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AN ANALYSIS OF "BOUNDARY VALUE TECHNIQUES"
FOR PARABOLIC PROBLEMS

1,1 INTRODUCTION

Consider the one-dimensional "heat equation" in a strip:
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0 < x <1, t> 0
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subject to the Dirichlet conditions

u(x, 0) = f(x), 0
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u(0, t) = u(l,t) = 0 t

It is well known that, provided f(x) is "smooth", there is a unique solution
u(x, t) and

2
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(1.3) |ux,t)] = Ke where K is a constant.
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Let Ax = TR M a positive integer, let At > 0, let v]rz = v(kdx, nAt)
and consider the following finite difference approximation of (l.1), (l.2):
4 n+l n-1 n
L k Vi Vil ka’wk-xkal s
(L. 2At Ax? o I
n n
i = = = ] Ve
with VO VM+l 0, n=20,1,2,
0
\ Vi = f(kAx), k=0,1,... M+l

Rather than use these equations as a marching procedure, D. Green-

span recently (see [10],[11]) proposed an alternative approach: Choose N



large and solve the system

f’ vn+l—v -l n —Zvn+vn
k K Vkel k" Vi1
ZAt AXZ k:l*: '1M
n=1,..., N
{ n_ on
(L.5) VO:VMH:O n=0,1,2, N+1
0
v, = Hkbx), v}lj”’”lz 0, K=0,1,... M+ 1

of MN linear equations in MN unknowns. Indeed, Greenspan suggested

this method for a general class of parabolic problems, linear and non-

linear, and carried out several interesting computational experiments.

The scheme selected by Greenspan is the leap-frog scheme discussed
in Richtmyer [15]. When used as’a marching procedure with parabolic prob-
lems, this scheme leads to an improperly posed numerical problem as data
on the line t = At must be supplied, in addition to the usual data, in order
to start the calculation., [This is why it is possible to use it as‘a boundary
value procedure.] However, even if this extra data were exactly known,
the scheme would in general be useless as a marching procedure; it is

unconditionally unstable and therefore always diverges whenever the solution

to the analytic problem contains arbitrarily high frequencies. We will show,
however, that as a boundary value procedure, for linear problems with time-
independent coefficients, the scheme is unconditionally uniformly con-

vergent, and the rate of convergence is O(uz) as the "mesh size" u— 0,



T — e, under minimal smoothness of the solution. Indeed, for linear
problems with time dependent coefficients and for mildly nonlinear problems,
one has uniform convergence at the rate of O(AtS/Z) as At— 0, T o,
Ax = O(At), and at the rate of O(AtZ) for sufficiently smooth exponentially
decaying solutions. These results will appear in a later report (see [4]

also).

We also analyze an example with which Greenspan had computational
difficulty and which points out a peculiar feature of the boundary value method.
We then discuss tﬁe convergence of the usual iterative methods for solving
the systems of linear equations which occur in this method, observing that,
unlike the case of systems of elliptic difference equations, line iterative
methods may diverge even if the related point iterative methods converge,

At least one reason why such a method may prove useful in practice,

- especially if one is computing for large times, is provided by its behavior
towards round-off error. For, as observed by Southwell [16], marching
procedures tend to accumulate round-off error, whereas "jury" methods do

not.

l.2 NOTATION AND DEFINITIONS

Let Ax, At be small increments in the variables x, t, and let
T =(N+1)At where N is a positive integer. Let M be a positive integer
so that | = (M+ 1)Ax. Introduce a mesh over Rp = {(x,1); 0 < x< 1,

0 <t < T} by means of the lines x =kAx, k=1,...,M, t=nAt n=1,...,N.



We will be dealing with functions v(x,t) defined at the mesh points of RT

and we adopt the notation

(1.6) . viz v(kAx, nAt)

n
Denote by V= the M component vector, or M-vector

and let V be the "block" vector of MN components

(1.8) Vo= v
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We define the following norms and scalar products for complex-valued mesh

functions:




n _n
For any 2M-vectors, X , Y let their scalar product be defined by

M
(1.10) XYY = axo3 x;-—yg
k=1
and let the corresponding norm be
n  n. - M 2 2
(1.11) XM= ax o5 x| 1%
k 2
k=1
For N-vectors £,y define
(1.12) [e0] = 0t = g9
A » n:l
and
N
2 n, 2
(1.13) lely y=0t 2 [
@ 1’1‘-‘-1
We will also use the norms:
(1.14) [x*. = Max  {|x|)
j=l...M )
(1.15) v, = Max  {|V'] ]
n=l...N
(1.16) i, = ™max  (|v7],)
! n=l...N

Given any vector X and square matrix A of appropriate size we

define

Il = swe [2x]
%] =2

the supremum being taken over all complex vectors.



Given a function u(x,t) we sometimes write u(t,) to denote the

0

function of x obtained from u when t is fixed at the value to. Also

un(x) stands for u{x, nAt).

2., ABSTRACT INITIAL BOUNDARY PROBLEMS OF PARABOLIC TYPE

Let H be a separable Hilbert space of complex valued functions
defined on the open interval 0 < x < 1 with scalar product (u,v) and
corresponding norm || u| i Let || u“oo be the essential supremum norm

for such functions and assume that there exists a constant K such that
(2.1) “u“H < K“u“oo for every ue H .

Let A be a linear operator with domain and range contained in H and
let bO’ bl be linear boundary operators acting at x = 0, x =1 respectively.

Consider the eigenvalue problem

(2.2) \

We assume that the problem (2.2) has a complete set of orthonormal
eigenfunctions {dzk} corresponding to strictly positive eigenvalues {Xk}

with the property that

en  zAnde

k Mk
Let R be the strip {(x,t)[0 < x <1, t 2> 0} in the (x,t) plane and let
f be a real valued function on R such that f(t) € H, as a function of x,

for each fixed t .




Let Xx(x) be a real valued function on [0, 1] belonging to H and let

v (t), wl(t) be defined and real for t = 0. Consider the following abstract

0
initial boundary value problem on R, associated with the linear operator
A:

Find a real valued function u{x,t) defined on R such that for each

fixed t, u(t) € the domain of A as a function of x, and u is differ-

entiable as a function of t, for each fixed x, and

— = - <x< 1
Py Au + f 0 < x s t> 0

(2.4) .oulx, 0) = X(x) 0=sxs=sl
. byu = Y1) bu = y(t) t >0

We assume that the above problem has a unique solution u(x,t) which
reaches a known steady state value u*(x) as t-+ o, in such a way that

|| u(ty - u*“ q= 0 as t— o, and so we speak of problems of parabolic
type. Our main concern in this section is to describe a uniformly convergent

semi~discrete finite difference approximation to this abstract problem.

2.1 SEMI-DISCRETE APPROXIMATION TO (2.4)

Let At > 0 be a fixed "small" time increment. Let Kl be a suitable

positive constant. Choose T so that for some positive integer N we have

(2.6) T = (N+1)At and [[u(T) - u*“H < KlAtB



1
Consider the following semi-discrete approximation to the analytic

problem (2.4):

: n+l(‘ y - n-l( \
! ZAtV X2 avix) + %), n=1 N
(2.7) { V) = xx) Wy 2wt
n _ n n _ _
bov' =¥, b v =y, n=1 N

The system of linear equations (2.7) is an approximation to the analytic
problem in the following sense:

If u(x,t) is the solution to (2.4), then u satisfies the equations

. ntl n-1
a

f (x) - 4 (Xx) _ _,an, D n _
2 At = -A0 " +f + 7 n=1 N
s W= gl n=1 « N
(2.8) { 1
A ~ N+ ;
|0l = x() 6 (x) = u¥x)
! n ~ 0 n
i bou = gl/o blu = 1//1 n=1 N
k‘ﬂ
where Tn(X) is an error term, For n =1 ¢« N~I, 'rn(x) is the "truncation
B TS Tk €4 Mt el 09
error" - (8 t) + AL ]

lSemi~~discrete approximations, where only the time is discretized have

been considered from time to time in the literature: In Varga [17], p. 279,
the author notes that such a procedure was used by Hartree and Womersley

in 1937 to obtain a numerical solution to the heat equation; in Garabedian [ 9],
p. 493, they are used to prove the existence of a solution to the heat
equation and the author remarks on the connection with methods in the ab-
stract theory of semi-groups.




For n=N,
TN(X) ) U*(X) _ UN—l(X) _ (Q_l_l_)N
2At ot
—l ste
- u(T) - uN (x) _ (QQ)N 4 u” - u(T)
2At ot 2At
We will assume that u is such that
| x

(2.9) “Tn“ =K A‘tz n=!l ..« N

H 4 '

K4 = constant.

This condition will be satisfied in particular if u(x,t) has bounded
continuous third order time derivatives on R, for in that case Taylor's
theorem with remainder shows that

n n+l n-1
» - 2
“ - (g——%) + [u (XZ)Atu (x) J “00 < KZA‘t n = l o o 0 N

where KZ is a bound on uttt in R. Also T was chosen so that

5 3
|| w(T) - u*“H < KlAt . Hence, since the supremum norm is stronger than

the H norm we have (2.9).

Because || Tn“H—» 0 as At-s 0, we say that (2.7) is consistent

with the analytic problem. We rewrite (2.7) as

B ~ - - =0
A'O" O V' (x) SAt + £7(x)
(2.10) -0 - : £2 ()
o ] ]
- N, N u(x)
L -0 A\.- ‘_V (Xu f () ZAt__




n n n n L
i = = = PR g 0 = ———
with bO \Y Yy bl v vy - n=1 N and where AT

We assume that u*(x) is known a-priori, so that the right hand
side of (2.10) is known. Having effectively replaced the problem (2. 4)
by a coupled system of linear equations for N functions of x we must
consider two questions:

a) Does the system (2.10) .have a solution? Is it unique?

b) Does the solution of (2.10) converge to that of (2.4) as At—s 07?

If so, in which norm, and at what rate does this convergence take place?

We will show the following:
Theorem. The system (2.10) has a unique solution V(At) =

Moreover, if U is the exact solution to (2.4) on the lines

t = nAt, i.e.,

]

u(x)

!

U = © | then,

i

° !

uMis) |

[va -ul| = Sup v - s KOAtZ
’ n=]l -+« N

5
so that V(At) converges uniformly to U at the rate of O(At ) as

At—= 0, T= o,

We begin our analysis with the following key result.




[1
II.2 The matrix T, (%)

1
Let T = (N+L)At, >, > 0 0, = ——— and consider the following
| o] UONT :
N x N matrix 'TN(GJ'):

‘bQ ._...ng f

If X is.an N-dimensional complex vector we define

Iml, = o Iy
where HX“OO = Max ]xn] . Itis wélln‘known that with this definition,
n= - N N
Il = e z |3yl

th
where aij is the element in the ith row and j column of the matrix TN.

We will now prove the following lemma:

Lemma 2.1

T (Gj) is always invertible and HT_

N N l[oo remains bounded independently

of N, Uj,as N> o, At-s 0, x.j-—»oo. In fact, if tsr denotes an element

in the s")th row, rth column of T’l(

g
N j) we have
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X,I(s-r)[At
0
4 1+ 20 At
@ el 5 ——4 o]
(1+ 402y e AT
) €1+ 21t
XjSAt )xj(T-sA't)
Tl 20 At 1+ 21Ot
N HL+2BY o | j ]
(b) [t | = 2.1/2 20T
T (l+XJ,At ) S
1+ 20 At

[1-e b

Proof: We prove this lemma by explicitly computing TN" (Uj).

The determinant AN of T satisfies the recurrence relation

N
A = A +02A =1 N-1 (0 =20)
ntl T n n-l T ) ]
with
Al =1 and AO =1
l 1 ) 1
Hence if a= -é-+*2* 1+402, 6:2——5/1:402, are the two
2 2
roots of x -x -0 =0, we see that
A ) OLN-H_BN-H . N oA
N - P on using L =Byl
Now the co-factor of the element aij of TN is
i+]j j-i Do~
= (- -0
Aij (-) i1 AN_J.( ) if j>1
- a a (T if i
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and both formulae hold if i =73 .

th -
If tsr is the element in the s row r column of T ! we then have

I srl - Ar;}l O‘S_rAN—S if sor
s -1 -5
= —22= A 0 if s=<r
A N-r
N
....l N
Since ||T. || = Max 5 |t. |, we will first estimate |t | by means
N He s=1...N r=l st St

of these formulae and then proceed to estimate 5| tsrl

2 2
Since @, B areroots of x -x -0 =0 and @ > 0 whereas P < 0,
we have
2
B“:GZ+BS (72
>
a‘“:02+cx> 02
Hence a-1=|B =0<a,

Consider first ltsrl for s > r. Using the formula for the determinants

A we obtain

k
lt l ) ) (ar 6 gi OLN»SH __BN—SH
ST 1+ a02 g oLN+1 _ 5N+l
< >af S‘i ZCLN_SH”
/ 2 o N+1
1+ 40
N | B] )
aNH
4 (E)S_I’ ].
= a N+1
1+ 40 B
/i+ 4 el



L4

2

N+1 | N+l N+ 1
) L + /1 + 402

and ,/l+402 1 + 20 since o= 0.

A

Hence ‘ +1
N+1 N+1 N+ 1 N
(1 - e < —) s -—te
L+ /1 + 402 L+g - N + 1
B8 N+l |
which shows that (%L) < exp - JINi—)G“ using the well-known
x I -X
fact that for 0 £ x = n, (l-;) < e
Substituting o= g, = L , T ={(N+1)At we obtain
] ZXJ.At
et
l l N+1 14+ ijAt
() s e
Hence,
1 - 1
ln| N+1 7 2, T
1 - (L@L) 1 - et —
a 1+ Zk,jAt
8T
Let us now examine () We have
s =T ST S =T
g @ - qg) 1 , 1
(oa) =(1-"7 ) = (1 Za) since & -0z 3

s=r

(1—2-]%5;) using /l+402 < 1+ 20

1A




Hence by a similar device,
s-T =X, (s-r)At
(=) < exp —d———
I+ Z%jAt
Now if r = s all formulae still hold with r and s interchanged. We

conclude that

). |s-r|at
0
1+ ZXjAt
4 e
[t | = - (s,r=1... N)
ST A =27, T
J1+ 40! 1
] 1 - exp (--—--l~———~
1+ ZXjAt
N
Let us now extimate 5 |t |
-1 ST
We have
Als-r|At
N 4 At N _ylsor|at
Z |ty “2n,T ' °
r=1 ST s J \/Atj + 402At2 r=1 1+ Z)\]A‘t
1+2)0 At |
1-e )
Let p= "-l-—;*"z-;;z—t' and consider
N P |s-r|At s-1 =-p A pAt N-s -p X pht
At 2 e ] =it 3 e ) + At 3 e J
r=1 p=0 p=1

We may use a geometric argument (the integral test) to show

At 3 e = At At 3 e ) du t=sAt

s-1 =-p A pAt s-1 - p\ . pAt t -pi.u
J e b < aAt+ f
p=0 p:l 0
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and similarly

N-s -px pAt T-t -pr,u
At % e < / e du T=(N+At
p=1 10
Hence
N =pX,|s-r|At At +2 - e—pk,t _ e“pxj(Td[)
At 3 e ) <
r=1 P,
j
“KJ-S>\A'I: l')u(T“‘SA’C)
‘ 1+ 2\ At + 20 At
. N[t P (Lt 2300 4[At+2 - e 7 e j
Toop ST (1+X;,2At2)1/2 -2\ T
[L - e 1+2xjAt]
oM _ T
W2ngAt 0 At SN

Notice that as X]_ - ] -e

Clearly, the above sum is bounded as .XJ, — o, At-— 0, or both, and the

bound is independent of s . This proves the lemma.

Remark. In a subsequent discussion we will also need the following result:
Let X ~ BAt? with B fixed #0 as At— 0. Then || ’I‘N_l(crl)ﬂOO remains

bounded as At-+ 0. We may see this as follows:

A1|s-r|At
4 o Mt Zf\lAt 4
i < < —23T
Since [t | = /7 of 2T Jlvaol (1-e —L )




17

we have on substituting Xl = BAtZ in the last expression

4PAtL3 4BA L3
Itsrl = > b L/2 -2 BAL2T = ! -2PAt2T
[L+ P2 at?] [l"euzﬁm? 1126083

<

and both the numerator and denominator of the last expression approach
zero as At-+ 0. Differentiating with respect to At, using L'Hospital's

rule we obtain

3
Lim 4pAt3 . (1260 t5)(1 + 28a1%)°
PN 2 4. —2PAtAT
0 1~ ™Y -
At — © T 26013 At — 0 (4PTAt - 4P T;\t TN
. , 30t 3
and, since the last expression tends to T = ﬁ as At-s 0, we have
N
[t | = (N+1) Max |[t_| — 3 as At—0.
ST ST
r=1 r,s

Lemma 2.2

The system of equations (2.10) has a unique solution V(AL).

Proof: Let M be the matrix of linear operators occurring in (2.10). In

an obvious notation we may write (2.10) as
(2.11) MV = F, bV:-z,uO bl\/:z,ul

Observe that F is such that each of its components belongs to H .
Observe also that it is sufficient to prove that given any G whose

components gn(x) belong to H, n = 1...N, the system



L8

MV =G byV=bVs=0

always has a unique solution. Indeed, if this is the case then (2.11)
has at most one solution, and, furthermore, we may always construct
a solution to (2.11) as follows:

Fix a vector X whose components belong to the domain of A
and such that bOX = 'zpo le = wl. Such an X must exist, otherwise
there can be no solution to the analytic problem. Since MX belongs

to H, we may solve the problem

MY = -MX bOY = blY

1]
<O

Next solve the problem MZ = F bOZ blZ =0, Letting V=X+Y+ 24

we can always uniquely solve
MV = G b0V=blV=0.

To do this expand in the eigenfunctions of the problem (2.2) above:

n

Set v {x)= 2 c, ¢, gn(x) = n

. _ 1
1 dj ¢j . Then if Uj = 2>\jAt

, we

™M o8

J

o, (c, ~-c, Y+ = s, n=1...N, j=12,..

with

Hence if TN(UJ‘) is the matrix of lemma (2.1), we may write
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(2.12) [T |
. .
N: N

Since TN(Uj) is invertible for every j, (2.12) uniquely defines the cl,’l
so that the reduced problem above always has a unique solution. Q.E.D.

We are now ready to prove the convergence theorem of section II. L.

n n -n n
Let w =v -u, then w (x) satisfies

1
wO = WN+ = 0
Wn+l _Wn—l N N
= = = s = 1
AL Aw  + 71 bOW blw 0, n N
where
n n 2
T(x)e H and “T“HSKLLA’E
n “ n
Setting woo= X C, ¢, n=1...N
. J
j=1
n @ n
and T = x4 d, ¢, n=1...N

we have || = [(+0) = "] gl = K At

and
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By Lemma (2.1), | TN—l“W is bounded as At—s 0, N = =, Xj-» o,
Hence
Max lc, | = Kg %tﬁ
n=l...N j
Therefore,
o0
o™l = = Lol el = % Atz T
j=1 =L
Il
Since by assumption X < ® we have
PN
Max “wn“ < K z‘.\tz K, = constant
o~ 6 6 :

n=l...N
and this proves the theorem.
Examples of such operators A are provided by regular Sturm-Liouville

2 - sk
differential operators, operating in H =L [0, 1]. Thus for the problem”

[a(x)u']" + b(x)u' —c{x)u+ru=0 0< x< 1
(2.13)

u(0) = u(l) =0
where a(x) z a, > 0 and c¢(x) = 0, itis known that the eigenvalues
are real and form a countably infinite set, >‘l =< Xy < >\3 < ... . More~-
over ), > inf c(x) [Protter and Weinberger [14].

1 ,
0<x<1

:‘\A standard transformation, puts (2.13) in self-adjoint form.




A

It is a standard result that the eigenvalues of (2.13) can be character-
ized as the zeroes of an entire function (Coddington and Levinson [6]) and

as observed by Atkinson in [1] this function is of order at most /2 so that,

1
z e
1/2 + ¢

ko ()
for every € > 0. Also, the normalized eigenfunctions may be shown to be

uniformly bounded in the supremum norm, i.e.,
“¢k“w < constant

see (Courant-Hilbert [7]).
We remark, however, that A may be a singular differential operator

and still satisfy property (2.3). Thus consider in LZ[O’ 1], the problem

Au = —[l—xz)u']'= AU, 0<x<1
(2.14) 5
u(0) = 0, (1-x"YV'"(x)— 0 as x 1.

1 q” 2 n
If Pn(x) = d  (x -1} are the Legendre polynomials for

2™ dxn

n=20,1,2,..., then the eigenfunctions for this problem are

P n=20,1,2,... corresponding to the eigenvalues

2n+1’

= (ntl)(2nt2)  n=0,1,2,...

This follows because the Pn satisfy
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and P (0y =0 for n=0,1,2,... . (See Courant-Hilbert [7].)

2n+l

Also, the set {P } spans LZ[O’ 1] since the complete set of

2n+l
Legendre pelynomials spans LZ[-I, t] and Pn(x) is an even function

if n is even. As defined above, the Pn are not normalized but satisfy

P || =1 for |x| = 1. However, if
ntoo

v () = /R n=012,...

n n

then the T, are orthonormal on (0,1) and

gl = /2

thus

T .

n odd Xn

Finally, we remark that although we have emphasized one dimensional
problems, similar problems may be formulated in Rn with H, for example,
being a Sobolev space of functions on some bounded domain Q and A
a uniformly elliptic operator of sufficiently high order with say Dirichlet
boundary conditions. Indeed A need not even be a differential operator.

3.1  UNIFORMLY PARABOLIC LINEAR INITIAL BOUNDARY PROBLEMS:
FULLY DISCRETE METHODS

We are concerned here with the numerical computation of problems

of the following kind:
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du _ 8 du du _ :
5t o [a(x)ax] + b(x)aX c(x)u + h(x, t) 0<x<1,t>0
u(x, 0) = x(x) 0= x=s1
(3.1)
u(0,t) = ¢, (1) u(l,t) = ¢, (1)

x(0) = ¢,(0)  x(1) = ¢,(0)

We assume that a(x) = aO > 0 and c(x) 2 0; a having three or more
continuous derivatives, and b one or more continuous dirivatives in R .
We assume further that a, b, ¢, h, X, ¢1’ ¢Z are bounded and sufficiently
smooth that a solution u(x,t) exists having three continuous time derivatives
and four continuous space derivatives. All of the above mentioned derivatives
as well as u itself will be assumed bounded on R . [For existence, uniqueness
and regularity theorems for parabolic equations, consult Friedman [8]). As in
the previous section, the amount of smoothness that we assume will suffice
for the truncation error Tn to be of the order of Atz + Ax2 in the discrete
L2 norm and this is all we need. Thus our assumptions may be weakened

s omewhat, We assume that h, ¢l, q)z reach a steady state as t ~+ o,

Since c(x) = 0, u(x,t) converges to a steady state value u™(x) (see
Friedman [8]), and we assume this convergence to be uniform in x . We

may suppose that u*(x) is known without loss of generality. Indeed, we

only require its values at mesh points, and these can be obtained with

sufficient accuracy by existing numerical technigues, since u"(x) satisfies
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an inhomogeneous boundary value problem for an ordinary differential »
equation. Finally, we assume that given any g > 0 it is possible

to estimate how large T must be chosen so that

o

|| w(T) - u"‘“oo < g

e.g. by means of asymptotic formulae.

3.2 DISCRETE APPROXIMATION TO THE ANALYTIC PROBLEM

Choose T so that for some positive integer N we have T = (N+1)At

and
n .
Jum -u', = (ax 5 |ukéx,T) - u k) | 212 < ke
k=1

3

where K 1is a fixed positive constant independent of At. Introduct a mesh

over RT as in section 1.2,

Our finite-difference approximation to (3.1) will be

n+l _ Vn-—l a (vn _ n) - a (Vn _ vn ) b (vn _
Yk %% Wit TV T k-3 Tk k1! Tk ke
2At - Ax? > A
n n
- Ckvk+hk n=1...N, k=1 M
(3.2)

with vg = X(KAX) vij“: fKAX) k=0, 1,...MtL

n n

Vg T d)l(nAt) AT ¢2(nAt) n=1, N



As before, this approximation is consistent with the problem (3.1), i.e.,

the exact solution u satisfies (3.2) if we add an error term T: on the

right hand side. For n=1 ... N-1, TE is the truncation error due to

replacing derivatives by finite difference quotients. Taylor's theorem

2 2 2
shows that 'rn is a linear combination of At u, .., Ax a and Ax u
k ttt XXX KHXXK

these derivatives being evaluated at points of the (x,t) plane intermediate
to successive meshpoints. For n = N, there is an additional error due to
prescribing u*(x) on the line t =T instead of the exact solution u(T).
Since we assume the above derivatives to be bounded on R and we chose

T so that “ u(T) - u* [ , = KAt3, there results the estimate
M

1/2 2
5 jwnlz} = KO(AXZ + ALY

I, = (o X

k=1

where KO is a fixed constant independent of Ax and At, and n .

5 bkAx
o, = E - -
Let @ [ak+_21_ + ak__%] + ckAx , 6k [ak‘_{_% S ] and
bkAx
vy = 75 akm%] k=1... M and define the tridiagonal matrix L of
order M by
.
% P
P
L= — e
Ax 1
- Py-t !
a 5
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We may write the approximation (3.2) in the form

n+l n-1

V -V n n
3.3 R — = =1 ...
(3.3) AL + LV F n N

0 N+1 n
where V , V are given and F is an M-vector containing the known
- n
lateral boundary data and the inhomogeneous term h, . We may also write

(3.3) in "block" form. Let M be the MN X MN block tridiagonal matrix

ol |

. © -0l L

ot

where 1 is the M X M unit matrix and 0 E&—

Then we have
(3.4) MV = F
where F consists now of data at the four boundaries as well as the

inhomogeneous term h(x, t).

Lemma 3.1
-1 ~
There exists a nonsingular diagonal matrix D such that D LD =1L
is a symmetric matrix and Dl . nD_ln < K. <o as M- oo, Ax— 0,
00 o 0
(M +1)Ax = 1.
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Proof: See ([4],[5])

Remark. The change of variables X = DZ is the discrete analog of the

transformation
1
2
u(x) = e

which changes the linear differential operator

‘E[u]‘i—(au')'—bu'wtcu 0< x< 1

into the formally self-adjoint operator

2

’ e Tyt ~L| .L_b__
glv]=z -(av') +[c+2b +4a Jv. 0<x< 1

Lemma 3.2

The eigenvalues of L are strictly positive and remain bounded
away from zero as M-—s o, Ax— 0, (M + 1)Ax = 1. Let Dj)?fl be the
eigenvalues of L arranged in increasing order; then there exists a positive

integer j_, independent of M as M - o, such that for all jo <js M,

0

we have

are positive constants.
Finally, let v be the eigenvector of L corresponding to the eigen-

value Xj and normalized so that
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M i 2

Ax 3 [vJ[ = 1,
. k
K=1

Then, there exists a positive constant KO and a positive integer jl s

independent of M, such that for all jl <j= M,

IV = sw V] =k )
K=1l...M

Proof:

In the self-adjoint case (i.e. b(x) = 0) these results are to be
found in Blickner [3]. In this more general case, the lemma follows from the
discrete maximum principle, and from lemma 3.1 together with Blickner's argument’.

A different proof may be found in [4] and [5].

Theprem
. 5 ,
Let LLZ = (AtZ + Ax) and let {Vn}i]_l be the solutions of equations

}N

n=l be the vector obtained from

(3.3), or equivalently of (3.4). Let {U"

evaluations of u(x,t) at the mesh points. Finally, assume

.2
(3.5) 1<, = kur“.

Then, there is a constant KZ such that

IV -t = kn

Proof:
The argument is very similar to the proof of the main theorem of the

preceding section. Let W =V - U, With D the diagonal matrix which
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-1
symmetrizes L, let Xn =D Wn and substitute into (3. 3), to obtain

n+l n-1
(3.6) X"“—‘”“‘“‘“ZAJEX - + LXn=D Tn n=1,...N, XO:XN+ =0 .

Since L is real symmetric, it has a complete set of orthonormal eigen-

vectors ZJ j=1,...M. We may solve by expanding interms of the Z] .

-1 n My j
Cj Z, D 1 = 2 dj Z°, we obtain on substituting
j=1 j=1

] ,
. n
into (3.6), MN equations for the coefficients cj :

Thus if X =

n+l n-1l
, - C, \
3.7) A d s P2 gt n=1,0 N, j=1,... M
('° ZAt jj j ? H 3
1
where c =c1;H=0, j=1, M
Let o = S then
© i 22 At
J
- -
§CI.‘t I—d'
8 T. (0 | o8 R U =1 M
(3 ) [N()] i-{ - )\j é. J—: .
3(31,\15 %dN
. L)

where TN(Gj) is the N % N matrix of lemma (2.1). The proof now

follows from lemma 3.2 and the fact that

«© -3/2
s () /
i=1
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Remarks on the round-off error

The main reason for considering finite difference approximations is
that they lead to systems of equations which can be solved using a high
speed computer. However, rounding-off errors must inevitably be introduced
in any automatic computation. In our proof of convergence we have assumed
that all computations are carried out with infinite precision in solving the
difference equations. Let us consider the effect of such errors: Suppose
that p' is the M-vector consisting of the round-off error {p]?}, k=1...M

n n n ,
at time t = nAt. We must then replace T by T + p in equation (3.6)

M

_}_ :
and d? by oljn + r? in (3.7), where D pn: 'El r’? Z(J) .
1= J

This leads to the estimate

ERENES
Max }cn] < “T—l(cf,)“ Max  —4——-1—
n=l...N N7 e n=l...N xj
and hence )
N Y A
X7, = K™+ o]l J-Z=1 3

n .
If W is the error between the solution to the analytic problem,
and the solution of the difference equations obtained from the computer,

we have

2
A N P

(3.9) [wf_= K |
n=l...N

0

It is instructive to compare the above estimates with the error esti-

mate for a general class of marching procedures in parabolic problems
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which we may represent as

|
AVttt oo gy 4 PR 0<nAt<T

n
where A, B are M X M matrices, V is an M vector, the solutions
n
of the difference equations at time t = nAt, F contains the inhomogeneous

term and lateral boundary data and

L

a7, s I (A_IB)mHZ < K

Iz =% 1
for all 0 < mAt £ T, so that the method is stable. (For example, the Crank-
Nicolson scheme leads to a procedure of this form.) The error equation for
such a method has the form

(3.10) aw™ o pw® oy P

2

n . . . 2
where T is the truncation error, which we assume is of order At + Ax ,

and plrl is the round-off error. Hence

. n _ -1 n-

(3.11) e N LY S
k=0
n — - -

N b

k=0

Since WO = 0 we have the estimate

n+l n n-k n n-k 1
(3.12) “W “2 = KQKl- 5:“0 “T HZ +k§O HP “2(

k

v

and if Ax = O(At) so that || 7 I 5 = KZA’CZ we would then have

n+l“

(3.13) W < (K K K, DAt + (nt KK sup 1o°1,

2 k=0,1...n
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The factor (n+l) in the second term on the right hand side of (3.13)
illustrates a common property of marching procedures: They tend to

accumulate round-off error. No such factor is present in the estimate

(3.9) for the boundary value method and this is an advantage if one is

computing for large times.

4.1 AN EXAMPLE

Consider now the problem

. 2
u =u + 7 u+ sin Tx cos t 0< x<1, t> 0
t XX

ux,0)=0 0=x=<1, u0,t) =u(l,t)=0 t=0

i

This problem has the unique solution u = sin 7ix sin t. It differs
from the class of problems considered in the previous sections in that
c(x) is negative and the related Sturm-Liouville problem has the eigen-

value X = 0. Nevertheless, since u= 0 at t= 7 andat t=2T we

may select either of these lines as the line t =T and prescribe the exact

solution u= 0 on t =T in our difference approximation to (4.2). Thus,

if H is the tridiagonal matrix of order M given by
| B
-1

(4.2) H = —
AXL

o
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with eigenvalues 0 < LLl < uz T oevn € uM and if Wl is the M-vector
w}l( = gsin kmAx k =1... M, our approximation may be written as
n+l n-1
v -V 2n ] -
AL +(H -7 I)V' = W cos nAt n=1...N
(4.3)
0
vO = vN+l -0

On expanding in eigenvectors of H, we easily see that (4.3) has

the unique solution

n, ,
where the ¢ s satisfy

Cn+l_cn~-l > n

mwg&——'—* +(u’l_7T)C :COSHAt n:l...N
0

O N

The computation of this example was attempted by Greenspan in [10 ]
with T = 2w, However, he was not able to solve the system of difference
equations by point successive over-relaxation for any value of w. Apart
from that, the above example has another interesting property: It makes a
difference whether one selects T =717 or T = 27 .. With T =7, the unique
aolution V of the system (4.3) (even though it remains uniformly bounded as
Ax, At - 0, with Ax = O(At)v,) does not converge to the analytic solution U,

unless N-—+ » through even integers.
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Lemma 4.1

Let S be the skew-gsymmetric N X N matrix

o1 s
o O
= = |
5 2t ! ’ :
{ ) 1 1
{L_“- -l 0
then S has the distinct eigenvalues X = L cos S0 s =1 N
e aist 9 s At N+l '’ :

with corresponding eigenvectors

If N is odd, » N+l is the only zero eigenvalue and the corresponding

(5)

eigenvector may be taken to be

L)
0
L

1
'NTL =90 L where 0 is chosen so that |y =1,
2 N+

0 = il2, N
. 2

Lol

Proof. Direct verification.

Lemma 4.2
n N )
Let V= {V Jn*l be the solution of (4.3), and let At = ~Ax, ~ =

constant as Ax, At — 0, then |V(At)]] ,, remains bounded as At— 0.
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Proof. Let U" be the analytic solution at the mesh points of the line

t = nAt, and let E® = U - V™. Then E" satisfies

I n+l n-1

. Z;ltE fEH-TDE = ", n-i...N
(4. 4) \

i

! 0 1

LE - gV

n ., . n 2

where T is the truncation error and |t ”Z = O(At)).

Expanding in the orthonormal eigenvectors of H, we are led to a

‘ . . n n
system of MN linear equations for the Fourier coefficients cj of E ,

L n n .
in terms of the coefficients dj of 1 viz

- e~ -
c! d'
j j
|
4.5) [T. (0. X = —— X j=1...M
(4.5) [Ty (0))] : L - 2 : j
N ) N
c. dj
RN )

where T,  is the matrix of lemma 2.l with
1
LT ST 7
OJ ZAt(uj - )
From the fact that the eigeavalues “’j of H are distinct and

LL]- — j‘2 ’ITZ (see [2]) as Ax — 0, j fixed, we have

U«J.—'rrzz L > 0 forall j= 2

if Ax is sufficiently small.
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And ij - 'rrzz ';‘ [1 - ~-—-——Vzﬂ]jzfnz for all sufficiently large j .
Furthermore, if ?/“vj, j=1...M are the orthonormal eigenvectors of H,
then |W| = K (see [13]).

Using the estimate

n -1 O AtZ
Max  [ol| = T o], 2EEL s
n=1...N ] ) LLJ. -7
obtained by inverting (4.5) and using lemma 2.1, we have
M . Mo W,
~ 2 o
IEM, = = [ W], = owth (2 —)
j:l J ]:l U“J -
or
2.4l
O(At w
T TR IAR LA FRRTING
T
M|
since Z _“*__m“_i is bounded independently of M . Thus
j=2 p. - m?
1
(4.6) sup HEHHOO < constant,
n=l...N

because Hl - 7T2 = O(sz) and we assume Ax = O(At). Since the exact

solution U is bounded, it follows from (4.6) that

|| v(at) “O( < constant as At—s 0.
This proves the lemma.
Let us now examine the convergence of V(At) to U . Let I be

N

the N x N unit matrix.
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and p = {pn}N where pn = cos nAt. Then,

Let ¢ = [cn}N
n=1

n=1

equation (4.3) takes the form

2
(4.7) [S + (-7 Jgle=p.

let N be odd.” Whether T

i

m or T =27 we have

N
n
[p, z//NiL] = At f_l cos nAt w_Nil_ =0
2 - 2

Hence, if we solve (4.7) by expanding in the orthonormal eigenvectors

z,L/S of S, we see immediately that the solution ¢ satisfies

(4.8) [ ¥yl =0
2
Suppose now that
(4.9) “V(At) —U“2—+0 as N — o,

Since Un = sin nAt Wl, this means that
‘ n . 2

(4.10) At 3 lc —smnAt[ — 0 as N = o,
n=1

However, if T =7, sint is positive on (0,7), and

sin nAt2 B> 0

and therefore, using (4.8),
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N

At T (sinnAt - c) = B> 0
N+l
n=1 ( > )

By Schwarz's inequality
N )
2 2
At S lcn - sin nAt| }l/

0<B= ¥ yu o n!
(57) ’

so that (4.10) is impossible, if T=7 and N is odd. In fact V(At)

cannot converge to U in any of the previously defined norms since this

would imply (4.9).

On the other hand, if T = 2w, N odd, then we have

sin nAt = 0

n
11
(4.11) At YNt
2

n
Let b be the N vector {bn} with b = — L in nAt, n=1...N
sin At

then it is easily verified that b satisfies Sb =p .

Using (4.7) we then have

Expanding b - ¢ in the orthonormal eigenvectors <//S of 8, we have

Observe that by (4.8) and (4.11), we have aN-H = 0. Since
2

S(b -¢) = 253 asks‘q/s we have




Iste-aly o= 2 |3l

2.2y 42 4
(b, = 7 “_c_“z’NsKAt

where K is a constant, because “9—“2 N is bounded and (1 - 'TTZ) =

O(Atz) .
N+l

Also, for s =1,...N, s # e the eigenvalues XS of S which

are smallest in absolute value are given by

A= & Eit‘sin%—since At = 1"\%’%
Therefore,
sng‘ N
2 Max |a %= = o | |® = ratt
2 S s
At S s=1
i.e.,
4
ng [aS] < KlAt
Consequently,
2 N 2 3 N | 3
Hg-_c_nz,N *SZ:I la |7 = K At 52_;:1 At = 2m K At

and hence

Thus
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Now,
IV - Ut = W (e - &M+ B - sin nat| )
from which we obtain
[v-u| — 0 as &t = 0

Thus V(At) converges uniformly to U if N is odd provided T = 2.

On the other hand, if N is even, S has no zero eigenvalues and

M;r; MS{ = O() as Atfo

Hence as before

[2 < KAt4

Max |a
S 1

s=l...N

We will see later, however, that whether T =7 or 27 and whether N
is even or odd, it is not possible to solve the system of difference equations
(4.3) by either the point Jacobi or the point successive over relaxation method.
We conclude this section with an observation on the Moore~Penrose pseudo-
inverse (or general reciprocal), of a matrix [see Householder [12]], in
relation to the semi-discrete approximation for the analytic problem (4.2).

If we discretize only the time variable in (4.2), as was done in

Section 2, we obtain the system

’ vnH(x) - vn‘l(x) 82vn 2 n
AL = 5x2 +m7°v 4+ sin mx cos nAt, n=1,...N
Cwith v(0) = vi(l) = 0
0 1
Land v (x) = VN+ x}y = 0
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Clearly any solution of the above system must have the form

il
-
.

V(%) :cn sin mx n . N
where the cn's satisfy the equation
SCc = R
in the previously defined notation.
Now let N be odd, so that S is singular. Since p is orthogonal

to the null space of S, there always exists a solution to the last equation

and, in fact, all solutions of Sc = p have the form

c =b + By

N+1
(=5 )
where B is an arbitrary constant and where b is the vector b = {bn}f_L
with
n At
= - i =1
b oin AL sin nAt I . N

The "pseudo-inverse” of S defines a unique solution of Sc =p by
the requirement that ¢ be orthogonal to the null space of S .

Suppose now that T = 7. Then as previously noted [b, Z//N-H] is
positive so that the solution obtained via the pseudo-inverse mus%be such
that

c =b + By with 1B[zf30> 0,

N+l
2

, , n n . . :
and with this ¢, v (xX) = ¢ sin mx does not coverge to sin Tx sin nAt.
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On the other hand, if T = 27, then [b, ¥

N+l] = 0 and the pseudo-
2

inverse gives the "correct" solution

c = b.

4,2 SOLUTION OF THE DIFFERENCE EQUATIONS BY ITERATIVE METHODS

The system of difference equations occurring in Sections 3 and 4.1

may be written in the block form
(4.13) AV = F

where A is a block tridiagonal matrix of the form

—

) ]
-0l ° .. O

. ) . .
A = ) . . with 0 = AL and

ol

O  ala

where 5 is a nonsingular MXM matrix with distinct real eigenvalues

.

s J=1.0. M.
J
In the iterative solution of linear equations, one distinguishes between
point iterative and block iterative methods. The systems of linear equations
which arise in the numerical solution of elliptic boundary value problems
are usually such that block iterative methods are more efficient than point
iterative methods, i.e., they have a larger asymptotic rate of convergence

[see Varge [17]]. Such is not the case for the system (4.13) above.
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Consider the characteristic pairs of A. Let le] < A= eees 2

2l = M

be the eigenvalues of A and let Y’ j=1... M be the corresponding

eigenvectors. For fixed s,j define the M vector Xn . by

3

= in[sins(*@')]Ym n=1...N

n
X N+l

S,

Let XS . be the block vector

»

Py
|5
X = . o s=1...N, j=1 M
S, . i
N
L Sl
Let
i v .
LLS = At COSS(NH) s=1.,.N, i=/-1
Then as we readily verify
AX . = (A, + X =1...N, j=1...
S, (J UJS) Syl ® N, ] M

so that the XS i are the eigenvectors of A corresponding to the eigen-

3

values (Xj + LLS) = OS ], respectively.

3.

Let us specialize the matrix A for the moment to be that which
2
arises in connection with the system (4.3) above. Here A =H -7 I has

Kl = O(Atz) as its smallest eigenvalue. Since U'N+l = 0 whenever N is
2

odd, it follows that A, is the smallest eigenvalue of A for N odd and hence

1

- 2
|| A l“ =1 = O(—l—) . On the other hand, if N is even, the smallest
2 lx Ax
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eigenvalue of A is Xli Zl? sin 2(£+‘l—) and we have At = N:LTl or NZ;TI
depending on whether T=m or T = 2m. Thus, if N is even, “A'lnz

remains bounded as At— 0.
For the problem discussed in Section 3, i.e., where A =L has
positive eigenvalues which remain bounded away from zero as Ax— 0

we also have HA—lHZ = K as Ax, At — 0,

The successive line over relaxation me’thod (S.L.O.R)

In the SLOR method, P and N are defined as follows:

[(1 =w)D - wF]

g l—

P=i[D+wE] N =

where & is a nonzero real parameter and D, E, F are the following block

matrices:

- - — - W

A. O 0 ol QW 0 ()

O A . ol . ,° .
- - O " O -0l 0

sothat A=D+E+F .,

The choice @ =1 in the SLOR method is known as the line Gauss-

Seidel method. The line Jacobi method corresponds to the splitting

-1
A=P' -N' where PP =D and N'=-(E+ F) and (P') "N' is called

the line Jacobi matrix.
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The following results are known for matrices such as A which are
so-called consistently ordered 2-cyclic matrices (see Varga [17] and D,
Young [ 18]).

a) If the SLOR method coverges, then 0 < o < 2,

b) Let p be an eigenvalue of P_lN, the SLOR matrix, and if x

satisfies

)2 2

(4.14) (ptw =1y = ¥x a>2p w#£ 0,

then X 1is an eigenvalue of the line Jacobi matrix. Conversely if X is
an eigenvalue of the line Jacobi matrix and if p satisfies (4.14), then p
is an eigenvalue of the SLOR matrix. Hence, if the line Jacobi method
converges, so does the line Gauss-Seidel and vice versa.

c) Starting from (4.14) and using conformal mapping arguments,

D. Young [18] has proved the following:

Theorem. There exists an & such that the SLOR method converges if and
only if all the eigenvalues X of the line Jacobi matrix satisfy |Re(x)| < 1.
If B> 0 and if no eigenvalue of the line Jacobi matrix is contained

in the closed exterior of the ellipse

2
[Rep]® + LI~y

BZ

and if 0 < = the SLOR method converges.

2
1+ B°

Let us apply these results to our situation:
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Since A =D + E + F has the eigenvalues p,s + >\j’ it follows that

. Hs ,
., =2 =1...N, =] ...
Xs,] )\j s N j M

are the eigenvalues of the line Jacobi matrix D_l(E+P). Hence if x is
-1
the spectral radius of D (E+F), we have
cos
|x| =

()

N+l 1
—_——= > 0O as At 0

Dyl st = Ny -

so that for all At sufficiently small the line Jacobi and Gauss-Seidel

-1
methods diverge for the matrix A . On the other hand, since D (E + F)

has only pure imaginary eigenvalues, Young's theorem shows that if

(14 ¢€)cos (777
B = N+1 for any € > 0 then the SLOR method converges
[xllAt
2| (A | At
fora110<ws-l—f_—ﬁ-, i.e., for 0<ms (20|

[ (81| At + (L+ ) cos )

Point Iterative methods for the "model problem" A = H

We consider now point iterative methods for the case A = H
corresponding to the heat equation. We will assume that At, Ax approach
zero in such a way that At = YAx where 7Y is a positive constant.

We will show that there always exists an interval 0 < w < W, such

that the point successive over relaxation method converges, but that the

point Jacobi (and hence the point Gauss-Seidel) method converges if and




47

only if v = 'yc where Vc is a constant which depends on the range of the

space variable x in the analytic problem.

In the point Jacobi method, A is again split so that A = P' - N'
where now P' is the matrix obtained from A by deleting all but the main
diagonal elements of A . If L and U are respectively the lower and
upper triangular parts of N', the point successive over-relaxation method

corresponds to the splitting A =P - N with

1 1
= [P' + wL] N = ~ [(I -w)P' -wU]

P =
where W is a nonzero rzal parameter.
Moreover, the convergence results a), b), c) stated for line itera-
tive methods remain valid if we replace line by point.

Consider first the eigenvalues of (P') "N', given by

X, oo -d
x = LS5 s=1...N i=1l... M
S, d
where
_ 4 2 jmhx _
X], &;2 sin > i=1 M

are the eigenvalues of H, and

1 - -
LLS —Atcoss(NH) s=1...N

and where d = are the constant diagonal elementz of H .

A
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If x is the spectral radius of (P')“le then

(4.15) x“ = Max ] =

s, J 4

and the maximum is attained for s =j =1. Hence if At = YAx,

2 2 A .2 At° 2
4:.,].6 - 2 — 4 1 + LA
(4.16) X ( sin® ) T E cos gy

)

By Tavylor's theorem we have

4, 4

2
(2—-4sinv7"r‘£2'\‘“'}5'):20057r1_\.x =2—7r2+7—réx + O(Axé)
Hence
. 2 '
(2 - 4 sin ’”;X-) =4 - am’ AxS 4 —;ivr‘le‘l + o(ax®)
2 2, .2 4, 4
47 At 4 7 At 6
=4 -0 — +5 + O(At)
y Y
on using At = YAx. Therefore
2 2 AN
[4m7y " - cos (T )] 4, .4
t 6
(4.17) =1 - att B . < - AL L ont?) .
4y 3y

This shows that the point Jacobi method converges for all sufficiently

small At if and only if
At
L = == > =
(4.18) v Ax C

and the same is true of the point Gauss-Seidel method.
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The eigenvalues X’s . of (P')wlN' satisfy

(4.19) [Im(x_ )] =——7

2a .2
(4.20) [Re (x_ 1% = T4 L omth
S, ] "y
Hence 2
: = —1— ]
.2 L + O(At”
b= [Re()(,S j)J2 meAte Ol ts)

and therefore

]2

= ! AtTY
1-[Re(xe, 1% 7 an®y?2 [L+0(ath]

Consequently, given any & > 0, O(e) such that if 0 < At < 0

[Im(xs,j)] 5 ¢ I 4+ ¢
1 - i 2.2
[RG(XS j)] 4m ey

3

(4.21)

L
Hence if @Z :_+ng we have
477
~
2
[Im(x_ )]
. 2 S .
(4.22) [Re(x )]° + -——~~B-2ﬂ-——~— <1

We see then that even if (4.18) is not satisfied, Young's theorem
shows that the point successive over relaxation method converges for all

& such that
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2
< < v ——
0 <w = /1+€

I+

47T2v2‘

Point iterative methods for the system (4.3)

’ 2
Suppose now that A =H -7 I. In this case the eigenvalues of

(P')—lN' are given by

Xs,j = d s =1 . N j=1 M
2 2
where now d =773 -7 . Hence
Ax
. AX
(2 - 4sin > ) 2 cos TAX
Max |Re(x_ )| = ) = 5o
S,j S»] 2 ~m° AX 2 - meAX

Again by Taylor's theorem

2, 2 4
N T _AXx T A% 6
cos mhx = 1 5 + >4 + O(Ax7)
and therefore
2, 2 4, 4 27 2 4, .4
cos TAX T_AX T A% 6 ToAX T AX 6
I_W”-TZAXm = [1 > Tt O(ax )] [1+ 4 + 4 + O(Ax )]
2
4, 4
- 1+7~T—-§f—-— romxd) > 1

if Ax is sufficiently small.

Consequently the point successive over-relaxation method diverges
for every o by Young's theorem. In particular, the Gauss-Seidel method

(and therefore the point Jacobi method) diverges.
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