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1. Introduction

In a recent paper, [6], the author presented a new algorithm, the
reduced p.r.s. algorithm, for computing the g.c.d. of two multivariate
polynomials with integer coefficients. It was asserted there that the
computing time for this algorithm, when applied to two univariate polynomials
of degree n whose coefficients are d digits long, is approximately
proportional to n4c d2 . In Section 3 of the present paper we analyze
thoroughly and rigorously the computing time for this algorithm in the
univariate case, proving that if the two polynomials are weakly normal and
d bounds their norms then the computing time is bounded by a function which
is O(n4(ln d)Z), the norm of a polynomial being the sum of the absolute values
of its coefficients. This is obtained as a corollary of a more general theorem,
which bounds the computing time as a function of four variables.

In Section 4 of the present paper we present a new and faster algorithm
for computing the g.c.d. of two univariate polynomials with integer coeffi-
cients. The new algorithm uses congruence arithmetic (arithmetic performed
in finite fields. GF(p), containing a prime number of elements) and is based
on the theory of reduced polynomial remainder sequences and subresultants
developed in [6]. Several theorems are proved in Section 4 to show that
the algorithm always terminates and produces the greatest common divisor.

In Section 5, the computing tir e of the new algorithm is analyzed. The

bound that is obtained for the computing time of the new algorithm is




O(n4(ln d) + ns(ln d)Z) Moreover, it is shown that the average computing
time for the new algorithm is O(nB(ln d)Z), a substantial improvement.
Furthermore, it is shown that the average computing time for the new algorithm
when applied to polynomials with a g.c.d. of degree zero (a case of frequent
occurrence in practice) is O(n2 + n(ln d)Z) Finally, a method is proposed
for extending the algorithm to multivariate polynomials.

In order to analyze the computing times of polynomial algorithms, we
must have at our disposal bounds for the computing times for performing
operations on large integers. Such bounds, easily obtained for the operations
of addition, subtraction, multiplication and division (with or without a remainder),
are stated in Section 2 . We also obtain bounds in Section 2 for the tine to
compute the g.c.d. of two integers using the Euclidean algorithm, and show
that these bounds also apply to the extended Euclidean algorithm.

In the congruence arithmetic g.c.d. algorithm, as in other congruence
arithmetic algorithms (see, for example, [1] and [14]), one must apply the

Chinese remainder theorem algorithm. A bound for the computing time of

this algorithm is also derived in Section 2 .



2. Operations on Large Integers

We assume throughout that integers are represented in radix form,
using an arbitrary base B = 2. Computing times for arithmetic algorithms
are then naturally expressed as functions of the number of PB-digits in
certain numbers N which occur in the algorithms, i.e. [logB Nj+1.
However, since logB N = (In N)/(In B), where 1In is the natural logarithm
function, and since we will uniformly ignore constant multipliers, these
being dependent in any case on the particular computer that is used, on
numerious details of the version of the algorithm used and the precise
manner in which data are represented in the computer, we shall express
computing times in terms of In N.

The following theorem, on addition and subtraction, illustrates the
general form in which our theorems will be stated.

Theorem 2.1, Let t(a,b) be the time required to compute a + b (or

a - b). Let T(d) =max f{t(a,b): |a|, |b| = d}. Then T(d) = O(ln d).

The statement that T(d) = O(ln d) means that there exists a constant C
(independent of d) such that T(d) = C lnd for all sufficiently large d. Of
course the theorem appears to be still quite ambiguous since it does not specify

what algorithm is to be used, nor what computer. The exact statement would




be that if we choose any one of the standard classical algorithms, any one
of the familiar data representations which use radix canonical form, and any
one of various well-known computers, then such a C will exist for that
combination of choices. The theorem can be readily verified for several
choices by consulting [5], [8] and [13].

The next theorem states a similarly well-known fact about various
classical multiplication algorithms.

Theorem 2.2. Let t(a,b) be the time to compute a.b . Let T(d, e) =

max {t(a,b): |a] = d & |b| = e]. Then T(d,e) = O(({Ind){Ine)).

Here we have applied the O-notation to a function T(d, e) of more than
one variable. The meaning of the statement is that, for some C, T(d,e) = C(ln d)
(lne) whenever d =z dg and e 2 eg .

Theorem 2.2 applies to the classical multiplication algorithms. As a
special case we have T(d,d) = O({ln d)z), although the stronger form of the
theorem containing two variables will be important in many applications where
one argument is much smaller than :he other. In recent years several multipli-
cation algorithms have been devised which are much faster for very large integers.
One such fast algorithm, based on earlier work by A. L. Toom, is given by Cook
,5V/In{Ind)

in [11]. It has the property that T(d,d) = O((ln d) - ). It follows

i
that, for every € > 0, T(d,d) =0((Ind) %)

It is easy to construct a simple
L.5
version of this algorithm for which T(d, d) = O((Ind) }. Throughout the present

paper, however, it will be assumed that the classical multiplication algorithm

is employed, and Theorem 2.2 will be applied.



So far, we have bounded computing times as functions of bounds on the
inputs to the algorithms. In order to obtain a tight bound on the time for
division, it is necessary to express it in terms of bounds on one input (the
divisor) and one output (the quotient), as follows.

Theorem 2.3, Let t(a,b) be the time to compute q and r, given

a and b, suchthat a=b.q+r, 0= |r| < |b|, arz 0 and abg = 0,
Let T(d,e) = max {t(a,b): |b| = d & |q| < e). Then T(d,e) = O((Ind){lne)).
The truth of Theorem 2.3 follows from the observation that most of the
computation required to produce g and r from a and b is essentially the
same as that required to produce a from b,qandr .
Next we bound the computing time for the Euclidean algorithm. The bound
is derived from the following lemma, which bounds the product of the quotients
computed by the algorithm.

ILemma 2.4. Let ql,q

PURERE qn be the sequence of quotients obtained

when the Euclidean algorithm is appliedto a and b, a= b > 0. Let

-
ged (a,b). Then q W '(q +1) < ab/c% |

C =
. = = = ' 0= < a, -
Proof Let al a, a2 b, ai ai+l qi + ai+2 with ai+2 a1+l for
< i< = = = >
l =isn, and an+2 0, so that c an-!-l' Then ai ai+1 qi + ai+2
= 1 l = i< n. & t duct of these
ai+2 qi + ai+2 ai+2 (qi + 1) for i n. Taking the product o S
n-1L n-1. )
inequalities for | = i £ n~1 we have I, a, » I "a, _(g.+ 1). Cancelling
i=1 71 i=1 "i+2 71
' i = n-1 ] = =
a,'s on both sides, ab = aa, > ancHi=1 (qi + 1), But a,=d,a . =96

2 _n-t
SO ab>qnc Hizl (qi+ 1).




\%

As an interesting sidelight, notice that each qi I and qn > 2 except

-1
when a =b. Hence 2t < q IIl_’1
n i=l

(qi + 1) < a]@/C2 ab < aZ so that

A

n<2 logza. This bound for the number of divisions compares with a bound
of about .44 log2 a obtained from Lamé's theorem.

Theorem 2.5. Let t(a,b) be the computing time for the Euclidean

algorithm. Let T(d, e) = max {t{a,b):a > b> 0 & b=d & a/gcd(a, b) = e}.
Then T(d,e) = O((Ind)(Ine)).
Proof. Let c = gcd(a,b). By Theorem 2.3, there exlist constants Cl and

C2 such that the time for the i-th division in Euclid's algorithm is = Cl(ln qi)

) + C,. Hence the time for all divisions is = CL 2?_1(1n qi)(ln ai ) +

{Ina >

i+l +1
C,n= C (nb) %_ Ina +C,n=C, (Inb)(Inl_ a) + C,n < C (Inb)
(ln(ab/cz)) + 2 C2 1og‘2 a < Cl. (lnb)(ln(az/cz)) + 3 CZ Ina = ZC1 (Ind)(lne)

+ 3 CZ Ince = .ZC1 (Ind)(lne) + 3 C2 Ind + 3 Cz(lne) = O((Ind)(Ine)).

In analyzing the computing time for the Chinese remainder theorem
algorithm below, we shall also need a bound for the computing time for the
extended Euclidean algorithm which, given a and b, a= b >0, computes
not only c¢ = gcd(a, b) but also, simultaneously, integers x and y such that
ax + by = ¢c. The extended Euclidean algorithm may be defined as follows (see

[12] and [10]). Let the a and q; be defined as above. Set x =1, v = 0,

= =1, 1 =1i= -1, . =X, - q, X, . -
X, 0 and Y, For isn let Xiio X, a5 %, and Yieo

y.'-qi yi+l . Then x =X

i and Y= Yn4

nt+l



Theorem 2.6. Let t(a,b) be the computing time for the extended

Euclidean algorithm. Let T(d) = max {t(a,b):a > b > 0 & a/gcd(a,b) = d}.
Then T(d) = O((lnd)).
Proof. The additional computing time for the extended Euclidean algorithm

is that required to compute x,

and -l =isn-1. a
42 an Vit for i=n It was shown

2
in [10] that ]Xi[ < b/2c and [yi{ < a/2c¢ for all i . Hence the time for

1

L o

all the multiplications qi Xi is, by Theorem 2.2, = Cl Zil: (In qi)(ln X,

i+

_l y
Czn = Cl In(b/c) Zinzl In q, + Czn < Cl In(b/c) ln(ab/ca) + Czn = O((ln d)z),

as in the proof of Theorem 2.5. It is also shown in [10] that the X, (also the

i i <
y,) alternate in sign. Hence (qi X < |xi+2[ < b/c and [qi yi+ll s

i+l l
can therefore be per-

i , . , n 2
formed in Cl(lnleZ[) + C2 < Cl Ind + CZ time units. Since 2 =< d , the

]yi+2] < a/c for all i . Each subtraction X- A K
time for all such subtractions in O({Iln d)Z). Likewise, the time to compute
all Y, is O((In d)z).

In the application of the extended Euclidean algorithm in the Chinese
remainder theorem, as in many other applications, & is a prime number p, so
that ¢ = gecd(a,b) =1, We then have px+ by =1, i.e., by = 1 (mod p).
Since |y| = p/2, the inverse of b in GF(p) is y or y +p according as
y > 0 or y<O0.

Our next theorem bounds the computing time for the Chinese remainder
theorem algorithm. We summarize below the computations performed in carrying
out this algorithm in order to make the theorem precise; we shall also refer to

these steps in the proof of the theorem. Input to the algorithm includes a




sequence (pl, Poseves pn) of pairwise relatively prime numbers. We shall

assume each pi > 2: in our application below the pi will be prime numbers,

but this need not be assumed in the theorem. Additional input to the algorithm

is a corresponding sequence (al, az, e an) such that 0 = ai < pi for all i.

The output of the algorithm is the unique integer A such that |A] = R /2

and A = ai (mod pi) for all i .

Chinese Remainder Theorem Algorithm

(1) Set Ql = P. and compute Qi=Q

1 i-1 T

(2) Compute P, = P/p; for 1=1,2,...,n.
(3) Compute qi and L such that Pi = piqi + I, and 0 = 1ri < pi for 1 =1 = n.

(4) Compute ti such that riti =1 (mod pi) and 0 < ti < P, for 1 = i< n.

B n
(5) Compute S = 21:[ Pitiai .

(6) Compute Q and R such that S =PQO+R, 0=R<P.
(7) Compute H = [P/2].

(8) Set A=R-H if R = H; otherwise set A =R.

Theorem 2.7, Let t(pl, Pos v P R P URERY an) be the computing
time for the Chinese remainder theorem algorithm. Let T(d) = max {t(pl, ce s pn,
a a): 1" p. < d). Then T(d) = O((ln &)°).
| ISR o i=1l 7i

Proof. It suffices to show that the time for each of the eight steps is

O((ln d)Z). The time for Step (l) is = Z?:Z (Cl(ln Qi—l)(ln pi) + CZ) <



2

n n
Cl (In P) Zi:Z (In pi) + Czn < C‘2 (In d)}(In Hi:Z pi) + Czn < C,(Ind) +

%)

5

C.n = O((In d) since 2" < P = d sothat n=0(nd).

2

The time for Step (2) is = Z?l

n
=1 (Cl(ln Pi)(ln pi)+ CZ) = CL (Ind) =

i=1

2).

(In pi) + Czn = O((In d) The time for Step (3) is = Z?:l Cl((ln pi)(ln qi) + CZ)

=C, (In d) Z?:l (In pi) + Czn = O((ln d)z). By Theorem 2.6, the time for

n

Step (4) is = S

2 n 2
(Cl(ln pi) + Cz) = C, 21:1 (In pi) + Czn = C

n 2 2 2
(Zi:l (In pi)) + Czn < Cl (Ind) + Czn = O((ln d)).
The time to compute all products in Step (5) is clearly O(ln d)Z)

since t, <p, a <p, P, <P, Pt <P and P<d. Let S, = 5 P ta,.
i i i i i i1 j i=L "1
2

a, < Pzij-l p, = p 1’ | By = P™ = d2 . Hence the time for

Then S, < P 37
j i= i=

1
all additions is =< n (Cl(ln dz) + CZ) = n(2 Cl(ln d) + CZ) = O((ln d)z).
In Step (6), S = Srl < PZ, so Q < P and hence the time is O((ln d)z).

The times for Steps (7) and (8} are clearly O(ln d}.

3. Operations on Univariate Polynomials

The primary purpose of the present section is to give a relatively complete
analysis of the computing time for computing the g.c.d. of two univariate
polynomials using the reduced p.r.s. algorithm of [6]. Along the way,
however, we shall also take the occasion to bound the computing time for
various other operations on univariate polynomials with integer coefficients.

It turns out to be very useful, for the purpose of such analyses, to define

the norm of such a polynomial, as follows.
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Definition 3.l. If P(x) = Z?_l ai xl is a polynomial with integer co-

efficients, the norm of P_is defined to be 2?_0 [ail
Norm (P) is, in fact, a norm for the ring of polynomials over the integers,

as shown by the following theorem.

Theorem 3.2. Norm (P + Q) £ norm (P) + norm (Q). norm (P - Q) =

norm (P) - norm (Q).

Proof. The first part is trivial. Let P(x) = ZT_O 3, Xl, Q(x) = Z?—O bi xi
_ omtn i _ _ ontn _
and R(x) = S0 %o where R=P-Q . Thennom (R) =2, g [ckl =
m+n m+n m n _ el
Zeoo 15 e d Byl = Tee B ek [a; by =210 2y la; b = 3y, En
Z?”O 1bjl = norm (P) + norm (Q).

The norm has two other important properties which will be frequently used
2.1
in the following: (1) lai} < norm (P) for all i, and (2) norm (P) = ( ZT—O 3, ) /2.
The following notation is frequently useful for simultaneously bounding

both norm (P) and deg (P).

Definition 3.3. U(d,m) = {P: norm (P) = d & deg (P} = nj.

The following three theorems bound the computing times for the sum,
difference, product or quotient of two polynomials, using the classical algorithms.
It is assumed here that the polynomials are represented by a canonical form as
in [2], [5], [9] or [13].

Theorem 3.4. The time to compute P+Q or P-Q for P,Q ¢ Ul(d, m)

is O((ln d)n).



Ll

Here we have for the first time stated a thorem using a more elliptic
phraseology. If stated in full the theorem would have the same form as
our previous theorems: Let t(P,Q) be the time to compute P + Q (or P - Q).
Let T(d, m) = max {t(P,Q): P,Q € U(d, m)}. Then T(d,m) = O((ln d)m).
Proof. At most m + | coefficient additions or subtractions are re-
gquired, and each takes = C1 Ind+ CZ computing time. But (m + 1)(Cl
Ind 4+ CZ) = O((In d)m).

Theorem 3.5, The time to compute P. Q for P € U(d,m) and Q € (e, n)

is O((In d)(In e)mn).
Proof. At most (m + 1)(n + 1) coefficient multiplications are required,

the time for each being = Cl(ln di(lne) + C Also, at most (m + L)(n + 1)

5
additions are required and, by the proof of Theorem 3.2, the time for each

addition is = C3 In de + C4 = C3 (Ind+lne)+ C But (m + L}(n + 1)

4
(Cl(ln d)}(ln e) + CS (Ind+ 1Ine)+ C4) = O({ln d)(In e)mn).

Theorem 3.6. The time to compute P/Q for Q € U(d, m) and P/Q e U(e, n)

is O((In d)}{ln e)mn).
Proof. At most n + | coefficient divisions are required. By Theorem

2.3, the time for each division is = Cl(ln di(Ine)+ C_, and (n + 1) (Cl(ln d)

2
(In e) + CZ) = O((Ind(ln e)mn). The other required arithmetic is essentially the
same as in multiplying P/Q by Q .

We now begin an analysis of univariate polynomial g.c.d. algorithms by

considering the content and primitive part algorithms.
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Theorem 3.7. The time to compute cont (P) for P € U(d, m) and norm (pp(E))

< e is O((ln d)(ln e)m).

k

Proof. Let P(x)= 3.,

€]
a, x where el> eZ...> ekandeach

IA

a, # 0. Let d = la | and d , =gcd(d; la 1) for Lsisksl.
Then cont (P) =dp. 0 < di < lail < norm (P) = d for all i . Also, cont (P) =

di for all i . Hence max {di, laHl[ }/di+l < norm (P)/cont (P) = norm (pp(P)) = e
for | < i< k-1, By Theorem 2.5, the time for the k-1 g.c.d.'s is

< (k - 1)(C,(In d)(In e) + C,) = O((In d)(In ejm) since k-1 =m.

Theorem 3.8. The time to compute pp(P) for P & U(d, m) and norm

(pp(P)) = e is O((In d)(In e)m).

Proof. To compute pp(P), we first compute cont (P), then divide P by
cont (P). By Theorem 3.7 we need only show that the time for the division is
O((ln d)(In e)m). The division requires at most m + | integer divisions, and
in each of these the divisor is cont(P) = d while the quotient is a coefficient
of pp (P), hence bounded by e. Now apply Theorem 2.2.

Corollary 3.9. The time to compute either cont (PY or pp(P) for

Pe U m) is O((ln d)’m).
Proof. Apply Theorems 3.7 and 3.8, noting that norm (pp(P)) = norm (P).
Next we shall study the time required to compute a reduced polynomial
reaminder sequence over the integers. For this purpose the following theorem

on the standardized Euclidean remainder, ®(P, Q) is helpful.
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Theorem 3.10, Let t(P,Q) be the time to compute ®(P, Q). Let
T(m, n, e) = max {t(P,Q): deg(P) =m & deg(Q) =n & m=n > 0 &
norm (P) < e & norm (Q) = e]}. There is a constant C such that T(m, n, e)
= Cm+n){m-n+ 2)2 (In e)2 for all sufficiently large e .

Proof., Let Pl’ PZ’ A be the sequence of polynomials such

m-n+2

that Pl =P, Pi+l = p(Pi,Q) if deg(Pi) 2z n, and Pi+1 = L(Q) - Pi if

< n. R(P, = .
deg (P) n. Then R(P, Q) Pm-—n+2

Let Mi be the i+ 1 by m+ | matrix

/ bn bn-—l bn—Z bO 0 0 0 \
0 b b | b, b, 0 0
1\/Il = 0 0 brl bZ bl bO 0
am am-l am-z : aO

It is easy to see that Pi+ is the associated polynomial of Mi' Since the

1
Euclidean norm of each row of Mi is at most e, Hadamard's theorem implies

i+l
that the coefficients of Pi+1 are bounded by ! . At most m 4+ n multipli-

cations are required to compute Pi+ from Pi and the time for each multipli-

L

cation is = C,(In e)(ln ot C, = C (i + 1)(n )’ + C, < C (m=-nt2)

{In e)2 + Cz. The time for all multiplications is therefore bounded by (m - n + 1)

2
(m + n)(Cl(m -n+2){lne) + CZ) . At most m additions are required to compute

i+l
P, from Pi’ and the time for each is = C_(ln e

4l Y+ C, = C

4 3(m-n-{-Z)

3
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(Ine)+ C So the time for all additions is =(m - n + l)m (C3(m -n+ 2)

4
(Ine) + C4). The validity of the theorem is now evident.

P,..., P to be normal in case

In [6] we defined a p.r.s. P,P,, ”

n =1 for 2 <1is< k-1, where n, = deg(Pi). It was shown that,

— n.
i i+l

among other nice properties, a normal reduced p.r.s. agrees, to within

signs, with the associated subresultant p.r.s. It was stated there that,
empirically, almost all p.r.s.'s are normal. And, as Knuth observes in [13],
this is also true in a definite mathematical sense. Notice that if Pl and P2
have a g.c.d. of degree greater than one and if Pl’ PZ’ RN Pk is the com-
plete p.r.s., then Pk-—l is an associate of the g.c.d. and Pk = 0. Hence

n ) —nk,> I, and PL’PZ’ ...,Pk is not normal.

Since, in practice, g.c.d.'s of degree greater than one will occur
frequently, our computing time analysis, to be useful, must not be restricted

to a normal p.r.s. SO we now define a p.r.s. P PZ""’Pk to be weakly

11

normal in case deg(Pi) - deg(Pi_H) =1 for 2=<isgk-2. We can now
make the stronger assertion that, for any I, almost all complete p.r.s.'s

PL’ PZ’ vees Pk for which deg(gcd (Pl’ PZ)) = r are weakly normal.

In the following we will bound the time to compute a complete weakly

normal reduced p.r.s. For convenience, we will also say that (P, Q) is

weakly normal in case any complete p.r.s. Pl’ PZ, ..., P for which Pl =P

k

and PZ = Q is weakly normal.

By Theorem 1, part (b), of [6], we have the following theorem.
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Theorem 3,11, Let Pl’ PZ’ vy Pr be a complete weakly normal reduced
p.r.s. Let Pl’ PZ’ 83, ceey Sr be the associated complete subresultant p.r.s.
Then Pi = Si if 1 is even or n o-n, is odd, and Pi = -Si otherwise, for
31isr,

The next theorem bounds the coefficients of a weakly normal complete

reduced p.r.s.

Theorem 3.12, Let Pl’ PZ’ e Pr be a complete weakly normal reduced

p.r.s. such that deg(Pl) = m, deg(PZ) = n, norm (Pl) < e and norm (PZ) < e.
. m-n+2i-4 ,

Then the coefficients of Pi are bounded by e for 3 =isr.

Proof. By weak normality, deg (Pi) =n-i+4+2 for 2=isr-1 and,
by Theorem 3.11, Pi = * Si for 3 =i = r. The coefficients of Si are,
by definition, determinants of order (m + n) - Z(deg(Pi_l) -1)=m-n+2i-4
of submatrices of the Sylvester matrix of P1 and PZ' By Hadamard's theorem
m+n=-2i+4
e .

they are therefore bounded by

Theorem 3.13. The time to compute the complete reduced p.r.s. for

P and Q such that deg(P) =m, deg(Q)=n, m=n > 0, deg(gcd(P,Q)) = k,

norm (P) < e, norm (Q) = e, and (P, Q) is weakly normal is O(({m + n)(m - n + 1)

$(m+n-2k+2)°% @8- (k- 1)Y)n e))).

Proof. Let PL’ PZ’ ..o Pr be the complete reduced p.r.s.

— 2
By Theorem 3.10, the time to compute P3 = (PL’ PZ) is O((m + n)(m - n + 1)

(In e)Z). This completes the proof if r = 3. Suppose r = 4,
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For iz 2, let P'i= p(P.,P,, ). Then s‘%'(Pi P, ) is either p(P'i,P

i’ it P4l )

i+1
. ' = -1 -]
or L(Pi+l) Pi . deg(Pi_H) < deg(Pi) n-i+2 soatmost 2(n -i+ 2)

multiplications are required to compute Pli' By Theorem 3.12, the computing

-n+2i-4 - -2
time for each is = C (In em ntel ) (In em n+2i-2) + C2 < Cl (m -n+ 21 - 2)Z

1
2 - { -
(Ine) + CZ' The coefficients of P'i are bounded by Zezm 2n+4i-6 <

2(m-n+2i-2
e (m-n+2i ). It follows that the time for all multiplications in computing

R—(Pi, Pi+1) has a bound of the form (n -1 + Z)(Cl(m -n+ 21 - 2)2 (In e-)2 + CZ)'

Such a bound continues to hold when additions are also considered.

m-n+!

o . j
Now P4 = R(Pz, PB)/(L(PZ)) The successive powers (L(PZ)) ,

2<j<m-n canbe computed in (m - n+ 1) (Cg(m -n+ )({n e)2 + C4).

m-n+4

- -n+l
The coefficients of P4 are bounded by e and l(L(PZ))m n“l < e nt .

Hence 6%-(P2, PB) can be divided by (L(PZ))m"m‘l in (n - Z)(CB(m -n+ 1)

(m - n + 4)(In e)‘2 + Cé). The total time to compute P4 from @(PZ, P3) is

therefore = C7 (n-2)(m-n+1){m-n+ 4)(1ln e)Z + C8m. Adding to this

the time above to compute @-(Pz, Pg) gives a bound of the form (m + n)(CS(m -n+ 1)

(m - n+ 4)(In e)2 + C which is O((m + n)(m - n + l)z(ln e)Z). This proves

6)’
the theorem for r = 4. Suppose 1 > 4.

. ) 2 .
For i = 3, Pi+2 = (Pi’ Pi+l)/(L(Pi)) . Since deg (Pi+2) =n - i, Pi+2

can be computed from @(Pi, Pi-i-l) in (n - i)(C3 (m - n + Zi)2 (In e)2 + C4).
Altogether, the time to compute Pi+2 from Pi and Pi-H has a bound of the
form (n -1+ Z)(Cl(m -n+ Zi)z(ln e)Z + CZ)' Now r=n-k+3 if k> 0

and r=n+2 if k=0, so r=n - k 4+ 3. The total time to compute P5, P6’

- Pr is therefore bounded by (CB(m -n+2(n-k+ 1))Z(ln 6)2 + c4)
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n-k+1 . 2 2 n-k+l ;
%, (-1 =(Cim+n-2k+2)7(ne) tC) 3y (n-i)= 0O
((m+n -2k + Z)Z(rl‘2 - (k - l)a)(ln e)Z) since Zril;];ﬂ (n -1i) = 'é‘((n - 2)

(n - 3) - (k - L)Z) = O(n2 - (k - 1)2).

Theorem 3.14. The time to compute gcd (P, Q) by the reduced p.r.s.

algorithm such that deg(P) =m, deg(Q)=n, m=n > 0, deg(gcd(P, Q) = k,
norm (P) = e, norm (Q) = e, and (P,Q) is weakly normal is O(({m + n)
(m-n+ 1%+ m+n-2k+2)° 0% - (k- 12)n e)3.

Proof. The required computations are as follows:

(1) = cont (P), b = cont(Q), Pl = pp(P), P2 = pp(Q), c¢ = gcd(a,b).

(2) Compute the complete reduced p.r.s. P

(3) If Pr =0, compute R=c.pp(P ).

r-1
By Theorem 2.6 and Corollary 3.9, the computations (1) can be performed

in O((m + n)(In e)z). The time for (2) is O(((m + n)(m - n + 1)2 +
(m + n - 2k + 2)2 (n2 - (k - 1)2))(ln e)Z) by Theorem 3,13, If Pr = 0, then

k> 0 and r-1=n-k + 2. By Theorem 3.12, the coefficients of Pr—l are

bounded by em+n—2k . Next we notice that Corollary 3.9 would still hold

under the weaker assumptions that deg(P) = m and that the coefficients of P
are bounded by d . Since deg <Pr—l) =k, pp(Pr_l) can be computed in

O(k{m + n - Zk)z(ln e)z). The multiplication of pp (P by ¢ can be done

)
. 2 , . 2 2
in O(k{(m + n - 2k)(In e) ). So the time for (3) is O(k(m + n - 2k) (In e)7).

But }<;Sr12—(k—l)2 since k = n .
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By eliminating the variables n and k , singly or together, we obtain
the following three corollaries of Theorem 3. 14.

Corollary 3.15, The time to compute gcd (P, Q) by the reduced p.r.s.

algorithm such that deg(P) =m, deg(Q)=n, m=z=n > 0, norm(P) = e,
norm (Q) < e, and (P,Q) is weakly normal is O(({m + n)(m - n + 1)2 + n2
(m + n)z)(ln e)z).

Proof. Use Theorem 3.14, noting that (m +n - 2k + ;Z)2 < {m+n+ 2)2 =
O((m + n)z) and nZ - (k - 1)2 < n2 .

Corollary 3.l6. The time to compute gcd (P, Q) by the reduced p.r.s.

algorithm such that P,Q & U(e,m), deg(gcd(P,Q)) =k, and (P, Q) is weakly
mornal is O((m3 +{(m -k + 1)3(m + k)¥{ln e)Z).

Proof. Use Theorem 3.14, noting that (m 4 n)(m -~ n + l)2 < 2m (m + l)'2 =
O(m’) and (m4n -2k + 250" - (k-1 = 4m- (k- N2 -k - )% =
sm -k + ) m 4k - 1) =0(m-k+ 1) (m+ k).

Corollary 3.17. The time to compute gcd (P, Q) by the reduced p.r.s.

algorithm such that P,Q € Uf(e, m) and (P,Q) isweakly normal is O(m4(ln e)é).

Proof. Use Corollary 3. 16, noting that m3 +(m -k + l)3 (m + k) = m3
+ 2m{m + l)3 = O(m4).

Having now analyzed the computing time for the reduced p.r.s. algorithm,
let us observe that Theorems 3.12, 3.13 and 3.14, and Corollaries 3.15, 3. 16

and 3.17 still hold if we replace "reduced p.r.s." everywhere by "primitive p.r.s.".

Let QL’ QZ’ . .,Qr be the complete primitive p.r.s. Then Qi is a divisor
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and associate of Pi for all i . Hence 3.12 still holds. In 3.13 we now
= . o —
have to Conlpute pp( (Qi’ Qi+l)) in place of dividing R(Pi, Pi+l) by
8i-1%

(L(Pi)) . The computing time bounds are of the same order for the two

operations. In Theorem 3.14, the computation pp(Q is omitted, but this

r~l)
does not affect the bound of the theorem.

It would be interesting to know whether Theorems 3.13 and 3.14, stated
for a primitive p.r.s. without the assumption of weak normality, would still
hold. It seems likely that they would, but I have not attempted a proof. It

also seems quite unlikely that they hold for a reduced p.r.s. without the

weak normality assumption.

4. A Congruence Arithmetic G.C.D. Algorithm for Univariate Polynomials

In this section we describe a congruence arithmetic algorithm for computing
the g.c.d. of two polynomials with integer coefficients. Several theorems
are then proved to show that the algorithm does what it is supposed to do.
In Section 5 we will analyze the computing time for the algorithm, showing
that, on the average, it is much faster than previous algorithms.

For any prime number p, let GF(p) be the finite field with p elements
0,1,...,p -1 and let EPp be the unique homomorphism of the integers, I, onto

GF(p), so that ﬁPp(i) =1 for 0 =1 < p. Let <P>; be the homomorphism from

i n

I[x] onto GF(p)[x] induced by Ppe That is, ¢ (Z?:O aix)::Zi:O Pp

P
(ai) - x' . We shall usually just write CPp in place of qf; .
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Given two polynomials with integer coefficients, P. and PZ’ deg (P

| )

L

= deg (PZ) > 0, the algorithm to be described does the following:

(a) decides whether deg (gcd (Pl’ PZ)) = 0, and (b) if not, computes the last
non-zero term, S, of the complete subresultant p.r.s. for Pl and PZ (this
being an associate of gcd (Pl’ PZ))' A complete g.c.d algorithm is constucted
from this algorithm in an obvious way.

Let PL’ PZ’ 83, v e Sr be the complete subresultant p.r.s. and let S
be the last non-zero subresultant. The general idea is to compute tpp(S) for
a sufficiently large number of primes p that S can then be computed by the
Chinese remainder theorem algorithm. The required number of primes is
determined by Hadamard's theorem as a function of deg (Pi) and norm (Pi) for
i=1 and 2.

In addition to Pl and PZ’ the algorithm requires as input an infinite
sequence of distinct prime numbers, P pz,pB, ..., and an integer h such
that pi = Zh for all i . In practice the pi would probably be the first few
hundred primes greater than Zh, where Zh is about half the largest integer
which can be stored in one computer word.

Following is a complete description of the algorithm.
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Congruence Arithmetic Subresultant Algorithm

(1 Compute d = norm (Pl)’ e = norm (P m = deg(Pl) and n = deg (P

) -

Compute the least integer r such that 2r =2 d and the least integer
s such that 2° = e. Compute t=ms +nr and u = [t/h] + L.
(2) Set I=0 and M=g=@ = ().

(3) Select the next prime, p .

ole
ES

(4) Compute P;’:: P (Pi) for i=1,2. If deg(Pl) <m or deg(P*Z) < n,

p
go to (3).

(5)  Compute the complete reduced p.r.s. P¥
over GF(p).

(6) If PT( # 0, terminate with indication that deg (gcd (Pl’ PZ)) =0.

o
b

k)’

als
b
H

> .y

(7) Set N = (nT, n where n>:i< = deg (Pﬂi:).

(8) Compute the subresultant associate, S, of P _|» using Theorem 1 of [6].

%

k

(9) If N <M, goto (3).

(10) If N> M, set f£=(3), P=(p), I=1 and M =N, then go to (3).

(L1)  Adjoin S to § and p to P. Set I=1+1. If I < u, goto (3).

(12) Let (P= (P: D, - P ) g = (5,8, .. ”Su)' Each 8, is a polynomial
of degree k > 0. By k + | applications of the Chinese remainder

theorem, compute the unique polynomial S of degree k such that

cppi(S) = Si for 1 £ i< u such that the coefficients of S are bounded
1
by 2 pl.’ pZ s pu .
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Here are some remarks explaining the above algorithm. In (1) we are
applying Hadamard's theorem to obtain an upper bound, u, for the number

of primes p for which CPp(S) will be needed in order to determine S . By

m ms+nr _ St

Hadamard's theorem, the coefficients are bounded by at e s 2 2 <
Zhu < pl,p2 oo pu for any u primes greater than Zh

@) is a list of primes (pl, Pos v pk) which have been used but not dis-
carded. 5 is a corresponding list of polynomials (Sl,’ SZ’ v Sk) for which,

hopefully, Si = chi(S). If it later turns out that Si b4 CPpi(S), both P, and
Si are discarded. The value of I is always k, the number of primes in
the list @ .

For each prime p the sequence of degrees (n*l, n*z, e n*k) is computed.
All such sequences are ordered lexicographically. The value of the variable
M is always the maximum of all degree sequences which have been computed.
Since (), the null sequence,is least among all sequences, M is initialized
to (). Any prime whose degree sequence proves to be non-maximal is dis-
carded. It will be proved below that if any u distinct primes all have the
same degree sequence, then their common degree sequence ig the degree seguence
of the complete reduced p.r.s. for PL and P.2 over the integers, and hence
is maximal. It will also be shown that if p has a maximal degree sequence
then the complete reduced p.r.s. over GF(p) is the homomorphic image

under @p of the complete reduced p.r.s. Over the integers.

The following theorem and its corollary justify Step (6).
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Theorem 4.1, Let P and Q be non-zero polynomials over I, p a

prime such that @,(&P)) # 0 and Pp(E(Q)) # 0. Then deg (ged(@p(P),
P p(Q)) 2 deg (gcd (P, Q)).

Proof. 1Let R =gcd(P,Q). Then P =R. Pl and Q = R-Ql . Since
(pp is a homomorphism, Py (P) = Pp(R) - ¢p(P|) and q>p(Q) = ¢p(R) - Pp(Q)).
Hence §,(R) is a common divisor in GF(p) [x] of ¢p(P) and P,(Q). Also,
£(P) = &R) - £(P) so 0 # PplE(P)) = Pp(L(R))) - Po(£(P)) and Po(E(R) #0. So
deg (ged(® p(P), Pp(Q))) = deg (9,(R)) = deg (R).

Corollary 4.2. Let P and Q be polynomials over I, deg(P) =z deg(Q) > 0.

Let p be a prime such that q)p(.Si(P)) #0 and q)p(.SZ(Q)) #0. Let Pl’ PZ’ cees Pk

be a complete p.r.s. over GF(p) such that P1 = q)p(P) and P2 = cpp(Q). If

Pk # 0, then deg (gcd(P,Q)) = 0.

Proof. If Pk # 0, then deg (gcd(PL, PZ)) =0 . Use Theorem 4.1,

Lemma 4.3. Let P and Q be polynomials over I, deg(P) =z deg(Q) > 0.
Let p be a prime such that ®,(£(P)) # 0 and ?,(£(Q) # 0. Then cpp(”f%(p,Q)) =
(9, (P), 9,(Q)).

Proof. Let m =deg(P), n=deg(Q); R=g&(P,Q). R is uniquely deter-

~n+1
mined by the condition that (E(Q))m ntl, P=Q-S+R forsome S, with

deg(R) <n. Since q)p is @ homomorphism, (,cpp(,gg(cg)))m_n’H . CPp(P) =
PoQ) © L(S) + 9p(R). But 9,(C(Q)) = Hep)Q)), deg(gy(P) =m, and

deg (9,(Q)) = n. Also, deg(9,(R)) = deg(R) < n. S0 @,(R) = Rlp,(P), ©,(Q)).
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Theorem 4.4. Let PI’PZ’ “e s Pk be a reduced p.r.s. over I, p a
prime such that deg(CPp(pi) = deg(Pi) for l<is<k-1l. Let P*l’ P*z’ ’P*k
be a reduced p.r.s. over GF(p) such that P L= CP/p(Pl) and P 5 = CPp(PZ).

Then P*i = cPp(P Yfor 1 =1s=s k.

— — 0 e
(g

. @ sk = B b =
Proof P (P P ) and P 3 P 1,P 2) olFy

os

P"'3 p( 3) by Lemma 4.3, since deg(9® P(Pi)) = deg(Pi) implies CPp(SL(Pi)) #0.
Let n, = deg(Pi) and 5, =n, -0, for all i . Assume P*i = CPp(Pi) and o
P’;H = 9,(P,, ) where 2= isk- 2 . Then P"‘H —ﬁ’(P i+l)/(£(P*.l_l))6i_l
CPP(R(P” Pl_l_L))/(fpp(ﬁ(l:‘i_L)))éi-l.H = CPp(_ 1+1)/ 61 lH) = 9pP. )
by Lemma 4.3. By induction, P*.l = 9(P,) for all i

Theorem 4.5. Let PL’PZ""’Pk be a reduced p.r.s. over I . Let p be
a prime. Let P*l’P*Z’ ...,P*k be a reduced p.r.s. over GF(p) such that
P"‘l = 9p(P)), P*Z = 9p(P,) and deg(P) = deg(P¥) for 1 =isk=-1. Then

Proof. By inductionon k . For k =3 the theorem is an immediate
consequence of Theorem 4.4 applied with k = 3. Assume Theorem 4.5 holds for
k = j, and assume its hypotheses for k=j+ 1. Then P*i = Cpp(Pi) for L 1=

by induction hypothesis. Hence deg(Pi)r- deg (‘@P(Pi)) for | = 1= j. Hence

1

p* = (Pp(Pi) for | <i=<j+ | by Theorem 4.4. applied with k =j+ L.

i
The next theorem shows that if u primes all produce the same degree
sequence, then that common degree sequence is the degree sequence over the

integers. By the previous theorem, therefore, each prime produces a homomorphic

image of the reduced p.r.s. over the integers.
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Theorem 4.6. Let Pl’ PZ’ ces Pk be a complete reduced p.r.s. over
the integers. Let deg(Pl) = m, deg(PZ) = n, norm (Pl) < d, norm (PZ) < e.
Let n, = deg (Pi)' Let P> Poseees pu be distinct primes such that
u n m : ,
Hi=l pi> d e . Let Vi VZ,...,vr be such that for every i, | =i < vy,

the complete reduced p.r.s. over GF(p) for @, (P.) and ®_ (P.) is a
i Pt 1 Pi*" 2

(l), P(l), P(l) such that v, = deg(P(i)) for 1 2j=r, v, =n

sequence Pl P EERERTR i i 1 1

and V_ =n_ . Then r=%k and Vv =n, for 1 =i < k.
2 2 i i

Proof. Assume r =t and Vj = nj for 1 = j = t. This holds by assumption
for t = 2. We will show that if it holds for t and t < k, then it holds for t+ 1.

Let Sl’ SZ’ s S be the complete subresultant p.r.s. over the integers

k

such that Sl = Pl and SZ = PZ' By Hadamard's theorem we know that the

coefficients of all Si are bounded by a" e™. Now Vt = n, > n, = 0, so

r=zt+ 1, H?—l pi is not a divisor of E(St_H) so, for some j, P; is not a
t-1  Oi-1(55~1)

ivi " £ . 1 3 = . ’
divisor of (St+l) By Theorem 1 of [6] Pt+l H1=2 c, St+l
where 6, =n, -n, and c, = (P,) for 2= 1i=s<t-1. By induction

i i 141 i i

hypothesis, Vi = ni for I = 1i=<1t. Hence n, = deg(PiJ)) for 1 =1i=<1t, By

, () _ . _ .
Theorem 4.5, Pi = chj(Pi) for 1 =i t+ 1. So deg(Pi) = deg(cppj(}?i)) for

l =1ist. Hence Cppj(E(Pi)) = ch.(Ci) #0 for 1l =1i=<1t. So P is not a

-1 Sogleh
divisor of Hi=2 ci . So pj is not a divisor of S‘i(PtH), i.e.,

v = .
tel

By induction we now have rz k and vi =n, for 1 =i = k. This implies

v = - . = k.
K nk 0 and therefore r =k
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Let Pl’ PZ’ ..., P be the complete reduced p.r.s. over I for the

k

two polynomials, PL and PZ’ which are inputs to the algorithm. Let

Sk—l be the subresultant associate of Pk—l . The next theorem now shows

that if Step (l12) of the algorithm is ever reached then, for each pi in @’,

Si = qopi(S

k—l)'

be a complete reduced p.r.s. over

Theorem 4.7. Let PL’PZ’ ""Pk,

I. Let P? = cpp(Pi) and assume deg (P"‘i‘) = deg(Pi) for 1 =i= k. Let

Sl’ SZ’ . .,Sk be the subresultant p.r.s. over I such that S = Pl and
sk Tk“l sk k-3 sk 6]‘.-1(6]‘,—1‘)
SZ = PZ' Let Sk—l = (-1) Pk—-l/nizz L(P i) , where n, =
o _ k-3 _
deg (Pi), 61 = ni ni+l and Tk = Zi:l ni Dy + (nl + k l)(nk_2 + 1),
Then Sk—l = @p(Sk_L).

Proof. Since deg (P) = deg (P*i‘), Q(P”i‘) = £(0 5(P))) = Pp(L(P))). Now
apply Theorem 1 of [6], and use the homomorphism property of CPp.

We still have to show that if Step (12) is reached, then Sk—l is an
associate of gcd (PL’PZ)’ i.e. that Sk = 0. But this follows easily from
the proof of Theorem 4.6.

Finally, we must show that the algorithm will eventually terminate.

This is equivalent to showing that only a finite number of primes can ever be
discarded by the algorithm in Steps (4), (9) and (10). But a prime is only
discarded in case its degree sequence is non-maximal, i.e. in case it

divides H]i(_—._ll c where Pl’ Pz, ey Pk is the complete reduced p.r.s. and
c, = E(Pi). In the next section we will take a closer look at the number of

i

primes which can be discarded.
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5. Analysis of the Congruence Arithmetic Algorithm

In analyzing computing times for the congruence arithmetic g.c.d.
algorithm we will consider h to be a constant. h will ordinarily be in
a range between 30 and 60, depending on the computer word length.
Since there will then be a minimum of about Zh—l/h 2 lO7 primes in the
interval from 2h to 2h+l, we can safely ignore the size of the primes
in our analysis and assume they are all single-precision. There will then
be a fixed bound for the time required to perform any arithmetic operation in
GF(pi) for all primes, pi, encountered. Likewise, we may safely assume

m, n,r, s,t and u are all single-precision integers.

Theorem 5.1, The time to compute norm (P) such that P & U(d, m)

is O(m(ln d)).
Proof. Obvious.,

ST ,
Theorem 5.2, The time to compute the least r such that 2 = d is

O((ln d)z) .
Proof. Let dO =d -1, di+l = [di/Z] . Let k be least such that

dk = 0. Then r=k. r divisions are required and the time for each is

O(ln d). But r

O(ln d).

Theorem 5.3. The time to compute cpp(d) is O(ln d).

Theorem 5. 4. The time to compute cpp(P) for P g U(d,m) is

O(m(ln d)).
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Theorem 5.5. The time to compute the complete reduced p.r.s.

p* P*,...,P" over GF(p) from P*l and P*Z such that deg (P’ ) =m

k

P*Y=n, m=n> 0, is O(mz).

and deg ( 5

Proof. Let deg(P::,:) = ni, £(P*y=c¢c', 6 =n -n, for 1 =ik,

1A

_ +1
- < 1
5 1. Then P 42 R(P’ )/C 5 for 1

0 < k - 2. Clearly

ste

at most Bni(éi + 1) operations in GF(p) are required to compute @(P%, P';H).
1

0 1 -1 . %*
(¢ i-1* ) can be computed in &, .+l operations and P, can then
i i-1 it2
‘ . . k-2
be computed in at most n Lo +1 = nay operations. But Z -1 3n (61—!- 1)
- -2 -
szkz(éﬁl)Sém Zlf 5, Sémz, Z‘.]FZ(E)_ +l)sl+22k35,sl
i=l i i=1 i i=1 i~-1 b7
2
+ 2(m - nk—Z) < 2m, and Zk_, n Lo < (k-2)m = m" . So the total number
of operations is at most 7m2 + 2m < 8m
Theorem 5.6. Given a complete reduced p.r.s. Pﬁ, P:;, cees Pi over
¢ -3 5, 01-1(05-1)
GF(p) such that deg (P l) = m, the time to compute p* m l/H - (P i)
2
is O(m ).
k-3 k=3 k-3 2 2
o) 5 ~-1)< < 5 = -
Proof. Z,_5 & _ (5 )= 2 0, 0= (3, )= (m n,_,)
k-3 s 01-1(61-1) 2
- H “~ 1 1 ,. —
So dk—l (=2 c(p i) can be computed in at most (m nk_z)
. -1 -1 sl , e
operations. dk-—l and dk—l P k-1 can then be computed in nk—L + 2 additional
2 2 2
i -— < — < —
operations. But (m nk-Z) + nk—-l +2 = (m mnk_z) + (nk‘_2+ 1y = m an_z +
1 < mZ .

In Steps (9) and (10) of the algorithm, we have to compare two degree
sequences M and N . The maximum length for such a degree sequence is
m + 2, so the time for this operation is O(m). This observation together with

Theorems 5.4, 5.5 and 5.6 gives us the following theorem.
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Theorem 5,7. For each prime pi selected by the congruence arithmetic

2
subresultant algorithm, the computing time is O(m~ + m(ln d + In e)).
We will show next that the number of primes selected by the algorithm
is O(n(nlnd+ mln e).

be a reduced p.r.s. over I . Let

5.8. ’ P3N
Theorem 8 Let Pl P2 Pk

"Sk be a subresultant p.r.s. over I such that S1 =Pl and

S,=P,. Let p beaprimeand 1 =i=< k. If p divides S‘;(Pi) then,
for some j < i, p divides ,(Z(SJ,).
Proof. The theorem clearly holds for 1 < i < 3, Assume it holds for
t where 3 = t< k. Let c, = E(Pi) and di = ,(‘,(Si). By Theorem 1 of [6],
-

C = + 1T, céi'l(éi—l)

1 -
el i=2 S dt-l—l . Suppose p divides c¢ but not dt+

t+1 -

Then it divides cJ for some j =t -1 and hence, by induction hypothesis,
dj' So the theorem holds for t + 1 .

Theorem 5.9, Let Sl’ 82,83, ...,S, be a complete reduced p.r.s.

k
over I with deg(Sl) =m, deg (SZ) = n, norm (Sl) = d and norm (SZ) < e,
-1 2
Let d = £(5,). Then |I°7' = qan®e™,
i i i=1 i
: . n m ‘ k-1
Proof. By Hadamard's theorem, [di} <d e forall i, so lHi:B di[

k-1 n mk-2
oy 4 l=@e <

= @™ Bw |d,| =d and |d,| se, so |n

n m\n

(d e )

Theorem 5.10. The number of primes selected by the congruence

arithmetic subresultant algorithm is O(n(n In d + m ln e)).
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Proof. Every prime discarded by the algorithm is a divisor of some
E(Pi) and hence, by Theorem 5.8, some SZ(Si) = di’ l<si=k-1. By
Theorem 5.9, the product of all discarded primes is at most drlZ emn
Since each prime is greater than Zh , if N is the number of discarded
primes we have ZNh < dnz ™ hence N < (nZ logz d + mn .1o<_:;‘2 e)/h. So
N = O(n(n In d + m In e)). The number of primes selected but not discarded
is atmost us<t/h+1 =< (ms+nr)/h+1s= (m(s-1)+n{r-1) +m+n)/h+1
< (m(log2 e+ 1)+ n(logZ d+1))/h+1=0(nlind+mine).

Putting all the pieces together, we have the following computing time

bound for the entire process.

Theorem 5.11., The computing time for the congruence arithmetic sub-

resultant g.c.d. algorithm such that deg(Pl) = m, deg(PZ) = n, norm (Pl) <= d

and norm (P,) < e is O(mn(m +Ind +1ln e}(nlnd + m ln e)).

5)
Proof. By Theorems 5.7 and 5.10, the time to process all primes is
O(mn(m +lnd+Ine)(nlnd+m ln e)). It therefore remains only to show that

the same is true of the other parts of the algorithm. By Theorems 5.1 and
2

5.2 the computing time for Step (1) is O(mlnd +n Ine+ (Ind) + (In e)Z).
In accordance with the remarks at the beginning of this section we will assume

, , h+l
that each prime is = 2 . Hence ln(p1 Pyt pu) < th+ Du=0(nlind+
m ln e) as in the proof of Theorem 5. 10. By Theorem 2.7, the time for each
of the k + 1 applications of the Chinese remainder theorem algorithm is

O(nind + m In e)Z). Since k + 1 = O(n), the computing time for Step (12)

2
is O(n{nlnd+ mlne) ). Incorporating this algorithm into a complete g.c.d
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algorithm, we must consider the times to compute pp(Pl), pp(PZ), pp(S)
and c - pp(S), where ¢ = gcd (cont (Pl)’ cont(PZ)). The times to compute
PP (Pl) and pp (PZ) are O(m(ln d)z) and O(n(ln e)z) by Corollary 3.9,
Since the coefficients of S are bounded by Py P, pu » Corollary 3.9
shows that the time to compute pp(S) is O(n(nind + n ln e)z), the same
as Step (12), and the time to multiply pp(S) by c is then O(n{lnd + ln e)
(nlnd+mlne).

The following two corollaries follow easily.

Corollary 5.12, The computing time for the congruence arithmetic

subresultant g.c.d. algorithm such that deg(Pl) = m, deg(PZ) = n, norm(Pl) <

e, and norm (PZ) = e is O(mn(m + n){m + ln e)(ln e)).

Corollary 5.13. The computing time for the congruence arithmetic sub-

resultant g.c.d. algorithm such that Pl’ P2 g Ule,m) is O(ma(m + 1n e)
(In e)).

Comparing Corollaries 3.17 and 5.13, we see that the computing time
bound for the reduced p.r.s. algorithm is larger than that for the congruence
arithmetic algorithm by a ratio of m(ln e)/(m + ln e), a ratio which grows
indefinitely with m and e . Actually, the superiority of the congruence
algorithm is much greater than this ratio indicates. We found that the number
of primes discarded is O(n(n In d + m ln e)) while the number of primes retained
is only O(nInd+ nlne)). This suggests that most primes are discarded
whereas it is intuitively clear that, on the average, a prime will be discarded

only on very rare occasions. If one chooses an integer N at random, the
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probability that cpp(N) =0 is only !/p . Hence if the leading coefficients
of the subresultant p.r.s. are random in an appropriate sense, the proba-
bility that p will be discarded is at most L - (L - l,/p)n; n/p since n
is much smaller than p in all cases of interest. This reasoning suggests
that the average number of primes selected is O(nind+ mlne). Going
back over the proof of Theorem 5.11, one can easily show that, under this
hypothesis, the average computing time is Of{(k{m + n)Z(ln e)2 + mz (m + n)
(In e)), where k is the degree of the g.c.d., hence O(kmz(ln e)Z + m3 (In e)),
hence O(m3(ln e)). If Pl and PZ are relatively prime there is a very high
probability that p will prove it via Corollary 4.2 if n is much smaller than
p . If we assume that the average number of primes selected in the relatively
prime case is less than two (or any other fixed number) then we easily con-
clude that the average computing time for relatively prime polynomials is
O(mZ 4 (m + n)(ln e)Z), hence O(mZ + m (In e)z).

The above algorithm can be made faster in two ways. The first way
requires only a simple modification of Step (12). In Step (12), if M =

(n.,n,, ...,na), then na = 0 and na_1 is the degree k of the g.c.d.

1" 2

If a =3, then P2 is the primitive associate of the g.c.d. and the Chinese

remainder theorem is not needed. If a > 3, then S, the subresultant

- 1 - a1
associate of the g.c.d., has coefficients bounded by d(]n Na-2% )e(m ng-2% ),

by Theorem 1 of [6] and Hadamard's theorem. Hence only v = [((m - na_2+ 1)

s+ {(n-n 4+ 1)r)/h] + 1 primes are needed to determine S by the Chinese

a-2
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remainder theorem. The last u - v elements of 6’ and é may be ignored.

If, for example, m =n = 2k, then na_2 -l =%k and v=u/2 approximately.

By Theorem 2.7, the computing time for Step (12) will therefore be reduced
by a factor of about 4.

The algorithm as thus revised computes an a priori bound, u, for the
number of primes needed. After having processed u undiscarded primes it
then determines k and adjusts downwards its original estimate for the number
of primes needed. The second modification avolds this waste by determining

the degrees n, nz, Ny e, na sequentially. n, =m and n, =n are

initially given. Let Sl’ SZ’ ey Sa be the complete subresultant p.r.s.
-n,+1 -n,+1
over the integers. The coefficients of 83 are bounded by d(n npt )e(m nztl) .

Hence at most u, = [((m - n, +1l)s + (n - n, + )r)/h] + 1 primes are needed

undiscarded primes, n. is deter-

to determine S3. Having accumulated u 3

3

mined as m_, where M = (m

3 m_,m,,...). If n, =0, then 83=0 and

23 3

+l)s+(n-n, + r)/n] +1

Step (12) is undertaken. Otherwise, u. = [({m - n, 3

4
primes are needed to determine 84. Continuing in this way one eventually goes
to Step (12) with ua primes in 6) . The Chinese remainder theorem is then

applied using ua of these primes. If, for example, m =n = 2k, this modification

-1
will reduce by a factor of about 2 the time required to compute reduced p.r.s.'s
and subresultant associates over fields GF(pi).

The univariate congruence arithmetic g.c.d. algorithm can be advantageously

used as part of any multivariate g.c.d. algorithm sincethe calculation of a
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multivariate g.c.d. requires the calculation of numerous univariate
g.c.d.'s. Also, the methods employed in the univariate algorithm can be
extended to multivariate algorithms. Viewed abstractly we wish to compute

the g.c.d. of two polynomials, P, and PZ’ over an integral domain ~

1

(where & itself may be a polynomial domain). We have at our disposal
a sequence ¥, ?//Z, ... of homomorphisms from & to some integral domains

Ii. Instead of computing a complete p.r.s. Pl’ PZ’ P%, s e Pk over a ,

(1) L) S()

1’P2’ 32

we compute a complete p.r.s. P P

i B k%
(12) = wi(PZ) for i=1,2,3,..., zpi being the homomorphism

over Ii such that

i) _

(
P

z,ui (Pl) and P

st
>R

from »[x] to Ii[x] induced by (2 If y, preserves the degrees of
(1) %

P = 1,01 (Pj)' One must then have a mechanism

P,,P

2 Py we have P

l’
for discarding those qxf which do not preserve degrees. One must also be

able to compute a bound u such that P can be determined from zpl (P

k-1 k—l)’

(3
4

v, (Pk-l)’ cees wu(Pk_l). If, for example, & = I[y] one can let v, be the
evaluation homomorphism z//i(P) = P(i) from I[y] to I. In this case a bound
u can be computed as a function of the degrees of the coefficients of Pl and
PZ’ and interpolation replaces the Chinese remainder theorem for computing

P from the w;k(P

-1 ). Those z,ul which produce non-maximal degree se-

k-1

quences are discarded as in the univariate algorithm above. One advantage of
this choice of theé 'z//i is that it leads to an algorithm which is recursive in the

number of variables. To compute the complete reduced p.r.s. of 4/1 (Pl) and

z,z‘/;k(PZ) over I, the univariate congruence algorithm above can be used (since
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only the degree sequence and the subresultant associate of the last non-zero
term are needed). From an algorithm for polynomials in n variables, an
algorithm for polynomials in n + | variables is thus obtained using the

evaluation homomorphisms from I[Xl’ cee Xn+l] to I[Xl’ ces xn] .
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NUMERICAL STUDIES OF PROTOTYPE CAVITY FLOW PROBLEMS*

by

Donald Greenspan

1. Introduction.

The flow of a gas or of a liquid in a closed cavity has long been of
interest in applied science (see, e.qg., references [1,2,4,7-12,14] and
the additional references contained therein). In this paper we will apply
the power of the high speed digital computer to study prototype, steady
state, two dimensional problems for such flows. The numerical methods
to be developed will be finite difference methods and will be described in
sufficient generality so as to be applicable to nonlinear coupled systems

similar in structure to the Navier-Stokes equations.

2. The Eddy Problem in a Rectangle.

The class of problems to be studied, called eddy problems in a rec-
tangle, can be formulated as follows. For d > 0, let the points (0, 0), (1, 0),
(1,d) and (0,d) be denoted by A, B, C and D, respectively (see Figure 2. 1).
Let S be the rectangle whosevertices are A, B, C, D and denote its
interior by R . On R the equationsof motion to be satisfied are the Navier-

Stokes equations that is

b3

Funds for the computations described in this paper were made avail-
able by the Research Committee of the Graduate School of the University of
Wisconsin.




(2.1) Ay = -
. o 3L _ 3 dw ) -
(2.2) Aw + Q(Bx Sy S Ox ) o ,

where v 1is thé stream function, ® is the vorticity and ® is the Reynolds

number. On S the boundary conditions to be satisfied are

(2.3) v =0, %}w{_ =0 , on AD
(2.4) v =0, —g% -0 , on AB
(2.5) v=0, & -0 , on BC
(2.6) y =0, g—;‘% =-1 , on CD.

The analytical problem is defined on R+ S by (2.1)-(2.6) and is
shown diagrammatically in Figure 2.1.

In general, boundary value problem (2.1)-(2.6) cannot be solved by
means of existing analytical techniques. Physical solutions have been pro-
duced in the laboratory by Pan and Acrivos [9], while numerical methods
which "converge", but only for small f , have been developed by Burggraf [ 4]
and Runchal, Spalding and Wolfshtein [12]. A numerical method which con-
verges for all ® , but which has been run only for relatively large values of
the grid size, has been developed by the writer [7] .

We shall describe next a modified, somewhat faster form of the method

developed in [7] and apply it to a selection of difficult problems which are



of wide interest. Among our major objectives will be the construction of

secondary vortices and the study of vorticity for large Reynolds number.,

y
A
oy
=0, = -]
i oy C(1, d)
D(0, d)
]1‘/:0 A(ly = =W 1//:0
oY _ u oY I _ Y W \_ oY _
S =0 Aw-}ﬁ<ax ST Sy )=o) Sk
R
> ¥
A(0, 0) v=0, U _ B(1, 0)

oy

Figure 2.1




3. The General Numerical Method.

1
For a fixed positive integer n, set h = . Assume, for simplicity,

=]

that d is an integral multiple of h . (If d is not an integral multiple of
h, the method is easily modified as shown in [7].) Starting at (0, 0) with
grid size h, construct and number in the usual way [7] the set of interior
grid points Rh and the set of boundary grid points Sh .

For given tolerances €, and €y we will show first how to con-

struct on Rh a sequence of discrete stream functions

(3.1) SOt e

and on R‘h + Sh a sequence of discrete vorticity functions
(3.2) & y W7, W s °° ’

such that for some integer k both the following are valid:

1 .
(3.3) R g e L on R
(3.4) ]w(k) —w(kﬂ)l < €,5 oOn Rh + Sh .
Initially, set
(3.5) W0 - c, , on R
(3.6) w(O) = CZ , on Rh + Sh .

where C. and CZ are constants,

1



To produce the second iterate 7,!/(1) of sequence (3.!) proceed as

follows. At each point of R_ of the form (h,ih), i=2,-++,n -2,

h
approximate (2. 3) by
(3.7) wn, ih) = HELAR]
At each point of Rh of the form (ih,h), i=1,2,+++,n-1, approximate
(2.4) by
(3.8) Wih,h) = Yih.2h)

4

At each point of Rh of the form (l-h,ih), i=2,3,--.,n-2, approximate

(2.5) by
(3.9) w(l-h,ih) = ﬂ-l-iz—:—*-@

At each point of Rh of the form (ih,1-h), i=1,2,...,n-1, approximate

(2.6) by
(3.10) W(ih, 1-h) = fZ}- 4 -’Mi.@_;.:.‘%bl_

And at each remaining point of Rh write down the difference analogue

(3.11)  =49(x, y) + P(xth, v) + $0 y+h) + Plx=h, v) + w(x, y=h) = -h° (D (x, v)

of (2.1). Solve the linear algebraic system generated by (3.7)-(3.11) by

the generalized Newton's method [7] with over-relaxation factor rw and

) )

denote this solution by @-(l . is defined by the smoothing

Then, on Rh' z,l/(l

formula




(1)

(3.12) = oyl

—(1
w()

(L-p) , O

A
-

IA

—

(1)

To produce the second iterate o
follows. At each point of Sh of the form (ih,0), i=20,1,2,-+-,n,

(3.13) st (in,0) = - :

at each point of Sh of the form (0,ih), i=1,2,.-.,n-1, set

(1) .
— '
(3.14) s (0,in) = - 2—ih) hzh ih) ,
at each point of Sh of the form (1,ih), i=12,...,n-1, set
ALY
(3.15) oM, in - - 2tEi

h2

and at each point of Sh of the form (ih,1l), i=0,1,2,...,n, set

Zw(l) (ih, 1-h)

— (1) . _ 2
(3.16) @ (ih,1) = h 2
Next, at each point (x,y) in Rh set
o = 3 rn,y) - ¥ eney)
B = o, yeh) - ot (x, y-h)

and approximate (2.2), appropriately, by

(3.17) (-4 - %@ - %R—) w(x, y) + w(x+h,y) + (1 + gi@)w(x, y+h)

R
+(l+_6“2")w(x—h,y)+w(x,y-h)=0; if a0, B=z0,

of sequence (3.2) proceed as



\] 4§
(3.18) (-4 - 24 %ﬂ

2 Jo(xsy) + (1 - %ﬁ)w(X+h, y) + (L4 28

= )w(x, y+h)

+w(x-h,y) +w(x,y=h) =0; if a= 0, B< O

2

ar  BR pR
T )0 y) +oxth, y) Fox, yih) + (1457 ) ox-h, y)

+(l——£‘)w(x,y—h)=07 if a<0, B=o0,

(3.20) (-4 + 224 By y) + (1 - BB ) (e, y) + ik, yeh)

oF
+w(x~h,y)+(l-—"‘é@)w(x,y—h)=O; if a< 0, B<O,

Solve the linear algebraic system generated by (3.17)-(3.20) by the

generalized Newton's method with over-relaxation factor rw and denote the

solution by 1‘5(1) . Finally, on all of Rh + Sh define :b(l) by the smoothing

formula

(0,

W = o

(l—u)&(l), 0= us=sl.

Proceed next to determine W(Z) on Rh from og(l) and 1//(1) in the

same fashion as z//(l) was determined from (.b(o) and w(O) . Then construct
(

2
w 2) on Rh + Sh from (,L)(l) and l//( ) in the same fashion as w(l) was

0
determined from w( ) and z//(l) . In the indicated fashion, construct the

sequenceys (3.1) and (3.2). Terminate the computation when (3. 3) and (3.4)

are valid.

Finally, when w(k) and w(k) are verified to be solutions of the

difference analogues of (2.1) and (2.2), they are taken to be the numerical

approximations of ¥(x,y) and w(x,y), respectively.




4, Examples.
Consider first the boundary value problem defined by (2.1)-(2.6) with
d=1. This problem was solved by the method of Section 3 for R = 200
L
i = - =1 =1 = = = =
with h 50 El , EZ 0, P=0.1, p 0.7, rw 1.8, rw 1.0,

Cl = C2 = 0, and also for ® = 500, 2000 and 15000 with the same parameter

values except for g, = 10_‘ . Convergence was achieved for f = 200 in
14 minutes with 34l outer iterations, for ® = 500 in 1l minutes with 96 outer
iterations, for ® = 2000 in 4 minutes with 80 outer iterations, and for ® = 15000
in 3% minutes with 40 outer iterations. The resulting stream curves exhibited
only primary vortices and are shown in Figure 4.1. The resulting equivorticity
curves exhibited fhe double spiral development shown in [7] and are given in
Figure 4.2.

With an aim toward producing secondary vortices and toward studying

vorticity for large Reynolds numbers, boundary value problems (2.1)-(2.6) was

considered again with d = 1. The problem was solved for ® = 50, 10000,

1
and 100000 with h = ZO— . For R = 50 the remaining input parameters were
h to b 1074 e =102 p=.03 =.90, r =1.8r = .8
chosen to be g, = y &, = ,p—.-,p,-.,w~.,w- .8,
Cl = CZ = 0., Convergence was achieved in 60 minutes with 100 outer

iterations. The resulting flow with the secondary vortices is shown in Figure
4.3, For ® = 10000 the remaining input parameters were chosen to be

= = =, =, , =1, R = ] = = . t
£, .004, EZ .03, p 03, W 95 rw 8 T, 1, C C 0., After

183 outer iterations, M was changed to .85. Convergence was achievad in

260 minutes with a total of 226 outer iterations. The resulting flow with a



single secondary vortex is shown in Figure 4.4. For ® = 100000, the

4
remaining input parameters were chosen tobe € =10 7, e = .005, p=,03,

L 2
(0) (0)

th
L =.95 r =1.8, r, = 1, but y and w were taken to be the 57 outer

[4

iterates of the run for ® = 10000. Convergence was achieved in 135 minutes

with 386 outer iterationé . The flow is shown in Figure 4.5 and contains no

secondary vortices. The equivorticity curve w = 1.630, with its double-

spiral, space filling characteristics is shown in Figure 4.6. Numerical

e vidence of Batchelor's result that the vorticity in a large subregion of R

converges to a constant as R-— ® is exhibited in Figure 4.6 by setting

crosses on those points atwhich the vorticity is between 1.6 and 1.7 .
Finally, consider boundary value problem (2.1)-(2.6) with d = 2 and

4 -3

R = 10, This problem was solved with h = Zla, El= 10 s 82 =10 7, p= .05,

B o= .85, rw =1.8, r(D =1,25, C. = C2 = 0., Convergence was achieved in 32

1
minutes with 102 outer iterations. The resulting flow, with its two primary

and two secondary vortices, is shown in Figure 4.7,

5. Remarks.

From the many examples run in addition to those described in Section
4, the following observations and heuristic conclusions resulted. Divergence
or exceptionally slow convergence usually followed if any one of the following
choices were made: 4 =< p=<1, 0 ps=s ,6, r <1, r, <<1. The choice

Y

p = =0 yields convergence only for large grid sizes and small Reynolds num -




10

bers. The choice rq/ = 1.8 was consistently good. For grid sizes larger
1
than or equal to 30" sequence (3.1) converged so much faster than (3.2)

that very little attention had to be directed toward the choice of €

but for grids smaller than -2-16 this was not the case and attention
had to be directed to the choices of both €, and €, - Deletion of all or
even of some of the special formulas (3.7)-(3.10) and substitution with (3.11)
always led to divergence for large Reynolds numbers (R ~ 10000), but often
did yield secondary vortices for h = Zlb- for small Reynolds numbers (R ~ 50).
The difference eguations for y/(k) and (D(k) were always satisfied to much
smaller tolerances than those imposed in (3.3) and (3.4), respectively.

Several possible modifications of the method of this paper which should
be explored if one wishes to speed up the convergence include allowing some

or all of p, W, r, and r, to be variable [6], using line over relaxation

[
[15], and choosing z//(()) and w(o) in a more judicious manner than that
prescribed in (3.5)-(3.6).

Observe also that the method of Section 3 applies directly to biharmonic
problems (i.e., to the case & = 0) and initial computations verify that it
extends in a natural way to free convection problems [1].

Finally, note that theoretical support for the method of this paper is

now beginning to appear for very special cases [ 3, 5,13].
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FIGURE llo5 Streamlines for Reynolds number 100000 with h=1/40,
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APPENDIX

CDC 3600 FORTRAN PROGRAM FOR CAVITY FLOW PROBLEMS

Ne SCHULTZ
DEFINITIONS OF PROGRAM VARIABLES
OMA = VORTICITY VALUES
B pe] = STREAM VALUES
o "N = NUMBER (F VERTICAL SPACFS IN THE GRID
M = NUMBER OF HORIZONTAL SPACES IN THE GRID
P = REYNOLD'S NUMRER
e i
EPS = TOLERANCE FOR INNER-AND OUTER-ITERATIONS
€1 = WEIGHTING FACTOR FOR OMA
T T FT 2 WFIGHTING FACTOR FOR PSI
B Ry = RELAXATICN FACTOR FOR OMA EQUATIONS
- NM = NUMRER OF OHTER=ITFRATIONS
o TUUNCOUST = NUMREP GF INNER-ITERATIONS
WOsWLsW2sWaswh = COEFFICIENTS FOUR Tht VvORTICITY £GUATION
ISTOP = SWITCH TO INDICATF CONVERGENCFE



REARS

I My

40

SOV

21

ol . ANV T v

Pof oo Dy PELAO e Y DR AN 9 n0) 9 GBI G BN ) a UM (D0 R0 ) g 0] (8

CHATIOP Mg NP LIS ] 90 @ VD TIGT g N g MDD
K ALy AN e N o M
t ('11'?’.\4,:\_T( _‘1?)
MO HS ]l =Me ]
MME Qpimiia ]
=
ME11S] =N+
NME CH=N~1
=1 e /N
1D =
Frl=e )]
MITIOLIZ: yOoTARS
N7 =i
MP =&
[eTnpP=(C
n=gg
Rw=1,
C1=0
F1=0 ‘
CONTINULIF
PRINT 2222401
FORMAT(1H]1 eFR )
Ne 1 I=1e80
NOT Us1,.80
ST (Ted)=0
SVPSI(IsJ)=0
SVOMA( ] 4 )=
TET([ed)="
OMu( e J)=U
N T T e
Fr=1~-F1
C72=1~-C1
N LOOP 1 OR OUT:R [TERATIONS

SaVe VORTLCLITY ~UNCTION FROM PREVIOUS OUTER ITERATION

DO 40 T=1sNPLIIS]
L0 L0 J=1e1pPLIIs]
SVOHT ([ o J)="MA(T o J)
N M = AR 4 ]

MCOHINT =N

BEGIN INMER LTERATION FOR STREAMN EUMNCT DN

1

COMPUTL STRIAM FUNCTION FOR INNFR RLGION
DO 2 =3 4NMFSH
DO P U= 4MMFGH
SVOS[(I4J)=PaT(],J)
PRIy )= (= RUPS T (19 d) J+ed5# (PSI([sd=1)+PS1(1sJ+1)rPS(i=19d)+
Pl (T+1a ) +H2¥OMA (T 4) )
COMDUTE STREAM FUNCTION ON TP AN oOTTOM (NN=R mOUNGARY LINSS
nO A i=?yN
PSI(I92)=(a28#DS[([53))
DST (1 9M)=e25%FS] ([ yMMESH) + ¢ 5%H
TOMEUTT STREAM FUINCTION ON LFEFT AMD RIGHT INMAR GOUNDARY LINES
[0 4 =3 g MMF G
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~Ne
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[aNe

22

o ltera = (o7 ¥R (T
Polite )= (o 0 [ IM=14s1))
CTOCTEe AN s 0re TR 0P CONYE RO NG

LR [ E g NF S

MR Iz g MMEGH
FIFF=AKSE (SVPST (1 J)=PSI(14J))

[F(NIFE «GT, FDC) =20 TO 6

PECALCUILATE GTRFAM  FUNCTTON USING WEIGHTING
nO 222 1=3,NMEGH

NO 222 J=34MMFGH
PET(T9J)=F1*xQVPSI(1¢J)+F2¥PST (1)

DO 114 1=724"MFSH

CLE(PRICIaM) )28y 116114

CONTINUE
cOTO 200

NECOTINT =NCOUNT +1

IF(NCOUNT «GTs 100} GO TO 8

GO Tn 11

IF(DIFF «GTe 10) GO TO 28
PRINT 93

FORMAT (1H1s11% PSI VALUES)
CALL PRNTLST(PSI)

FORPMAT (10F1146)
NCOUNT=0

GO TO 11

PRINT 81
FORMAT(13H PSI LIVERGED)
CALL PRNTLST(PSI)

CALL PRNTLST (OMA)
GO.TO 699, .

N [MNER ITERATION FOR VORTICLITY

NCOUNT=0
HOONST=C2% (=24 /H2)
COMMITE VORTICITY ON HOUNDARY LINES USTING WETGHTING
TOR ANL HOTTOM SOUNDARY LINES
DO 12 I=1sMPLUSL S v
AMA( ] 91 )=Cl*MA( [ o 1)+HCONSTHPEST (142)
M2 (o411 =ClI¥OMALT oM+ L) +HTONSTH# (RS L] 9M)=H)
LZFT ANG RIGHT ROUNDARY LINFS
DO 13 =04 M
AMA (14 [ ) =HCONETHPSTI (2 1)+ CL*OMALTS])
OMA(N+L o T)=HCONST*PST (N [)+CL¥OMA(N+Ls 1)

CCONTIMNUF

CAL=PSI(l+1ed)=PSI(L-
(I

COMPUTL COEFrICLENTS FOR VORTICITY cQUATIUNS
COMULETE ONF CWEFD OF INTERIOR

DO 14 [=24N

NN 14 J=7 4M

L1=PSi{led+l)-PSI
A=pRSF(AL)
R=ARSF(R])
WO=4+(A+B)*(R/2)
IF(ALleGFs N}15416



ahb

- IF(DIF «GTe EPSL)282,14

JTEST OO VOPTICITY  FOR_CONVERGHNUE

3

s
SVOMO (] 9 JEOMEA{ 9
[~CISTOR FOe. 1160 TO 305
O )= (T /MO ) EOMA T4+ 5 ) e (W2 /WO ) HOMA( | 9 J+1 )+ (W3 /WO )¥OMA ([ =13 J)
LA wWa /wO)eOMA LT 9 J=1) ) 5 RW4+( L=RW) *¥OMA ([ 9J)
GOTO 14
ChEcK TO S50 [ DIEFLRENCe FQUATIONS ARF SATISHFIul, TO <001
NIFF =((Wl/WO)*OMA(I+19J)+(W¢/WO)*OMA(I9J+l)*(W3/WO)*OMH(I“L!J)
I+ (Wa/WO)#OMA (T s J=1))=0OMA(I ¢J)
DIF=ABSF(DIFF)
DRINT, 183 s[eJ
GO 70O 700
CONTINMNUF
IFE (ISTOP «FQe 1) GO TO 700
DO 21 1=24N
DO 21 J=2.M o ‘
DIFr=AdSF(SYNIMA ([ o J)~OMA( ] eJ))
IF(NIFF oGE, FPS) GO TO 22
CANT I NUIE
DR CGLLeULATL VORTICITY o USING WEIGHTING
NDC 144 [=24N
DO 144 J=2 oM ;
OMALT 9 J)=C1¥*SVOMA(T 9 J)+ C2%¥OMA( T 5J)
IM= UM+ ]
PRINT OUT EVFRY 4 OUTFER [TERATES
IF{JIM «5Qe_ 4189559
JM—;_Q
PRINT 79 ¢NM
FORM: T Imls 29l t. OUTER [TeRaTIONS)
ODRINT Q1
CALL PRNTLST (PR L)
bRINT 92 .
CALL PRNTLST (NM4)
TEST QUTZR [TeRATIOMS FOR CONVERGENCE
CONTINUE
DO 4% I=1.NPLIIS]
NO 45 J=1,MPLIIS]
NIFF=ALSF(SVYOUT(TeJ)~0OMA(14J))
TIF(DTFF G GTe FPS) GO TO 7
COAMT NS
M7=
MDD =
PRINMT Q9 4NM




18l

182

183

N~

24

32

82

199
189
G
anz
699

COVUMA T CTH T e P RGN e e

ﬁ(?[r\nf @A
PR T X e L S v e Sy
CALL PENTL T Re D)
PINT 0

v AT Ot el 0 VALt S)
CALL O VRNTLST (OMAY)

FPoQl =001

RMAY =0

[eTnP=1

CHECY TO & 5 (b sarF BoNGs OUATIONS NP STR; oM

A TOLERAMCE OF 4001

O TELD L=t eV &

DO 181 JJ=3 VMO0
PEC=ARSE(PSI (1] o JJ)=SVPSL(1T9JJ))
LF(RPFS ¢GTe RPMAX)3N1+302

PMAY=RE S

CONT INUIF

UM TION

SR

SAT Sk IF

A=m % PST(I1aJJ)+PSI(TTI+1aJI)+PSTIUTITsJJ+1)+PSI(TI=1»JJ)+PST(IT»JI=

1) e e .
RemHXH*OMA(I T 9 JJ)
ND=A=R
IF(N «(Te FPS1) GO TO 182
CONTINUE
S0 T 90
PRINT 183+1 T

FORMAT ( 1Hl94?i1i/1}F{Rthf Dle NOT S;Tiqwlrﬁ) AT POINT (siZ2slHeslZ

leltH))
GO TN o9
TEST OUTFR ITFRATINNS FOR NDIVFRGENCE
TE(DIFF «GTe 1001199423
MOOUNT =MCOUINT + 1 o
TFIMCOIINT o GTe 200) w0 TO 24
cNOTH 9n
TeeT VORTICLITY FOR D IVERGENCE
IF(IEFF «GTe 10) G TO 29
FRINT Y4
FORMAT (LHLs1l4H OMAEGA VALUES)
CALL PRNTLST(OMA)
PRINT 91
CALL PRNTLST(PS])
FORMAT(1IOFL1e6)
NCOINT =0
GO TH .90
PRINT 82
FORMAT (1314 OMA DIVERGED)
CALL PRNTLSTH(PSI)
CALL PENTLST(OMA)
O TH AQQ
LRINT 189 . -
SALMAT( A NAUTER L TERATIOMS IVIRGEI)
CONTINUE
PRIMT 3073 ¢RMAXK
FORMAT(1HELe17H PSI COMVERUGr1 TOsELZ2e4)
CONTINUF






