c_{x})$ ;

analogously,  $z_{+}$  is the solution of

$$z_{t} + A(x,t,z)z_{x} = 0 , (x,t) \in \mathbb{R}^{+}$$

$$z(x,0) = \phi(x) , x \in \left[\frac{1}{2},1\right]$$

$$\overline{z}(\frac{1}{2},t) = \overline{\psi}(t) , z(1,t) = \underline{u}(t) , t \in [0,T]$$

and satisfies

$$z_{+}(x,T) = 0$$
 ,  $x \in [\frac{1}{2},1]$  ;  $|z_{+}| \leq \min(\alpha,2c_{0})$ .

Define z to be  $z_-$  on  $\mathbb{R}^-$ ,  $z_+$  on  $\mathbb{R}^+$ ; then  $z \in C^1(\mathbb{R}(1,T),\mathbb{R}_m)$ , and a moment of reflection shows that z is the solution of (3.1) to (3.3) and satisfies (1). The theorem is thus established.

The two boundary controls  $\overline{u}$ ,  $\underline{u}$  are not unique; this depends, as before, on the fact that there are many useful choices of  $\overline{v}$ ,  $\underline{v}$  and many useful extensions of  $w(\frac{1}{2}, .)$ . Incidentally this lack of uniqueness is most interesting since it leaves open the possibility of choosing the boundary controls  $\overline{u}$   $\underline{u}$  so as to minimize T or, for fixed T, to minimize some functional of  $\overline{u}$ ,  $\underline{u}$  and z.

Next corollary is the analogue of 4.II and follows immediately from 4.IV. It asserts in particular that if the initial data  $\phi$  have sufficiently small derivative and the real number T>0 is not too small then  $\phi$  can be brought to zero in time T.

- 4.V COROLLARY Let  $c_0$ , A be as in the hypotheses of 4.IV. Then
  - there are real numbers c>0, T>0 such that for each  $\phi\in\Omega$  ( $c_0$ , c) there exist  $\overline{u}\in C^1([0,T],R_{\overline{m}})$ ,  $\underline{u}\in C^1([0,T],R_{\underline{m}}) \text{ and } z\in C^1(\mathbb{R}(1,T),R_{\underline{m}}) \text{ satisfying}$   $z_t+A(x,t,z)z_x=0 \text{ , } (x,t)\in\mathbb{R}(1,T)$   $z(x,0)=\phi(x)\text{ , } x\in[0,1]$   $\overline{z}(0,t)=\overline{u}(t)\text{ , } \underline{z}(1,t)=\underline{u}(t)\text{ , } t\in[0,T]$   $z(x,T)=0\text{ , } x\in[0,1]\text{ ; }$
  - (ii) if c, T is any such pair, then  $T \ge \frac{|D|^{-1}}{2}$ ;
  - (iii) if c is sufficiently small, there are c, T having the properties (i) and in addition

$$T < |D^{-1}| + 1.$$

As for the numerical determination of the boundary controls it is useful to observe that the proofs of the existence theorems 3.III and 4.IV give a general method of computation. Indeed, in the case of one boundary control  $\underline{u} = \underline{u}(t)$ , the computation of  $\underline{u}$  is reduced by 3.III

to the numerical solution of two mixed boundary problems, namely (12) to (14) and (5) to (7) in 3.III. Analogously, in the case of two boundary controls, computation of  $\overline{u}$ ,  $\underline{u}$  is reduced by 4.IV to the numerical solution of three mixed boundary problems. Therefore any numerical scheme for solving hyperbolic mixed boundary problems, such as for instance those in [7], [8], [13], gives a scheme for computing boundary controls.

## 5. CONTROLLABILITY OF $z_t + A(x,t,z)z_x = f(t,z)$

It will be seen that sufficient conditions for the hyperbolic system

$$z_t + A(x,t,z)z_x = f(x,t,z)$$

to be zero controllable are the usual conditions on A,f for solving the mixed boundary problem, augmented by

$$(A^{-1}f)_t = 0$$
,  $f_x = 0$ ,  $\frac{|f(x,t,z)|}{|z|} \to 0$  as  $z \to 0$ .

These additional requirements are used to guarantee that for some class of data the two relevant mixed problems analogous to (5) to (7) and (12) to (14) in theorem 3.III, have solution on preassigned rectangles. Since the system studied in section 4 satisfies the above additional conditions, the results in this section generalize those already obtained; however in a sense, they are also more special because the set of initial data  $\phi$  brought to zero in finite time will be smaller, for not only  $|\phi'|$  but also  $|\phi|$  will be required to be small.

For  $\alpha$ , T positive real define

$$B_{\alpha} = \{w : w \in R_{m}, |w| \leq \alpha\}.$$

Suppose

(5.1) 
$$f = f(t, w)$$
 is a  $C^1$  function from  $[0,T] \times B_{\alpha}$  to  $R_m$  and for each  $t \in [0,T]$ ,  $\frac{|f(t,w)|}{|w|} \to 0$  as  $w \to 0$ ;

consider the mixed boundary problem

(5.2) 
$$z_t + A(x,t,z)z_x = f(t,z)$$
,  $(x,t) \in \Re(a,T)$ 

(5.3) 
$$z(x,0) = \phi(x), x \in [0,a]$$

(5.4) 
$$\overline{z}(0,t) = \overline{u}(t)$$
,  $\underline{z}(0,t) = \underline{u}(t)$ ,  $t \in [0,T]$ 

where

$$(5.5) \quad \phi \in C^{1}([0,a],R_{m}), \ \overline{u} \in C^{1}([0,T],R_{\overline{m}}), \ \underline{u} \in C^{1}([0,T],R_{m}), \ \text{and}$$

(i) 
$$\overline{u}(0) = \overline{\phi}(0)$$
,  $\overline{u}'(0) + \overline{A}(0,0,\phi(0))\phi'(0) = f(0,\phi(0))$ ,

(ii) 
$$\underline{\mathbf{u}}(0) = \underline{\phi}(a)$$
,  $\underline{\mathbf{u}}'(0) + \underline{\mathbf{A}}(a,0,\phi(a))\phi'(a) = \mathbf{f}(0,\phi(a))$ .

The following analogue of lemma 3.II is known, see [2] theorems 5.II and 5.I.

5.1 LEMMA Fix  $m = \overline{m} + \underline{m}$ ,  $0 < T < \infty$ ,  $0 < b < \infty$ ,

A =  $S^{-1}DS \in \overline{\Sigma}$  (R,m,a) where R = R(b,T), f satisfying (5.1),  $0 < \epsilon < b$  and N > 0 real.

Conclusion: there are real numbers  $c_0>0$ , c>0 such that if  $a\in R\cap [\varepsilon,b]$ ,  $\phi \ \overline{u}\ \underline{u}$  satisfy (5.5),  $|\phi|\leq c_0$  and  $\max(|\phi'|,|\overline{u'}|,|\underline{u'}|)\leq c$ , then there is a unique  $z\in C^1(\Re(a,T),R_m)$  which satisfies (5.2) to (5.4), and moreover

$$|z| < 2c_0, |z_X| \le N;$$

also if  $0 < T_1 \le \min(T, \frac{a}{|D|})$ , the restriction of z to the triangle  $\tau(a, T_1)$  does not depend on the choice of  $\underline{u}$ .

DEFINITION Suppose  $0 < T \le \infty$ ,  $0 < b \le \infty$  and  $\Re = \Re(b,T)$ ; write  $(A,f) \in \widetilde{\Sigma}$   $(\Re,m,\alpha)$  if and only if  $A = A(x,t,w) \in \overline{\Sigma}$   $(\Re,m,\alpha)$ , f = f(t,w) satisfies (5.1) with [0,T] replaced by  $[0,T] \cap R$ , and  $(A^{-1}f)_+ = 0$ .

5.II REMARK If  $\Re_{\alpha}$  is a convex set and the partial derivative of (A<sup>-1</sup>f) with respect to t vanishes everywhere on  $\Re_{\alpha}$ , which is trivially true if A and f are independent of t, then

 $A^{-1}(x,t,w)f(t,w) = A^{-1}(x,\widetilde{t},w)f(\widetilde{t},w) \ , \ \text{all } (x,t,w),(x,\widetilde{t},w)\in\mathbb{R}_{\alpha}.$  Hence if  $(A,f)\in\widetilde{\Sigma}(\mathbb{R},m,\alpha)$  ,  $A^{-1}f$  can be identified with the map  $\widetilde{f}=\widetilde{f}(x,w) \ \text{defined by}$ 

 $\widetilde{f}(x,w) = A^{-1}(x,0,w)f(0,w) \ , \ (x,w)\varepsilon([0,b]\cap R) \ x \ B_{\alpha},$  and  $\widetilde{f}$  satisfies the analogue of (5.1), i.e.  $\widetilde{f}$  is of class  $C^1$  and for each  $x\in[0,b]\cap R, \ \frac{|\widetilde{f}(x,w)|}{|w|}\to 0$  as  $w\to 0$ . So if  $(A,f)\in\widetilde{\Sigma}\ (R,m,\alpha),\ A,f$  satisfy the hypotheses of 5.1, and  $A^{-1},f$  satisfy the hypotheses of 5.1 with x playing the role of t; hence Lemma 5.1, rewritten with the obvious change in notation, holds for the mixed boundary problem

$$z_{x} + A^{-1}(x,t,z)z_{t} = f(x,z) , (x,t) \in \Re(a,T)$$

$$z(0,t) = \psi(t), t \in [0,T]$$

$$\overline{z}(x,0) = \overline{v}(x) , \underline{z}(x,T) = \underline{v}(x) , x \in [0,a].$$

Next theorem is analogous to 3.III; it follows from (5.I) and the above remark in essentially the same way in which 3.III follows from 3.II; its proof is omitted since it is very similar to that of 3.III. 5.III THEOREM Put  $\mathcal{R}=\mathcal{R}(1,\infty)$ ; fix  $m=\overline{m}+\underline{m}$ ,  $(A,f)\in\widetilde{\Sigma}$   $(\mathcal{R},m,\alpha)$  and  $\overline{u}\in C^1([0,\infty],R_{\overline{m}})$  with bounded support. Conclusion: there are  $c_0>0$ , c>0 real such that if  $\phi\in C^1([0,1],R_{\overline{m}})$ ,  $\phi$   $\overline{u}$  satisfy (5.5) (i),  $\max(|\phi|,|u|)\leq c_0$  and  $\max(|\phi'|,|\overline{u'}|)\leq c$ , then there exist  $0< T<\infty$  and  $\underline{u}\in C^1([0,T],R_{\overline{m}})$  so that the solution z=z(x,t) of (5.2) to (5.4) with a=1 exists in  $C^1(\mathcal{R}(1,T),R_{\overline{m}})$ , is unique there and moreover satisfies

$$z(x,T) = 0$$
 all  $x \in [0,1]$ ;  $|z| \le 2c_0$ .

By taking  $\overline{u} = 0$  in 5.III one obtains

5.IV COROLLARY Suppose  $\Re = \Re(1,\infty)$ ,  $m = \overline{m} + \underline{m}$  and  $(A,f) \in \widetilde{\Sigma} \ (\Re,m,\alpha). \quad \text{Then} \quad z_t^+ \ A(x,t,z)z_x^- = f(t,z) \quad \text{is zero controllable}$  with one boundary control.

Next theorem follows from 5.I and 5.III; its proof is omitted because it can be obtained by making minor modifications in that of 4.IV

5.V THEOREM Suppose  $\Re = \Re(1,\infty)$ ,  $m = \overline{m} + \underline{m}$  and  $(A,f) \in \widetilde{\Sigma}(\Re,m,\alpha)$ . Conclusion: there are  $c_0 > 0$ , c > 0 real such that if  $\phi \in \Omega(c_0,c)$  there are  $0 < T < \infty$ ,  $\overline{u} \in C^1([0,T],R_{\overline{m}})$ ,  $\underline{u} \in C^1([0,T],R_{\underline{m}})$  so that the solution z = z(x,t) of (5.2) to (5.4) with a = 1 exists in  $C^1(\Re(1,T),R_{\overline{m}})$  and satisfies z(x,t) = 0 all  $x \in [0,1]$ . Thus  $z_t + A(x,t,z)z_x = f(t,z)$  is zero controllable with two boundary controls.

#### EXAMPLE: THE WAVE EQUATION

Consider the following boundary control problem for a nonlinear wave equation: to find T>0 and real valued functions  $\underline{u}=\underline{u}(t)$  on [0,T], w=w(x,t) on  $\Re=[0,1]\times[0,T]$  such that

(1) 
$$w_{tt} = g^2(u_x)w_{xx}$$
,  $(x,t) \in \mathbb{R}$ 

(2) 
$$w(x,0) = f(x), w_t(x,0) = h(x), x \in [0,1]$$

(3) 
$$w(0,t) = 0$$
,  $w_{x}(1,t) = \underline{u}(t)$ ,  $t \in [0,T]$ 

(4) 
$$w(x,T) = 0 , x \in [0,1]$$

where g, f, h are given real valued functions of real variable and f,h satisfy appropriate compatibility conditions at x = 0.

If g is specialized to

(5) 
$$g(q) = (1 + E(1 - \frac{1}{\sqrt{1 + q^2}}))^{\frac{1}{2}}, q \in \mathbb{R}$$

where E>0 is a certain constant (Young's modulus), it is shown in [6] chapter 3 that a function w satisfying (1) describes the transverse planar vibration of an elastic string. If, moreover,  $\underline{u}$  is given then the initial value problem (1) to (3) can be thought of approximating the transverse planar vibration of a string with given initial state f,h, one end clamped at x=0, and the other end free to move at x=1, along the straight line orthogonal to the x axis contained in the plane of motion, and subject to the external action  $\overline{u}=\overline{u}(t)$ .

If  $z \in R_2$ , let  $\overline{z}$ ,  $\underline{z}$  be respectively the first and the second component of z; it is easily seen that the transformation

$$\overline{z} = w_t$$
,  $\underline{z} = w_x$ 

reduces (1)... (4) to

$$z_{t} + A(z)\dot{z}_{x} = 0 , (x,t) \in \mathbb{R}$$

$$z(x,0) = \phi(x) , x \in [0,1]$$

$$\overline{z}(0,t) = 0 , \underline{z}(1,t) = \underline{u}(t) , t \in [0,T]$$

$$z(x,T) = 0 , x \in [0,1].$$

where

$$A(z) = \begin{pmatrix} 0 & -g(\overline{z}) \\ -1 & 0 \end{pmatrix}, \quad \overline{\phi} = f', \quad \underline{\phi} = h.$$

Also the eigenvalues of A(z) are  $\pm g(\overline{z})$ ; so if

(6) 
$$0 < a < \infty$$
,  $g \in C^{1}([-a,a],R)$ ,  $g(0) \neq 0$ 

then A satisfies all the hypotheses of corollary 4.I, therefore as a particular case one obtains

PROPOSITION Suppose g satisfies (6). Then the wave equation (1) is zero controllable with one boundary control.

Thus whenever f and h are conveniently restricted there are T,  $\underline{u}$ , w satisfying (1) to (4). It is clear that if (6) holds then (1) is also controllable with two boundary controls.

#### REFERENCES

- [1] A. G. Butkovskii and L. N. Poltavskii, Optimal control of wave processes, Artomatika i Telemakhaniika, vol. 27 (1966) pp. 48-53.
- [2] M. Cirina, Nonlinear hyperbolic problems: a priori bounds and solutions on preassigned sets, to be submitted for publication.
- [3] R. Conti, On some aspects of linear control theory, Proc.

  Conference on Mathematical Theory of Control at the
  University of Southern California, 1967, Academic Press,
  New York, 1967, pp. 285-300.
- [4] H. O. Fattorini, Time optimal control of solutions of operational differential equations, SIAM J. Control, vol. 2 (1964) pp. 54-59.
- [5] H. O. Fattorini, Boundary control systems, SIAM J. Control, vol. 6 (1968) pp. 349-385.
- [6] G. D. Johnson, On a nonlinear vibrating string, Thesis, University of California, Los Angeles, 1967.
- [7] H. B. Keller and V. Thomée, Unconditionally stable difference methods for mixed problems for quasilinear hyperbolic systems in two dimensions, Communications on Pure and Applied Mathematics, vol. 15 (1962) pp. 63-73.
- [8] H. O. Kreiss, Über implizite Differenzmethoden für partielle Differentialgleichungen, Numerische Mathematik, vol. 6 (1963) pp. 24-97.
- [9] J. L. Lions, Sur le controle optimal des systemes decrits par des equations aux derivees partielles (I), (II), (III), C. R. Acad. Sc. Paris, 9, 16, 22 November 1966.
- [10] L. Markus, Controllability of nonlinear processes, SIAM J. Control, vol. 3 (1965) pp. 78-90.

- [11] D. L. Russell, Optimal regulation of linear symmetric Hyperbolic systems with finite dimensional controls, SIAM J. Control, vol. 4 (1966) pp. 276-294.
- [12] D. L. Russell, On Boundary-value controllability of linear symmetric hyperbolic systems, Proc. Conference on Mathematical Theory of Control at the University of Southern California, 1967, Academic Press, New York, 1967 pp. 312-321.
- [13] V. Thomée, A stable difference scheme for the mixed boundary problem for a hyperbolic first order system in two dimensions, SIAM J. Appl. Math., vol. 10 (1962) pp. 229-245.