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1, Introduction
This paper considers the use of linear spline functions to obtain an
approximate numerical solution of the Volterra integral equation of the second

kind,

X
(1) y(x) = f K(x, s, y(s)) ds + f(x), x=z 0,
Yo

where y(x) is the unknown function, and ths kernel K(x,s, y(s)) and f(x)
are given., We make the following assumptions:
(a) f(x) 1is continuous and bounded on 0 < x < b,
(b) K(x,s,y) is uniformly continuous in x and s for all finite y
and 0 £ s = x = b,
(c) K(x,s,y) satisfies a uniform Lipschitz condition
[K(x:8,7)) = K(x,5,7,) | =L |y, -v,|
forall 0 = s = x=b., L is a constant independent of x and s .

These conditions guarantee the existence of a unique continuous solution to

(1) (see [1]).



The justification for describing this simple method in such detail
is similar to the justification for dealing with Euler's method for ordinary
differential equation before describing more sophisticated methods —
this simple case exemplifies some of the important features of this type
of method without obscuring the analysis with the complication that arises
in higher order methods.

The method is described in Section 2. In Section 3 it is shown that
the method is convergent. An asymptotic formula for the discretization error
is obtained in Section 4. The effects of the rounding error are analyzed in

Section 5. Some numerical results are presented in Section 6.

2. Description of the method

Let Xi =ih, 1 =0,1,2,... where h 1is an arbitrary constant step
length. Let vy denotes an approximation to Y(Xi)’ the exact value of
y(x) at x = Xi . We use a linear spline function p(x), with knots at the

points Xi , as an approximation to y(x), i.e., for i =0,1, ...

) b =g [

1A
X
1A

el T XY XY 1. * X+l

The function p{x) is continuous at the knots.

The approximate solution of the integral equation is obtained by
requiring that (1) be satisfied at the knots X, i.e., the exact solution
v(x) is replaced by the approximate solution p(x) derived from values

p(xi) =V, computed from:




Tkt
() bl ) - \/O K(x,., > 5 p(s))ds + (x, ,|) -

This can be rewritten in the form:

x
K+l L
(4) Vit ”\ﬁ; Kl pqo8 [0y =8) vy + (s = x )y Dds +r ),

where rkJrl does not depend on ka :
k-l *ixl L
- 1 — —_ -
kel T ‘Zo f Rl 8oy Loy = 8) wy o+ (s =)y Dds #8Gq ).
i= X,

Equation (4) must be solved for ka . Consider

X
Tk 1 } i
F(z) = f K(Xk+l’s’h [(xk+1 s)yk + (s xk)z])ds I

XK

It is easy to show, using the Lipschitz condition (c) on K, that
1
(5) |F(z) -F(u)[ = SLh|z-uf.

The equation (4) is

Vsl = Flp) -

Equation (5) shows that F is a strong contraction mapping for h< 2/1L,
so that, if this condition is satisfied, (4) has a unique fixed point yk+l’
that may be found by iteration.

Since vy(0) = £(0), we can take Yy = f(0) as the initial condition.

The values of Y{»¥,s «0. CAN then be determined successively from (4).



An estimate of y'(x) is given by the derivative of (2). If we denote this

(constant) estimate of y'(x) in Xy < x < Xk+‘1 by yi{, this gives

S S _ |

If the integral equation is linear, say K(x,s,v(s)) = k(x, s) y(s),

then (4) can be rearranged to give Vi1 explicitly:

avy t Ikl

(7 R e e
where
X X
1 [Tkl ) 1 Tkt )
o= g f k(xk_*.l,s)(s]<+l s)ds , B= h\/ﬂ k(ka,S)(s xk)ds .
*x *x

3. An a priori bound and convergence

The proofs for Theorem 1,3, and 5 require the following lemma.

k-1

Lemma L. If [Z = A 3 1211+B for k = 1,2,... with A > 0,
i=0 L

B> 0, and [Z,| = C, then 12| = (B+AC)(1+A)k ' for k=1,2,.... .

The proof of this lemma can be found in [2], p. 7. "Note that if
A =hN, and kh = x, then
|z, | = (B +hNC) exp (Nx) .
Let y(x) be the exact solution of (1), and define the discretization

error function E{x) by




where p(x) is the splinefunction approximativn to y(x) obtained from our
numerical method. Assume that y(x) is twice continuously differentiable
on [0,b]. Since p(x) is a linear spline, we have p"(x) = 0, X, <x < X1

so that, by Taylor's expansion

(8)  B(x) = Blx) + be—x) Blx) + 3 0 mx)  yhE)  x <E < x,
(9) E'(x) = E'(x)) + (x = x,) v"(n ) ,ox < <x,

where x € [Xi’xi ). Denote the value of gx, when x = X by ¢ . Then

+1 i

if we set x = x,

i+ in equation (8) we obtain

B(xip) - EG5) 1 f
(10) B = —H—— L - S hye), x < <x,

+1

Substituting (10) into (8), we obtain

(1) B = (B, = %) B, )= %) [+[y" (£ )(x - x) - v" (£)h]

for x € [Xi’ Xi+l) .
If we define N(x) = max |y"(t)|, then for x ¢ [Xi’ X,

)
te [0, x] i+l

(12)  |E(x)]| = lE(xi) | + ]E(xi+1)| N, ) h® .

Since both y(x) and p{(x) satisfy (1) at x = Xy k=1,2,...,

therefore

k-1 X,
AR /; IR G5, v(8)) - K s, p08))] ds
i

(13) E(x

which implies




k-1
(14) lmﬁﬂs > L h|E(x)|
i=0
By means of (12), (14) can be rewritten as
k-1 )
(15) ]mﬁ”s th qmﬁﬂn+1mﬂn+Nmeh).

Trunsferring Lh [E(xk)l from the right to the left of the inequality, it is

permissible to divide by 1 = Lh if Lh <1, and this gives

k-1 3
2 Lh Lkh
(16)  [Ex)|l = TT-7q Zo [BG) + T o0q Neg) s

with E(x) =0 . A bound on lE(xk)l can be obtained by Lemma 1 .,

We formulate the result in the following theorem:

Theorem 1. Let K(x,s,y) and f(x) satisfy conditions (a), (b), (c),

and let the exact soluticn y(x) € CZ[O, b]. If

NG = ok 1YL

then the discretization error of the method satisfies

Lhz

. 2L
(17) IE(xk)] = \T-in N(x, ) x, exp(1 —Lh) Xy

/
for x=0,1,2,...., provided h < L
It is obvious from equation (17) that our method is exact for any
Volterra equation of the second kind whose solution is linear in x .

Corollary 1.1 If the assumptions of Theorem 1 are satisfied, then

there exists a constant C such that for x € [0, b]




|E(x)| < cn®,
|E'(x) < Ch .

Proof: Since equation (17) implies that
2
(18) [E(x)| = o),

therefore from (10) we have

(19) [E"(xi)l = 0 (h) .

Corollary 1.1 immediately follows from (8) and (9) by using (18) and (19).
In Corollary 1.1 we have shown that the error of approximating the

i=0,1,2,.... . Inthe

derivative is of order h for all x € [Xi’ Xi+1]’ i

followings we can show, with additional assumptions, that the error is of
order h'2 at the mid-point of each interval,

We assume that y € CB[O,b], so that for x € [Xi’ X,

) EG, E')

can be expanded respectively in Taylor's series about x = Xi to one more term

than in (8) and (9):

H ._1.'. 2 " -]-'- 3 11 X d
(20)  E(x) = E(x) + (x = x) E'(x) +5 (x = x) " () + g (= %) yU(E ), %, < <,

(21)  E'(x) = E"(x)) + (x - x)y"(x)) + % (x - xi)Z v (n,) X, <m, <X

Putting x = x,

i+l in (20), solving the resulting equation for E'(xi),

and substituting the result in (20) gives



: 2 m 2 tn Ay
N : Y y"(e ) -hy (g)]iX 6X1)

2

<< :
N ES N

and ¢, which appears in (23),denotes the value of gx at x = Xi+l .
Assume that K(x, s,y) not only satisfies conditions (b) and (c), but
also has continuous and bounded first and second direvatives with respect

to y in 0 £ s < x = b. Under this hypothesis we may write, by Taylor's

formula, that
-!- - b 2
(24) K(xj, s, y(s)) - K(xj, s,p(s)) = Ky(xj, s,y(s))E(s) + 5 Kyy(xj,s,y (s))E (s),

where y*(s) is between y(s) and p(s) .

By using Corollary 1.1, we have from (24) that
4
(25)  Kix,, s, y(s)) = K(x;, 5, p(s)) = Kylx,, s, y(s)) E(s) + O(h") .

Letting k = j in equation (13), and substituting (25) into the resulting

equation we have

oL p¥ig
(26) E(x,) = 2 / K. (x,,s,vy(s)) E(s) ds + O(
J i=0 % Y ]
i

}14) .




Taking the difference of the two equations resulting from replacing j
by k and k + 1 in (26) gives us

k-1 X,
) - E(Xk) = 2 f i+l [Ky(xk+l’S:Y) - Ky(xk,s,y)] E(s)ds

1:0 \. X,
1

(27)  Elxy 4

+/Xk+'1< E(s)d 0h4
Jx, Y(XkH,S’Y) 2(s)ds + O(h ).

If we assume that Ky(x, s,vy) satisfies the Lipschitz condition

s 0 x% x<bh,

(28) ]Ky‘-(x*, S,Y) - KY(SZ, s,v)| = Ll |x* - %

for all finite y, and all 0 £ s = b, then from equation (27) we can conclude
that
k-1 3

) - E(x) | = Llhz fo |E(s)| + o(h’),

(29) [E(.xk+l

which implies, by using Corollary 1.1, that

(30)  |EGx ) - Etx)| = o)

Taking the derivative of equation (22) and letting i = k we have

) + O(hz) .

(N ii=p

(1) B =g (EG, ) - Be)) + v - % -

+ b in the resulting equation, and using (30) we can

Putting x = Xk >

conclude that

E'x, + 2] = o)

(32) k"2

We formulate the result into the following theorem:



L0

Theorem 2. Let the assumptions of Theorem | be satisfied, Assume
3
that vy € ¢ [0,b], and K(x,s,y) has continuous and bounded first and
second derivatives with respectto y . If Ky(x, s, y) satisfies the Lipschitz

condition (28), then there exists a constant ¢ such thatfor k =0,1,2,....

h ' h 2
,+2) p(xk+2)i< ch

(33) ly'(xk

Corollary 2.1, Let the assumptions of Theorem 2 be satisfied. If

we define

~t — .l_. 4 - .11 ' b:_ .
(34) p(Xk)-Z[p(Xk 2)+p(xk+2.)] ’ k-"l:Z;--.-;
then there exists a consgtant ¢ such that
(35)  [v'(x,) - P'(x)| < ch’
k k

Proof: By (33) and (34),

5(x,) = 5 [0'(x, = 3) + p'(x, + 5]

L, _h . h 2
. 3
But since y e ¢ [0,Db] ,
h 1 1 2 h
¢ — = 8 — - 1" uily e -
yix, -1 =yx) -Shy'(x )+ gh vUE) . x -5 g <x
1 .1:1.. —_ ] l.. " ..]_".. 2 L . l}.
y(xk+2 —y(xk)+2hy(xk)+8hy(€2), xk<g2<xk+2.

Thus we finally obtain
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(36)  B(x) = v'(x,) + 0(n")

This completes the proof.

Corollary 2.1 states that we can obtain a much improved estimate of the
derivative at the knots by setting this equal to the mean of the slopes of the
linear approximation function in the two intervals on either side of the knots.

We conclude this section with a result which is similar in content to
Theorem 1, but is valid under somewhat relaxed conditions. We use this
theorem in Section 4 when finding the asymptotic formula for the discretization
error.

Theorem 3. Let the assumptions of Theorem 1 be satisfied, and let
p(x) be the linear spline as defined by (2). If {yk} be the sequence of

numbers generated from

X
k 2
= 6 = ]
(37) Vi f K(Xk, s, p(s))ds + r + kh c, k v 2 e,

Vo = £(0) ,

where ¢ =2 0 is a constant, I as defined in (4), and the Qk are numbers

which may vary from step to step, but always satisfy | le < 1, Then for

k=0,1,2,...

L N(xp)xy + ¢ 2 L N
I -1Lh ®*¥PY1 - Lh | "k’

2
(38) |E(;_><k)[ <h

where B(xk) =y(x)-vy
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The point of Theorem 3 consists in showing that even if the recurrence
relation (4) are not satisfied exactly, the values Yy may still converge to
y(xk) provided that the discrepancy between (4) and (37) is not too great.

The proof of Theorem 3 proceeds in the same way as did the proof of
Theorem 1. In place of (15), wé now obtain

k-1 2 2
(39) 1E(xk>| < Lh ii.jo (lE(xiH)[ + lE(xi)l +N(x, )h") +ch

which implies

k-1 3 2
2Lh {Lkh N(x,) + ch
1-Lh [EGe)| + £

(40) iE(xk)[ <
i=0 \ 1-Lh

e

Using Lemma 1, we then have (38) .

4. An asymptotic formula for the dis cretization error

The error bounds derived in Section 3 generally overestimate the
actual error by a considerable amount. In this section we obtain an asymptotic
formula for the error, which leads to error estimates.

Let us now return to equation (26) in Section 3, and let j = k + 1 in that

equation, then we have
k i+l 4
(41) E(Xk+l) = '%0 \/;{ Ky(XkH’ s,y(s)) ds + O(h") .

2
We divide the resulting relation by h , and introduce the gquantities

azl

(Xi) = h«2 E(Xi)' By means of (22), equation (41) can be rewritten in the form:
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(42)  B(x. )= Y B+ Sy

k+1
L- 5
where
X X
| k+1 1 k+1
= . s Oy - s 6= -
Y N \/\ Ky(ka s y)(xk+l s)ds b / Ky(ka,s,y)(s xk)ds ,
e X
k k
and
- , R E )+ (s~ E(
s =% fx”'lK (X, 25, ¥) i RO (x,_ )+ 0(n°
k+1 20 Y% Yy k1 h g k+1 (h),
- i
k X4 )
with g(ka) = 3 [ - Ky(ka,s,y) ®(s)h ~ds,
' i=0 Y x

i
where ©¢(s) as defined by (23).
Defining E(x, s) = Ky(x, s, v{(s)), and comparing (42) with (7), we can
look at (42) as the result of applying the linear spline method to the solution

of a new integral equation for a function e(x):

(43) e(x) = [ K(x, s) e(s) ds + y(x),

* 2
/ K(x, s) cp(s)h- ds
Y0

=
X
1t

2
making at each step an additional error of order h~ .
Note that for sufficiently small h, the second and third therm of ©@(s)
can be neglected, and we can approximate w(x) by

X
p(x) = —;ljz' / K(x,s) y"(s) ds .
)
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E(xo) = 0 implies that E(xo) = 0 . To equation (43) we can apply
Theorem 3 with the following result:

Theorem 4. Let the assumptions of Theorem 2 be satisfied. Then
the error E(xk) of the linear spline approximation to the solution y(x) of

equation (1) can be written in the form:

(44) E(Xk) = h2 e(xk) + 0(h3) s k=1,2,...,

where e(x) is the solution of
X
(45 eGo= [ K Gus,yis)) els) ds + plx) + O(n)
v O y

where
1 X
Yx) = -5 fo Ky(x, s,y(s)) y"(s) ds,

provided that h is sufficiently small.
Corollary 4.1. If the assumptions of Theorem 4 are satisfied then for
the discretization error function E(x) along with its first

x €[x,, x

K Fep1h

derivative can be written in the following form:

_ 2 ‘ Y“ (X ) _ _ 3
(46) E(x) =h e(xk) + __é._ls.__ (x xk)(X Xk+1) +0(h™),

) = ) (k- x =B 2
(47) B0 = y'(x) (x - x - 5) + 0%,

where e(x) is the solution of (45) .
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Proof: Setting x =X, , and using (30), we can have from equation (31)

k
that

2

(48) E'(x,) = - ;—y"(xk)h + 0(h°)

i)
By means of (44) and (48) we can obtain (46) and (47) respectively from

(20) and (21) .

4, The round off error of the method.

We have dealt with the behavior of errors under the assumption that
the numerical solutions yk, y"k strictly satisfy (4) and (6). In actual
computation, however, yk and y'k do not satisfy these equations, because
of the effect of round off. The calculated value of the numerical solutions

(denoted by ?k, ?;{) satisfy slightly perturbed equations:

X
— k 1 = _ - —
(49) Yy -‘/ K(xk, Sy [(xk s) Y1 + (s Xk—l)yk])ds + T + gk ,

where

and

Y _
(50) ¥y = Wiy~ My

Here gk, nk are the local round off error. We shall compare the

"actual"” numerical solutions i;k R ?L with the "theoretical" numerical solutions

¢
yk? Yk b
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Define the accumulated round off errors in computing Yy y'k respec-

R = ?’k - yi{ . Subtraction of equations (4) and

tively by Rk = yk - yk, K

(6) from (49) and (50), replacing k + 1 by k in the former equation, gives

Xk ‘ 1
(51) R, = f {K(xk,s,g [(Xk-S) Yy
Xp-1

L mx Dy D)

1
- Kxps s, - [x =s) v s =x, )y, Dl ds+ (@ -n)te,

. .1 )
(52) R = Ry TR AT

Using the Lipschitz condition (c) on equation (44), we have

k-1
(53)  [R | s Lh Eo (R 1+ IR+ g ] s
which implies
) k-1 |
2Lh £l L
(54) R | = TTon Z IR o Kbz

By using Lemma 1 on (54) we obtain

2
lexl+2Lh [Roly o (2 ) x

(55  |R | = ( TTT “Th

k 2

where RO is the round off error in computing £(0).

Using (55) we can conclude from (52) that

o2 el t2Lh [Ref 2L
(56)  |R | = ¢ +11_Lh ) exp (1__Lh)xk+l+[nk| .

We formulate the above result in the following theorem:
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Theorem 5. If K(x,s,y) and f{(x) satisfy conditions (a), (b), (c),

then the accumulated round off Rk’ Rk

from (4) and (6) obey (55) and (56) provided h < %,

in computing Vs yi{ respectively

Although the bound in this theorem may be unrealistic, the important

feature is that |R, |, the accumulated round off error, is bounded as h — 0

xl’

for fixed x .

5. Numerical examples.

Numerical results are computed and tabulated for two examples. Example 1
is nonlinear, whereas Example 2 has a singular kernel. The numerical procedure
used is exactly that described in Section 2. It is self-starting; and the step-
size can be changed at any step, if necessary, without added complications.

In what follows, for the sake of simplicity, we shall refer to the point
which is mid-way between two knots as the mid-point. In both of the examples
in the tables, the step-size h is kept constant throughout the range of
integration. The size of h is reduced by a factor of three each time in order
that knots will remain as knots, and mid-points will remain as mid-points. With
such an arrangement, the speed of convergence of the results at the points
under consideration will become clear directly from the numerical results.

We tabulate, for each example, the results for only two points, one
knot and one mid-point. These illustrate some of the features of the method.

In Example 1, x =1.25 is a mid-point and x = 1,50 is a knot, whereas in

Example 2, x = 0.25 is a mid-point and x = 0,5 is a knot,
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In Tables la and 2a, the column 5 and 8 illustrate the speed of

convergence of the approximation p{(x) and its dirivate p'(x):

(i) As h is reduced by a factor of 3, the error of p(x) at the mid-
point and at the knot is reduced by a factor of approximately 9. This checks

with Theorem 1 and its corollary 1.1 which state that

v(x) - p(x) = 0(h%)

for x € [0,b] .

(ii) As h is reduced by a factor of 3, the error of p'(x) at the
mid-point is reduced by a factor of approximately 9. This verifies Theorem
2,which states that

v, + 2y - (x, +3) = 0(h®)

for k=0,1,2,... .
(iii) The slope pu(x) is constant in Xy <x < Xl In Tables la, 2a

8
we have taken p (x) at the knot x, to be the same as p'(x) in x, < x< x

k
From the tables it is seen that as h is reduced by a factor of 3, the error p'(x)

at the knot is reduced by a factor of approximately 3. This checks with the

fact that

for k=0,1,2,... .
To improve the estimate of the derivative at the knot we compute it by
taking the mean of the slopes of the linear approximation function in the two

intervals on either side of the knot. Referring to Tables 1b and 2b, it is

k k+l °
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seen that as h is reduced by a factor of 3, the error of the improved estimate
is reduced by a factor of approximately 9. This verifies Corollary 2.1 which
states that

v (k) - () = 00, k=1,2,...,

provided that we define

3

I S )
p(Xk)—Z[p(xk 5

1 h
No signs of instability were present in the numerical results obtained

by this method applied to the two examples.



Example 1.
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Numerical solution of

y(x) =f yz(s) ds +e * +%(e
0

X

—Zx_l) )

Exact solution is y(x) = e
Table la.
' t
x| h y(x) p(x) | y(x)-p(x) v (x) p(x) | v ()-1(x)
1.25] 0.1 |.286504 | .288778 —2.27%10"> | -.286504| -.285384 S1.12x10”°
%—-(0.1) .286757 | -2.53%x1074 ~.286380 | -1,24x107%
1
5(0-1) .286533 | -2.90X107° -.286491 | -1,37X1075
1.50] 0.1 {.223130 | .225335 | -2.21X1073 | -.223130| -.211297 -1.18%1072
1 _ -
{0.1) 223374 | -2.44x107% -.219335 | -3.79x107>
1 - -
5(0-1) 223157 | -2.72x107° ~.221882 | -1.25X107°

y(x) = exact solution,

p(x) = approximation solution,

h = step-size .

Table 1b.
9 s ' 2
h v (1.5) D (1.5) |y (L.5)-p (1.5)
0.1 ~.223130 | -.222430 | -7.00X107%
1 -5
g‘(O.l) -.223053 | =7.71X10
1 , -6
3(0..1) ~.223122 | -8.50X10
L.

p'(l.5) = improved estimate of the derivative at x = 1.5 .
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Example 2. Numerical solution of

x
1 1 2
y(x):—f \/———-—'——X—:“;‘"y(s)ds+1+x+m log(V 1 +x +JX).
0

1

Exact solution is y(x) =

1 +x
Table 2a

X h y(x) p(x) | y(x)-p(x) y (%) p(x) |y (x)-p (x)
D.25 0.1 |.800000 | .800770 | -7.70x10-4 | -.640000|-.640712|7.12X1074

1
5 (0.1) .800084 | -8.44%X10° -.640074|7.42x107°
%(0.1) .800009 | -9.26X107° ~.640007 | 7.70X10~6
.50 0.1 |.666666 | .666261 | 4.05x10™% |-.444444|-.416241|2.82%X1072
%(0.1) 666621 | 4.52X107° -. 434732 ) -9.71x107>
1 . -
5(0.1) 666661 | 5.04x10-6 ~.441170| =3.27%x1073

v(x) = exact solution, p(x) = approximation solution, h = step-size .

Table 2b
h (.5 B(.5 | v(.5-D(.5)
0.1 ~.444444| -, 445987 | 1.54X1073
1 -4
$(0.1) ~.444612 | 1.68%X10
é«o.l) ~.444463 | 1,85X107°

’p"(. 5) = improved estimate of the derivative at x = 0.5 .
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