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INTRODUCTION

Consider the Cauchy problem
p+q 14]
_a__.__g.q:f(X»Y,U,"" al }:13_: "'). Xé[o,a], YF[O’bJ’l+J
axPdy Ox dy

with initial conditions

_Q_J_l_l_ = ¢j(x), x € [o,al, ]

1 = :O, l:- q—l 4
ByJ
> i
QU - yMy), xefob], i=0,1,... p-l
dxt

i

The particular case when p =q = | has been investigated by many
mathematicians. Zwirner|7] and Diaz [2] suggested the Euler-Cauchy
polygon method. Moore [5] derived methods of Runge-Kutta type. Day [ 1]
introduced a quadrature method.

The case for general p and q is much less studied. Walter [6] proved
the existence and uniqueness of the solution through some existence theory
of integral equations. In [4], Margolis showed the existence, uniqueness
and convergence of successive approximations under various assumptions.

In [3], a special case p=q=n 1is considered. But all these are not
computational methods.

In this report, a spline approximation method is suggested (Section 2).

Convergence of the methcd is proved (Section 3). In Section 4, an a posterior

ptg



ii

error estimate and an a posterior error bound are derived. The instability

property of the method is also discussed. Some of the numerical results

are presented in Section 5.




SECTION 0. NOTATIONS

In most cases, the following rules will be used for defining notations:

l. Scalars are denoted by small letters.
2.  Vectors are denoted either by capital letters (e.g. V) or by small letters
with a bar below (e.g. v(x,v)).
3. Matrices are denoted by capital letters.
i it+j
4. Superscripts of functions denote derivatives {e.g. u"J(x, y) = —T——-—J: u(x,v) ).
% ay

Without explicitly redefined, the following notations will be used through-

out all sections:

1}y 1eP means i=0,1, ....p
|
i€P means i=0,1, ....p~-1
je€eQ means j=0,1, ....4q

1
j € Q means i=0,1, ....aq-1

m € M means m=1.1,2, ... M

i
m e M means m=1,2, . M4+ 1
m € MZ means m = 2,3, M
neN means n=1,2, ... N

L
n €N means n=1,2, ... N+ 1

neN2 means n=2,3, ... N



2) R - the region: 0 < x= ag, 0=vy=bhb

_ Xy (m-1)h, where m € Ml, Mh = a
A - a mesh over R: 1
. yp = (n-1 Yk, where n e N7, Nk =b

l’xm = (m-l1)h, where m € M, Mh =
A - a deleted mesh:

Yy = (n-1)k, where n €N, Nk =b

- . i . < . < '

Rmn a subregion: x =X < Xoi1r Y = y < Vo4l

Cp’q[R] - The class of functions whose derivatives upto order p

in x and order g in y exist and are continuous.

3) (p) - spline - a one~dimensional spline of degree p .
(psq) = spline - a two-dimensional spline which is a (p)-spline in Xx
and a (g)-spline in vy .

sp-0, sp~-1, sp-2 - spline relations

sl](x, v), s;]m(x, y) = the (i, j)-derivative of a spline function
00 10 ij ¢
s(x,y) = col (s (xY), s (xY) s Nz, y), - - sPY(x, v))
le = gpline coefficients representing the (i, j)-derivative at the

mn

grid point (xm, yn)

00 10 i

s = col(s__,s ,"'s”,---qu)
“mn mn’ “mn mn mn

i i0 il i i, q-1
Lo row (sl s ,"'su,"'slCI )
~mn mn’ ~mn mn mn

' 0j 1j 1 -1,
c) = col(s],sJ,"'sU,"°sp 3y
“mn mn’ ~mn mn mn

] i0 i1 i, q-1
ol (x) = row (0%, 00,8 (x,0), 000 570 (6,00 )

. o y ny
W) = col (570,70, 87(0,y), e 87O )




J0o ol o L0, a-1
]
CDS - L 11 11 - \ys
10 L1 L, g-1
S11 51 TS
p-1,0 p-L,1 ~ _p-lLa-l
511 S ST
, Bi , Bj
DL = =7, D = 77
X oox Y oy
cpj(x), wl(y), j € Ql, ie Pl -—- initial function of Problem C .
io_ i
o =dx ) v =V
o'(x) = row (D o'(x), D' o'(x), - - - ot o %) )
- % P 1y % CP ] % (P
j j 0 j o1 j p-l
14 = col (D , D , oo D
(y) ( yw (v) Y ¢ (y) Y%U (v) )
. 0 1 -1 )
o (0) o (0) - - - 977 (0)
1 o 1 1 g-1
& = | D. 9%0) D, 9 (0« D @ (0)
-1 0 -1 -1 g-1
D> "9 (0) D" g (0) D" (0)
L )
T M
1 0 g-1 0
0) D 0 D3 w0
¥ (0) yw (0) v Y (0)
] 11 -1 1
Yy = siy Doy ... DIy
y y
-1 1 p-1 -1 -1 :
. YPT oD yP T pI™ yP70) |




7)

9)

10)

2 p-l
X X
= | EA-
X{x) row (1, x, 5, (1)1 )
i p-i-l !
X' (x) = D X(x) = row (0, O, L, %, (p-1-1) 1 ), ieP
9 iz p
2 g-1
= o 1 Y A
Y(y) col (L, vy, 5 (q-1)1 )
q-j-1 |
j ' col (0, O, b, v, ), e C
Viy) = D vy = Lo y CEETYIE
Y L 0 jz g
(4, v) - inner product of two vectors u and v

5 Y prng-j-l n, r* pép-i-l £
Il] [X: Y k(X: Y> Y__(X: Y))] = [ [ e [ 1 [ [ . e . [
Jdo 0 Jo 10 10 J0

k(a, B, v(a, B)) d¢ dyy where dg = da dg, -+ d¢ dy = dp d”l' - dy

sp-i-l’

Gyt (0, clyh V] = 0, ) )+ e, Yy - X () W (y)

where 1 (x) is a g-vector, c(y) is a p-vector, V is a p x g constant

matrix.
H_V-“ = max lVi‘» where v = col (Vl,vz, PN vi, N vp)
i
V|| = max 2 }vijl, where V = (vij) is a matrix.
1 J

—> means 'converges uniformly to'

g-j-1




SECTION !. MATHEMATICAL PRELIMINARIES

I'.1 Some Aspects in Functional Analysis.
Definitions
)y R - a bounded closed domain in the real space g™ .
2) S[R]- a sequence of real vector functions g (x) =
(5, (20, -+ 55 (0))
3) C[R]- the set of all real vector functions u(x) = (u (x), ** 'up(gg) )
with continuous components defined on R .

4) S[R]- 1is said to form an Arzeld sequence if it satisfies the

following property:
Given € > 0, there exist M and &, > 0 such that,

if p > u, and “)_c_l-ggzn < 5 x, € R, then

€, 2{__1.,
sy, () -5, () < e

Theorem 1.l (Arzeld)

Let S[R] and C[R] be defined as above. If S[R] is uniformly
bounded and forms an Arzela sequence, then it contains a subsequence

which converges uniformly to an element in C[R] .

Proof. See appendix of [5]
For later application, we should notice one fact: A vector §‘tl (x) in
S[R] may have discontinuous components. However, any discontinuity

should become small as [ - o,



Example 1.1 Let R=[0,a] and SLL(X) be a scalar function
)( 0 0 = x< %
=/
0T e
M 2

Each sLL (x) is discontinuous, but SLL'(X) => 0 as WL — ©.

l.2 A Special Matrix.

We shall encounter matrices of the form

o] a 2 g g-1 a
2ok 2.k k- 2.k k Lg-1k
| 4 — k+ _L 1 + "2 - q-l
q ! q! q ! (g-1)! q!
g-1 q-1 g-1 g-2 g-1
L T K by
(g-1)! (g-1)! (g-1) ! (q-2)! (@ - 1)!
| q-2 q-2 q-2 q-3 q-2 |
B = B(k,q,L) = flok zlk L JZZk IR k 2k .
(g-2)! (q-2) ! (q-2)! (a-3)! (g -2)!
N . i
. |
: i
' i
Jzok zlk Egk — 2,k J
- 11 11 L 1!

where L = col (lo,ﬂl, .o .ﬂq—l) .

k. ~
Lemma l.1  For sufficiently small Xk, | Bl < * where f = max (£, 1)

qg-1
and 2= 2 £,
i=o !
Proof. The sum of the jth row of B is
2 37 qu“j“
=1 +k+ = 4 covenens + + - - =1,2,
ri) @t @t a




Two cases:

L. ¢ = 1. Then, [B| = max [r(j)| < ek (1)
j
2, ¢£>1, For j=1,2,+++2q-1
r(j) - r(j + 1) = ) + -
(gq=j+1)! (a=j)!  (g-j)!
qu_j
< —— -2 (L =-=)]
2-(q-j)! £

), then r(j) < r(j+1), i.e. the last

Hence, if k < 2{l -

Therefore, the row-norm is

IB|| =r(a) =1 + ek < ¥

row has a maximum sum.

Combining with (1), we have
IB]) < "

1.3 Two Types of Spline Approximation (Method A and Method B)

For simplicity, a one-dimensional spline of degree p is called a

th
- i ) ] y I i i - i
{(p)~spline In [xm Xm+l] the i derivative of a (p)-spline has a

representation of the form (for i = p, the end~point X il is excluded):
m

R R _ 41, (x-x)P7b
s(x)—sm(x):—sm+(x xm)sm + + (p—mi)' s, ieP (2)

Matching the derivatives up to order (p - 1) at the intermediate grid points

leads to the following relation of the spline coefficients
. p-i
+1 h

st . P

i i 1
-0: = + + oo + ’ i ’
sp Sm+l Sm h m (p-1)! srrl ieP me M

Next, consider the following approximation problem:



Problem A Given o(x) € Cp[(),a]. Find a (p)-spline so(x) which has

the form (2) and satisfies

, i i , 1
(i) sl = Dxcp(O), ieP
y p-1 _ _p~-1 1
(ii) Sm = Dx cp(xm), meM
. i i R V. R SRS SR
Notations: qu = Dxcp(xm), e (x) = Dx P(x) sm(x), em = e (xm) .

The following method solves Problem A .

Method A .
-1 -1
Step L. Set sp = cpp , Ine I\/I1
m m
Step 2. Set sl1 = cpl , 1 = 0,1, 2, s p~2
p _ ,.p-1 _ p-l
s| = (s2 s y/h

, . i .
Step 3. If the spline coefficients (sm, ie P} in [xm,me] have

been obtained, then those in [x ,X_ .. ] can be calculated
m+1’ “m+2
as follows:
2 p-i
i i i+l h i+2 h p
- . - oo =0,1

Sm+1 Sm ? h *m o sy (p=i)! *m’ T

p-1 _ p-l

Sm+l T Pmil

p _ ,.p-1 _ p-l

Sm+l (Sm+2 Sm+l)/h .

We have the following convergence theorem:

Theorem 1.2

If o(x) e C°[0,a], then




(1) e (x) =o(l)

l
o(h), ieP .

(i) e (%)

If, in addition, Dicp(x) satisfies Holder condition of order (0 < a = )

4

lDiCP(X) - Di@(xl)l < le—xlla, x,xl e [0,a],

(ii') e (x) = (h Y, 1eP
Proof.
i) Expanding qu—l = Dp-l P(x } and sp”1 (x ) as Taylor' erie
m+l X m+ 1 m+l" m+l ray s S s
about x ,
m

p-1 _ p-l p .

Pmet T Pm * th (‘D(gm)’ *m < Em  Fmel

p-1 - p-l <

Sm+l = °m * hsm Mp) %y M < Xm+l

p-1_ p-1 _p-l p-l
1 = =

But, by Step of Method A, 5 ch v S i1 (pm+l . Hence,

p _ P _

D (g ) -s (n ) = 0. ?
Let x be arbitrary in [x_, X ). Since Dpcp is continuous, we have

m’ “m+l X
P P p p
= 1 . - .

Dxcp(gm) DXCP(.X)+O() Also sm(nm) sm(x) Hence

e(x) = DL p(x) = s (x) = o(1).

ii) Mathematical induction will be used .

. p-l p-1 p :
) = - < <
First, e (x) em + (x xm) e (gm) X gm X
-1
e” T (x) = 0+ (x=x_) - o(1) = ofh)
Next, suppose that et(x) = o(h) for =p-l,p=-2,.--1i4+ 2, 1+ L.

For i £ p -2, expand el(x) about Xm’



Lo

2
i i i+ 1 X - X
el(x) = e +(x-x )e1Jr + (____u__ml_ eH‘Z
m m- m 2 m
-1
(x - x_)P
+---+Wm)_ep(g )
(p - 1)! m

where X < gm < x. Since there is only a finite number of terms

on the right side of (3), we have

ei(x) = ei + (x - xm)- oh) T (x - xm)p—i co(l), isp-2

For x = el ?
erin_l_l*ein+o(h2), i<sp-2
erin+1 = eil + (m - l)-o(hz) = 0 + oth)
Hence, from (4)
elix) = ofh) + (x - x_)-oln) + (x -x )7 o), 1= p-2
= o(h)

If Di ¢(x) satisfies Holder condition of order @, o(l) and o(h)

l
h +

may be replaced by O(ha) and Of OL) respectively.

The proofs is completed.

+1
For o(x) € Cp [0,a], p= 2, let us consider another type of

spline approximation.

(3)
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1
Problem B Given @(x) € Cp+ [0,a], p=2 2, Finda (p)-spline so(x)

which has the form (2) and satisfies

i i
. - 0
(1) s, D_ ©(0) ieP
, p-2 _ p-2 1
(i1) S =9 me M

The following method solves Problem B .

Method B
p-2 p-2 1
1. =
Step Set 5 cpm me M
-1 -1
Step 2. Set si) = cpi)

p _ ,, . p-2 _ p-2 _ p-1 2
5] = Z(sz s hsl Y/h

. . i, .
Step 3. If the spline coefficients {sm, ieP]) in [xm, X‘m-x-l] have
been obtained, then those in [x , X ] can be calculated
m+1’ "Tm+2

as follows:

, , p-i
i i itl h p .
= s .+  — o 1 PRI — __l

Sm+l Sm + hSm + (p—l)' Sm: 1 O: ) P 3’ p
p-2 _ p-2

S+l T Pmtl

p _,.p=2 _ p-2 p-1 2

Smt+l Z(Sm+2 m+1l hsm-l—l )/h

We have the following convergence theorem:

Theroem 1,3

1
I ox) e C°T[0,a], then
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1) ") =o(1)
. p-1
(ii) e (x) = o(h)
i 2
(iii) e(x) = olh),1i=0, 1, = p-2
Proof.
For x € [xm, X +lj (when i = p, the end point X ls excluded),
i i+1 x = %, )P4
el(x) :ei+(x-x)el+ 4 oo (_______L“_)__.._ e (5)
m m’° m (p - i)! m
- P i+l 1 :
4 & xg) cPer 5;1)
(p -1+ 1)!
where x_ < ¢ <x, i€epP
m

In particular, for i = p=-2, p-l

p-2 p-2 p-1 hz o} h3 p+l , p-2

emil = Sm Then tpoentay ¢ (Ep ) (6)

p-1 p-1 p hZ p+l  p-1

em-l~.l = € +hem +—2—!— ® (gm ) (7)

p-1 _ p-1 2  p-2 p-2
€n+1 "~ °m Ty (m+l ®m )-h [3 m
1 p+l p-l
2 (gm »l

By induction, it is easy to show that

p-1 _ m-1 p-1 _z_m-l _ m+g -1 , p-2  p-2
2 1 m-l 1 -2 ] m-1 m+f{ p+l, p-l
A SRS IR R
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-2
By Method B, e, = 0 and e? =0, £e€ M . Hence,
p-1 2 1 m-l m+¢ p+l, p-2, 1 m-l m+¢ p+l p-l
= = -1 - -1
e h { 1_1( ) (€, ) 2251( ) o7 (e, )} (8)

+1
The derivatives cpp (x) in each sum of (8) have alternating signs. Since

1 . -2 -2 - .
p(x) € Cp+ [0,a] and ]gﬁ) - gg [ < 2h, we have cppH (;::p2 2) - cppH
-2
(ﬁrl) ) = o(l), etc. Hence, the expression inside { } of (8) has the
same order as (m=1)-0(l). Therefore,
ep—l = h2 - (m=-1)-0(l) = o(h).
m
Then (7) immediately implies that efn = o(l).
. _— <
In (5), setting i = p, we have, for xm X X o4l
P,y _ P, . _ p+l . p
P = el + (x -x ) o (gh)
= o(l).
In (5), setting i =p -1, we have
2
p-l _ p-l _ p (x = Xp) p+l  p-l
et (x) = e +(x xm)eer__-—-z—-__mCP (ﬁm)
- 2 p+l, p-l
= o(h) + (x =x_) o(l) + ff.....ff_@_)__ P (&, )
m 2
= o(h).
In (5), setting i = p - 2 and recalling ef;_ = 0, we have
p-2 =0+ p-l (x - Xm)z p, (x-x )3 @pH (gp-Z)
e x) = (x xm) e — et C e m
2
{x - %) (x -x_)~ _ptl p-2
= - LSRN 1A 1 ——n
(x Xm) o(h) + > o(l) + e P (ﬁm )
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i 2
Next, suppose el(x) =o(h’) for i =p-2,p=3,-k+2,kt+l, Set i =k in (5).

p-k -k+1
ek(x) = ek +(x-x_) ekJrl + + ——-——~——(X _ Xm«)———-— e’ + (x - xm)p
m m’ m (p - k! m (p -k + 1)!
p+l , k —ek + (x - x )o(hz)
o7 (¢ ) " Cm m @)
k _k 3
el = St oth™)
k _  k _ 3
e = el+(m 1) o(h™)
Since e}l( = 0,
k 2
e = o(h) .

From (9), we have
ek(x) = o(hz) .

The proof is completed.,

Now,suppose we have a convergent sequence of meshes {Au s Uo=1,2, .-

and a corresponding sequence of spline approximations s1 m(x). Theorem 1,2
IV

(or Theorem 1. 3) implies

Corollary 1,1 The derivative s:L m(x) of the spline approximation

3

obtained by Method A (or Method B) converges uniformly to the

. i . ,
corresponding derivative Dx ¢(x) of the given function, as P — « .

Corollary 1,2 The spline coefficients S:L m obtained by Method A

)

(or Method B) are uniformly bounded.




1.4 (p,q) - splines.

A (p, q)-spline is a polynomial in two variables x and y such

that it is a (p)-spline with respect to x and a (q)-spline with respect

In Rmn, the (i, j)-derivative of a (p,g)-spline has the following

to Y .
representation:
. . . , . p-i ,
ij ij ij i+l, ] (x—x_) pj
- K, = — + L +
s (x,y)=s_ (%) [s  tOex s o Zm Smn]
(p-1)!
i, j+1 i+1, j+1 (x=x_)P7H p,j+l;
+(y-y.) [s ) + (x-% 5. A m) s> ]
n mn m’ mn . mn
(p-1)!
R R
a-j —x (P71
(y-v.) - i+1 (x-x )
n [Slq + (X"'X )Sl+ !q+... +.....___.....I_n~..__——.. Spq ]
(@-j)r ~m mn (p - i)t mn
ieP, jeQ (10)

(when 1 =p, the/line X=X is excluded; when j =g, the line v =V .,

is excluded)



L6

As in section l.3, the following relations between the coefficients hold:

. . . . 2 . . p-i :
ij ij i+l,j h i+2,] h Pj
-1 = —— “ o0 i
L Sm+l, n Smn *h Smn * 2 Smn * * (p=-i) ! Smn
. 1 , .
ieP, jeQ, m=1,2,---M-1, ne N
. L 2 q-j .
1j ij i, 3+1 k i, j+2 ko ° 19
...a: - g — ‘] e e e e .
SPTer Sh n+d Son T ksmn Y %o ! F (@' Smn

I
ieP, jeQ, meM, n=1,2,---N-Il

Next, we would separate our discussions on the (p-i, g-j)-splines

1
mn

s”(x, y) from their coefficients s The former is defined over the whole

R, whereas the latter is defined only at the grid points of a mesh.

Definitions

Consider a sequence of deleted meshes {Au JULo=1,2,3, -]

A = Xu,m:(m"l)hu’ meM, Muhu‘a-

K = (n- :
Yy, n (n=Lky, , neNu ) Nu kLL b .

1) For each mesh ALL , the set
ij _ e 13 ‘
su-—{su’mn,meMu, neNu],

j

3

i
, . v s _ A Lt ’
which contains the spline coefficients s at the grid points (Xu,m yu, n)

can be regarded as a discrete function defined on the mesh Au

00 10 ij
2y s =col(s,6 , s ,---s”,'--sgq)

denotes a vector function whose
1 & 48 2%

(p+1)(q+l) components are the discrete functions defined in 1) .
3) s[Aa] = {gl, S, TUEy vt .} denotes the sequence of vectors defined

in 2), corresponding to {ALL , =2, . -3,




6)
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_ 00 10 ij Pg
s, (%, ¥) = col (s, (%, ¥)s S, (X, ¥he-- S, (%, 7) s, (% y) ), where
ij .
SI..L (x,y) are the splines on Au
S[R] = {§_l (%, ¥), gz(x, V), s =My (x,y)-+-+) denotes the sequence of
vector defined in 4), corresponding to {ALL s=1,24]
e { i i
A sequence f{s L, mn’ SZ, mn } [see 1) ] of discrete scalar functions

is said to be Arzela quasi-continuous if it has the property:

Given € > 0, there exist B 61 and 52 e independent of the mesh

€

such that if W > b lxu’m-xu‘ml < 51’6, lyu’n -yu’_ﬁi < b, .

)

then

~

S - 8. €
l i, mn W, mn I
For a sequence of discrete vector functions, we require that each component

satisfies the above property.

For clarity, the following table shows the correspondence between

spline coefficients and spline functions.

spline coefficients spline functions
scalar function i) s:LJ iv) s;] (%, ¥)
vector function ii) §H iv) gu (%, v)
seq. of vector func|iii) [A] V) S[R]

For simplifying discussions, we consider a special sequence of meshes

hereafter:
a
{ = -1 i — e
A ) <‘ Xu,m (m )hu s m e NLL R hLL oW
(S = -1 = -
kva: N (n )kil s ne N].L , kLL S
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The following relations will be proved between S[A] and S[R]:
i) If S[A] is uniformly bounded, S[R] is also uniformly bounded.
ii) If S[A] is uniformly bounded and Arzeld quasi-continuous, then

S[R] forms an Arzeld sequence (see section l.1).

Theorem 1.4

If S[A] is uniformly bounded by d, the S[R] is uniformly bounded by

dea+b .
Proof.
By hypothesis, ls:j mnl < d for every W,i,j,m,n. By (10), we have
i p-i A (xxy ot vy )t i, g4t
|'s (x,y) =] = 2z . . : Sw, mn |
W, mn g=0 t=0 21 t! ’
) 2 . t
p-i |x-x - y-
< d{( ul_.._._u_;_ml (qzJ LY_HLP_I,_)
=0 i t=0 t!
< dea+b

Lemma 1.2

Let S[A] be uniformly bounded by d . Given € > 0, 51 > 0, and
62 > 0 there exists M€-> 0 such that w=z e implies

N 6 .

i) }ﬁL <6y kLL <0, and

N i i | .
ii) [su(x,y) Sp,,mnl < e, ieP, jeqQ, meMu, neNu

Proof.

Similar to the proof of theorem 1.4, we have
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j ij |
lsu(x’Y)'su,mnl <dle WM
h, +k
‘~ s det Ho
Now, h +k = 22 Gi > 0, let be th llest
ow, h, PRI Siven € , let p be the smallest

atb
integer such that Hy 2 log2 (lc—)—ge(l;ﬁ"))’ then

ij S , ,
Isu (x,v) 5, mn | < e forevery Wz My -
Next, let ul be the smallest integer such that h = 4 < 5 and
Ya) 2K 1 1
b
= == B i = .
ku1 TS| 2 The required Mg = max (1. O’p“l.) ;

Theorem 1.5

If S[A] is uniformly bounded and Arzela quasi-continuous, then

S[R] is an arzela sequence.

Pr .
oof v -
(%1, ¥))
i i ‘ =1 A
Consider two points (Xt’ yt), t y 2, (XL v )
Homy i, ny
lying in two subregions R t=1,2.
» My, .
Since S[A] is Arzeld quasi-continuous, '(Xz, Yzﬁ
given € > 0, there exist p_, ® , 6, such (Xu m YLL n )
O l Z ] 2! ] 2
. e > X
that the following property is satisfied: Fig. 1.4

IR =R, lm,ml—x‘*»mzl < O lyu,nl—yll,nzl < 62’

then 1 3 | < i;_

S - 5 m
s mlnl W, 21’12
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By lemma 1.2, there exists “1 such that the following property is

satisfied:
i) W =p, implies |x -x | = h, =< o1 ,
! to, my B 3
lv,=y, =k = %2 ,t=1,2, and
1 1] € .
isu (X¢ »¥y) - S“ﬂmt“tl < 3 where (%, V) €

Ru, MmNy, t=1,2.

1 1
Now, set Ko = max (LLO,LLL), 61’6— B (51, 62,€= 3 55

I uzp, [xl-—xzi < 61,6 and lyl —-yzl < 52’6, then both

properties i) and ii) are satisfied., It is obvious for ii). i) also

- x|+ [xl -le + \S{wau,mzx

follows because |x -x | = |x
M, my WL, mo s My
1 1
L LR i - 5
< 3oyt 5 t36, 76 and, similarly, iyu’ 0y yu,nzl <5,
Hence, we have
ij _ < ) 43
|sLJL (xv)) - s (xz,yz)l < |s (x5 v;) Su:mpnkl
ij _ ol ij S
i W, mym L, mo, l’lzl l W, mon Su’ (XZ: Yz)l< €,
iebP, jeQ

i.e. S[R] is an Argela sequence.
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SECTION 2. NUMERICAL METHOD OF SOLUTION

2.1 Cauchy Problem (Problem C)

Let R be theregion: 0 < x=<a, 0=y=Dh,

(p+1){a+l)-1

DL < E be bounded, open

1 1)+ 1
Dszch E(p+ Ya+1)+ .

Definition

f [x,y,u] is an abbreviation for a function of (p+l)(g+l)+! wvariables,

:

defined over D . These variables are x,y and u

, 1eP, jeQ, i+]
<p+4ag.
Problem C

Given two sets of real functions {q)j(x), j € Ql, x e [0,a] ] and

i !
{‘t//l(y), ieP, ye[0,b]} and a partial differential equation

Pq(

PDE ut X, y) = f[x,y,g(x,y)] (1)

which satisfy the following assumptions:
1) In D, f[x, v, u(x,y)] is real, continuous, and bounded, i.e.

there exists a constant d such that

|f[x v, ux )] = d.

2) In D, f[x, v, u(x,y)] satisfies a uniform Lipschitz condition

lf [x, vy, ux, Y)] - f’[x: Y, V(X, Y)]l <
ij ij
5L |ul(xy) -V (%, V)| denoted (L, |u -v|)
1) e
1:()..p
J:O..q
i+j<p+q



where L =col(d .., €0 ., "4, ,"" s 4
(00 10 ij p,g-l" " pqg pd

3) cpj(x)eCp[O,a], jte .

i 1
4) iy) e co,b], ieP .

5) At the origin (0, 0), the initial functions satisfy the consistency

condition:
f Sy o) Ay iepl ieo
Dxfp(O)—Dyw(O), ieP, jeQ

By a solution of Problem C, we mean a vector function u(x,y) =

00 1 i
col (u (x,y),u 0(x, ¥)s couix, ), ---upq(x, v)) € C[R], which

satisfies the PDE (1) and such that

5 o) =iy for xe[0,a], jeQ

1

i) u%0,y) = yity)  for ye[0,b], ieP

. : Y
Remark: Recall definitions of Cbl(x), YJ(y), d, Y, GJ, Il] from sections

0 and !. Assumption 5) above is equivalent to & =Y .

2.2 An Example

Example 2.1

Find a solution of the initial value problem

32 00 10 20 30 0l 22
u =f(x,y,u , U , U , U y U s 77 U )) (X’Y)eR

1 1
such that i) uOO(x, 0) = cPO(x), uO (x,0) = ¢ (x), xe[0,a]; and

i %0, v = 2w w0y = vt .

20

u (0,y) = svz(y) y € [0,b],

l 1 2
where f, qJO, o, YI/O, v, y satisfy assumptions of Problem C .
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The exact solution is to be approximated by a (3, 2)-spline, which has
12 coefficients in each Rmn' The following figures show the relationship

between the spline coefficients in different subregions:

R
m,n+l 02
02 12 22 32 (02 represents s , etc.)

M OO 0
sp-2 determines
these 8 coeffic- @ @ @ @
ients in terms of @ @ (22 32
those in Rmn' y @ @ @D 31
@® 19 @ 30

le’l \\~-~- e A

m+l,n

sp-1 determines these 9 coefficients in
terms of those in Rmn’

Figure 2.1



00

10
u (0,y)

u (0,v)
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A
b
0 t 11 0 0 0 0
=y (y) o
1 tord
“SUZ(Y) L 110 0 0 0
=9 (y) b
1 11
vt 0 0 0 0
T e e e
R e e e
0 “x
00 0
u (X:O)_(‘P(X)
01 1
u (x,0) =9 (x)
Figure 2.2

The numerical methods to be described in detail in section 2.3 can be

outlined roughly here (c.f. Figure 2.2):

Step L.

Step 2.

Step 3.

Determine those coefficients marked with '-' by approximating

1
the initial functions cpo(x), ¢ (x) by one-dimensional cubic

1
, 1=20,1,2,3, meM .,

1

i0 il
splines. This will give sl and s
m ml

(Method A or Method B of section 1.3 may be used.)

Determine those coefficients marked with 'I" by approximating

the initial functions z//o(y), wl(y), wz(y) by one-dimensional

. . . . . 0j 1 2j .
quadratic splines. This will give S’ 51’ and Sip 17

1
0,1,2, n € N . (Method A or Method B of section 1.3 may
be used.)

All those coefficients not marked in Figure 2.2 are determined

by sp-l and sp-2 .
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Step 4. Substitution of the coefficients obtained from the above
steps in the right side of PDE(1) will give those coefficients

marked with '0' .
2.3 Method of Spline Approximation for Problem C (Method C)

Our scheme is to approximate the exact solution u{x,y) = col

(uoo(x, v), * ’ulJ(x, v)s o -upq(x, y) ) of Problem C by a spline s(x,vy) =

00 3
col (s (X, ¥), s x,y)s 00 qu(X. y)), where
. . 2 t
i i p-i 47J (x = %Xg5) (y = vyn) i+, j+t
sl](x, y) = le (X, v) = & 2 I . n S ) s
mn 2=0 t=0 £ t! mn

(x,y)eRmn ieP, jeQ, meM, neN.

The following method is for finding the (p + 1)(q + 1) coefficients

ij , \ ,
{Sn]m’ ieP, jeQ) ineach R meM, neN:

Method C

j 1
Step 1. By method A (or method B if CPJ (x) € CpﬂlL ), approximate each

0j 0j

(x,0) = sml(x, 0)

' 1
@J(X), jeQ, by s

2 P
i X —-X i X =X i
1j + ( m) SZJ 4ot ._(_..__ m) Sp']

0j

= mi

+ (x—xm) s

) l
This will give {sgl, iepP, jeQ, meMJ.

(Compare with step 1 of Example 2.1)



Step 2.

Step 3.

Step 4.

26

i +1
By method A (or method B if t;/l(y) € COI ), approximate

. | 0 .
each ‘sul(y), ieP, by st (0,v) = 81121(0, \2)

‘ . 2 q
0 L y- 2 y -
N Slln tly "yn) )+ v - vp) s\ L__Ygl_

— toe ot

L iq
In 21 In

q S iebP
i 1 .

This will give {Sln’ ieP, jeQ, neNJ}.

(Compare with step 2 of Example 2.1).

ij

Remark: Step | determines a matrix of coefficients <§I>S = (Sl l)’

1
ieP, je Ql in Rll for approximating &. Step 2

determines another matrix of coefficients \_VS = (siljl),

ie Pl, j € Q' for approximating Y. For two reasons,

these two matrices are identical:

1) By assumption 5) of Problem C, & =YV,

2) Method A (or method B) approximates & exactly
(i.e., CIDS = ®) in step |, and approximates ¥

exactly (i.e. ‘i’s = Y¥) in step 2.

In Rll’ all coefficients except srfcll have been obtained in

step | and step 2. si)? can then be calculated by substituting

the known coefficients in the right hand side of PDE (1), i.e.

pa _ z
Sll - f[o’onill]
ij , ] 1
In each le, meMZ, {Sml’ ieP, jeQ, meMz} have

i 1
been obtained in step L. {Sn?l’ ieP, me MZ} can be

calculated by sp-1. Furthermore,

quzf[x,o,s 1], me M

ml m -1m 2

l




Step 5.

Step 6.

27

ij . L
In each Rln’ neNZ, {sln, ieP, jeq, neNZ} have

i 1
been obtained in step 2. {slﬁl, jeQ, ne NZ} can be

calculated by sp-2. Furthermore,

pPa _ ¢
Sin _f[o’yn"s—ln]’ nenN,

For each Rmn’ m € MZ’ ne NZ’ suppose the coefficients in

R and in Rm have been obtained. Then, all

m=-1,n n-1

]

pa

coefficients in R, except s__, can be calculated by sp-i
mn mn

and sp-2. Furthermore,

Pa _ oy .
Smnﬂf[xm’yn’%nn]' meM,, ne N2
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SECTION 3. CONVERGENCE OF METHOD C

3.1 S[A] is Uniformly Bounded
For a sequence of meshes {Au,u =1,2,3+++), Method C provides
a sequence of numerical solutions to Problem C, each in the form of a

i
set of spline coefficients {s J

B ieP, jeQ, meM, neNJ.

‘ , , i
As in section l.4, we can define s j, S
1

) 3 A } ) ) s
S0 8 mn s|A] gu(x y)

and S[R] .

In theorems 3.1 and 3.2, we shall show that S[A] is uniformly
bounded and Arzeld quasi-continuous.
Lemma 3.1

Let {SLiLj,ml’ ieP, je Ql, me MJ and {s:Lj, e L€ Pl, jeQ,
n € N} be the spline coefficients obtained in step 1 and step 2 of

Method C respectively. Then there exists a constant dz, independent

of the mesh, such that

1
ieP, jeQ, meM,

ij
lSLL,mli = dZ
and
[sij | < d iep! jeQ, neN
W, In 2 ’ ’
Proof.

Since these coefficients are obtained by Method A (or method B) of

section 1.3, this lemma follows immediately from corollary 1.Z2.
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Theorem 3.1

S[A], obtained by Method C on a sequence of meshes {AU»’ w=1Ll,2 )
is uniformly bounded.
Proof.

j

H

i
It is enough to show that each SL is bounded by some constant

which is independent of the mesh. For notational simplicity, we suppress the

subscript UL .

a

i) For j = q, we prove the uniform boundedness of s;m by induction

with respectto 1€ P .
since s°% =f[x ,y.,s_ ] and |£|=d, itfollows that lqu] < d.
mn m’ *n’ Zmn mn

£q , .
< = .
Next, suppose lsmnt =d, for £=p,p-l, i+2,i+1, where d,

is a constant independent of the mesh. By sp-!

, , , , -1
Ja g sheith @y h? RS S n JPa _—
mn m-1,n m-1,n 2 “m-l,n (p-i) ! “m-1,n’
699 < [ | +na e’
mn m-1,n 1
ig _ h
< lsln\ + (m-l)hd e
< d2+adlea = d3 (say) (by lemma 3.1)

ii) For a fixed i, 1€ P, we prove the uniform boundedness of s;]m by

induction with respect to j € Q .
, iq .
As a consequence of i), [smn] < d3 foreach i1eP .

it
< ~ I R TR T o B
Next, suppose lsmnl d, for t=gq,q-1, it2, j+



30

By sp=2,
ij i, j+1 kZ T a-j
] - 1] "“‘kSl’] +_M51:J .+_}(_M 1g
mn m, n-1i m, n-1 2 "m,n-l {(g-j}! “m,n-l
1
ieP, jeQ .
ij < ij k
lSmnl - lSm,n-—ll tkdje
ij k
< lsmll + (n L)kd3e
b ‘
< d2 + bd3e (by lemma 3.1)

S[A] is Arzela Quasi-continuous.
For notational simplicity, the subscript B will be suppressed

whenever there is no ambiguity.

Definitions

The following notations will be used throughout this section:

L. 68, i=0,1,2,..., denotes a function which converges uniformly

. L L _ i
2. zlJ = ]slj - le_~[ , nand n are suppressed in the symbol =z ) .
m mn mn m
y iy i _ s
3. w = lSlJ - s..J. [ , m and m are suppressed in the symbol w .
n mn mn n
0 1 ,q-1
4, w_= col W, wh, P
n n n
qg-1 q-2
k k k
o = 5
5. O col ( o (G 5 L)
6. |w || = max, w?
n € Q n
g-1 p-1 L
7. 4= % 4_, 4 =2 & . £ = max Ly
igq 1}
O ieP,jeQ
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A
Consider two grid points (xm, yn)
and (x—,y—) of a mesh. Then
mor Yo [T gy Gy
n XY, (X“l' Y,
ij 1j i
]slJ -sD | = By w l |
mn mn M n |
Y= [ 7 Tx2, y= ]
We are going to show that both n T Fn”lyn) :
ij i] — : >
z_— and Wn] are arbitrarily small R Xn
when the mesh is fine enough and Figure 3.1

the two grid points are close to each

other.

Lemma 3.2
Given € > 0, there exist He and cSe such that, if p= M and

: S5 , 1
- < & .
xﬁ[ 5€ then w e, je Q

m
Proof.
. i
For each j € Q ,
P
ij (x=x) Dj

+ “ .. + -

0j _ 0
s (.x_,O)—sml-k(x xm)s

is the spline approximation of cpJ(x) obtained by method A (or method B).

Hence, by theorem 1.2, spJ(x, 0) converges uniformly to Di cpJ(x), i.e.,
there exists ;Ll such that, if B = By then

‘Spj

P ] 3 P _ P ] € —
ol Dxcpm]< 3 and lsfn’l D> o= | < m, me M.

x 'm 3’
Next, since ‘Di cpJ(x) is uniformly continuous in [0,a], there exist 6_> 0 and

By such that, if uzuz(ﬂm’s guarantees that the mesh is fine enough so that
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two grid points can be chosen to lie within preassigned distance)

and |x_-=x=| < &_, then
m m €

P P € =
- < =
| D, @, D o=|< 3, m meM.

Hence, letting ue = max (ul,uz), we have, for pu » Hog o

Pj

Pj P 1 <
ml

wi'o=|s o -s | = |s

P _j _ P p_j _. P
o1 ST ) - D + DD~

+!Dxch xq)ﬁﬁl < ¥m 5wl

P
IDXCPIH1

= € .

This completes the proof.

Lemma 3.3

Given € > 0, there exist e and (Se such that, if Bz M. and

:

|x_ -x=| < &_ then w?) <e ieP, jeQ, neN.
m m € n

Proof.

Assume m > m. For each n € N, the proof is separated into three
parts: 1) for {w;j, ie Pl, jeQ), ii) for {Wij , je€ Ql} and
P4

iii) for w
n

i) By theorem 3.1, there exists a constant d such that

i

Isml < d.
By sp-1,
wij = lsiJ 'SE [
n mn mn
m-1 . . 2 m-l . - p-i m-] :
itl,] h” i+l,3, .., h pj
= h 2 fs 77|+ t:”rﬁl o e 25 Pl
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h h% pP

= (m—ﬁ)hd(l+‘£‘+ 3,+ +T_ET
= (x —x_.)dea

m m

1 1

1A

D

On
e
-

ieP, jeQ
’ ® ﬂv
ii) We first derive an inequality.

(1

WP = |sP9 L gPT
n mn mn
= lf[x m’ 'n’ —mn] “f[x—’y"‘mm”
s |Elx vyoes 1 -flxyase T+
lf [Xm:ynsian] —f[x_,y ’S_I'FlnH
< -8 — ol
< (L, lsmn _s_mn[)+§2( o 0
g=~1 1P-1 g 1
s 50 wPlrts S o) +0(6_,0  (byparti) )
j=0 Pj n i=0 j=0 € €
a-i :
< st WPl e 6% (s
2o P
1
where £ = max £,
ieP, jeQ 1]
Qb ¢, 0) = max [ flx ,v ,s= 1-f[x_,y
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l
Next, for j € Q , sp-2 implies

pji . P} P, i+l wP
Ynrt T Vn +kWn * T (@-j)! n
¢ fpok®7 00 o kIt kT el
(@)t n - Tgeyr D (a-5)
L I q-j-| a- -
B R i TR s R
e n (a-j-1) (a-j)! n
kAT 2
.
F a0 -

In vector notations, system (2) can be rewritten as

2
< a6
wn+l By_vn+ ka !

where B = B(k, q, Lp) is the matrix defined in section 1.2,

£ ).

L =col (£ _, s e
p (pO pl p, g-1l

For k< 2, |a|] =1 . Hence

lw, 0= Bl fw ll +xe®

By lemma 1.1, if ﬁp:g 40 ety

and f = max (¢ ,l), then, for
p0  “pl p (p )

Ps q-l

sufficiently small k,

fw 0= ok lw || +x 6

Therefore,
| = Jp(n-lik ME e!?p(;;)k S
< ezpb € + _e;t??b =L g2 (by lemma 3.2)
p
= 93 (6)

€




fe. W o< 0l
n «
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iii) By (1), wiq < g'q0’ + ¥

Theorem 3.2_
S[A], obtained by Method C on a convergent sequence of meshes

{ALL’M =1,2,...}, is Arzeld quasi-continuous.

Proof.

Let (x y and (x

LT ‘YLL, ﬁ") be two grid points of A

wom, ', n we BY

lemma 3.3, given € > 0, there exist ey and 61 such that, if W = B and

XXLL, 0 "u,ﬁl < &, then, for sufficiently small k,

1j ij . & , .
lS}.L,mn S“,?ﬁnl o2 ieP, jeQ,

Similarly, there exist |, and 9, such that, if @ = u, and

‘Yu,n - Yu’ﬁl < 5%, then, for suffizlently small h,
- gij € .
ISLL,I_fln SI.L,I'TIITI|< o s ieP, j€Q.
Hence, for 1= max (1) %, -y gl < 8 and vy oy gl
we have
ij RS
lu.mn su,ﬁﬁ'l\e’lep’JSQ
implying
- <
Iy mn " 2w, mm €
_ 00 10 jolei
where Siomn - col (su’ mn’ Swmn u,rnn)'

3.3 Convergence of Approximate Solutions

In theorem 3.1 and theorem 3.2, we have respectively shown that
S[A] is uniformly bounded and Arzeld quasi-continuous. (These are conse-

quences of the Method C and the assumptions on Problem C). By theorem
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l.4 and theorem 1.5, S[R] is uniformly bounded and forms an Arzeld sequence.

Hence, by theorem 1.1, S[R] contains a subsequence {_sul(x, v), 8 2(%Y), ... )
iL

which converges uniformly to a vector function in C[R]. More explicitly, this

means that there exists a continuous vector function

00 10 1]

z(x,y) =col{z (x,¥),2 (Xy), -, 2 (X ¥), ", qu(

X ¥))

such that

SELJr(x, y) = zlJ(x, y) as ur—+ w, 1€P, jeQ, (X,y) ER.

ij 00
Moreover, since s:r(x, y) is the (i, j)-derivative of SLLr(X’ y)} and

the convergence is uniform, zl)(x, y) is also the (i, j)-derivative of zoo(x, v).

pJ

Remark The components Su 1q(

L

approximations may have jump discontinuities in R ; while the corresponding

(x,v), s x,y) ieP, jeQ ofthe spline

PJ i , . . ) <
components z (X, Vy), 2 q(x, y), 1 € P, j € Q of alimit function are continuous
over R.

We summarize these results in a theorem,

Theorem 3.3

The spline approximations, obtained by Method C on a convergent
sequence of meshes, contains a subsequence which converges uniformly
to a continuous limit function.

In the next section, we shall show that this limit function 2z(x,y)

is a solution of our Problem C.
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3.4 Convergence of Approximate Solutions to A Solution of Problem C.

In this section, let §‘U« (x, vy} be the spline approximations and z(x, V)
be the limit function of a subsequence. We want to show that 2z(x,y) satisfies
the PDE and the initial conditions of Problem C.

In the following, we shall suppress the subscript p  wherever therce

is no ambiguity.

Definitions
i i0 il i, g-1
1y ol - 1 v gt i
) @ (%) colfs | (x,0), s_ (x,0), s (%0)),ieP.
iy 0] L Pl o
¥ {y) = col(s; (0,v), s, (0,y), S, (0¥)), JeQ.
=i < < < <
2) 9 (. ) f[Xm’ Y §"mn] s X TS e Y T Y Y
i.e. gu(x, y) 1is a step-function whose value in Rmn is equal to

the value of f[x, v, s ] evaluated at the left lower corner of Rmn

(hence alsa equal to an?l)'
. . Y \T] —te n WX F . f:’
i i n 1 1 m [ Pp=-i-l 1
3) Irrlm-“-IJ[xm,yn,gu(x,y)] =f j a7 [ / f P [
‘ . 0 0 Y0 Y0 0 0
g (, 6) dgd'rl
W
ij i i j
G =G [x vy, @ (x ) Y (v) @95]

- ) Yy )+ eleg ) Y - X pe Yiy)

With these definitions, it is obvious that the spline approximations

obtained by Method C have representations of the form
1j

g y . .
s y) = MVx, v, 9, (x,7)] +G7[x% v, ®;(X),‘1’JS(Y), ®s]-
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Lemma 3.4

ij
mn

Let s ° (x,y) be the spline approximations obtained by Method C, and

@18(X), szm be defined as in 1), then as W — =,

‘Dz(?@ —=> o' (x) col(D! <P0(x), D’

i

L +
@ (x),"",D;q)q (x)), ieP,

e

+2(y), D

i

j col(D

S

. l j
s o 8 -’ D
¥y = Vi) v v

B

Proof.
Since <I>;(x) and ‘i’JS(y) are obtained by Method A (or Method B),

lemma 3.4 follows immediately from corollary l.1.

LLemma 3.5

Let g (x,y) be defined in 2) and z(x, y) be a limit function of the spline

L

approximations obtained by Method C. Then, gu(X, y) converges uniformly

to f[x,vy,z(x,v)] as L=,
Proof.

Consider an arbitrary point (x,y) € Rmn’

lgu(x, y) - f[%, v, z(x, V) 1|

~ -~

= lf[xm’ Yn: él'ﬂn] —f[Xm, Yn,_ﬁ}__(x,y)H + lf[xm,yn,i(x, Y)]i —f[Xm’ yn’ g_(X, y)]l
+ | Hx Ly v] - ey 260 ]|
= (L [s__-stov)) + (L [sloy) - 266y QU0 8, )

By lemma 1.2, the first term is less than f'e. Since s(x,y) => z(x,Y)

(by theorem 3.3), the second term is less than f'e. Here, { = z lzij
i+i<p+qg
and  is the modulus of continuity. Hence,

(%, y) - f[X, Y Z:,(X: Y)]l “24'e+ Q((Sl e’ 62 G")

y & y €

L9,

The right hand side can be made aribitrarily small.
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Theorem 3.4

Let z(x,y) be a limit function of the spline approximation obtained

by method C . Then, z(x,y) is a solution of Problem C.

Proof.

The spline approximation can be represented as

st y) = Gk v, el G0, P e ]+ kv g (v ()

Now, CDS = ®, because Method A (or Method B) approximaies the

initial function values at the origin exactly. Also, as f— o,

sk, vy = 2 y) (by theorem 3.3)
(D;(X) == @i(x) (by lemma 3. 4)
vy = & (y) (by lemma 3.4)
g,(xy) => £, v, 2(x v)] (by lemma 3.5)

Since convergence is uniform, taking limit under integral sign is justi-

fied. Hence, from (3), we have
i] ij i j i] - , ‘
2%, y) = G lx v, 0 (x), V(y), ]+ I [x,v.f[s,v.2(x, 7)1 ] icP, jeQ.
This is just the integral form of Problem C .

Corollary 3.1

00 s
Let u (x,vy) € Cp q[R] . Then, there exists a sequence of (p, q)-

0 .y L
splines {suo (x,v)] such that s:LJ(x, y) => ulJ(x, y) as p—©. i€eP, jeQ
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SECTION 4. ERROR ESTIMATION

4.1 An a posterior Error Bound

We consider only truncation errors,

00 Lo

Let u(x,y) = col{u (x, v)h, u (X, ¥), "
00 10

s(x,y)=col(s (x,vy), s (X)), "
00 L0

e(x,y) =col(e (x,¥), € (%), "

satisfies the assumptions of theorem 4. 1.

Definitions

l) For the function u(x,y):

-upq(x, y)) be an exact solution,

. qu(x, y)} be any approximation,

-epq(x, v)) be any function which

cbi(x) = row (uio(x, 0), uil(x, 0), - - cu' q ](x, 0y)y , iebP
B i 0 iLo gl
= row (050’00, Dho' (x), -+ D@ ()
| . x o
Wiy) = col @0, v), v, v, - P o) L e
i o i i p-l
= l , , D
co (Dyt.u (v) Dysu (v) Yw (y))
" 7
0 -1
o = 2°(0) o' (0) +37 (o)
L 0 1 L g-l
DX ¢ (0) D © (0) DX ¢ (0)
- - -1 -1
P10 Pl gl(o) pP™ o3 (o)
X X X
L _
R i P
Jlux, v)] = G [x v, @ (x), ¥(y), @]

i

i

+ Xi(x) 0 Y’j(y)

e, i) + @, Y ) - K e Yy

), Vi) - oY () + @) - X0 e, Vi)
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2) YTor the function s(x,7y):
o (x), ‘YJS(Y), ®S, 3[s(x,vy)] are similar quantities corresponding

S

to those defined in 1),

3) For the function e(x,vy):
i .
E (%), EJ(Y), E, §[e(x,y)] are similar quantities corresponding
to those defined in ).

The following theorem gives an a posterior bound on the error:

Theorem 4.1

I 1) |o-o|=E

i) [P %, 0) - sPlx, 0] = P, 0) jeo
W90, y) - 510, 3y = 1OV iep'

i) wPxy) = fx v utk y)] (%, y) € R
1sPYx,v) - Bix, v, s )] ] = dxy) (X y) €R

iv) |f[x v ux )] - %y, s(x v)]] < (Lelx,y) in D

vy Pk y) = (Loelx, y)) + d(x, y) (x,y) € R

ij(x, y) - sij(x, y)| = e (x,v) (x,y) € R

then |u
ieP, jeQ, i+i<p-+aqg.

This theorem is a generalization of some simpler cases [6].

Discussions In particular, if s(x,y) is the spline approximation obtained

by Method C , then we have
1) CIDS = @, Hence, E may be taken as a zero matrix.

2) Instep | of Method C, u’(x,0)=DFo’(a, je o', and is,
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therefore, known. spJ(x, 0) is the spline approximation obtained

by Method A (or Method B). Thus, epJ(x, 0}, je Q1 can be easily

approximated. Similarly, eiq(O, v), i€ Pl, can be easily approx-~
imated.
3)  d{x,y) can be approximated after getting the spline s(x, y).
4) In practice, we solve the differential equation
e”Y(x, y) = (Loe(x, y)) + d(x, v)
instead of the differential inequality v). This needs a more
accurate approximation for d(x,y). Hence, an error bound is

obtained by solving an initial vualue problem similar to Problem (7.

Before proving theorem 4.1, we develop a few lemmas:

Lemma 4.1

Under condition ii) of theorem 4.1,

[0 - X' (09] - [@,60 - X' (02 ]| = Bl - X (0 E

x2 0, ieP (2)
Proof,
i] i i Nl
Define r(x) = u(x, 0) - s 7(x, 0) and @, =y - The (+Lth

component of the vector inequality (2) takes the form
I -2 o Pz elo -z w el
=1 g =1

l
x=20,ieP, jeQ (3)

(0, 0),

Hence it is sufficient to show that (3) holds. But, we have
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. p-l . : p-1 ,
e, 00 -3 g eY0,0).- [ - = o i)
=1 L=i
Ly o -1 \ :
- e - el - 5 a, [0, 0) - o]
2=
xp—-i , .
= oo [T 0 =T ], where 0% ¢ - x
= 0

The last inequality follows from condition ii) of theorem 4.1,

Hence,
ij p-l Ly ij p-1 £;
ri(x) - 9, r(0)=e’(x,0)- & @y e (0, 0) (4)
£=1 L=1
Similarly, we have
i p-l g p-1
-[rj(x) - 3 a,r j(())] < eU(x, 0) - Z e“(O, 0) (5)
£=1 L=1

(4) and (5) together imply (3).

Lemma 4.2

Under condition ii) of theorem 4.1 ,
Jooy Lo ol L j < 3oy et .
[[Y(y) -e Y (] - [¥ @ Y| = E(y) ~EX(y), vy2 0, jeQ
Proof.

Similar to lemma 4.1,

Lemma 4.3
Under conditions i) and ii) of theorem 4.1,

|glux, V1| - 8lsx ]| = glex ], x=0, y=z0

Proof.

By (1), alulxv)] = (¢, V) ~av (1) + @) -x (x)8, Yiy) + X (007 ()
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§lsta 1] = (0, ¥ () -0 Yiy)) + @00 - e, Y iy) + X e Y (y)

By lemma 4.1, lemma 4.2 and condition i) of theorem 4.1,
§lute v)] = alsto ]| = (K60, Biy) BP9+ (B'60 - (0B, Vi)

+ 3 0 BY ()

= §le(x,v)]

Proof of theorem 4.1

The (i, j)~derivative of a function can be expressed as

i . ij , ,
u(x,y) = glulx, v)] +1 Ny, Phx, 9], ieP, jeQ

Similar expressions hold for sl](x, y)} and el}(x,y). Hence,

l uiJ pq(

(%, y)*Sij(X, vV =|olux v)1-8[s(x, )| +] Iij[X: v, w4, v *IU[X: y, s (%, )] |

g[ga_(x, Y)]+i Iij[xs Y f[x: Ys E_(X’ Y)] l "Iij[xv Ys f[x’ Y, s(X, Y)JJ l

A

|,y Bl v sl 1110 (% v, 87000 9]

A

Sle )]+ %, v, (Lo 0% v) )+ d(x, )]

Py, )]

. ij

< glex.y)]+17[x, v, e
y

=e(x, v).

4.2 An a posterior Error Estimate

Definitions
1) u(x,y) = exact solution of Problem C.
2)  s(x,y) = any approximation obtained by Method C.
3)  elxy) =uxy) - s(xy)

4) riy) =5tk y) - [xy sy, (ky)eR
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5) 3 [x, v, ulx,v)] = col(f ool v, ulx, Y)],fulo[x, v, u(x,v)], ...
fup; q—l[X’Y!H.(X’Y)]: 0)

is a vector whose components are the partial derivatives of f

with respect to the variables ulJ, ieP, jeQ.

I. Linear Case

Let f [%,v,u(x,y)] be linear with respect to the variables ulJ . Then,

epq(x’ Y) = f [X! Y ?..(X: Y)] - (x, Y) .

This is a partial differential equation similar to that of Problem C,

with an additional term - r(x,y) on the right hand side. Hence we have

Theorem 4,2

The error e(x,y) is a solution of the following

Problem E

Find a solution of

PYx,y) = fIx, v, e(x v)] - (%, ), (x,y) € R (6)
which satisfies
j j i 1
By Y0 = o -sYx0, jeQ', xe[0a]
. i0 i i0 i 1
and i) e (0,y)= ¥(y) -s (0,y), ie P, ye[0,Db]
where ‘E[x, v, u(x, )1, cpJ(x), gul(y) are defined as in Problem C.

Remark: All assumptions on Problem C are also valid on Problem E. Hence,

Method C can be applied to obtain an error estimate for Problem C.
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II. Non-linear Case

When f[x,v,u(x,y)] is non-linear with respect to u’, we can

linearize it about sg(x,y), i.e.
Fl, vy, ulxv)] = flxy, s06] + OF[x vy, s(x, v)], ulx, y) -s(x, ).

Thus, Tix, v) = OF [x v, 505, ¥)], e, ¥)) = (%, v) (7)

Hence, we can obtain an error estimate by solving an initial value
problem similar to Problem E, with the right hand side of (6) replaced by

that of (7).
4.3 Growth of Error and Instability of Method C.

Definition

A numerical method for solving Problem C is said to be stable if,
for any f[x,y,u(x,y)] and any initial functions satisfying the assumptions
of Problem C, the errors eij(x, y) remain bounded as x or y increases.

In Section 3, we have shown that, as h—0 and k- 0, e(x,vy)
converges to 0 uniformly. In this section, we want to investigate, for
fixed h and k, how e(x,y) varies as x or y increases. JSince

iJ

WPl )]+ (08, P )) + @M, Y () - X (087 (v),

(x,y)=1"[x v, u
ieP, jeQ,

s, ) = v, 8P, 911406 60,8 @2 00, Y v X e Y )

ieP, jeQ,

after subtraction, we have, for i€ P, j € Q,

My =[xy, Pl y) -5 W]+ X 160, Blyn+ (B 00, ¥ ) =X EY)(y

N e atsmem smessmans i s s ,___....._.._....,..._..__
b

R

parf I part II
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. C ij ‘
Equation (8) indicates that the error e J(x, v) arises from two sources.

They are discussed separately as follows:

Part I
Accumulation of the difference upq(x, y) - qu(x, y): -~

Part I of (8) is Ilj[x, Y, upq(x, y) - qu(x, y)]. Suppose that
there exist two functions el(x, y) and €2<X’ y) such that

A

<
A
o

e oy s WPy - 5Pl )] = e 0y, 0sx<a, 0

Then, for 0 < x < a and 0=y < b, we have
p-i q-j
pa pd X Y
X,y)~-s (X%, < — . — € (X, V).
(%, y) (x, )| ot (qop £ty

p-i a-j .
X . '
e fagn S = [Ty

pd pq

(x,y) =5 (x,y)| =>0 as h—=0 and k=0, € (x,y) are

Since |u

small if h, k are small.

Part II

Propagation of initial errors: -

Part II of (8) is (Xi(.x), flj(y)) + (Ei(x),Yj(y)) - Xi(x) Eviy) .

By ), By = e,y +xet 0,y 4 -+ B elijo,y)

-i-1
L
(p-i-1)!

£ o 4 . .
where e7J(0,vy) = Dy y/(y) - s7J(0,y) 1is the error arising from

Fooed e® ™ 0, y)

approximating the initial function z//a(y) along the y-axis. (9)
shows how these initial errors are propagated as x and y increase.

The situation is much clearer if we consider two particular cases:
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Case 1

For a fixed y € [0,b], suppose

eli(0,y) = e(y)

"
and eo,y) =0 , t=i,itl,..-0 1,2+, ...p-1.

i

For these particular initial errors, (9) takes the form

X.ﬂ -1

i =] - . T

The following table shows how this single error e(y) is propagated as

X increases-

X " 0 I 1 l 2 I 3 ! 4 I 5 l

o Bl o | 1 1 4l s | e | 25 |
=2, i=0, unit is-qéﬂ"
Table 4.1

Case 2
For a fixed y € [0,b], suppose
t] o
e (0,y) = €ly), t=1i, i+l, ... p-l.

For these particular initial errors, (9) takes the form

- . p-i-1 t
), By =ey) (2 F5)
t=0 ’

The following table shows how these errors are propagated as x increases.

.




S NN B N IR N B
(X(X),E%y?)” 1 s o | ur |26 | a7
p=3 1i=0, unitis §1§9~
Table 4.2

t

In general, since the initial errors e "(0,y) may have different signs,

i
the error e J(x, y) at (x,y) does not grow so fast as in cases | and 2.
But, it is very unlikely that they may cancel each other completely.

i

i) (E e, Y = el 0) +yel T

a-) e
(X, ) ... + L e 97N %, 0)

This part shows how the initial errors eit(x, 0) made along the

x-axis are propagated as x and y increase. Similar phenomena

as in 1) occur,

‘ . p-i-lg-j-1 ¢t

ot

i) XWEYw= = 3 5 0,0
g=0 t=0 U

t
This part shows how the initial errors eﬁ (0, 0) made at the origin

are propagated as x and y increase. In Method C, e“(o, 0) = 0,
1 1
LeP,teQ .

The above discussion can be summarized in a theorem,

Theorem 4.3

The numerical Method C for solving Problem C is unstable.
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Proof.

Consider the particular problem in which f[x,y,u(x,y)] = 0,
and cpj(x) = wi(y) =0, 1€ Pl and j e Q1 . The solution is obviously the
zero function, i.e., u(x,y) = 0. Part II of this section indicates clearly

i
how e](x, y) propagates as x and y increase.
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SECTION 5. EXAMPLES

5.1 The following are some of the examples run on CDC 1604. Each
took about one minute. They show clearly the properties of con-

vergence and instability. The error bounds and error cstimates are

realistic,
Notations
ij 1j ij i i
u - exact solution; s - spline approximation; e V. u b S ]

Example 5.1

Consider the equation
uZZ - (uOO _ xj _ y)(xzyz - 2) - 4y (u()l. -1
with initial conditions
cpo(x)=x3, cpl(x):.1+x xe [0, .5],

wo(y)=wl(y)=y ye [0, .5].

, , 00 3 ,
The exact solutionis u  =x +y + sin xy .
The following tables show some approximate values and errors.

(h=.05 k=.1):
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Table 5.1 Approximations and Errors

% v SOO eOO 501 eOl

.05 .0 1.2500000 E-4 .0 .0500000 .0

.15 .0 3.3750000 E-3 .0 . 1500000 .0

.30 .0 2,7000000 E-2] 1.8189894 L~12 L 3000000 2.9103840 L-11
.45 .0 9.1125000 E~2| 3.6379788 E-12 .4500000 .0

.05 .15 1.5762500 E-11-7.0307578 E-08 .0500000 | ~-1.4062389 E-06
.15 .15 1.7587477 E~1|~1.,6640151 E~06 . 1499906 | -2.8592214 E-05
.30 .15 2.2199742 E-1{-1,2607932 E-05 .2998969 | -2.0057778 E~-04
.45 .15 3.0861544 E-1{~4,1684507 E-05 .4496175 | -6,4230213 £E-04
.05 .30 3,1512500 E-1{-5.6248973 E-07 .0500000 | -5,6248973 E-06
.15 .30 3.4837031 E-1}-1.0498574 E-05 . 1499438 | -9,5601339 E~05
.30 .30 4,1694844 E-11-6.9894922 E-05 .2993814 | -5,9554668 E~-04
.45 .30 5.2593381 E-1|-2.1850059 E-04 . 4477061 | -1,8004926 E-03
.05 .45 4,7262500 E-11-1.8983701 E-06 .0500000 | =1.2655713 E-05
.15 .45 5.2085531 E~11-3,1559888 E-05 . 1498500 | ~1,9160562 E~04
.30 .45 6.1178352 E-1-1,9320555 E~04 .2983511 | -1.,0806616 E-03
.45 .45 7,4282250 E~1-5,7862695 E-04 .4438901 | -3.0850587 E-03
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Table 5.2 Approximations and Errors
10 L0 ' Gl !
3.0000000 E-02 9.0949470 E-13 .0 ~1.1641532 E-09:
1.2000000 E-01 5.4569682 E-12 .0 -2.3283064 E~09
2,7000000 E-01 5.8207661 E-11 .0 -2.3283064 E-09
4.8000000 E-01 6.5483619 E-11 .0 -1.1641532 E~09
1.3000000 E-01 | -5,0000781 E-06 .0 -1.4999908 E-04
2.2000000 E-01 | -1.9999559 E-05 .0 -5.9996900 E-04
3,7000000 E-OL | =4.4996799 E-05 .0 -1.3498336 £-03
5,8000000 E-OL | -7.9989390 E-05 .0 -2.3994679 E-03
2.2999250 E-01 | -3.2498931 E-05 .9985000 E~0Ll | -4,4996847 E-04
3.1999250 E-01 | -1,1498026 E-04 | 9.9910002 E-OLl | -1.4994916 E-03
4.6988751 E-01 | -2.4739945 E-04 .9775014 E-0Ll | -3,1474434 E-03
6.7979002 E-01 | -4.2968342 E-04 | 9.9580049 E-0l | -5.3919604 E-03
3.2996250 E-01 | -9.7490571 E-05 .9955001 E-01 | -8.9983807 E-04
4,1977502 E-01 | -3.1485615 E-04 | 9.9730031 E-01 | -2.6976065 E-03
5.6943762 E-01 | -6.5180026 E~04 | 9.9325211 E-01 | -5.3884480 E-03
7.7895044 E-0L | -1.1078444 E-03 .8740772 E-01 | -8.9645469 E-03
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Example 5.2

Consider the equation

22 112 122 10 20 2
u =gin{((u )Y +{(u YY) -u -u +xsiny -sinx
with initial conditions
0 - 1 1 2
po(x) =e o, @ (x) = S x e |0, .2]
0 3 1
py)=1l+y, v (y)=-1 ye [0, .2]
0 - 3 1 2
The exact solution is u 0. e 4 y + 5 X siny .

The following table shows the convergence of some approximate values.
The values in each column are alterantively the errors at the grid points and

intermediate points in the interval [0, .2] of the x-axis.
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Table 5.3 Error eOO along the line y = 0.1
.1 .05 .025 .0125
.0 .0 .0 .0

1.9658617 E-5 2.5429617 E-6 3.2209209 E-7 4,051253%2 E-08
-1.6458071 E~-6 | -5.1732059 E-8| -~1,6298145 E-9 | -5.8207661 E-11
-2.5356465 E-5 | -2,.7711067 E-6| -3.3226388 E-7 | -4.0978193 E-08
-7,2594412 E~6 | -2.3051689 E-7| -7.2614057 E~-9 | -2.3283064 E~10
2.1908490 E-6 3.1095988 E-7 4,0148734 E~08

-5.3268741 E-7| -1.6865670 E-8 | -5.3842086 E-10

-3.3702963 E-6| -3.5129779 E-7 | -4.1589374 E-08

-9.5478026 E-7| -3.0369847 E-8 | -9.6042641 E~10

2,8408249 E-7
-4,7715730 E-8
-3,8587314 E~7
-6.8859663 E-8

2.4194014 E-7
-9.3743438 E-8
-4,3548062 E-7
-1,2230885 E-7

3.9319275 E-08
~1.5133992 E-09
~4.2695319 E-08
-2.1827873 E-09
3.7965947 E-08
~2.9685907 E-09
~4.4266926 £E-08
-3.8999133 E-09

3.6132406 E-08

~4.9330993 E-09

~4.6347850 E-08

~6.0681487 E-09
3.3789547 E-08 '
~7.3632691 E-09
~4.8908987 E-08
~8.7457011 E-09




Example 5.3

Consider the equation

22
u

= (1l + cos

20
x}u

sin x siny
with initial conditions

L 3 A
P (x) = 4){ 4+ sin x,

The exact solution is u

56

‘ L1
+ sinx-u

o' (x)

» Y ly)=e
00

L3
T4

2

I
n
e
o]
~

3
->xcosy (cos x + 2) +

cosy + e¥ sinx .

52N IW

The following tables show the error estimates and error bounds

(h =k = .5):

Table 5.4  Error estimation of SOO

X v approximations | actual errors error estimates error bounds
.0 .0 .0 .0 .0 .0
.5 .0 .0015632 E-2| ~5.2122377 E-6| -1.1724445 E-5 .5647778 E-5

1.0 .0 .0009387 E-1| -1.0450503 E-5{ -3.,9134085 E-5 .2708205 E-5
.0 .5 .0 .0 .0 .1240516 E-6
.5 .5 .2578197 E-2| -5.3302638 E-6 5.6274321 E-6 .3806464 E-5

/

1.0 .5 .0521264 E-1| -1.0963982 E-5| -4.6301612 E-6 .1390555 E~4
.0 1.0 .0 .0 .0 .7279674 E-5
.5 1.0 .5272301 E-2| -5.6827885 E~6 2.0772753 E-5 .6938392 E-5

1.0] 1.0 .1059424 E-1| -1.2497507 E-5 2.6452856 E-5 .7534358 E-4
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Table 5.5  Error estimation of sO'2
——
b Yy approximations| actual errors error estimates error bounds
0 .0 0 .0 .0 .0
5 .0 5.1302359 E~-2 | -1.354440! E-3 ~1.3570399 E-3 .4126718 E-3
1.0 .0 1,0251113 E-1 | -2.9277147 E-3 -3,2764423 E-3 122553 E-3
0 .5 0 .0 .0 .0
5 .5 5.3928039 E-2| ~-1.4175935 E-3 | -1.4195270 E-3 .4808246 E-3
1.0 5 1.,0775334 E-1| -3.0510387 E-3 | -3.3971861 E-3 .2547727 E-3
.0 1.0 .0 .0 .0 .0
5 1.0 5.6688644 E-2 | ~1.4842134 E-3 | -1.4855863 L~-3 .5526934 £-3
1.0 1.0 L,1326577 E-1 | -3.1815314 E-3 | -3.5264054 E-3 .4055042 E~3
Example 5,4 \
Consider the equation
u32 = ulo[é + log (L + u00)~(6 +x(.1 -v))]
with initial conditions
ch(x):e’lX-—l, cpl(x):-xe lX-—l xe [0, 4],
L =0 Y= -y Pm =i yelo, 2]

00
The exact solution is u =

The following table shows how the error of SOO

increases (h = .04, k = ,05):

HL1-v)

increases as X



Table 5.6
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Instability of Method C

X .0 .05

.0 .0 .0

.32 -7.1031536 E-L0| -6.8583631 E-7

.64 -2.8085196 E-09| -5.6429535 E-6

.96 ~-6.3773768 E-09| -1.9591223 E-5
1.28 ~-1,1408702 E-08{ -4.7772748 E-5
1.60 -1.8018909 E-08] -9.5988964 E~5
1.92 -2.6193447 E-08] -1,7064013 E~4
2.24 -3.6088750 E-08| -2.7876687 E~-4
2,56 -4,7679350 E-08| -4.2809425 E-4
2.88 -6.1045284 E-08] -6.2707825 E-4
3.20 -7.6201104 E-08] -8.8495482 E~-4
3.52 -9,3335984 E~08| ~1.2117920 E-3
3.84 -1.1234806 E-07] -1.6185443 E-3
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