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1. INTRODUCTION

Russell has shown in [12] that if T > 0 1is a real number not too
small, it is possible to find a real valued function u = u(t) on

[0,T], called boundary control, such that there is a function w = w{x,t)
defined on & = [0,1] x [0,T] which satisfies

(1.1) W, = c(x) W x,t) ¢ R

(1.2)  w(x,0) = f(x) , wt(x,O) = h(x) , x e [0,1]

(1.3) w(,t) =0, wx(l,t) = u@t) , t € [0,T]

(1.4) wx,T) =0, x e [0,1] ,

where ¢, f, h are appropriately given functions. Results on the
boundary controllability of linear equations are also given in [1] for the
simplest wave equation, and in [5] for general equations including the
case of many space variables. See also [9], [3].
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In this paper we prove the existence of boundary controls for non-
linear first order hyperbolic systems in two independent variables, which
include the system formulation of (1.1) as a particular case. The data
and the coefficient of the equations will always be assumed to have
continuous first derivatives and so the solutions will be C1 functions
satisfying the equations everywhere on their domain of definition. One
important difference between linear and nonlinear hyperbolic problems is
that conditions insuring the existence of a local solution are not suffi-
cient, in general, to guarantee the existence of a solution of the latter
problems on a set of preassigned size. On the other hand, in a initial
value problem the data determine the solution completely on a certain
set. Hence, in the nonlinear case, for the existence of boundary con-
trols it is necessary that the solution of the relevant hyperbolic problem
can be extended to sets of given size.

Some such extensions have been studied in [2], and the conditions
found there, strengthened so as to make the time-like and the space-like
variables interchangeable, will be seen to be sufficient for the existence
of boundary controls in the nonlinear case. Also for the analogue of
(1.1) to (1.4) it will be proved that if T is not too small, then in an
appropriate Banach space there is an open set of initial data which can

be brought to zero in time T.




2. DEFINITIONS, ZERO CONTROLLABILITY

Let m > 0, n> 0 be integers; R, R ,

R are respectively the
m mX n

real numbers, the m-dimensional euclidean space and the space of real

matrices with m rows and n columns.

NORMS Throughout this paper, li denotes sup-norms; so |h1 =
absolute value of h if h € R, lh| = max {]hi[ :i=1,...,m) if

n
h = (hi) € Rm' {h‘ = max {;.z:l‘hiﬂ : i=1,...,m} if h = (hij) € Rm>< n
and ]hi = sup {[h(x” :x e X} if h 1is a function defined on a set
¥ and taking values in either R, or R, or R

m myn’

From now on m, m denote positive integers. Fix m = m + m; if

h=¢(t)eR , h and h are the points of R—, R whose components
i m m m

are defined by

E,=h, i=l,...,m ; h, ,
i i = i+m

analogously if h = (h,)) € R . h ig the submatrix of h formed by
ij m X m

the first m rows of h, and h that formed by the last m rows; if

h is a function taking values in R or R , h and h are defined
m mxm =

similarly. If o is a positive real and R® < RZ’ R is the set defined
a

by

@oc: [(x,t,w) : (x,t) e R , W eRm,twl < gl

if a, Te (0,»], R =R(,T) is the set

R=[(X,t):0§_xga,x1=oo,Og_tg_T,t-Jfoo};






In (iii) and throughout this paper S_1 is the map (x,t,w)— (S(x,t,w))ﬁl,

where the last object is the inverse of S(x,t,w) in Rmym; A_I and

D 1 are defined analogously. Note that (i) (i)' amount to the deiinition
of "the system (2.1) is hyperbolic on @a', and (ii) (ii)' are usual con-
ditions in dealing with hyperbolic mixed bdundary problems; also if R
is compact, (iii) is redundant and it suffices that (i) (ii) (ii)' hold for

6 = 0.

THE CILASS Cl(X,Y) We write 2z € Cl(X,Y) as an abbreviation of "z
is a continuously differentiable.Y-valued function on X"; in absence of
ambiguity the range space Y will be omitted. If X 1is an interval,
Cl(X,Rm) is given the following more special meaning. Let I € R be
a compact interval; Cl(I,Rm) is the set of Rm—valued continuous func-
tions ¢ on I possessing a continuous derivative on I, endowed
with its usual algebraic structure and normed by

Toll =101+ 101
where 0' is the derivative of . Cé = Cé([O,l],Rm) is the subspace.

of cl - Cl([O,l],Rm) defined by

cl = (¢ :0ech, 90 = ¢'(0) = 0}.

o

50 Cl, Cé are both Banach spaces.

ZERO CONTROLLABILITY Put ® = R(l,»); suppose A = A(x,t,w),

f = f(x,t,w) are functions defined on ® , A is R valued,
a mxm



f is Rmvalued. We say that the system

(2.1) zt + A(x,’c,z)zX = f(x,t,2)

is zero controllable with one boundary control if m = m + m, some

m m, and there is an open set O e Cé([O,l],Rm) such that for each
0 € QO there exist a real number T > 0 and a function u = u(t) from

[0,T] to Rm so that the solution z = z(x,t) of

(2.2) zt + A(x,t,z)zX = f(x,t,z) , (x,t) e R (1,T)

(2.3) z(x,0) = 0(x) , 0 <x <1
(2.4) z(0,t) = 0, z(1,t) = u(t) , 0 <t<T
exists and satisfies

(2.5) z(x,T) =0, 0 <x <1,

Analogously, we say that (2.1) is zero controllable with two boundary

controls if m = m + m, some m m, and there is an open set
Qe Cl([O,l],Rm) such that for each ¢ ¢ Q there exists a real number
T > 0 and functions u = u(t), u = u(t) from [O,T] to R;r—l and

Rm respectively, so that the solution gz = z(x,t) of

(2.6) zt + A(x,t,z)zx = f(x,t,z) , (x,t) € (1, T)

(2.7 2(x,0) = 0(x) , 0 < x<1
(2.8) =Z(0,t) =U(M) , 20,1 =uft) , 0Kt < T,
exists and satisfies

z(x,T) = 0 , O<x_<_l.




3. THE MAIN RESULT

If A is of class % then (3.1) is zero controllable with one
boundary control. This assertion is a particular case of our main
result, theorem 3.III, which will be seen to follow mainly from the fact
that if A € 5 then the solution of (3.1) to (3.3) below exists on a pre-
assigned rectangle whenever the data QJ U u are conveniently restricted.

For m = m + m consider the following mixed boundary problem

(3.1) Zt + A(}«:,t,z)zX =0, x,t) e R (a,T)

H

(3.2) z(x,0) = 0(x) , x € [0,3]

H

(3.3) Z(0,t) = uft) , z(@,t) = ult) , te [0,7]
where

(3.4) 0 e cl([o,a],Rm) T e cl([o,T],Rr—n) , u e Cl([O,T],Rﬁ)

and 0 U u satisfy the compatibility conditions

(i) T(O0) = §(0) , T (0) + A(0,0,0(0))¢'(0)

0

1
o

(i1) u(0) = O(a) , u' (0) + Afa,0,0@)0' (@)

3.1 REMARK Suppose z satisfies (3.1), 0 <t < T, and for

i=l,...,m let Ei = _F;i(s) be defined by

d _ -
= £(s) = d((s),5,2(5 (s),8) s >t £ =0,
where di is the ith diagonal element of D = SAS-I. 1f di > 0

then at s =t the curve (‘Ei(s),s) s >t called the ith character-

istic of (3.1) through (0,t), enters the rectangle ® =R (@,T). So



if A e s, ® ,m,a), the first of (3.3) amount to fixing on the boundary
x =0 of R, exactly those components of z which correspond to

characteristics entering g there.

The following continuation result is known, see [2] theorems

5.1IT and 5.1.

3.1 LEMMA Fix 0 < c, <a, 0<T< © allreal, m =T + m,
0<e<b®, R=R(,* and A=5'DSe€T @ ,m,a.
Conclusion: there are real numbers ¢ >0, N>O0 such that if

a € Rnfe,b] , ¢ Tu satisfy (3.4), 0] < c, and

max({¢'|, |T u'|) < c then on R (a,T) there is a (unique) function

1

z of class C1 which satisfy (3.1) to (3.3), and

[zX[ < N(|¢-,+|ﬁ‘-l+]£'[); moreover for 0 < 'I‘l < min(T,,"%—,) the
restriction of 2z to the triangle T(a,Tl) is independent of the choice
of wu.

Lemma 3.I1 is the main tool for proving the following

1

3.1 THEOREM Put R =R (1,%); fix m=m+m , A =S 'DSeSR,m,a),

0 < ¢, < a and U e Cl([O,oo],R;r-l) with bounded support.
Conclusion: there is ¢ > 0 real such that if ¢ e Cl([O,l],Rm),
O T satisfy (3.4) (i), |0] <« 5 and max([¢'[,|u']) < ¢, then there

exist 0 < T <, ye Cl([O,T],Rm) so that the solution 2z = z(x,t) of




(3.1) to (3.3) with a = 1 exists in Cl(ﬁ (I,T),Rm) is unique there,

and moreover satisfies

(1) z(x,T) = 0, all x € [0,1]; lz| < min(cx,ZCo)

PROOF Fix ¢ c to real so that

1’ T2

(2) c < ¢ < ¢, <min(a,2c ) T) = 0 all t >t 0; and
o) 1 2 o Z

note that TO, Tl are real, positive and TO < Tl"

For each real © > 0, f{ix a real number A = A(8) such that if h

satisfies
1 '
4 hec(or R, [ WT)[<e , |RTI] LB

then h has a C1 extension H to [0,x) satisfying

H| < e + 8 [H'| L8 HE) =0 all t>T + A,
(axl) Consider the mixed boundary problem

() 2+ A"l(x,t,z)zt -0, &) e R (1,T)

(6) z(0,t) = ¢@{) , t e [0,T]

(7) Z(x,0) = 0(x) , z(x,T) = 0, x ¢ [0,1].

1

As it is easily checked A € = (R, m,a); hence by

3.11 there is 62
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c. -C
(8) 0 < 52 < min{ Tl

. cz~cl)
such that if

(9 T <T< =, weCoTLR ) ;¥ = v = o,

m———

T() = 6(0) , 0'(0) + a0, 0,wONp(0) = 0 ;

v < c, and max(]z//'],[-(f)-'[) < s,

there is a (unique) =z ¢ Cl((l,T)) satisfying (5) to (7) and

(10 |z| < min(a, 2¢ ).

(@2) For v = v(t) satisfying

(1) ¥ e Clqo. T LR ). v(0) = 4(1), ¥'(0) + AM, 0,000 ) = 0

consider the mixed boundary oproblem

(12) w, + A(x,t,w)wx =0, (x,t) ¢ @(1,’1‘1)

(I3)  w(x,0) = §(x) , x e [0,1]

(14)  w(0,t) = u(t) , w(l,t) = v(t) , t e (o, 1.

Since A € ¥ (R,m,a) , Lemma 3.II implies that there is

5, > 0 such that whenever

1

0,U,v satisfy (3.4) for a = 1 T = 'I‘1 . (11) , 10 < s

7

and max(|¢'|,[T], |v']) < B,
there is a function w ¢ Cl(ﬂ(l,Tl),Rm) satisfying (12), (13),
(14) and

(15) th! < 8, , |w| < c-
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Hence there is ¢, 0 < c < 5,, so that if (.U are as in the

hypotheses of the theorem, there is v satisfying (11) and (a unique)
1 .

w e C R “'Tl)'Rm) satisfying (12) to (15). Indeed ¢ can be taken

to be any number satisfying

0 < c<min(6,,6,) , [A] ¢ <5,

and v any function satisfying (11) and |v'| < ¢, for instance
v(t) = 0(1) + t A(1,0,6(1))¢"(1).

It will now be provedsthat for this ¢ the conclusion of the theorem

holds. To this end, let (,T be as in the hypotheses; fix v as

said in (a2) and let w be the function satisfying (12) to (15).

Define

T, = '1‘1 + A(B,); h(t) = w(0,t) , te [O,TI] ;

in view of (8) and the definition of A(&Z), h has a Cl extension

H to [0,o] with lngcz, [H']_<_52 and H@t) = 0 all t>T

Let

' ) . -1
T, = max(T,,t ) ; T = T, + (D )|

i

and define the function w(t) by
T(t) = ult) , Y() = H(t) , t e [0,T] ;
then ¥ (t) = 0 for T'Z <t < T and W satisfies (9).
So let z% = z¥(x,t) be the only function in CI(R (1,T),Rm)

satisfying (5) (6) (7) (10).

It will now be shown that z* satisfies also
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(16)  2%(x,T) = 0 , all x e [0,1]

i

(17)  z*¥(x,0) = 0(x) , all x e [0,1].

i

To this end let 'roc@ (1,T) be the triangle
o=l 0 x<, T, + (T3-T)x < t < T)
and consider the mixed boundary problems
-1
8 =
(18) z + A (x,’c,z)z_t 0
(19)  =z(0,t) =0, t ¢ [T'Z,T]

(20)  z(x,T) =0 , x e [0,1] ;

the zero function on TO and the restriction of z% to To both

satisfy (18) on T, (19) and (20); also since T - T'2 = I(Dml)[‘,
the last assertion in 3.1II implies that on "L‘O there is at most one
function in Cl(To'Rm) which satisfies (21) to (23); hence (16) holds
because

z¥(x,t) = 0 , all (x,t) ¢ TO.

Analogously, let

T={(x1):0<x<1,0<t<T

= |

and consider the mixed boundary problem

. -1 N
(21) zt + A (x,t,z)zX = 0

(22)  z(0,t) = y(t) , t € [O’Tl]

(23)  z(x,0) = 0(x) , x € [0,1] ;
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In view of the definitions of ¥, w, z%, it is easily seen that the
1
restrictions WiT and z*l both belong to C (T,Rm) and satisfy
T
l "'l

(21) on T, (22), (23); since T, = [(D_")|, on T uniqueness pre-

1
. vails, .and hence

W‘T :Z*!T .

this proves (17).
Define

uft) = zx(1,t) , t e [0,T];

then u € Cl([O,T},Rm). Since =z = z%* satisfies (5) to (7), (10),
(16), (17), from the definition of ¥, u follows that =z* is the solution
of (3.1) to (3.3) with a = 1, and satisfies (1). This completes the

proof.
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4. CONTROLLABILITY OF z, + A(x,t,z)zX =0

Let us first note that the existence proof of the boundary control
u, as given in 3.IIT, is constructive and, as it will be indicated later
in this section, it is well suited as a basis for the numerical computa-

tion of such control. Some consequences of the main result will now be

made explicit. The special case of 3.III for U = 0 can be restated as

4.1 THEOREM Suppose R =R(l,w), m =m +m and A ¢ 2 (R,m,q).
Then zt + A(x,t,z)zX = 0 1is zero controllable with one boundary
control.

Fix m, cO as in 3.IIT and let ¢ > 0 be as given there for

— 1 1
= 0 - = i =
u : put C C ([0,1],R_) and define QO Qo(co,c) by

Qo=(0:0ec, GO =0, [0] <c, |00] < el

o}
Then QO contains non trivial open sets of Cé([o,l],Rm), and from the
proof of 3.III it is clear that the real number T > 0 produced there does
not depend on the choice of ¢ in QO, i.e. any ¢ in £ can be

brought to zero in time T; furthermore T cannot be too small. This

is formalized in the following

4,11 COROLLARY Suppose the hypotheses of 4.1 hold, and fix

0<co<oc. Then
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(i) there are real numbers ¢ < 0 T < 0 such that if

1
, C h b'd > , T,
0 ¢ Q_(c_,c) there exist u € c (o,T1] R_IB) and

z € Cl(R(l,T),Rm) satisfying
(1) Zt + A(x,t,z)zX =0, (x,t)e RQ,T)

2y z(x,0) = §x) , x e [0,1]
(3) Z(0,t) = 0, z(1,t) = u(t) , t e [0,T]

(4) z(x, Ty =0, x € [0,1] ;

(i1) if ¢, T is any such pair, then T > Igl_l

(iii) if Co is sufficiently small, there are ¢, T havirg the

properties in (i) and in addition

T¢ @Y 1+ [H].

PROOF (i) has already been seen, (iii) follows immediately from the

proof of 3.1II for u = 0, and to establish (ii) it suffices to notice

c
— o)
that in Qo(co,c) there are initial data (for instance ¢ = 0, q> =5

)

for which on the triangle T(1, {_D_rl) the solution of (1) (2) and the

first part of (3) is a non zero constant.

4.11T REMARK For a given ¢ € Q(co,c) the control function u is
by no means unique. This is due to the fact that in the construction
of u, see proof of 3.III, one can choose v among infinitely many

functions and extend h{t) = w(0,t) in infinitely many ways. For
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instance it is easily seen that h can be usefully extended by using
any function in some closed convex set contained in Cl([Tl’TZ]’Rm)
and containing more than one element, hence infinitely many; also in
the proof of 3.IIT it is shown that to each such extension H of h
there correspond u ¢ Cl([O,T],Rm) such that (1) to (4) in 4.II hold:
on the other hand from the uniqu;ness of solution of the mixed boundary
problem (1) to (3) in 4.II follows that the map H-—+~u is one to one;
whence there are infinitely many u which bring the given 0 to

zero in finite time.

It will now be shown that the hyperbolic system studied so far
is also zero controllable with two boundary controls. This is a con-
sequence of the continuation result 3.II and the proof of 3.III. For

c.>0 c> 0 realand c! - Cl([O,l],Rm) define 0 =9(c_,c),

1
a subset of C with non trivial interior, by

1

a=(0:6ech, [0 <e, . 0] <ol

4.1V THEOREM Put R

R (1,o), fix m=m + m, 0<Co<q<oo
and suppose A = S—IDS e s ®.m,q).

Conclusion: there is ¢ > 0 real such that if (b € Q(co,c) there

are 0< T < », Te Cl([O,T],Rrﬁ.), u e Cl([O,T],Rm) so that the solu-

tion z = z(x,t) of (3.1) to (3.3) with a = 1 exists in CI(R(I,T),Rm)

and satisfies
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(1) z(x,T) = 0 , all x e [0,1]; |z] < min(a,ZcO).

Thus zt + A(x,t,z)zX = 0 is zero controllable with two boundary

controls.

PROOF Fix ¢ < ¢, < ¢, < min(a,2c_) and define
e} 1 2 o)

-1 -1
T

e 2 ! 1
L -1, -1
where, it is recalled, D is the map (x,t,w) — (D(x,t,v))

so T , T are real and T < T, .
o} 1 o — 1

For each real © > 0, fix a real number A= A(g) such that if h

satisfies

1
(3) h e C ([OITl]lRm) ’ ih! S. Cl ’ !h'I S 5

1 . .
then h has a C  extension H to [0,»] satisfying

1H|§_c1+6,|H|§_5,H(t)=o all ©t> T, + A.
(al) Consider the pair of mixed boundary problems

-1 - 1
(4) z tA (x,t,2)z, = 0, (x,t) € = = [0,7] x [0,T]

(5)  z,0) = v@ L te[0,T]

6) 26,0 = 0(x) , Z(x,T) = 0 , x € [0,3

() oz + a7 tz)z, = 0, (k) € R = [2.1] x [0,7]

()  zG.H = U@, te [0,T]

(6") Z(x,0) = ?ﬁ(x) , z(x,T) = 0 , X € [%,1]_
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Since Am1 e = ®,m,a), lemma 3.II implies that there is &

cl—cO
(7) 0 < 8, < min( , C
2 - T1

27¢)

such that if
®  Telt) . vec(orlr), §eco]r ),

¥ and ¢ satisfy the compatibility conditions W(T) = @' (T) = 0,

() = 0G) . ') + A7 0,089 (0) = 0, and

vl <oy v max(lyt]L [0 < 5,

s

then there is a unique pair of functions zZ_g CI(R",Rm) satisfying

(4) to (6), z, € CI(R“L,Rm) satisfying (4') to (6') and moreover
(9) lz |, |z+[ _<_min(cc,Zco).

(2) For Vv, v satisfying

(10) ¥ e (0,1 LR, F0) = B(0) , F(0) + A(0,0,8(0)¢'(0) = 0

i

v e G0, T LR ) . w(0) = §1) , ¥(0) + AWL,0, 41N () = o

consider the mixed boundary problems
(11) w, + A(x,t,z)wx =0, (x,t) e R (1,T1)

(12)  w(x,0) = 0(x) , x € [0,1]

(13)  W(0,t) = T(t) , w(l,t) = v(t) , t e [o.7,].
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Since A € 5 ®,m,a) , lemma 3.1I, in view of the reasoning made in
(a2) of 3.1I1, implies that there is ¢, 0 < c < '62, such that if
q) € Q(CO,C) there exist Vv, v satisfying (10) and w ¢ Cl (@(I,Tl),Rm)

satisfying (11) (12) (13) and

(14) [wtl <6, lwl < c, -

To see that for this ¢ the conclusion of the theorem holds, let

0 e Q(cO,c), fix V,v so that what has been said in (a2) holds, and

let w be the function satisfying (11) to (14). Define

-1
_ - D7
T, =T, +A(,) . T=T, +

h(t) = w(%',t) , te o1,

Since h satisfies (3), from the definition of A(BZ) and (7) follows

that we can fix a function ¥ € Cl([O,T],Rm) which extends h and

satisfies |¢] <e,, v ] < 52 P(t)

1

0 if t e [TZ’T]' So T, v, ¢
satisfy (8); let =z _, z, be the solutions of (4) to (6) and (4') to (6")

respectively. Define

u(t) = z_(0,t) , u=2.(0,t) , te[0T]

then U € Cl([O,T],R?-n), u € Cl([O,T],Rm). By using the same unique-

ness arguments already used in the proof of 3.1II, it follows that =z

is the solution of
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A t - :OI ‘l -
zt+ (x’cz)zX (x,1) ¢ ®

2(<,0) = 069 , x € [0,7]

20,1 = W) , 26,1 = ¥ . t e [0,7T]
and satisfies

z (x,T) =0, x ¢ [O,-Zl—] plz | < min(a,ZcO);

analogously, z+ is the solution of

= O 1 : I
zt + A(x,t,z)zx x,t) e R

2(x,0) = 0(x) , x e [3,1]
‘z‘(%nt) = P . z(1,1) = uft) , t e [0,T]

and satisfies

‘ 1
= =011 in(a,2c ).
z+(x,T) 0, xe€ [2 1] |z+l < min(g cO)

Define 2z to be z on R, z+ on R+; then =z ¢ Cl(ﬂ(l,T),Rm),
and a moment of reflection shows that =z is the solution of (3.1) to

(3.3) and satisfies (1). The theorem is thus established.

The two boundary controls U, u are not unique; this depends,
as before, on the fact that there are many useful choices of Vv, v
and many useful extensions of w(-l-,.). Incidentally this lack of unique-
ness is most interesting since it leaves open the possibility of choosing
the boundary controls T u so as to minimize T or, for fixed T, to

minimize some functional of W, u and z.
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Next corollary is the analogue of 4.II and follows immediately from 4.IV.
It asserts in particular that if the initial data ¢ have sufficiently small
derivative and the real number T > 0 1is not too small then (¢ can be

brought to zero in time T.

4,V CORQOLLARY Let Co' A be as in the hypotheses of 4.1V. Then
(i) there are real numbers ¢ > 0, T > 0 such that for

each ¢ € Q(co,c) there exist U € Cl([O,T],R—Iﬁ),

. 1 ‘
ueC ([O,T],Rm) and =z ¢ Cl(@ (1,T),Rm) satisfying

z, + A(X,t,z)zX =0, (x,t)e R(1,T)

z(x,0) = 0(x) , x € [0,1]

z(0,t)

1]

uft) . z(l,t) =uk) , te [0,T]

z(x,T) = 0 , x ¢ [0,1] ;

-1
(i) if ¢, T 1is any such pair, then T > LZD-L—_ .

f

(iii) if ¢ is sufficiently small, there are ¢, T

having the properties (i) and in addition

T < |D |+ 1.

As for the numerical determination of the boundary controls it is
useful to observe that the proofs of the existence theorems 3.IIT and
4,1V give a general method of computation. Indeed, in the case of one

boundary control u = u(t), the computation of u is reduced by 3.III
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to the numerical solution of two mixed boundary problems, namely
(12) to (14) and (5) to (7) in 3.III. Analogously, in the case of two
boundary controls, computation of u,u is reduced by 4.1V to the
numerical solution of three mixed boundary problems. Therefore any
numerical scheme for solving hyperbolic mixed boundary problems,
such as for instance those in [7], [8], [13], gives a scheme for com-

puting boundary controls.
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5. CONTROLLABILITY OF Z, + A(x,’t,z)zX = f(t,z)

It will be seen that sufficient conditions for the hyperbolic
system

zt + !}(x,t,z)zx = f(x,t,z)

to be zero controllable are the usual conditions on A,f for solving

the mixed boundary problem, augmented by

aln =0, £ =0, fELal

: < 21 as z — 0,

These additional requirements are used to guarantee that for some class
of data the two relevant mixed problems analogous to (5) to (7) and
(12) to (14) in theorem 3.III, have solution on preassigned rectangles.
Since the system studied in section 4 satisfies the above additional
conditions, the results in this section generalize those already obtained;
however in a sense, they are also more special because the set of initial
data ¢ brought to zero in finite time will be smaller, for not only
[0'] but also |¢]| will be required to be small.

For o, T positive real define

Ba={W:w€Rm, lw| < al.

Suppose

(5.1) f = f(t,w) is a C1 function from [O'T]XBOL to Rm and for

each t ¢ [0,T], i | — 0 a

- s w — 0
|w|
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consider the mixed boundary problem
(5.2) Z‘t + A(x,t,z)zX = f(t,2) , (x,t)e R(@,T)

(5.3) z(x,0) = 0(x) , x e [0,a]
(5.4) z(0,t) = u(t) , z(0,t) = uft) , t e [0,T]

where

(5.5) ¢ e CI([O,a],Rm), u e Cl([o,T],Rﬁ), u € Cl([O,T],Rm), and

i

£(0, ¢(0)),

i
1}

() W) = §(0) , T'(0) + A(0,0,0(0))d'(0)
96

(ii)  u(o) , u'(0) + A(@,0,0@@Nd'@) = £(0,0(a)).

The following analogue of lemma 3.II is known, see [2] theorems 5.1I

and 5.1.

5.1 LEMMA Fix m=m+m, 0<T< oo, 0<b< o,

A S—IDS e 3 ®,m,a) where R = R(b,T), f satisfying (5.1),

H

0<e<b and N> 0 real.

Conclusion: there are real numbers cO > 0, ¢ >0 such that if
aeRnlebl, § Tu satisfy (5.5), |0] < c  and

,u

.|u'l) < ¢, then there is a unique =z e CI(R(a,T),

which satisfies (5.2) to (5.4), and moreover

lz| < Zeg |z | <N

also if 0 < Tl < min(T, the restriction of 2z to the

a
’Dl)'

triangle T(a,Tl) does not depend on the choice of u.

Rm)




DEFINITION Suppose 0 < T < ®, 0<b< w and R = R(b,T);
write (8,f) € £ ®,m,a) if and only if A = A(x,t,w) €3 (®,m,aq),
f = f(t,w) satisfies (5.1) with [0,T] replaced by [0,T] n R,

and (A'lf)t = 0.

5.I REMARK If ® is a convex set and the partial derivative of
o

(A_l‘f) with respect to t vanishes everywhere on ® , which is
a

trivially true if A and f{ are independent of t, then

A twie, w) = AT T w) i w) L all (¢t w), (T, w)eR .
Q

Hence if (A,f) ¢ i(&%,m,cx) , Ahl‘f can be identified with the map
f = ~f(x,w) defined by

~

Fix,w) = A Hx, 0,w)E0,w) . (x,w)e([0,b]nR) x B .

~

and f satisfies the analogue of (5.1), i.e. T is of class C1

and for each x € [0,b] N R, -Lf-%ﬁﬂ -0 as w -~ 0, So if

(A,f) e by ®,m,a), A,I satisfy the hypotheses of 5.I, and A_l,f
satisfy the hypotheses of 5.1 with x playing the role of t; hence
Lemma 5.1, rewritten with the obvious change in notation, holds for

the mixed boundary problem
ZX + A"l(x,t,z)zt = f(x,z) , (x,t) € R@,T)

z(0,t) = ¥(t), t e [0,T]

Z(x,0) = V(x) , z(x,T) = v(x) , x € [0,a].
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Next theorem is analogous to 3.III; it follows from (5.I) and
the above remark in essentially the same way in which 3.III follows

from 3.II; its proof is omitted since it is very similar to that of 3.III.

5.1 THEOREM Put R = R(1,%); fix m =m + m, (A, f) ¢ S (R, m,q)
and U € Cl([O,OO],Rr_n) with bounded support.

Conclusion: there are ‘co > 0, ¢ > 0 real such that if

0 e Cl([O,l],Rm), 0 T satisty (5.5) (i), max(|0],|u) < e

and max(|¢'|,|u"|) < ¢, then there exist 0 < T < w and

u € Cl([O,T],Rm) so that the solution z = z(x,t) of (5.2)

to (5.4) with a = 1 exists in CI(R(I,T),Rm), is unique there

and moreover satisfies

z(x,T) = 0 all x e [0,1]; |z]| < 2¢_.
By taking uw = 0 in 5.III one obtains

5.1IV. COROLLARY Suppose ® = @(1,o), m = m + m and
(A, D) € b R, m,q). Then zt+ A(x,t,z)zx = f(t,z) is zero controllable

with one boundary control.

Next theorem follows from 5.1 and 5.III; its proof is
omitted because it can be obtained by making minor modifications in

that of 4.1V
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5.V THEOREM Suppose R = R(1,®), m =™ +m and (A, fle 2R, m,q).
Conclusion: there are c, > 0, ¢ > 0 real such that if

0 € Qc_,c) there are 0 < T < o, Te cl([o,T],Rﬁ), u e Cl([O,T],Rm)
so that the solution z = z(x,t) of (5.2) to (5.4) with a = 1 exists

in Cl(ﬁ(l,T),Rm) and satisfies z(x,t) = 0 all x e [0,1].

Thus =z, + A(x,’c,z)zX = f(t,z) 1is zero controllable with two boundary

controls.
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6. EXAMPLE: THE WAVE EQUATION

Consider the following boundary control problem for a nonlinear
wave equation: to find T > 0 and real valued functions u = uf(t)

on [0,T], w = w(x,t) on R = [0,1] x [0,T] such that

(1) W = gz(ux)wXX , (x,t) € R
(2) w(x,0) = f(x) , wt(x,O) = hx) , x € [0,1]
(3) w(0,t) = 0 , WX(I,t) = uft) , t € [0,T]

(4) wx,T) = 0, x e [0,1]

where g, f, h are given real valued functions of real variable and
f,h satisfy appropriate compatibility conditions at x = 0.

If g 1is specialized to

1

2

)) . 9 €R

(5)  gl@) = (1 + BQ - —

1 + q2
where E > 0 is a certain constant (Young's modqlus), it is shown in
[6] chapter 3 that a function w satisfying (1) describes the transverse
planar vibration of an elastic string. If, moreover, u 1is given then
the initial value problem (1) to (3) can be thought of approximating the
transverse planar vibration of a string with given initial state f,h, one
end clamped at x = 0, and the other end free to move at X =1,
along the straight line orthogonal to the x axis contained in the plane

of motion, and subject to the external action T = u(t).
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If z e RZ' let z, z be respectively the first and the

second component of z; it is easily seen that the transformation
z=w , z= w_
réduces (1)... (4) to
2. =0, (x,
Zt + A(z)zx (x,t) € R
z(x,0) = O(x) , x € [0,1]

z(0,t) = 0, z(1,t) = ut) , t e [0,T]

z(x,T) = 0, x ¢ [0,1].

0 -g(z _
A(z)=( , 0 =f, ¢ =n.
-1 0o -

Also the eigenvalues of A(z) are +g(z); so if

where

1
(6) 0 < a < ®, g € C ([‘a,a],R) ’ g(O) }{ 0
then A satisfies all the hypotheses of corollary 4.1, therefore as a

particular case one obtains

PROPOSITION Suppose g satisfies (6). Then the wave equation

(1) is zero controllable with one boundary control.

Thus whenever f and h are conveniently restricted there
are T, u, w satisfying (1) to (4). It is clear that if (6) holds then

(1) is also controllable with two boundary controls.
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