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THE VALIDITY OF A FAMILY OF OPTIMIZATION METHODS

Abstract

A family of iterative optimization methods, which includes most of
the well-known algorithms of mathematical prografnming, is described and
analyzed with respect to the properties of its accumulation points. It is
shown that these accumulation points have desirable properties under
appropriate assumptions on a relevant point-to-set mapping. The conditions
under which these assumptions hold are then discussed for a number of
algorithms, including steepest descent, the Frank-Wolfe method, feasible
direction methods, and some second-order methods. TFive algorithms for a
special class of nonconvex problems are also analyzed in the same manner.
Finally, it is shown that the results can be extended to the case in which
the subproblems constructed are only approximately solved and to algorithms

which are composites of two or more algorithms.,






1. Semi-Continuity and Mathematical Programming

The concepts of upper and lower semi-continuity for point-to-set
mappings have been studied by a number of prominent mathematicians,
including Hausdorff, [1] Berge, [2] and McShane [3]. Several similar
definitions of the two concepts have been formulated, and some comparisons
may be found in a recent paper by Jacobs [4]. The following definitions,
which are essentially the same as those given in vDebreu [5], will be used
in this paper: a point-to-set mapping {2 with domain G and range con-

sisting of subsets of a set R is said to be (1) upper semi-continuous

(u.s.c.) at a point _y belonging to G if v, = ¥, {yi} < G, and z =z

with z, (—:Q(yi) for each i, imply z € Q(y); (2) lower semi-continuous

(l.s.c.) at a point_y belonging to G if z ¢ Q(y), v~V {yi}C G,

imply the existence of an integer m and a sequence {z , ...} with

m’ “m+1’
the properties that (a) zi € Q(Yi) for i =z m and (b) zi—> z ; and (3) continuous

at a point y_ if it is both upper and lower semi-continuous at y . Note that

these definitions are meaningful whenever the notion of convergence is
defined in both G and R . In particular, they are valid if G and R are
subsets of topological or metric spaces. (If Q(y) is a single point for every
y € G, i.e., a function, then it is easily seen that l.s.c. at a point implies
u.s.c. and hence continuity at that point. Similarly, if Q is single-valued
and R is a sequentially compact subset of a topological space, then it is

true that u.s.c. at a point implies l.s.c. and hence continuity at that point.



However, it is easy to construct set-valued mappings that are only u.s.c.
or only l.s.c. even when R is a compact subset of En . Examples dis-
playing this behavior appear below. These notations should not be confused

with numerical upper and lower semi-continuity for real-valued functions,

which have quite different definitions.)

An important class of point-to-set mappings consists of those mappings
that involve the linearization of some or all of the constraints defining a set
about a point. Let M denote the set Sn {z|u(z) 2 0} n {z|v(z) = 0}, where
S is a closed subset of a Banach space B and u and v are continuously
Frechet differentiable vector-valued functions. For a point y € B, we will

say that the "linearization" of M about y is the set

Fm(y) :=Sn {z]uly) + u'(y)z-y)z 0, v(y) + v'(y)(z-y) =0 }.
Note that if y € M, then I'm(y) is non-empty, since vy € I'm(y). We will
now show that the point~to-set mapping ﬁm is u.s.c. at every point of B .
For, let y € B, and let Yy, Y . If z € I“rn(yi) for each 1 and 2, — 2,
then it follows from the closure of S that =z e S, and it follows from the
continuity of u' and v' at y that u(y) + u’(y)(z-y) = lim (u(yi) + u‘(yi)(zi-yi)) =0
and v(y) + vi{y)(z-y) = lim (v(yi) + v'(yi)(zi—yi)) =0, sothat z € I'm(y), proving
u.s.c. . Without additional hypotheses, however, it is not true that I'm is

l.s.c. This fact was demonstrated by Rosen [6], and it can also be deduced

from the following very simple example where B is taken to be the real line.
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EXAMPLE: Take S = El, v = 0, and u{z) =z . Let v, = 1/i, so that

Y, = 0 as i — o and Fm(yi) = {zlyi3 + 3in (z—yi)z 0} = {zlz > 2/3i].
However, I'm(0) = El, and it is clear that I'm is u.s.c. butnot l.s.c.
at the point 0 .

In the case that B = En and S is a convex set consisting
of the points satisfying f(z) = 0, where f is continuous and vector-valued,
the next theorem gives sufficient conditions for l.s.c. of I'm in the
neighborhood of a point. We adopt the convention of calling the inequality
constraint fi(z) =0 (ui(y) + ui'(y)(z-—y) > 0) active at the point z ¢ T'm(y)
if fi(*z_) =0 (ui(y) + uiu(y)(E—y) = 0 ). The (possibly vector-valued) function
consisting of active constraint functions at z e I'm(y) is understood to con-

sist of those functions fi(z) and ui(y) + ui’(y)(z-y) which correspond to active

inequality constraints at z as well as the function v(y) + v' (yYz-vy).

THEOREM 1,1: Under the preceding assumptions on B and S, the point-

to-set mapping I'm is l.s.c. in a neighborhood of a point y* if the set
I'm(y*) contains a point z* at which the gradients to the active constraint

functions at z* are linearly independent.
PROOTF: See Appendix.

We will now obtain three basic results relating semi-continuity of
point-to-set mappings to mathematical programming. Similar results may be
found in Berge [2] and Debreu [5]. It will be assumed that f is a real-

valued function defined and continuous on R X G and that the optimal value



function p(y) := minimum £(z,y) is well-defined for every y e G .
ze Q(y)

LEMMA 1.2: If Q is u.s.c. ata point y* € G and R is sequentially

compact, then W is (numerically) lower semi-continuous at v *

PROOF: Let y, =Y * {yi} C G. Then there exist sequences {yni}
and {zni} such that I-L(yni) = f(Zni’ Yni), Zn; — z*, and u(yni) -
lim u(yi) as i — », It follows from u.s.c. that z* e Q(y*), and thus

Lm p(y) = Limp(yy) = £(2%,v%) = b (v™).

If the compactness hypothesis is deleted, the conclusion is no longer
valid. An example illustrating this is given in the Appendix. However,

compactness is not required in the following complementary result.

LEMMA 1.3: If Q isl.s.c. ata point y* € G, then [ is (numerically)

; - %
upper semi-continuous at y ™ .

PROOF: Let z* e Q(y*) be such that W (y™*) = f(z* v¥), and let (yi}
be an arbitrary sequence in G converging to y . Choose {ynl,} and {zni}
such that u(yni) — lim u(yi) and zni — z*, with Zn; € Q(yni). We then

have w(y') = f(z*v™) = lim f(z,,v,,) = lim W(y,) = limu(y).

Combining the previous two lemmas, we obtain:

THEOREM 1.4: If Q is continuous at a point y* e G and R is sequentially

compact, then H 1is (numerically) continuous at y* .




The next theorem reflects a slightly different viewpoint. It shows that
continuity of Q 1is a sufficient condition for the limit of a set of solutions
to solve the limiting problem. Note that compactness does not enter

directly into the statement of the result.

THEOREM 1.5: Let M{(y) denote the subset of {i(y) consisting of all

points z such that f(z,y) =W (y). If Q@ is continuous at v* e G, then the

point-to-set mapping M is u.s.c. at y* .

PROOF: Let {yi} < G converge to y*, and let z, € M(yi) for each i,
with z, — z¥. Since O is u.s.c. at y, it follows that z* e Q(v¥),

and thus p(y¥) = f(z* v™). On the other hand, by lemma 1.3, f(z*, v*) =

lim N(Yi) = W(y").

Let us now suppose that R © G and that we have a continuous function
¢ defined on G with the property that v € M(y) implies cp(y') < o(y)
unless y € M(y). (This will sometimes be referred to as the gtrict

monotonicity property.) Consider the algorithm defined as follows:

(a) Choose an arbitrary Y € G.

(b) Let Vi =Y if v, € M(yi); otherwise let Vi € M(yi).

THEOREM 1,6: If {yi} is contained in a sequentially ¢ mpact set and
v* is an accumulation point of {yi} at which Q is continuous, then

v¥ e M(y*) .



PROOF: If the conclusion were false, we would have o(¥) < o(y™) for

all ¥ e M(y*) by the assumption on ¢ . We will show that this leads to a
contradiction. Let subsequences {yni] and {yni+l} be chosen so that

Y, = y* and yni+1 - ye. It follows from the previous theorem that

v e M({y¥), sothat o(y') < o(y™. However, since {cp(yi)) is a monotone
decreasing sequence we have o(y') = lim cp(yni-l—l) = lim cp(yi) = lim cp(yni) = oy,

a contradiction.

In a large number of well-known algorithms, it is the case that f(z,y) =

¢(z), and the preceding result may be sharpened.

THEOREM 1.7 : If o(z) = f(z,y) and y* is an accumulation point of {yi)

at which © is l.s.c., then y*e M(y™.

PROOF: Again suppose that the conclusion is false, and let vy e I\/I(y*), so that
o(¥) < o(y*). Since Q is assumed l.s.c. at y*, there exists a sequence of
points {Zni} with Zny € Q(yni) for each r1i and such that zni—+ y . Thus

we conclude that ¢(y™) > o(y) = lim 9(zn)z lim Oyn4) = o(y™), which

cannot hold.

Theorem 1.6 is similar to a result established previously by Zangwill [7].
Zangwill, however, directly assumes u.s.c. of the point-to-set mapping
M(z), and considers how this property may be demonstrated for various algorithms,
rather than stating a theorem in terms of the properties of the underlying point-

to-set mapping §(z). One of the advantages of considering only {i(z) is the




elimination of the compactness hypothesis in the case f(z,y) = ¢(z).
(This hypothesis cannot be eliminated in theorem 1.6. A counterexample is

given in the Appendix.)
2. An Application: Reverse-Convex Programming

Consider the following problem,
I: minimize ®{(z)

subject to z € F:=8 n {z|u(z) z 0],

where S is a closed, convex subset of En; u is a vector-valued, convex
and continuously differentiable function; and @ is continuous and real-valued
on F . We shall further assume that F is bounded, which is easily seen to
imply that F is compact. The curious feature of problems of the form I is
the non-convexity of the feasible region F . The convexity of u implies
that the region {z[u(z) < 0} given by the reverse inequalities is convex

(see Figure 1). For this reason, the sets U:= {z|u(z) = 0} and F will be

called reverse-convex and the problem I a reverse-convex minimization problem.

Such problems arise, for example, when we wish to determine the minimum
of a function in a region from which an open sphere about a point has been
removed.,

It is easy to show that even with a linear objective function such a
problem may have a local minimum that is not a global minimum. The numerical

methods proposed below, like all numerical methods for problems with infinitely



many feasible points, can take into account only the local behavior of the
function, and therefore these methods can at best be expected to determine

a local minimum for a problem of the form I . The reasons why, in general,
it is impossible to "solve" the problem I (i.e., obtain the global minimum)
is thus not that the methods are faulty, but that the problem is in some sense
not well-posed. From a physical standpoint, however, such problems are
not unusual.

In order to establish iterative procedures for problems of type I, we
first consider a technique for generating convex subsets of F. This is con-
veniently done by "linearization." That is, we define W(y) := {zlu(y) +
u' (y)(z-y) = 0]}, the "linearization" of the set U about the point y (here
u'(y) is the Jacobian of u evaluated at y ); and we let I'(y): = Sn W(y)..
For every y € F the set I'(y} has the three important properties: (1) I'(y) is
convex and compact, (2) I'(y) < F, and (3) v eI(y) . (This was first pointed
out by Rosen [6].) Property (2) is an immediate consequence of the convexity
of u, and properties (1) and (3) are obvious. Note that by the results of
section 1, the point~-to-set mapping I' is everywhere u.s.c.

Consider now the following sub-problem derived from the problem I:

R(y): minimize 0 (z)

subject to z € I'{y) .

If veF, by property (1) above, R(y) has a solution; by property (2), every

point at which the minimum value is attained must be in F ; and by property (3},




if z* solves R{y), cp(z*) < ¢(y) . Of course, it is not likely that a solution

of the sub-problem R(y) can be obtained by numerical means unless the objective
function has some convexity property. (For example, if ¢ is strictly quasi-
convex [ 8], a local minimum for R(y) will be a global minimum.) In many
problems of interest the objective function will be linear, so thatif S is a
polytope (the intersection of a finite number of half-spaces), the problem R(y)
can be solved by linear programming (LP). In any event the following iterative

scheme proposed by Rosen [6] is mathematically well defined:

Method A : (a) Choose an arbitrary v, € F.

(b) Given I let Y, be a solution of R(Yi) .

+1
By the above discussion, method A yields a sequence of feasible points
satisfying cP(YiH) = cp(yi), with strict inequality holding if yi does not solve
R(yi). Because F is compact, {yi} must have at least one accumulation
point, and every accumulation point must lie in F . Note that in method A,

Y

unlike the iterative procedure in section 1, we do not require that yiJrl = i

if yl, solves R(Yi)' This restriction was included in section 1 merely to

assure that {cp(yi)] satisfied cp(yi ) < cp(yi). By an immediate application

+1

of theorem 1.7 then, the following theorem holds:

THEOREM 2.1: If ' is l.s.c. at an accumulation point yv* of a sequence

{yi} generated by method A, then y* solves R(y™¥) .
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There are several aspects of the previous theorem that warrant further
discussion. The first point to be noted is that the compactness of F is
only used to guarantee that the subproblems R(y) have solutions and that
the sequence {yi} has at least one accumulation point. It follows that
compactness can be replaced by those two hypotheses. In this case we might
as well consider @ to be a real functional defined on a reverse-convex
subset F of a Banach space, since the proof of the previous thecrem was
based solely on theorem 1.7. It should be pointed out that while theorem 1.1
gives a sufficient condition for l.s.c of I' at v* when FC En, sharper
results have been obtained in [9]. In particular, if S is determined by
constraints of the form g(z) = 0, where g is vector-valued and differentiable,
it is sufficient that there be a point z* € I'(y*) such that the gradients to the

active constraints at z='< form a positively linearly independent set (i.e., no

non-trivial non-negative combination of the vectors of the set vanishes). With
regard to the conclusion of the theorem only one observation will be made here.
(This topic is examined in some detail in [9].) If T (v*) satisfies some form
of constraint qualification at y* (which is the case, for example, if S is a
polytope), then the fact that y* solves R(y™) implies that the Kuhn-Tucker
(K-T) first-order necessary conditions for a solution of 1 are satisfied at y* .
This is obvious, for at y’:< the K-T conditions for the two problems R(y*)
and I are identical.

If the function ¢ is differentiable on some open set containing F , we
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can construct the following sub-problem for each point y € F:

L(y): minimize ¢ (y)z

subject to z € I'(y) .

Of course, if ¢ is linear affine, the solutions to L(y) coincide with
the solutions of R{y). However, even for the class of quasi-concave
functions (which includes all linear affine functions), we have the crucial
property that if y does not solve L(y), then every solution y of L(y)
satisfies o(y)< o(y). This follows from the (differential) definition of

quasi-concavity [ 8], which requires that cpl (v) (y=v) < 0 imply o(y) < o(y).

Consider now the following iterative method:

Method B: (a) Choose an arbitrary Yo e F.
(b) Let Vi =Yy if Y solves L(yi); otherwise,
let Vi be any solution of L(yi).

The following is an immediate consequence of theorem 1.6:

THEOREM 2.2: Let ¢ be quasi-concave and continuously differentiable

on some open set containing F , If y* is an accumulation point of a sequence
{yi} generated by method B and T' is continuous at y*, then y* solves
L{y™).

A comparison of theorems 2.1 and 2.2 is in order. The former is valid
for all continuous objective functions (although from a numerical standpoint

we can apply method A only to objective functions with certain convexity



properties), whereas the latter holds only for continuously differentiable
quasi-concave functions (although method B is numerically feasible
whenever ¢ is differentiable). Although the last theorem specifies that
I" be continuous at y*, it follows from a result of section | that I' is
u.s.c. everywhere, so that only l.s.c. at y* need be assumed or verified.
In order to apply theorem 1.6 to prove the previous theorem, it is necessary
that F be compact. As noted above, the compactness of F does not play
so crucial a role in the proof of theorem 2.1. Finally, if we assume again
that T'(y™") satisfies some type of constraint qualification at v*, we con-
clude that if y* solves L(y*), then y* satisfies the K-T conditions for
problem I .

In the event that ¢ is continuously differentiable but not quasi-concave,
it is still possible to obtain algorithms in which the objective is linearized
and which have the required properties if we assume that ¢ is twice con-
tinuously differentiable. These are based upon the observation that the linear
part of the objective function dominates in a region sufficiently close to the
point linearized about. Let the constant R > 0 be chosen so that
€ F (the norm is arbitrary

Lz

2

T on 2
-z} 9" (z)(z,-z|) = R |z,-z |~ forall z,z,

2
but fixed for the remainder of the section). Given a point y € F, let M(y)
be the set of solutions of L(y). Let g be a fixed element of (0, 1) and for

z # y define the real-valued function

K(y, 2)i= minimum  {a- @ ((y-2)-[z-y| " R Jz=y] ).




For the three algorithms below, it is assumed that the initial point Yo
is chosen arbitrarily from the feasible set F, and that Vi1 is taken to

be v if ' solves L(yi). Hence, we will specify the method for choosing

Y,

41 with the understanding that Y, does not solve L(yi). In the following

1,
0

algorithms, zi>= is an arbitrary element of M(y,) .

ALGORITHM C: Choose Vsl to minimize cp'(yi)z over the set

Fiypn {z] Jz-v | = Ky, 2,)]) .

ALGORITHM D: Let y, ., =y, +Kly,z" ) (z,"-y) |z ;

ALGORITHM E: Choose an element 6 from the fixed interval [,y ], where

0<p = vy <1, and let Vi1 =Y, + o). (zf< —yi), where j is the smallest

non-negative integral exponent for which the inequality cp(yiH) < cp(yi) +
. .

(L -aq) - e . o) (yi)(zi'" - yi) is satisfied. (It will be shown that the
previous inequality is satisfied for all sufficiently large j, so that the

algorithm is well-defined.)

THEOREM 2.3: Let ¢ be twice continuously differentiable on some open

set containing F, and let the sequence {yi) be generated by one of the
three procedures above. If y* is an accumulation point of {yi} at which

I' is continuous, then y* solves L(y*) .

PROQF: See Appendix.
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In general, the three previous algorithms will yield three different
points if applied to a given point. A typical situation is shown in Figure 2,
where the points C, D, and E cormrespond to the application of algorithms
C, D, and E respectively. The dotted lines represent level lines of the
linearized objective function CPI (yi)z , and the square in the interior of T (Yi)
represents the set, f{z | “z~yi“ < Ky, zi*)} . The figure illustrates a
case in which we have chosen to work with a norm whose level surfaces
are the surfaces of similar polyhedra. When these types of norms are used,
and, in addition, S is a polytope, it follows that in order to obtain Yiii via
algorithm C from Vi and zi* , we need only solve an LP problem. Hence,
in this case we would solve two LP problems in order to move from v, to

3% using algorithm C . On the other hand, regardless of the norm used,

i+1
when S is a polytope, only one LP problem must be solved when algorithm
D is used to obtain a successor to yi . However, for both algorithms C
and D an estimate on the upper bound of the norm of the Hessian matrix
¢"(z) is needed, and this may not be easily obtained. For algorithm E

this estima.e is unnecessary, and Vi, is obtained by Y by solving one

L
LP problem (assuming again that S is a polytope) and performing a finite
number of evaluations of © .

In the case that S is a polytope, method B and the method corresponding
to algorithm C are special cases of the MAP method of Griffith and Stewart [10].

For the classes of minimization problems for which they are intended, the former

two methods resolve the previously unsolved problem of step-size limits for




the MAP method. Algorithms D and E can be contrasted with the well-
known Frank-Wolfe algorithm in the special case when F is a polyhedron.
(This will occur if S is a polytope and u is linear, and will mean that
I'(y) = F for all v .) The Frank-Wolfe algorithm consists of choosing Yir
to be a point on the line segment connecting v, and zi* which satisfies

sl

Ply; ) = oly) + (1 ~a)oly,

i ) - CP(Yi)], where yi* is a point which minimizes

i+l
¢ on that line segment and o € [0, 1). Algorithms D and E require no

knowledge of the minimum of the function ¢ on line segments, and hence

enjoy something of a theoretical advantage over the Frank-Wolfe scheme.

3. Applications to Other Mathematical Programming Algorithms

In this section we shall indicate how the results of section 1 may be

applied to a number of well-known algorithms of mathematical programming.

3.1 Unconstrained Minimization Methods.

In the notation of section 1, let f(z,y) = ®(z) and Q(y) =
{yv + 2 D@y) lx > 0], where the composite function D(¢) (which can be
thought of as a direction-assigning function) is continuous for all continuously
differentiable ¢ and has the property that cp'(y) D(p{y)) = 0 with equality
if and only if (p'(y) = 0. (When D(o(y)) is chosen to be (-¢'(y) )T, the

corresponding algorithm (see section 1l ) is the method of steepest descent.

If ¢ is twice continuously ditferentiable and has a positive definite Hessian

T
matrix at each point, then we may choose D(o(y)) = - [cp'(y)qﬂ‘“l(y)] . The
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corresponding algorithm is then a modification of the Newton-Raphson

second order method.) It is clear that Q is everywhere l.s.c. and that

the iterates have the required monotonicity property. We thus conclude that

an accumulation point y* of such a method must solve the problem:

minimize @(z) subjectto z € Q(y*). This implies that cp'(y*) = 0, and if

¢ is convex, y* must be the global minimum of the unconstrained minimization

problem.

3.2 Feasible Direction Methods.

Topkis and Veinott [ 12] recently studied the properties of a general
feagible direction algorithm which contains as special cases the feasible
direction methods of Zoutendijk [ 13], the Frank-Wolfe method [11], and second-
order feasible direction methods. We will show below how the same general
algorithm can be studied by the techniques of section 1. Again we consider
a general minimization problem of the form I, but we will assume here that
the set U = {z[u(z) > 0} is convex (rather than reverse-convex as assumed
in section 2). All other assumptions on the feasible set F, including compactness,

are assumed to hold. We define the gset (y) to be those pairs (v, z) satisfying

‘(z-y)T H(yv)(z-y),

™ |

o' (y) (z-y) +

<
v

<
v

“[uy) + u'ly)z-y)] forall i,

and z €8S N (B +vy), where H is a continuous mapping from ]EJn into the

set of all positive semi~-definite n x n matrices and B is a compact convex




neighborhood of the origin. Letting W (y):= .minimum {vl (v, z) € Q(y)), the
iterative procedure proposed by Topkis and Veinott is as follows:

(a) Choose an arbitrary Yo e F

(b) Given Yo let yi* be chosen so that (vi*,yi*) € Q(yi) and

Vi :u(yi); if u(yi) = 0, let Yi+l = yi, and if not, let yi+l

™

be a point in the intersection of I with the line segment connecting v,

and yf< such that cp(yiH) < o(z) for all z in the intersection.

It is shown in the Appendix that the mapping ! as defined above is
continuous on S and that cp(yi+l) < q)(yi) if u(yi) <0. By a slight modifi-
cation of the proof of theorem 1.6, it follows that a limit point v* of the iterative
procedure just described has the property that (y*) = 0. If some form of con-
straint qualification holds at y* (for a particular case, see [12]), the relation
i (y*) = 0 implies that the Kuhn-Tucker necessary conditions for a solution of
problem I must be satisfied at y* . The Kuhn-Tucker conditions are also

sufficient for optimality when ¢ is pseudo-convex and the constraint functions

are quasi-concave (see Mangasarian [14]).

4, Generalizations

Because of such factors as finite arithmetic and rounding errors, there
is little hope of obtaining exact analytic solutions to optimization problems

on digital computers. One can expect at best very good approximations to the
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true solutions. In the theory developed in the preceding sections, however,
the availability of exact solutions at each ite.ration was assumed. We will
.now show how theorems l,6 and 1.7, upon which most of the results of this
paper are based, can be strengthened to provide for a certain type of approxi-
mate solution. (This type of approximation was considered by Dem'yanov
and Rubinov [15] in a paper dealing with a convex programming method in
Banach space. Other approximations, such as the class considered by Topkis
and Veinott [ 12], can be handled in a similar manner.)

Let o be a fixed element of the open interval (0, 1), and, using the
notation and assumptions introduced for the statement of theorem 1.6, let

the sequence {?i} be constructed in the following manner:

(8) Choose an arbitrary Yy € G.

(b) Let Vi =Y, if Y, € M(yi); otherwise let Yin be an element

—— . . — — — _ * .
of {iy,) satisfying 9(y)) - Py, ) 2@ (P(y,) - ®(y,")), where
y," € M(y,) .

Roughly this means that at each iteration at least a fixed fraction of the theoretically

possible decrease in ¢ is attained.

THEOREM 4.1:

If {;i) and {yi ¥} are contained in sequentially compact sets and

v is an accumulation point of {371} at which Q is continuous, then ¥ e M(y).
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Proof: As in the proof of theorem 1.6, we assume that the conclusion is
false, and show a contradiction. It follows from the assumptions preceding
1.6 that o(y") < o(y) for all y' e M(y). Now let subsequences {?ni},
{?niﬂ}, and {y;:;i} be chosen so that -'ini--» Vs Sf'niﬂ—»;;, and y;:;i-» y* )

It follows that vy~ € M(¥) and that

0 < o - oly™) = lm (Fn ) - olvy,))

< oV 1im (cp(yni) = ®(¥n;41)) = 0, which cannot hold.

By an analogous modification of the proof of theorem 1.7, we obtain:

THEQOREM 4.2:

If ofz) = f(z,y) and y is an accumulation point of {Vi} at which
is l.s.c., then vy € M(y).

Another computational aspect of algorithms that can be easily dealt with
by the techniques of this paper is that of accelerating convergence by periodically
taking a step in a direction other than that prescribed by the basic algorithm
being used or taking slightly larger or slightly smaller steps than those
prescribed. (The validity of procedures so modified has also been discussed
by Topkis and Veinott [12].) It should be observed that the proofs of theorems
1.6 and 1.7 depended only on the monotonicity of the sequence {o(y;)] and
the fact that y* was the limit of a subsequence {Yni} whose successor
points were constructed by an algorithm with certain specified properties. Thus,

if, with the goal of accelerating convergence, an algorithm without those
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properties is used periodically, we can conclude nevertheless that convergence
of the iterates to a point y* at which  is continuous (or l.s.c. in the case
of theorem 1.7) implies that y* e M(y*).

A further extension of theorems 1.6 and 1.7 can be made if we note
that the proofs still go through if we assume only that {cp(yi)} converges
(i.e., it need not be monotonic) and that the strict monotonicity property holds
at y>’< (instead of everywhere). This extension is useful when Kelley's cutting-

plane algorithm [16] is analyzed by the techniques of section 1 .
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APPENDIX

The following property of sequences in normed spaces will be needed

in the proof of theorem 1.1 .

LEMMA: If zi—-»z as i -» o and Zij—)zi and j —-» (i=1,2,...), then

there exist nj (j =1,2,...) such that anj"* Z as j -0,

PROOF: Let N(l) be chosen such that Hzi -z|| <1 for 12 N(l), and
let N'(l) be chosen such that HZN(l)j— ZN(l)“ <1 for j = N'(l).
Suppose now we have chosen N(1), N(2), ..., N(k) and N'(l), N'(2), ...,
N'(k). Choose N(k + 1) and N'(k + 1) so that I z, - z|| < 1/k+l for

iz N(k+1), /k+1  for j = N'(k + 1), and

“ZN(kH)] Znkenyl <

N'(k + 1) > N'(k). Let N(0) =1 anddefine ny = N(¢) when N'(£) =
j < N'(£+1). Itis easily verified that the sequence so defined satisfies

anj“"z as j—= .

PROOF OF THEOREM 1.l: We will first show that the linear independence

hypothesis is equivalent to assuming that there exists a point z' such that
f(z'y > 0, u(y™) + u'(y®)(z'-y" > 0, v(y™) + vy z' -y¥) = 0, and that
the Jacobian matrix v'(y™) has full row rank. For, we may choose a vector d
such that v'(y*)d = 0 and such that the inner product of d with each gradient

to an active inequality constraint function at zﬂ< is positive. It is now easily
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seen that a suitable choice of z' is z* + ed, where ¢ is a sufficiently

* - y*) =0, the linear

small positive scalar. (Since v(y™) + v'(y¥)(z
independence hypothesis implies that v‘(y*) has full row rank.)

Now partition the variable z into the variables. s and t (with values
s' and t' at z') so that the function ¥V defined by ¥(s, t,y) = v(y) + v'(y) (z - y)
has a nonsingular Jacobian with respect to s at the point (z', y*) = (s', t*, v¥).
It follows from the implicit function theorem that there exists a neighborhood
N of (t',y*) and a differentiable function h defined on N with the properties
that h(t', y*) = s* and V(h(t,y),t,y) =0 for (t,y) € N . Without loss of
generality we can assume that N was chosen small enough so that all of the
inequality constraints involved in defining I'm(y) are satisfied by (h{t, y), t)
when (t,y) € N. (This follows from elementary continuity arguments.) Hence
if {yi} is any sequence converging to vy, it follows that for i sufficiently
large (say i = m), we have (t',yi) € N, so that V(h(t',yi), t', yi) = 0, and
hence the equality constraints involved in defining Fm(yi) are also satisfied
at the point (h(t',yi), t') = zy . The sequence {zi) so defined for i =z m
thus has the property that zi € Prn(yi) and zi - z' . To complete the proof
of l.s.c. at y* we must prove the existence of a similar sequence for each
z € I'm(y™). In order to do this, we first note that I'm(y*) is a convex set, so
that given any z € I'm(y™¥), the line segment connecting z and z' lies in I'm(y™).
Moreover, since z € S n {z|u(y™ + u'(y*)(z - y)= 0} and

z' e int S {z|uy™ +uy Nz -y) > 0] = §, it
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follows from a well-known theorem on convex sets (see, for example [2]) and
a simple computation that all points on that line segment with the possible
exception of z also lie in §. But at each point in S Al'm(y™) we can
constrﬁct the sequence required in the definition of 1l.s.c. by exactly the
same method used for z' . Letting z'j:= (1/i) 2' + (1-1/i)z and performing
such a construction for i = 1,2, ..., we obtain a sequence of sequences
from which, by the preceding lemma, we can consiruct a sequence converging
to z and satisfying the requirements in the definition of l.s.c. . This
completes the proof of l.s.c. at y™ .

Now for y sufficiently to v* we have previously noted that the point
(t', h(t', v)) lies in TI'm(y) and satisfies all of the inequality constraints strictly.
Since there also exists a neighborhood of y* in which the Jacobian v'(y) has
full row rank, it follow s that for all y in some neighborhood of y* the point
(t',h(t', v)) has the same properties with respect to TI'm(y) that z' had with
respect to I'm(y*). Hence the proof of l.s.c. of I'm at such y may be

carried out in the same manner.

The next example illustrates that the compactness hypothesis cannot be

deleted in theorem 1.6.
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EXAMPLE: Let G=R=[-2, —l—;-] ulo, 15] ul2, +«),

C {y} if ye[-2, —1%—]
{-2}if y=0
Q) = < L
{-2+y, I/y) if y e (0, 5]
L f1/2y} if ye[2, + o) ,
. 1
z+2 if ze[-2, -.l'é']
flz,vy) = 0 if ze [0, ‘;“]
l/z if ze[2, + o) ,
. ‘ 1
y + 2 if ye[-—Z,-—LE]
1
and oly) = v+ 1 if yelO, E]

L+ 2/3y if ye[2, + «)

It is easily verified that with the above definitions the conditions stated
prior to theorem 1.6 are satisfied, that § is continuous on G, and that f
and ¢ may be extended to continuous functions on EZ and El respectively.
Suppose that we choose Yy = é‘ . It may be verified that l\/I(yO) = {—1‘12*, 21,
so that we can choose y, = 2. Since Q (Yl) = { i }J, it follows that v, = _14_ .
1 1

1
Continuing in a similar fashion, the sequence of iterates {“é‘, 2, Z’ 4, g,

is obtained. However, the accumulation point 0 does not belong to M(0) =

{-23.
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PROOF OF THEOREM 2.3: We will first show that all three algorithms have the
strict monotonicity property. Using a second order Taylor expansion and the
definition of R, we obtain for z ¢ F the inequality o(z) =< cp(yi) + cp'(yi)

2 Sl
(z - yi) +R - “z - yiH LIF |z - Yi“ ) K<Yi’ zi'), this becomes

o(z) = aly,) + ' v}z - v) +R - 6° - Ky, )
= 0ly) + o'y Nz - y)
-5% . a- Py )z - v,) - Hzi* = v, I K(Yi, z;< ).

If we denote by vy' the point generated by applying algorithm D to Y. we have

I

AN EER? © Ky, z’ik), and the inequality reduces to

i i “i i i

2

o(z) < cp(yi) + cp'(yi)(z - yi) -5 -« a- cp'(yi)(y' - yi) . Three cases will now

be considered: (1)} if z =vy', choose & =1, and the inequality becomes

o(z) = fp(yi) + (1 - oc)cp'(yi)(y' - yi); (2) if =z is generated by algorithm C,

choose 6 = 1, and it follows from cp'(yi)z < cp'(yi)y' that o(z) = cp(yi)

+ ¢ (yi)(y' - yi) - a9 (Yi)(Y' -y)=oely)+ (1 a) o (yi)(y' - Yi) ; and

(3) if z = v +w . (y - yi), where 0 s w =1, choose & =w, yielding

IA

P(z) CP(yi) tw - cP'(Yi)(y' -—y) o - a9y WY )

i

Ply,) + (1 ~wa) «o - Oy }y' - v,)

IA

CP(yi) +(1-a).-0-.9¢ (yi)(y‘ -y .

By the analysis in case (3), it is easily seen that in algorithm E the relation

— L ] . ! >X< - - 3 . >:< —
)= oly) +(l-a) 0] 9y Nz; -vy) where vy, ., =y, + €] (2 =)

oy i i

i+l
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S

is satisfied if @j « || z; - Y, | = K(y,» zi*), proving that the algorithm is

well-defined. Moreover, since B < ¢, the point z generated by algorithm

E must satisfy o(z) = CP(yi) +(l-a)-pB- q)'(yi)(y' - yi). For all three

algorithms then, {cp(yi)] is a non~increasing sequence.

Let yv* be an accumulation point of {yi] at which the point-to-set
mapping ' is continuous. Choose subsequences {yni]. {yni+1}, and {zﬁi}
such that Yn; = y* and the latter two are convergent with limit points y and
2" respectively. As a consequence of theorem 1.5, z* is a solution of L(y™).

If we now suppose that y* does not solve L(y*), then K(y*,z*) > 0. For

algorithms C and D we thus have

P(y) = lim @y 4]) = lim [otyn) + (1 - 9) - @'(yn;Hyn;+1 ~ ¥n,) ]
= oly®) + 1 -9 - (YT - v
= o™ (-9 - BT -y 2 - v T K 2
< oly™ .

This is impossible, however, since {cp(yi)] is a non-increasing sequence.

By inserting the factor B in the appropriate places, we can prove the con-

clusion for algorithm E .

(Alternative proofs have been constructed (see Meyer [9]) for methods C
and D by establishing the strict monotonicity property and the continuity of
certain point-to-set mappings. In this way the conclusion is obtained as a
direct consequence of theorem 1.6, but at the expense of increasing the com-

plexity of the proof.)
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PROOF OF ASSERTIONS IN SECTION 3.2:

By using the continuity of the terms involved, it is easily shown that
Q is everywhere u.s.c. To prove l.s.c. on &, we first observe that the
point-to-set mapping defined by Q'(y) =S n (B + y) is l.s.c. on S . This
is seen by noting that interior points of B+ vy thatliein S also lie in
B+ Y for ¥ sufficiently close to y, and that a boundary point of B +y that
lies in & is the limit of interior points of B + y contained in S. Now let
(v, z) be an arbitrary point of Q(y) and let {yn} be a sequence of points in
S converging to y. By the preceding argument, there exists a sequence of
points (zn} with z_ € Q'(yn) converging to z . It is clear that a sequence
[vn} converging to v can now be chosen so that (Vn’ Zn) € Q(yn), completing

the proof of l.s.c.

To simplify notation, we will drop the subscripts in the following proof
of the monotonicity property asserted in section 3.2. Suppose that there exists a
point (v*, z¥) e Qy) with v* < 0. We will show that for sufficiently small
positive X, the point z =y + >\(z* - vy) belongs to F and satisfies @(z) ~ oly).
It is clear that ze S n (B+y) for » € [0,1], so to prove feasibility we need
only show that u(z) =2 0, If ui(y) > 0, then clearly u(z) > 0 for X sufficiently
small; and if ui(y) =0, then 0> v¥= - [ui(y) + u’i(y)(z* - y)] implies

1 e

U (yX(z" - vy) > 0, and again it is true that ui(E) > 0 for sufficiently small

positive X . Since H(y) is assumed positive semi-definite, 0 > v* oz

%

l s b . . . ] Py3
Py z" - y) + '2‘(2" -vy) H(y)(z" - y) implies 0 > o' (y)(z™ - vy), and the

required result follows.
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