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ABSTRACT

The approximate solution of quasilinear elliptic boundary value problems
by linear programming is considered with emphasis on computational aspects.
The solution is obtained as a linear combination of m selected functions,
with coefficients determined so as to minimize a weighted sum of the maximum
error in the differential equation and on the boundary. A realistic error bound
is obtained together with the solution for any value of m , and convergence
as m-— © is shown under certain conditions. A variety of linear and guasi-
linear two-dimensional problems are solved and the numerical results, including

error bounds, are presented and discus sed.
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L. INTRODUCTION

This paper is concerned with the numerical determination of approxi-
mate solutions and error bounds for quasilinear elliptic boundary value
problems. Problems are considered on a bounded domain D in { ~-dimensional
space, with boundary 8D. Of primary interest is the following typé of

(4

problem:

(L + g)[u] in D

1
o]

(L.1)

u =s aon oD

where L 1is an elliptic differential operator and g may be a nonlinear
function.
Q

where the cpi(x) are appropriately selected functions and the coefficients

An approximate solution is assumed of the form vm =

WM

OLi are to be determined in ‘an optimal way. Specifically, the coefficients

are determined so as to minimize a weighted sum of the maximum error 51

in the differential equation and the maximum boundary error 62. If the
problem is linear this can be done by solving a single linear programming
problem. For the quasilinear problem an iterative linear programming solution
is required. The solution of a closely related linear pr‘ogra}n also gives an
error bound for the approximate solution Vm . This error bound is based on
the monotone property of the operator (L + g). The approximate solution is

defined (and differentiable) at all points in D, and is completely specified



by the m coefficients Oci . Determination of an error bound and con-
vergence of Vo to the exact solution as m -+~ is also considered here
for a more general class of problems.

An extensive study of the use of monotonicity to obtain estimates and
bounds for partial differential equations has been carried out by Collatz and
Schréder [, 2,3, 11,12]. The present work considers in more detail the
numerical aspects of the problem, and in particular takes full advantage of
the duality theory of linear programming to get both an approximate solution
and an error bound using a standard linear programming code. Essentially
the same procedure is used for quasilinear problems as for linear problems,
and no special numerical finite difference solution is required to obtain starting
values for the quasilinear problems (see for example [11]). A rigorous error
bound requires careful consideration of the relation between the maximum
error over the closure D and the maximum error over a finite grid f)n . In
particular a bound must be known on the difference between (L + g)[vm] at
any point of D and a closest point of Dn . This important problem is
taken care of by imposing an appropriate Lipschitz condition on the approxima-
tion Vo where the Lipschitz constant is determined so as to minimize the
error bound. This condition is imposed by requiring that the coefficient
vector O be an element of a bounded polyhedral set Qm , and depends
crucially on the use of linear programming. The weighting of the interior and
boundary errors is also determined by the linear programming solution so as

to minimize the error bound obtained.




A similar approach to that described here has been used for nonlinear
parabolic problems [9], and for certain linear harmonic problems with mixed
boundary conditions [15], but without a detailed analysis of the effect of
the finite grid and minimization of the error bound. A closely related method
has been used for nonlinear two-point boundary value problems (£ =1) and
is described in [10]. Other related methods are discussed in a recent survey
article [8].

In Section 2 a general problem is formulated and a readily computed
error bound given in Theorem 1. With appropriate as sumptions on the functions
cpi , convergence of v to u as m-+ o is shown in Theorem 2. In Section
3 we specialize to the quasilinear elliptic problem (L.1). The linear case
g = p(x)u, where however p may be negative, 1is considered first. It is
shown (Theorem 4) that if a solution exists satisfying certain linear constraints,
then (L + p) has the desired monotone property and an error bound can be
given in terms of 61 and 52 . This result is extended in Theorem 5 to
the case where g may be nonlinear. The only assumption made on g is
that it has a continuous derivative with respectto u in D . Given any
approximate solution v, we again obtain an error bound if certain linearized
constraints have a solution.

The numerical solution by linear programming using a finite grid of n
points is considered in Section 4. In order to simplify the calculation thé

same functions cpi are used both for the approximate solution Vm and the



error bound function Koy For the linear problem only a single linear
programming solution is required to determine each of these functions. The
function Ko is first determined by (4.5), and then Vo is determined by
(4.6). As shown by Theorem 6, these solutions give the error bound (4.7)

in terms of the function p given by (4.8). These problems are formulated

so that for fixed m and n the maximum value of p on D is a minimum.
A similar bound for the quasilinear problem is given by Theorem 7. The error
bound v appearing in both Theorem 5 and Theorem 7 can be considered as

a nonlinear parameter. In general it is desired to find the smallest value of

v which satisfies the constraints. An iterative procedure to determine a
suitably small value of v is given immediately preceding Theorem 8. It is
essentially a Newton type iterative solution of the two linear programs (4.5)
and (4.6). Its use is justified by Theorem 8. The explicit formulation of the
two linear programs using duality is given by (4.21) and (4.22). It is seen

that in both cases the problem is reduced to a primal problem with m + 2 rows.
The solution time will therefore depend primarily on the number m of functions
used. Based on this formulation it follows that both the monotone property of
(L + g) and the error bound are consequences of a finite solution to the single
linear program (4.21). Two important special cases are also considered.

These occur when the functions cpi can be chosen so as to identically

satisfy either the boundary conditions or the differentialA equation.

In Section 5 computational results are presented and discussed. A

variety of linear and quasilinear problems in two dimensions were solved

~




using the negative Laplacian as the elliptic operator. Included in the
nonlinear functions g used were g = —e—u, g =+ eu and g = -uZ
The domains D considered were a square, a truncated square and an
ellipse. The approximating functions used included polynomials, trigono-
metric and harmonic functions. The results obtained, including error bounds,
are tabulated in Tables L-5, and contour plots of the approximate solutions
are given in Figures 1-5.

For cexrtain cases where the derivative of g is negative, solutions
to (L.l) may not even exist. No solution exists for example when g = -uz
and r is sufficiently large, or when g = —7e! and 1 is sufficiently
large. The question of existence of solutions to such problems has been
investigated [4, 5]. Based on these results it can be shown [6] that there
are values T and % such that no solution exists if r > f or 72> % . The
numerical results include approximate solutions and error bounds for values of
r and 7T closeto © and 7 . As might be expected both the solutions
and bounds get large as the limiting values are approached.

It should be remarked that it is not the purpose of this work to develop
a method for computing highly accurate numerical solutions. Rather, it is
“desired to develop an efficient computational technique which can be applied
to a variety of problems taking advantage of available knowledge about the

nature of the solution, and which gives an approximate solution in a conveénient

form together with the corresponding error bounds.
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2. ERROR BOUND AND CONVERGENCE

We consider a boundary value problem on a bounded, connected, open
domain D < Rl . with boundary 8D and closure D= DuUaD. Let F be
a differential operator in D and B a boundary operator on 98D, and let
r(x) and s(x) be given functions satisfying a Lipschitz condition in D and
on oD, respectively. In particular we assume that a constant KO =z 0

exists such that

[r(xl) -r‘(xz)\ = A Hxl - XZ“, vx,, X, € D

1 2
(2.1)
is(xl) - S(XZH < 2y HXl - XZH, vx), X, € 8D
where || x| = max ]xil .
i
We assume that there exists a u = u(x), continuous on D, which
satisfies
Flu] = r(x) in D (2.2)
B[u] = s(x) on oD (2.3)

We further assume that F and B have a certain monotone property with
respect to the domain D. Specifically let v and w be any continuous
functions in D for which F[v] and F[w] are defined in D and B[v],

B[w] are defined on 8D. Then there exist constants k,, k,z0 such that
[v-wlg = ¥ IF[v] - Flwl]5 + &, IB[v] - Blwlll.p, (2.4

where -1y = S}lép -] .



An a priori bound on the magnitude of u follows immediately from (2.2),

(2.3) and (2.4). Taking v=u and w =0, we get

lullg= kel + sl (2.5)

Furthermore the solution u is unique since if both v and) w satisfy

(2.2) and (2.3) if follows immediately from (2.4) that v =w on D.
Finally we construct a finite grid Bn over D, with a total of n

points such that for each point x € D there exists some point y € _Dn

with ||x - y|| = h(n), where the distance h(n)— 0 as n— « . For example

with a uniform grid we have h(n) ™ n_l/jz We will denote the points of Bn

in D by D_ = ’DnnD and those in 8D by 8D_ = Bnm 9D.

In order to approximate the solution u(x) to (2.2) and (2.3) we con-

sider a generalized polynomial of specified functions cpi(x),

v =v (a,x) = 2 a 9. (x) (2.6)
m m

We make the assumption that each function cpi(x) and its derivatives satisfy
a certain Lipschitz condition. Given any two positive constants Xl and >\2,

we say that v € A(\,,A,) if v is continuous in D and

12)

1A

]F[v](xl) —P[v](xz)l Xlnxl —xzn, ¥x.,%x, € D

"2

XZHXI - xzn, ‘v‘xl, x, € aD

1A

|Blv](x)) - B[v](x,)|

We observe from (2.1), (2.2) and (2.3) that ue€ A(XO,XO). We assume

that each function P, i=1,+++'m, has been normalized so that P, € AL, 1),




We now choose constants xl,xz > 0, and wish to impose conditions

(depending on m) on the coefficients OLi of the generalized polynomial
so that for each fixed m we have Vo € A(Xl,XZ). Let O € Rm denote

the vector with components ai . We consider a compact, convex set
0O =0 (A,Ax))<R_, such that
m m 1" 2 m’-

== vmeA(x,x (2.8)

a € Qm(xv,x 1 2)

12)

Lemma

For F and B linear, a suitable choice for Qm(xl,XZ) is given by

m
QO ={aj =

o Z la | = *1, Ao=min {0 ) (2.9)

Proof:

m
By linearity F[v_] = 2 aF[p.]. Also since 9, € AL, 1), we have
m i=1 1 1 1

|Flo ) - Flo Jtx,)| =% - x,|. Thenif o e@.

WM

o | [Flo,] ) - Lo l(x,)]

[Flv_1(x) - Flv_ 16x,)] = 1

< “xl—x

N R e P EENEREY

1=

and similarly for B[vm] . Therefore @ € € =2 v € A(Xl,xz).

The set Qm will normally be defined by linear inequality constraints in

Rm’ so that it is normally a bounded polyhedral set.
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The coefficients OLi in Vo are determined so as to minimize (over

" the compact, convex set Qm) the maximum error in [F[vm] - r[ on Dn
and {B{vm] -s| on 8D . If F and B are linear this can usually be
done by solving a single linear px‘ogramming problem. If either F or B
are nonlinear an iterative solution is required. In either case the following

theorem gives an error bound on the approximate solution vm

Theorem 1.

Let A,A., = A

12 0 be chosen and a corresponding set Qm(Xl, >\2) be

determined. Let n = m be selected, and let V;‘; n be a minimizing

2

solution, with coefficient vector o™ and value ém which satisfies the
t]

relation

O, n = M PLV Wl ko NBLY 1 oslyn

(2.10)
< klnF[vm(OL)] -l * k, || Blv_()]-s|y
aef n n
m
Then
* = s 2.11
“Vm, n u“ 5 < 6rn, " + 2(kl>\l + k2>\2) h(n) ( )
Proof.
. i % _ %k $ = e
For simplicity we let Fm, . F[Vm, n] and Bm, 0 B[vm’ n] . Let
X, € D be a point at which lF”I‘n 0 r| attains its maximum, i.e.,
[Fm, e i rx,)| = “qu‘n,n - rnD' Also let x, € 8D be a point at which




1t

o, ste
n 3R

| mon s| attains its maximum, i.e., le, N s(.xz)[ = HB'J';H"H - SHBD .

By the construction of the finite grid Bn there exists Y, € Dn and

v, € aDn such that “XL -yl“, “XZ —yzns h(n). Since F[u] =r on

2
D and B[u] =s on 8D we have from (2.4), (2.1), (2.8), (2.7) and (2.10),

“V;;,n B u“—ﬁ = kl“F:;l,n _r“D+ kZHB;:r:l,n - S“aD

e

m, n

kllF (x,) - r(xl)[ -ka]B* (%,) - s(xz)]

m, n

1A

kl{ F;:;’ n(yl)—r(yl) | -+Zkl>xl I X7V, I +k,2-l B:';’ n(yz) -s(y,) | +2k N, I X,7Y, I

kEE Ll +2k>\lh(n)+k.ZHF:1,n—s“

m, n D ! +Zk2>\2h(n)

aD n

IA

ém n + Z(k"l)\'l + kzkz) h(n) ' B

3

We note that the minimization problem (2.10) gives the optimal set
of coefficients Oti* , i=1,...m and the error bound term’ & . The
H

numbers klxl and kzkz are known, and h(n) is also known as a function

of the number n of grid points. Thus both the approximate solution v”;n a

and its error bound (2.11) are given by the solution to (2.10).

We now consider the question of convergence of the approximation Vm
to u as m-s ». Such convergence can only occur when the approximating
functions cpi are properly chosen. We certainly require that the solution u
can be approximated arbitrarily well by some linear combination of the functions
cpi, i=1,2,... . Since we are determining the coefficients by minimizing

the error in the differential equation we also require that the functions
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simultaneously approximate those derivatives of u which occur in F

and B . We therefore require the simultaneous approx\imation on D

of u and its derivatives (up to the highest occurring in F and B) by
some linear combination of the functions cpi . A suitable such basis, for
example, might consist of polynomials in the components of x . Let um

denote an approximation of the form (2.6) with the convergence property

stated above. Then there exist coefficients of um, say am e such that
2

Hll__iinoo {u, - ull g+ IFlu 1 - rl 5 * |B[u 1 - sflgp ) = 0 (2.12)
Since we do not know u we cannot actually find the coefficients _dm,i .
However we can usually determine bounds on the a_m,i in terms of the
uniform bound (2.5} on u . We denote by Em € Rm the vector with

— sk . . o o
coefficients OLm 0’ and by @ € Rm the vector which attains a minimizing
3
. * . ‘ £
solution v in (2.10). The convergence of v to U as m, e ©
m, n m, n

will now be given.

Theorem 2.
For each m, choose n = m. Assume that there exist positive con-

stants >\l, >\2 2 XO, such that for each m we can find a compact, convex
Si¢

A,N.). Then v converges
2) Then mon g

- o
set @ (A, )S R~ with 3 _eq ,

uniformly on D to u as m,n-— .
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Proof.

Given any € > 0, there exists by (2.1 2) an ml such that for

A%

m m we have

P’
k | Flu ] —rHD+k2“B[um] -sll,p s €

Since h(n)=— 0 as n-+ o, we can choose nl such that h(n)= e for

n=n . Since Enc D we have [[F[um] --rHDn < HF[um] -rﬂD and

I Blu_] - S“E)Dn < nB[um] - S”aD' Since G e Q , it follows from

(2.10) that “F:;’n —rHDn s ||[Flu_] —rnDn and “B;;,n - slyp =
n

I Blu ] -s I oD, " Therefore

jeg
I

e = 5l 7l p_* kol B - S“aDn

IA

kll]F[um] - 1| D + kZHF[um] - s|| oD,

A

leF[um] -rHD + kZHB[um] - s“aDS £

Then from (2.11) for m = m, and n =z ny

“v:;,n—unl_) < [1 +2(klx1+kzx2)] £ B8

The convergence of the approximation v";n n is of considerable

3

theoretical importance, and also will help to determine a suitable choice

of functions for the cpi . However as a practical matter the approximation

8 is always obtained for some fixed values of m and n, so that

b

the error bound given by (2.11) is the most important information available
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in addition to the approximation itself. Since the constants >\O’ kl and
k2 are determined by the problem, the parameters to be chosen which

affect the bound are m,n, A, and XZ’ in addition to the choice of functions

1
cp‘l . The computer time required for a given problem will depend primarily on
m and to a lesser extent on n . The choice of m and n will there-

fore usually be determined by computer time limitations. The choice for the

remaining parameters Xl and >\2 should be made to give the best error

bound. In order to reduce klxl and kz')\z we want xl and >\2 as small

as possible. As seen from the lemma for the linear case this will in general
decrease the set Qm over which the minimization takes place, thereby
increasing the value 5m, .  The constraints on the coefficients are imposed

to reduce the variation in Vm and its derivatives between the points of

En , but this is done in general by making it more difficult to fit the differential
equation and boundary conditions at the points of Bn . Thus a proper choice

of ‘)\l and >\2 is important in order to balance these two competing factors

in the error bound.
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QUASILINEAR ELLIPTIC PROBLEM

The general theory and method described in the previous section

3.

will now be applied to the case whére I is a quasilinear elliptic operator
of the form

F=L+g (3.1)
and B is the identity operator. L is a linear elliptic dif’ferential operator

in D& RE and g 1is a (possibly nonlinear) mapping g:u — g[u] in D,

glu](x) = g(x, u(x) ). Specifically L is given by

that is,
2
L 0 u £ du
) = - - b e
L{u] 2 aij( axiax. lz_l i(X) axi (3.2)

where the £ X¢ matrix of coefficients ai]. is positive definite for all

Assumptions on g will be discussed below.

x € D.
It is well known (for example, see [2, 14]) that the elliptic operator

L has the following monotone property on D
L{vl] =z L[w] in D .
==> vzw on D (3.3)
v oz W on 8D

has this monotone property an

if an operator T

As shown by Collatz [2]
approximate solution and error bound can be obtained. This can be done by

finding two solutions v and w of the form (2.6) such that
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|| v —WH—D = min
a F[v] -r = ©
in D
Flw]-r = 0
(3.4)
v -s 2z 0
on oD
w -8 = 0
It then follows directly from (2.2), (2.3) and (3.3) that
vzuzw on D (3.5)

There are several computational difficulties with this direct use of the
mon{otone property. First, it may be difficult to insure that the constraints
of (3.4) are satisfied at all points of D. Second, there are 2m coefficients
to be determined, m for v and m for w . Third, if v and w are
large relative to ||v - W“B, numerical difficulties may be encountered
which may even give w > v at some point of D

The approach to be described avoids the difficulties mentioned above,
and also gives an error bound in certain quasilinear cases where the monotone
property is not known to hold directly. In particular, an error bound can be
obtained even when g' < 0. The error bound given below is obtained using
the maximum principle for the linear differential operator F =L + g, where
g[u] = p(x)u, and p(x) may be negative. This maximum principle is given
by Protter and Weinberger [7] in their Theorem 10, and is used to get bounds

on u of the type (3.5), in their Theorem 13. For our purposes this principle

is most conveniently stated as a minimum principle.
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Theorem 3.
Let o satisfy
(L+p)[o] =2z 0 in D (3.6)

If there exists a function p(x) > 0 on D such that

(L+p)p] =2 0 in D (3.7)
and if

min (g) < 0

xeDd F
then this minimum is attained on 9D . 2]

It follows that the existence of such a function p is sufficient for F =L +p

to have a monotone property.

Corollary

If there exists a positive p on D which satisfies (3.7), then

v
o

(L + p)[o] in D
= o= 0 on D (3.8)

o} 0 on oD

v

Proof.

Since 0= 0 and p> 0 on 8D, we have ¢/p= 0 on 9D. If
there were a point in D at which o/p were negative this would contradict
the fact that o/p attains its minimum on 9D. Therefore 6/p =0 in D,

which requires that o= 0 .
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We first give the error bound for this linear case T = L + D, where

we assume that p is bounded below, and let § =inf {0,p(x)} = O.
D

Consider the problem of finding @ =W (x) such that
v = min
Subject to:

(L+p)p] =z 1 in D

(3.9)
vz z 0 on D
Theorem 4.
Let v be an approximate solution such that
‘ -1 < 0o
[(L+pv]-rly = o
(3.10)
lv-sl,p = ¢,
Then if a feasible solution exists to the constraints (3.9), we have
|v-ul = p (3.11)
where
p= wko + (L-Bp*) o, (3.12)

and p* is an optimal solution to (3.9).

For p(x) 2 0 on D a solution to (3.9) always exists, with

“u"‘“_]j < ““‘1“5’ where I, solves L[] =1 in D and p =0 on 8D .
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Proof

The solution Ky is nonnegative on D by the monotone property of
L, and therefore satisfies the constraints of (3.9) for p(x) =2 0. Since
v is bounded below, the existence of a function satisfying the constraints
implies the existence of an optimal solution.

Now suppose that | solves (3.9). Let & =06, =1 in (3.12).

1 2

Then p =1+ (1 -P)p is positive on D. Furthermore

(L+p)pl =t -pNL+pp]+p21-D+p> 0 in D.

It therefore follows from the corollary that L + p has the monotone property
(3.8).
Observe that from (3.10) we have —51 < (L+p)v] - (L+p)u] = él

on D and -6. =v-usd on 0D. Consider ; =u-v+p. Then

2 2
from (3.12)
:u—v+p2—62+é22 0 on oD
Also
(L+p)n]=@+p)u] - (L+p)v]+ (6 -5, L+ P [ + po,
> —5l+61+(p-f5)522 0 in D

Then by the nonotone property of L +p we have nz 0 on B, which
gives v - p = u. Inthe same way with p =v+p-u we get u=s v+ p.
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It should be noted that if p is negative and |p| sufficiently
large, no error bound can be obtained, since there will be no feasible
solution to the constraints of (3.9). Specifically, it can be shown that
no solution exists to (3.9) if p(x) < w, in D, where w, < 0 is the
maximum eigenvalue of (L + w)[1] =0 in D, & =0 on aD.

We are now able to obtain a similar result for the important case
where g may be nonlinear. We assume that we have an approximate
solution v such that

| (L+a[v] - rnD < 8

(3.13)
|v - SHBD = 95,

We assume that g has a continuous derivative with respect to u which

is uniformly bounded for x € D, and we let g'[u](x) = —éa:l g(u, x). Given
the function v(x) we can readily determine a lower bounding function

p(€,v,x) and P (£, v) = 0, such that

p(€, v, x) = min g'[n](x) 2 B(E,v) in D (3.14)
|v(x)-n|=¢&

For notational convenience we will use p(€,v) or just p(€) to represent

p(€é,v, x), and P () to represent $ (€, v), when no confusion results.,

Theorem 5
If there exists a positive constant V and a function W (x)z 0 on

D which satisfies
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(L+pv,v)) ] = 1 in D (3.15)
and

6,4 (6, ~B(v, V)6, )usv on D (3.16)
Then

|v-ul = p on D (3.17)
where

p=05,+ (6, =BV, V)O,)1 (3.18)

For g'[-] = 0, a solution u to (3.15) and (3.16) always exists and we

have p = 62+51U’ < 5Z+6lul

Proof:

We have
o[v] - alu] = ¢'[F)(v-w, |v-v|=|v-u| in D (3.19)
Then

L+ [V[v+p-u] = (L+a)[v] -(@L+g)[u] +(L+g'[V]IP]

= (L+g)[v] ~r+(L+g'[v])[p] in D

Since p(v) < 0, we have p = 0. We temporarily make the additional
assumption that g'[:](x) = p(v, v, x), which gives (L+g'[vDe] =

(L + p(v))[p]. From (3.18)and (3.15)

(L+p())[p] = p(v) O, + 6 - BV 52 >4 in D
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Then usirig (3.13) we havein D

Y

(L+g' [V [v+p-ul = - 6 +@L+g'[V]Dp]

(3.20)

i\

-6 +(L+pM))[p] = -6 +0, =0

On the boundary we have pz 0, , since p = 0 on D. Therefore

since u=s on 8D, by (3.13) we have
v+p-—u2-—€>2+5220 on 0D (3.21)

Now let <5L = 62 =1 in (3.18) and consider p=l+(l-B(v)lL > 0 on D.
We have

(L+g" [V D] z (L+pWM)[p] 2 pM+1-pH(v) =1 in D

Then by the corollary, (L+g'[Vv]) has the monotone property (3.8). It
therefore follows directly from (3.20) and (3.21) that v+ p -u =z 0 on 5,
which gives one of the inequalities of (3.17). In a similar way we can show
that (L+g‘'[v])[u+p-v] =20 in D and ut+tp-vz=2 0 on &D so that
ut+p=-vz=0 on D, which gives the other inequality of (3.17).

By (3.16) - (3.19), we have |v-v]| = |v-u| s psv, sothat
p(V, v, x) as given by (3. 14) is in fact a lower bound for g'[v§(x) without
any additional assumptions. We see from (3.14) that g'[*] = 0 gives p(v) = 0,
and we may take P = 0. Therefore the solution U, of L[] =1 in D
and B =0 on 8D is a feasible solution to (3.15) and (3.16) with

v=05,+ 5, |- L“ If p(v)> 0, a solutionto (3.15)will existin

D"

general with @ < H L giving an improved bound p
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It is easy to see that Theorem 4 is a special case of Theorem 5. In
the linear case with g[u](x) = p(x)u, we have g'[-] = p(x), so that (3. L 4)
gives p(€, x) = p(x), independent of € .

We also observe that in the linear case the solution B to (3.9) is
independent of v . Therefore p-— 0 as 61, éz—» 0, provided (3.9) has
a feasible solution. Thus the existence of a nonnegative solution to (L +p)[u]
E S in D implies the uniqueness of the solution to the boundary value
problem (L.l) with g = pu. Furthermore we can minimize the fnaximum value
of the error bound p by choosing v so as to minimize y* c5l + (1 - fvy*)éz ,
a linear function of 61 and 62 . The constant 'y* = |lu “'D is the optimal
value of <y in (3.9). The constants k, and k_2 in (2.4) for this case

1
are therefore given by k, =¥ * and k,=1- py ™.
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4. NUMERICAL METHOD

As discussed in Section 2, the numerical determination of v and p
makes use of a finite grid f)n .  We only compute the error in the approximate
solution v at the grid points ﬁn . Furthermore, we wish to use this same
grid for the calculation of the function M which gives the error bound.

As in Theorem | we choose Xl, XZ and determine a corresponding
compact, convex set Qm .  Recall that @ (—:Qm implies that Vo as given
by (2.6) satisfies a Lipschitz condition of the form (2.7). We also let W
be a linear combination of the same functions cpi(x) as are used for vm

Specifically we let

m
i = Zj B. cpi(x) (4.1)

and determine the coefficients Bi so as to satisfy (3.9) or (3.l15) and
and (3.16). If we require of the coefficient vector B that Be Qm’ then
um satisfies the same Lipschitz condition as Vo

We can always choose (by appropriate scaling) the functions cpi(x),

i=1,...m, sothaton D

[LloJ6ep) - L] = e =%,

(4.2)
lq)i(x[) - (Pi(xz)l = “Xl - XZH
For any positive constant A we let
m
Q =9 = {of = lol =) (4.3)
m m i=1
Considering the linear case first we let @ = sup |p(x)| . Then

D
a € Qm(X) implies
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1(L+p)[vm](xl)-(L+p)[vm]<x2)1 < (l+(§)X]lxl—x2[l in D
(4.4)

| v (xl) -vm(x2)] < X“xl-xzu on oD

m

The function B also satisfies the same conditions when P € Q-

We now solve two similar linear programming problems on a finite
grid 'Bn with a distance h = h(n). It is convenient to allow the use of
different grid sizes in Dn and 8Dn . We therefore denote the distance in

Dn by h, =h (n) and in 8Dn by h‘2 = h_{(n). First we solve

i 1 2

min 7Y
SR

Subject to:

(L + p)[p,m] -1+ q)hlx = 1 on Dn

-h A 2 = h X, j= s J =2 .5
y hj u,m>hj , j=1 on Dn j on 8Dn (4.5)

We denote by p,r; and V* the optimal function and bound obtained.

Using the bound ¥, welet b =¥, b, =1-5y" and b, = (1 +&hy*+

(1- ﬁy*)hz , and solve

min b

+b,E +Db_ X
2°2 3
q’glﬁgzsx

lgl
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Subject to:

(L +p)v 1~ rf D, < g
vy, - S“aDn < &, (4.6)

m
s io&il = A
i=1

*®

Let @ = a* (and corresponding optimal approximation v = v;;), é’l = &l ,

gz = «52 and ) = 2%, be the optimal values thus obtained, and define

O
1§

e -~ B3
ey (L+@mp™ + b

sk

6% = 6, + hy0 + 2

2( 0
Theorem b

If the linear programming problem (4.5) has a feasible solution, then

u-v <p on D (4.7)

sic
iy
where

=08+ (6 -poj)u (4.8)

Proof

Let ')\B be the optimum value of A from (4.5). Since P e Qm(«)»B),

1

the extreme values of um on D can differ from its extreme values on D
by at most hl‘}\B on D and at most hzxg on 6D . Therefore by (4.5),

v*z ut 20 on D. By (4.4) and (4.5)
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v
s

inf (L+p)[p}] 2 min (L+p)[p)] - (L+@)h)g
D Dy,

so that M:; satisfies (3.9). Since Ce¢ Qm(k*) and r, s satisfy the
condition (2.1), we have from (4.6) that V;n satisfies the relations

(3.10) with 61 = éik and 62 = 6;‘ as defined. Theorem 4 then gives

the stated bound.
@8

In order to obtain a similar result for the quasilinear case we again
choose a grid 'f)n and determine an approximate solution vm and

constants &f‘, £* and X" such that

2
le+alvy-xllp = &
lv_-sllygp = & (4.9)
n
m
s la} = A"
i=1 '
We also determine a bound g(€) such that
§(&) = a(g vz [g'Inly for [v-nly = ¢ (4.10)

and define

(o]
=%
—_
g
S

i

&+ [1+a(E v Yh A"+ hpg

V3

5 = £ 4 B0+
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Theorem 7
If there exist coefficients Bi and constants X and ¥ such that

(L+p))[p_] 2 1+ (1+&W))hr on D (4.11)

6% 4 (6% (v) - B(VET) (w_ +hA) = Vv j=1 on D
2 .
! a o mo ] (4.12)
p,mzhjx j =2 on BDn
m
s [Pl =2 (4.13)
, i
i=1
then
{vm -ul = p B
on D (4.14)
p = 62 + (61 —p(v)éz)um =AY
Proof
Let A, now denote the optimum value of X from (4.11) - (4.13).

£
From the definitions (3.14) and (4.10) we have q(v,vm) z || p(v, vm)u ~

Then since P € Qm(kB), it follows from {(4.11) that W = Mm satisfies
(3.15). Furthermore from (4.12) it follows that p,m is nonnegative on D
and satisfies (3.16) on D with 6, = csf‘(v) and 6, = 8% . Since

a e Q (>\*) we have
m

L+ v, 10) - L+a)lv 16,0 | = [LIv o) ~Llv J0o) | +

+|g'[V] [vm(xl) —Vm(xz)] | = 2 | x| =%, |+

+ gyt uxl—xzu < [1+&(v)]x*hl
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for any point x, € D and x2 a closest point in Dn’ and

1
lv—vmis [u—-vmi s p= v on D. Itthen follows from (2.1) and

*

(4.9) that v : Voo satisfies (3.13) with &, = 61(\/) and 62 = 52 .

1
Then by Theorem 5, the bound (4.14) holds.
Returning to consideration of the linear case we see thaf. if we can
solve the linear programming problem (4.5) then we know that L + p has
the desired monotone property. Furthermore for a specified grid and corres-
ponding distance d the optimum value of the Lipschitz constant )\B in
(4.5) is determined so as to minimize the upper bound ‘y* of b on D.

In a similar way in (4.6) the optimum values é,ik, E?'Z and A* are determined

so as to minimize the maximum value of the error bound, given by

B3

v =290 )

+ (6, - 56’2")3/* . Thus for a selected grid En and number of functions

m , we determine the approximate solution v so as to minimize the error
bound in the uniform norm. This minimization determines the optimum balance
between the interior and boundary error.

The solution time for a linear program of the form (4.5) or (4.6) depends
primarily on m , and may increase as m3 . Thus it is considerably faster
to solve the two sequential problems (4.5) and (4.6) than the single problem
(3.4) with 2m coefficients. The accuracy of the error function Ko will
also usually be better than that given by v - w in (3.4) since the inequalities
(4.5) have been normalized to unity, avoiding the possibility of numerical

difficulties if v and w are large compared to v -w . It should also be

noted that the same value of m is used in (4.5) and (4.6) only as a matter
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of convenience. In fact it may be desirable to increase the number of functions
in (4.6) to obtain smaller values of ﬁ;k and E;,;f . This can be done using any
value of Y* obtained from (4.5).

Since we are attempting in (4.6) to minimize the maximum error in
(L + p)[vm] -1 and v, T8 the approximate solution Vo will generally
be determined so as to give a Chebyshev fit. That is, the error will oscillate

between its maximum and minimum of equal magnitude over the grid points of

Bn . As a result, the’average over D of the error in the differential

o,

equation will usually be smaller than &; , so that the true error will usually
be less than p as given by (4.8).

The quasilinear problem requires that we solve (4.9) and (4.11) - (4.13).
This could be done directly as a nonlinear programming problem, but this may
lead to difficulties because the problem will usually be nonconvex. A better
method seems to be an iterative solution based on the linear problems (4.5)
and (4.6).

We start with an initial coefficient vector o° and corresponding
approximation v?n , estimates for the initial error bound v , and coefficients

bi , i=1,2,3. We now describe the kth cycle of the iteration procedure

which starts with a known coefficient vector @, corresponding approximation

k-1 - k-1 k-1
\Y '

and function pk 1 , and known constants V and ]ol ,i=1,2,3.

1. Define the function

k-1 _ k-1 k-1 k-1
r =r+p "V g[vm ] (4.15)
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..l - k_
and solve (4.6) using b:},: R pkl and r l. The optimal solution

. k k k k
o)
gives A &2 and » .

2. Compute

k k
g = | (L + gfv ] - ran (4.16)
Also compute pk‘ = p(vk—l, v];l) and fik“ =D (Vk-l, v;) according to (3.14),
koL k-1 k ,
and § =4g(v -, vm) according to (4.10). Also compute
k Lk ~K k
E)l = &l +(l+q)hlx + thO
(4.17)
k k k
éz = 52 + hz(ko + A7)
, k . .k . . ,
3. Solve (4.5) with p=p and § = § . The optimal solution gives
k k
b and vy .
4. Compute
k  k k. sk k \
bl =y , ]o2 =l-p v
b}; =1+ &k) hl'yk + (1 - f)kyk') hz (4.18)
k k k k. .k, k

v o= 62+(6l -D 52)7

This completes the kth cycle.

Theorem 8

Consider the sequence {vk], k =1,2,++, generated by the iteration
k k-1

procedure just described. If forany k we have v =V ", then the

error bound (4.1 4) holds with Vo = V}:n and
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p= 05+ (csi‘wk) S AL ok + (é]f 55 65y’ < v 4.19)
Proof

To show that (4.1 4) holds we demonstrate that (4.11) - (4.1 3) are
satisfied. From (3.14) we see that for a fixed function v , p(&,v) and

B(€, v) are monotone nonincreasing functions of £ . From (4.10) we see

that §(€,v) is a monotone nondecreasing function of £ . Therefore since

vk < vk-l , we have p(vk, V]:n) = p(vk_l,v];l) = pk, ﬁ(vk,vr};) = ﬁ(vk—l,v};) = f)k
and c‘j(vk, v];) < ﬁ(vk_l,v;5 = ﬁk . Since “‘r}; satisfies (4.5) with p = pk
and § = Qk, we have (L + p(vk Vk1))[p“};1] - [1+ 4 Vk Vi }h Az [L+p)) [;,L;]
-[1+ (ik] hl>\ > 1 , so that u; satisfies (4.11) with v = vk. Furthermore
let

5}5(&;) = k + [1+ G(€, vk ]hlxk + hlx
so that 6? = é;]f(vk_l). Then we have

o¥ %) - (v 85 = éll?(vk'l) - pviThek = el - 5" o
so that

6]; £ (8 (v ) - p(v )54 = 61; 4 (é}l<~ Iské];) N

Also from (4.5), 'yk > uil + hj)\ > Zhj}\ = 0 on —Dn , so that (4.12) is

satisfied. The relation (4.1 3) is satisfied since it also appears in (4. 5).

Then by Theorem 7, the bound (4.14) holds with p given by (4.19) .
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It follows from Theorem 8 that in order to get an error bound after
the least number of iterations, the initial choice v° should overestimate
the actual error in the initial approximation v; . In general, if such a choice
is made we will have vl < v° so that an error bound will be available after
a single cycle. The only difficulty which may be encountered is that no

solution may exist to (4.5) if too large a value of VO is selected. If no

better values are known, reasonable starting values are b? = bc2> =1 and
o)
b3 = hl + hz.
The solution of (4.6) using (4.15) is a linearization about v];lw of

(L + g)[vm] , so that we may consider the iterative procedure as es sentially
Newton's method. Assuming a solution exists, the procedure can therefore

be expected to converge quadratically once the approximation gets sufficiently
close. Thus we can expect a sequence of approximations converging to an
approximation which gives the smallest error bound with the selected functions.
In general the sequence {vk} will decrease monotonically, so that we have
an improved error bound at each iteration and can terminate the process when
the possible improvement in accuracy no longer justifies the additional

computation required. A useful criterion for convergence is the difference

k k k-1, k k-1
w 6 - @+ vl -0 g
n
k k-1 k
If the sequence has converged we have Vm = vm , so that w =0,

This iterative procedure was used for the numerical solution of all the
quasilinear problems described in Section 5. With one exception it was

. e . , o)
possible to choose an initial approximation Vo and bound v° so that an
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error bound was obtained within several cycles. To get an improved
bound the iteration was continued until iwk/e]f l < 0,01 . In most cases
this required no more than 5 cycles, and the maximum number required
was 9 cycles.

It should also be noted that if g'[-] 2 0, the linear program (4.5)
needs to be_ solved only once. Based on Theorem 5, this is done by setting

1

p =§=0 in (4.5) so that the error function p and bound 'yl obtained
I

11
are independent of Vm . Only the iterative solution of (4.6) is then required.

k

L k k 1
1“m5 62+6l'y , where

At each cycle we have the bound p = 6}; + 06
é]l<= g]f + h(?xo + ')\k). In general the error function urln thus obtained will not

be the best possible, but the possible improvement may not be worth the
additional calculation required.

There are two important special cases in which one can simplify the
calculation by a proper choice of functions cpi . The first occurs when s =0
and we can find suitable functions which vanish on 8D . We then have VoS 0
on 8D so that the boundary error E,;‘ = 0 for any choice of coefficients Obi .
Since “’m =0 on 8D we also satisfy 0 = ums v on 8D . Therefore in
effect we have aDn = 8D which means that we can assume we have h2 = 0,
Thus the second inequalities in (4.6) and (4.9) are deleted and we set
hz = 5’2"‘ = 0 wherever they occur. In particular we have p = 6;‘ u’;} in (4.8)
and (4.14). Even if s # 0 we may still be able to treat the problem in a

similar way. If a function cpo(x), continuous on D, can be found such that




cpo =s on oD and cpo € A(KO,XO), then we take q)o + vm as the
approximate solution and minimize the error in (L + g)[cpo + vm] -r on
Dn . Since ch + Vo T s on 8D, the error on the boundary is identically
zero as before.

In the second special case we can find functions that satisfy the
differential equation exactly in D . This will generally be possible only in
the linear case where we can find functions cpi, i=0,1,--- m', such that
(L + p)[(po] =y and (L + p)[cpi)] =0 in D, and a function LLO which
satisfies the constraints (3.9). Then ch + v identically satisfies the

differential equation in D so that é;;k: 0 for any choice of coefficients

OLi . In this case we set hl = 6;‘ = 0, wherever they occur. In particular

af»

we now have p = (1 - f)p,o)é'z" in (4.8), and the minimization (4.6) is carried
out only over the boundary points so that the first inequality is deleted.

We complete this section by describing the solution of the problems
(4.5) and (4.6) as standard linear programming problems. We let Il denote
the set of points in Dn and IZ the set of points in 9D, , and assume that
there are n, points in Il and n, points in ]2 , with n + n, = n. We

define two column vectors, I € Rnl and s € Rn, with elements rJ, = r(xj),

je ]1 and Sj = s(xj), j € IZ . We define an mXx nl matrix H, an mX n
matrix G1 and an mxn, matrix G,.2 with elements given by
(Gk)l] = cpl(xj) 3 i=1,"""m, je Ik: k=1,2
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We let denote the mxm i i i

e le Im 0 e X identity matrix and & € Rnl » €, € an

and e € Rm denote column vectors with each element unity (sum vectors).
The transpose of a vector or matrix will be denoted here by a prime so

that e‘i is a row vector. A new vector 0 € Rm is also introduced.

Considering (4.6) first, we can write it in the form

min blgl + bzéz + b

m
3 2, @
o6 6,0 =

1 i

Subject to:

!
o
Q
]
|
1A
®

(4.20)

We consider this to be in the unsymmetric dual form  min {b'y|A'y = c]}.

Then by the duality theory of linear programming [1 3} ch equivalent primal

problem is given by max {c'z[Az =b, z = 0}. If the minimum problem has
z

a feasible solution and b'y is bounded below then both problems have

optimal solutions and b‘y* = ¢'z¥ . If the primal problem has an infinite
solution then there is no feasible solution to the dual. Furthermore if we
denote by B the nonsingular primal optimal basis matrix then y”< =(B ) c
gives the dual optimal vector, where <¢ is a vector of the cost coefficients

corresponding to the primal optimal basis columns. Thus we can obtain the

desired optimal dual solution by solving the equivalent primal problem.




37

The dual problem (4.20) has a total of 2m+2 variables (Q,6, ﬁl and &2).

Corresponding to each dual variable is a primal equation.

The size of the

primal problem can be reduced to m+2 equations by eliminating the equations

corresponding to

variables. We then obtain the following bounded variable primal problem

max
2.5 2
‘ la 2

where

, and imposing an upper bound on some of the primal

] Alzl + AZZZ =b

171 zlzo, b3em22 =0

2

G.2 -H --G2
0 ' 0 =
| By
] )
e2 0 eZ
] 5 U
s r s’y 2 € RZn

A feasible solution to (4.20) always exists

sufficiently large) and the objective function is bounded below by zero.
Therefore it has an optimal solution, and by duality so does (4.21). The
optimal solution to this primal problem gives the desired coefficient vector

a as the first m

sic

5

elements of the dual vector y € Rm

will be selected from the columns of Al and AZ .

the basis corresponds to a point of —Dn at which the maximum error is
attained. A column from H

error is -g;" . a column from -H corresponds to a point of Drl at which

(@

(4.21)

& =0, and 61, E;,Z

, and the bounds

Fach column of A

corresponds to a point of

1

at which the

and §£ as the last 2 elements. The m+2 columns in the optimal basis
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the error is &”{ . ‘Similarly a column from GZ or -—GZ corresponds to a

¢

point of 9D = at which the error is =€ , or g

e
Ed

5 - Thus the optimal solution
to (4.21) not only gives the desired approximate solution and error bound,
but also the points in Dn at which the error in the differential equation is
a maximum and the points in aDn at which the error itself is a maximum,
The linearized problem is solved in exactly the same way except that the
vector T now has as its elements rj = rk_l(xj), j € ]l, where rk“l is
given by (4.15).

It is also worth noting that the vectors T and s appear only in the
cost row of (4.21). Thus a sequence of problems with different functions
r(x) and s(x) can be solved rapidly using the multiple cost row or parametric
cost row feature of a linear programming code.

In a similar manner we construct a primal problem of m+2 rows

corresponding to (4.5) considered as the unsymmetric dual.

The following primal problem is thus obtained.

Az +A. z +a,z, = b
272 ‘
max cz 171 303 (4.22)

ZAIY 22, 23 Zl

where
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G1 GZ —Gl -GZ 21, -€n 0
“ . ' P ' _ _ _ H
Al_ dl d d, d, dz,AZ— 0 , ag = 11, b={0]eR
] i
0 0 el e2 0 0 1
o e 0 0 0 0 R R R
€1° (el ) 2y € 2n+n,’ 2, 8 Rpp» 23€hy
. , v | 1 - . ]
and for convenience we have defined dl = hlel , d 5 hze > and
o N .
dl = ~(1 + q)hlel

It is easily shown that a feasible solution to (4.22) always exists.
If (4.5) has no feasible solution then the solution to (4.22) will be infinite.
If (4.22) has a finite optimal solution then so does (4. 5) and the error bound
is valid. By duality the optimal solution to (4.22) gives 7* = c'lz’:l‘ . The
desired coefficient vector B is given by the first m elements of the dual
vector vy , while the last 2 elements give the optimal value for A and 'y*
Simplification in (4.21) and (4.22) occurs in either of the two special
cases discussed earlier. When the boundary conditions are identically
satisfied, the columns containing GZ are deleted from the matrices Al in
(4.21) and (4.22) and the corresponding elements of <, deleted. The last
row of Al and AZ and the last element of b are deleted in (4.21) and
we set h2 =0 in b3 . In the special linear case where functions identically
satisfying the homogeneous differential equation and a function Ko satisfying
(3.9) can be found, the columns of AL containing H and corresponding

elements of ¢, are deleted in (4.21). The next to last row of A1 and AZ

1

and the element b. in b are also deleted and we set hl =0 in b

1 3°
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The solution of (4.22) is not needed in this case since Ko gives all the
additional information required.

If the number n of points chosen is at least 22 times as large
as the number of variables m+2, it has been. found empirically that the
maximum errors g”; and &f; computed on Bn are in fact very close to

- o bd
the maximum errors on D . Thus the terms in 5'; and 62 which contain

h1 or h2 give an overestimate of the maximum errors on D . This

empirical knowledge can be used to improve the error bound p with only
a small additional amount of computation. After solving (4.21) and (4.22)

and obtaining the coefficients ai , the maximum errors (say él and éz)

over a finer grid (with smaller distances 1?11 and ﬁz) are obtained by direct

—~ -~

evaluation. We now get new values 51 and 32 with E;l, E"Z' hl and h?_

* h. and h2 . In general, the reduced values of hl and

replacing éf’;, s‘:';,z, |

sk

2 ]

h, (say by a factor of 2 or more) will give 51 < 6%1 and :52 < 6

even though él and 6,2 may have increased somewhat. These smaller
values él and 62 are now used in p to give an improved error bound.

This scheme was used to obtain the error bounds for the numerical problems

described in the next section.
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5. COMPUTATIONAL RESULTS

In order to test the computational aspects and efficiency of the linear
programming method described in the previous section it has been applied
to a number of linear and quasilinear problems. All of the cases discussed
here are two-dimensional (£ = 2, x and y as coordinates) with the negative
2

Laplacian as the elliptic operator L[u] = -V u = —(uXX + uyy). In addition

to linear cases, several different nonlinear functions g were used including
g(u) = —e——u, g(u) = ieu and g(u) = —uZ . The domains D considered were
a square, a truncated square and an ellipse. Various approximating functions
cpi were used, including polynomials, trigonometric and harmonic functions.
The dependence of the error on the number of functions (up to @ maximum of
45) and on the type of function used was studied. In some cases the functions
were chosen so as to identically satisfy a homogeneous boundary condition,
while in others they were chosen to satisfy the differential equation. The
more difficult situation where the functions do not identically satisfy either
the equation or the boundary condition was also considered.

We will first discuss the results for the cases where D is the unit

square in the first quadrant (lower left-hand corner at origin), with the boundary

oD given by its four sides. We wish to solve

-Vzu + g(u) in D

i
=

(5.1)
u =0 on oD
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By symmetry we need consider only a triangular domain with 1/8 the

total area. However the symmetry about the diagonal was not incorporated
in the choice of functions, but used afterwards as an additional check on
accuracy. The quarter size square domain was used with the requirement
that u = 0 along x =0.5 and uy = 0 along y = 0.5 replacing the
conditions along x =1 and y = L. For the majority of these cases, poiy-—

nomials were chosen which satisfied the boundary conditions identically:

1
cpi(x,y)=§6p(><)0q(y), i=1,+-- 45 p,g=1,--:9
5 p+tg = 10 (5.2)
W = Py 2R
crp(x) x (1 D1 x)

1
It is not difficult to show that for 0 = %,y = 5

1A

92,0+ bx,y + Ay) -0 0 v)| = a2 T axan]

A

| (ax, av)|]

so that the Lipschitz condition (4.2) holds.
Since the functions cpi satisfy the zero boundary conditions exactly
we have the first special case discussed in the previous section, with grid
points required only in D . The domain D included the lines x = 0.5 and y=0
A total of 225 points on a uniform grid in the interior of the square were used,
so that hl =~ 0.0167. The simplest linear case —Vzu = 1 was solved f{irst
using 45 functions. Fér this case we have g =0 and r =1, so that
p=p=8§=x_=0. The error function p,’:n and approximate solution Vo

0

were obtained from (4.22) and (4.21). The approximate solution attains its




43

maximum value (as does the exactAsolution) at the center of the unit square,
that = = = 0.5,0.5). '

SO I v =1 v I 5 v ). TFor this case we have

|v || =0.0737. The corresponding bounds obtained were 'y* =0.074
m

and él: 0,0031 , where 61 here represents the 51 as described at

p* s

the end of Section 4. The error bound here is given by p = 61 o

61«/* - y=2.3x%x10"% sothat 0.0735 = u(.5,.5) = 0.0739. For this
simple case we can compare with a trigonometric series solution giving the
more accurate result u(.5, .5) = 0,07366. The relative error p/vm is
essentially constant for this case and has a maximum value of 0.31%.
This information is tabulated in the first line of Table 1. A normalized

contour plot of Vm is given in Figure L. Each contour represents one of

the curves

Vm(x,y): _115 lvm“ ., j=1,2,++9

The rest of Table | gives the results for two nonlinear functions g
for which g'[-] = 0, so that unique solutions always exist, p(v)z O

L » ] 0] --u '
and P= 0. The first such functionis g = -7¢€ , where T 1is a parameter

' o
and r = 0. Based on the discussion following Theorem 8 we took um = LLI';

{(where U“r; is the optimal error function for the linear case) and solved

the linear program (4.21) iteratively to obtain Vo and 61 . Note that for

r = | the solution differs only a little from the linear case, since e = L.
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As a result the normalized contour plot for T =1 is almost identical to
Figure L. Skipping for the moment to the second case g = eu , we find
that the increased value of || Vo | is essentially a matter of scaling for
r = 5,10. This is confirmed by the rather surprising fact that the normalized
contout plqts for these two-cases differ only slightly from Figure 1T Only
Zl. ft.lr:cvtions were used (p + g < 7) so that the values of 61 and the relative
error increased by almost a factor of 10. Starting with the linear problem
solution as Vr(; , no more than 4 iterations of (4.21) were required for the
abowve cases.

The nonlinear effect becomes evident for g = —te Y with T =10
and for g = eu with r = 50, 100 . This is shown in Figures 2 and 3 as
a movement of the normalized contours toward the boundaries as r increases.
The normalized contour plot for g = —lOe—Ll differs only slightly from Figure 2.
The solutions for r = 50, 100 were obtained first with m = 21, based on-the
iterative procedure of Section 4 with (4.21) and (4.22) used to solve (4.6) and
(4.5). The best solution for r = 10 was used as _vgl for r = 50. The best
solution for r = 50 was then in turn used to start the iteration for r = 100,
In each case 4 cycles were required. The more accurate solutions with
m = 45 were obtained in 2 additional cycles starting with the best solutions
for m = 21. Note that increasing m from 21 to 45 decreases the bound
& by a factor of almost 10. It should also be noted that the bound y*

1

is decreased because of the large positive value of ¢' [vm] in the central
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region of D, so that the relative error bound is actually less than for
the linear case with the same number of functions (m = 45).

The second set of cases solved on the unit square with zero boundary
conditions were with g = —uZ , so that g‘[-]‘ < 0. A total of 10 such
cases were solved with values of r = 1, 10, 80, 84. The results obtained
are given in Table 2. The first 6 cases (r = 1) in T ble 2 show the con-
vergence as, M is increased,of the approximate solution Vm 1o the exact
solution u . The error function and bound ﬂ/* were obtained with m = 10
using the iterative procedure. The same ﬁ/* is valid for the remaining 5
cases with larger ™. In each of these cases the previous vm was used
to begin the iteration for the next larger value of m. Only one or two
iterations were required in each case. We see that very roughly 61 = 1O/mZ ,
so that convergence is relatively rapid. A numerical solution to this problem
using a finite difference method is quoted by Collatz [3]. The most accurate
solution (mesh size = 0.025) required 91 iterations and gave v(0.4,0.4) =
0.0689. The corresponding value obtained here using 45 functions was
0.0690.

The solution for r = 10 behaved as expected, butas r was increased
to r = 84 more iterations were required and both (51 and y* increased as
well as || v |. For r= 84 with m =2l no solution could be obtained
with vk < Vk”l . The sequence {Vk} continued to increase until no solution

k
to (4.5) could be obtained. However by setting v = 0, convergence of (4.6)
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using (4.15) was obtained, giving an approximate solution vm in 9
iterations. The corresponding value 61 = 2.29 was obtained, but no

error bound could be computed. The vm thus obtained was used to start

an iterative solution with ‘m = 45. An improved solution with él =0.26
allowed the error bound y* = 1.46 to be obtained in 3 additional cycles.
The normalized contour plot for r = 84 is given in Figure 4. The increase

in magnitude of || v | is as expected. The more significant increase occurs
in 'y* , which is 73 times larger than it is for r = 100 in Table L. This
increased magnitude shows that we are close to a function p(V, Vm’ x), as
given by (3.14), for which no nonnegative solution exists to (3.15), For

r = 84 we have D(v, vm) = =2(|| v | +v) = -25.4. For comparison we note
that the maximum eigenvalue of (-VZ +w)p] =0, is w = —2'1TZ = -19.739.
When r was increased to r = 85, no solution could be obtained. This was
reflected in the fact that the iterative solution of (4.6) using (4.15) diverged
when started with Vo for r = 84.

Similar behavior was observed with g = - 1e? , for which we also have
g'[-]= 0. A total of 5 solutions and error bounds were obtained for this
case using the values T=1,5, 6.7,6.8. The results are summarized in
Table 3. In this case also, more iterations were required and both 61
and v* increased as T was increased to its maximum value. The value of
'y* obtained here for T = 6.8 is even larger than for r = 84 in Table 2.

The interesting result was obtained that the normalized contour plot for
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7 = 6.8 differs only slightly from Figure 4. For this case we have
B(v, vm) = - T exp (“ Vo “ + V) = -27.1, so that a solution to the inequalities
(4.11), (4.12) and (4. 13) exists with p(vV, vm, %) taking on a more negative

value than it did for g = —u?

with r = 84. This can be explained by
observing that p(v, Vo %) has a steeper valley in the center for the
exponential case as compared with the quadratic case, so that the average
over D in some sense is the same. Once again no solution was obtained

for larger 71, as reflected in no convergence for T = 6.81.

As mentioned in the Introduction, it can be shown theoretically [6] that

oy

. X 2 ~ 4 u
no solution exists when g=-u_ and r > 1 = 7 = 98, or when g = -1e

and T > T =27 2/e = 7.2. On the basis of these computational results
it appears that better bounds are given by T = 85 and 7T = 6.8L.

As an illustration of a case in which the differential equation was
satisfied exactly in D, the eguation —Vzu =] in D, u=0 on oD was
solved on an ellipsoidal domain. The problem was proposed and solved by
Collatz (see [2], pp. 391-2). The domain considered has its center at the
origin and has a boundary 8D consisting of the two straight-line segments
]x] < 1, y= 1, connected by two semicircles of radius | about the points
x=+1, vy = 0. By symmetry only the quarter of the domain contained in the
first quadrant need be considered. The function ch = —-O.ZS(X2 + yZ)
satisfies —Vcho = 1. The functions P, = Re(x+iy)21—2, i=1,2,*""m,

2
satisfy —vchi = 0. Therefore P + Vo satisfies =7 u = | identically in D.
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~

The error bound for this case is givenby p=v = 52 , so that we use a
simplified version of (4.21) to minimize the boundary error. A total of“ 100
boundary points in the first quadrant were used. The results obtained as a
function of m are summarized in Table 4. The first result (m = 6) corresponds
almost exactly With that obtained by Collatz. It appears that the actual error
in Ym at the origin is smaller (by a factor of approximately L0) than it is i
on the boundary.

The final set of results obtained were for the general quasilinear problem
where neither the boundary conditions nor the differential equation could be
exactly satisfied. A total of 6 such cases are presented in Table 5. For
the first 3 cases the domain was again the unit square, but some functions

were used which did not vanish on the boundaries. In particular, linear

combinations of the following harmonic and trigonometric functions were used.

¥, =0.25[0.5 - (x - 0.5)% = (y - 0.5)°]
Im[ (x+iy)) + (y+ix)i], j=1,2,3,5 "
¥y = , (5.3)
J v i} -
Re[ (x+iy) + (y+ix)'], = 4,8,
ij = ginjTxsinkmy + sinkmxsinjmy, j,k odd

Note that YO and the ij vanish on the boundaries while the ‘J{j do not.
We also have -Vz\l/o =1 and 72\£j =0, j= 1. Furthermore, all functions

are symmetric about the line y = x. The results were obtained by the iterative

B3 ,
procedure using (4.21) and (4.22), to get 51, 52 and vy as given. Since
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both él and éz are nonzero for these cases we have Vv = 'y*él + (L - ;‘5«/*)62 .
" The value of m gives the total number of functions used. We can compare

the first 3 cases with the results given in Tables | and 3 for the sarr,le

cases using different functions. We see that the approximate solution is
essentially the same, but that the errer bounds have increased somewhat.

It therefore seems best to use functions which satisfy the boundary conditions
when this is possible.

The domain for the last 3 cases was a truncated unit square, with the
region of the square deleted for which x + vy > 1.5. The domain and a typical
normalized contour plot are shown in Figure 5. The same functions (5. 3)
were again used and m represents the total number used. In this case,
of course, none of them vanish along the boundary segment x + vy = 1.5,
Since we require the solution to vanish closer to the point x =y = 0.5, it
is to be expected that vm(O,, 5,0.5) will be smaller than it is in the corres-
ponding case on the full square. As seen from the contour plot the maximum
value || v | is no longer attained at x =y = 0.5, but close to x =y = 0.45.
We also see that the required minimization over both Dn and aDn has
caused a significant increase in the value of the error bound. However the
approximate solutions obtained are probably better than is indicated by the
error bounds. While the normalized contour plot for the last of these cases
is given in Figure 5, the normalized plots for the other 2 cases differ only

slightly from Figure 5.
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A total of 180 points were used in the interior and on the boundary
of half the truncated square, taking advantage of the symmetry about the
line y = x. Since reasonably good initial approximations were known, at
most 5 cycles were required in any of these cases. These numerical solutions
were obtained using a standard linear programming code which was modified
to carry out the iterative solution more efficiently. The problems were run
on the University of Wisconsin CDC 3600 computer and required from 10
to 30 seconds per iteration for solution. The contour plots were generated
by an auxiliary routine directly from the approximation vm , and plotted

automatically on a Calcomp plotter.
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Table |

Unit Square Domain

il

2
-V u + g(u) r, in D

il

u 0, on é&D

Polynomial approximation (boundary conditions satisfied)

gw) =~ . m. v (5.5 o1

0 1 45 .0737 .0031
—re Y 0 45 .0700 .0031

" 10 0 45 . 5042 .031
e 5 21 L2717 Ll

" 10 21 617 .25

" 50 21 2.886 1,42

" 50 45 2.891 .15

" 100 21 4.282 2.95

n 100 45 4.284 .31
TLL* for linear case used.

074

074
0740
L0741

.074:T

. 043
.043
.020

.020

1<

.00023

.00023

.0023

.0081

.018

.061

.0065

.059

.0062

Rel.
error
bound
L31%

.33

.46

.15
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Table 2
Unit Square Domain
2 .
-Vu+gu=r, in D

u =0, on oD

Polynomial approximation (boundary conditions satisfied)

9_(_1_12 T m Vil 5, - 5) E)_L_
_u® ] 10 . 0746 Ll
" | L5 .0744 .052
u | 21 .0738 .028
" 1 28 .0739 .015
" | 36 .0739 .0067
" | 45 .0740 .0040
" 10 45 .7631 .032
" 80 45 10,1 .245
. 84 21 12.1 2.29
" 84 45 12.3 .26
" 85 21 NO SOLUTION

T No solution obtained to error bound equation.

*

o y
.075 .0082
.075 .0039
.075 .0021
.075 .OOly
.075 .0005
.075 .0003
.079 L0025
.39 .096

1 i

1. 46 .38
OBTAINED

Rel.
error
bound

0.40




—Vzu + g(u)
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Table 3

1

u

Unit Square Domain

0, in

D

0, on 9D

Polynomial approximation (boundary conditions satisfied)

. 60

.00

.70

.80

.81

|3

45

V(-5 5) 51_
0781 .0031
.5558 . 140
. 5571 012

1,16 .021
1,33 .021
NO

2.

E

A

53

SOLUTION

1<

.00023

0174

.0015

.012

.053

OBTAINED

Rel.
error

bound

0.30%
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Table 4

Ellipsoidal Domain

-7"u = 1 in D
0 on 98D

I

u

Harmonic function approximation

v_ (0, 0)
—_m

0.44240
0.44278
0.44267

0.44267

Vv =
Max. bdry.
error

.0022
.00054
.00023

.00010




e 50 Bq.

e 50 Sq.

-e 0 Tr.Sq.

-e 0 Tr.Sdg

e 5 Tr.Sq

21

21

31

31

31

31
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Table 5

Square and Truncated Square Domain

2
-V u + g(u)

1

u

r, in D

0, on oD

Harmonic and trigonometric functions

L0781
2.878
2.890

.0639

. 0584

.231

.00028

.34

.31

.016

.0l4

. 142

.00028

013

.003

.0002

.0003

.0014

Y p(v)
.075 ~1.08
.043 0
.043 0
.070 -1.07
.063 0
.060 0

Yy

.00033

071

.0L6

L0011l

.0012

.0099

Rel.
error
bound

0.42%
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Fig.

Linear Elliptic Problem, —Vau =1

Polynomial Approximation (m = 45)

[ v] = 0.0737
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Fig. 2

Quasilinear Elliptic Problem
-Vzu + e =50
Polynomial Approximatien (m = 45)
Iv| =2.891
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Quasilinear Elliptic Problem
_Vzu +e =100

Polynomial Approximation (m = 45)
v = 4.284
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Quasilinear Elliptic Problem
—Vzu - uz‘ = 84
Polynomial Approximation (m = 45)

|v]| = 12.323
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Fig. 5
Quasilinear Elliptic Problem
-Vzu +ed =5
Harmonic & Trigonometric Functions (m = 31)
|v] = 0.234




