INTERVAL ARITHMETIC FOR THE BURROUGHS
B5500: FOUR ALGOL PROCEDURES AND
PROOFS OF THEIR CORRECTNESS

by

Donald I. Good*
&
Ralph L. London¥*

Computer Sciences Technical Report # 26
June 1968

% Computer Sciences Department and Computing Center.

Reprinted December, 1968,

ACKNOWLEDGMENTS

We gratefully acknowledge the support of this work as follows:

Good:

London:

Computer Time:

UW Computing Center and Gas Supply Research
Department, Northern Natural Gas Company,
Omaha, Nebraska.

UW Computing Center and NSF Grant GP-7069.

University Research Committee.

We are both indebted to Ramon E. Moore for his encouragement and

advice.

II.

III.

IV.

TABLE OF CONTENTS

ACKNOWLEDGMENTS
TABLE OF CONTENTS
ABSTRACT
INTRODUCTION

INTERVAL ARITHMETIC

Real Interval Arithmetic
Rational Interval Arithmetic

THE B5500 ENVIRONMENT

The Set M
Integer Operands
Double~-Precision Operands

THE ALGOL ENVIRONMENT

Extended Algol
Global Declarations and Initialization
General Strategy of Implementation

THE PROOFS OF THE CODE

The General Strategy of Proof and Notation
Assumptions

Required Values of the Variables LB and RB
Flow of Control through IF Nests

The Variables X, Y, S, T, EXPA, EXPB, RNDR,

LEFT, SUBFLAG
The Values of INTERFLOW
The Actual Rounding of Variables
Proof of NORMALIZE
Operations Common to ADD, MLT, and DIV
The Proofs of ADD, SUB, MLT, and DIV
Proof of ADD
Proof of SUB
Proof of MLT
Proof of DIV
Proof of Termination

CONCLUSION

Page

ii

20

20
23
24

37

37
41
42

46

46
48
49
54

59
61
64
66
74
76
78
93
94
108
115

116

REFERENCES 122

APPENDIX 123

iii

ABSTRACT

Four Algol procedures for interval add, subtract, multiply and
divide are presented. Also included are proofs that each is correct

according to theory developed in the first part of the paper.

INTRODUCTION

This report presents a set of four Algol procedures for performing
interval addition, subtraction, multiplication, and division on ‘Ehe
Burroughs B5500. The algorithms are presented in the context of Algol
on the B5500. In the conclusion we indicate the wider applicability of
the algorithms to other computers.

Also included is a set of proofs that show that these procedures
are correct. These proofs are given in order to show, first, that tﬁe
property of interval arithmetic of computing guaranteed bounds is
preserved by these procedures, and, second, that these procedures
produce the best possible bounds that can be represented on the B5500.

Only by proving the code have we uncovered (and corrected)
several errors in an earlier version which had escaped detection by the
usual debugging methods. Thus the code clearly has benefited by
proof.

But let there be no misunderstanding about our claims that we have
proved the correctness of the procedures. In this paper we define what
we demand of an implemenj:at-ion of interval arithmetic, and then prove
in a mathematical sense that the actual Algol code accomplishes our
demands. In other words, we give a set of mathematical-type arguments
that the code does what we require. Hopefully the arguments are

sufficiently convincing and rigorous.

vet we should add a note of caution. Certainly we do this not to
cast doubts upon our work. Rather, it is included simply because we
are not warranting the code in any legal sense. Nor could we. Even
with our proofs, we éannot guarantee that every user of the code will
always obtain "correct" answers. This is so for two reasons.

First, our proofs are at the level of the Algol code. The proofs say
nothing about the accuracy and reliability of either the software or
hardware of the B5500. Second, even though we have applied the rules
of inference carefully, and we think accurately, there is still no
| guarantee in an absolute sense that our proofs are error-free, This same
hazard is, of course, common to nearly all mathematical proofs.
Naturally, we confidently doubt the existence of such an error.

Nevertheless, our proofs exceed the usual attempts to assert the
correctness of code. In summary then, the reader should understand
both our claims and our cautions.

It should be noted that the present paper is not intended as a user's
manual. Instead, it is intended to give a complete development of an
interval arithmetic suitable for implementation on a computer. Proofs
are given of the properties of this interval arithmetic as well as proofs
of the correctness of the actual implementation. The attempt to be as
complete as possible and to record all the details in one place accounts
for the length of this technical report. A condensed version is in

preparation.

Although we both take responsibility for the entire paper, the

division of work is basically as follows:

-Good: The mathematical presentation of interval arithmetic,
statements of machine environment, most of the
statements and proofs regarding machine operands;
and the actual coding and program organization.

London: Nearly all of the proofs concerned with Good's code.

This paper is directed to two classes of readers, and this situation
is a reflection of the interests of its two authors. One class of readers
will mainly be interested in the fact that there now exists an implemen-
tation of interval arithmetic on the Burroughs B5500. These readers
certainly would have used the procedures with or without the attached
proofs. For them the proofs are much like the just-discovered proof of
convergence of an algorithm that they had been using "successfully" for
some time--confirmation of what was "known" all along. Nevertheless,
the existence of the proofs is reassuring. This class of readers will
probably want to concentrate on the sections dealing with the theory of
interval arithmetic and its implementation on the B5500 (Sections I, II
and III).

On the other hand, a second. class of readers will be mainly
interested in our answer to the question, "How would one prove that
the present implementation is correct?" These readers should view

interval arithmetic (defined in Section I) as an interesting domain in

which to prove the correctness of computer programs. These readers

will probably want to concentrate on the proofs of the code (Section 1IV)

and, to a lesser extent, on the environment sections (Sections II and III).

I. INTERVAL ARITHMETIC

For sake of completeness, the relevant properties of interval
arithmetic are presented here. For a complete discussion of interval

arithmetic and interval analysis see (3).

Real Interval Arithmetic,

Let R denote the set of all real numbers. Define the set of

real interval numbers, &, as

> o= (I | I=(s,t)wheres,teR and s < t). (1)
The interval number I = (s,t) represents the set of real numbers x
such that x € [s,t]. In view of this we write I = [s,t].

Let o be any binary operation defined on pairs of elements (s, t)
where s ¢ R and te R. Then the operation o can be extended
from elements in R to the operation © defined in 3 as follows.

Let A, Be Y, then

AeB = {z | z=sot for some s e A and te Bj. (2)
For example, the operation of addition on the real numbers can be
extended to addition on the interval numbers as follows. Let
A = [v,w] and B = [x,y] then

A+B={(z|z=s+t for some se [v,w]and te [x,y] }.

The same kind of extension can be made for unary operations, and

indeed for any kind of operation.

A degenerate interval is an interval of the form [s,s]. Hence

there is a one-to-one correspondence between the degenerate intervals
and the real numbers. Note that in the preceding discussion the
extended operation e is exactly the operation o if A and B are
both degenerate intervals.

In this report, we are concerned only with the four binary
operations +, -, &, /. Let A= [v,w] and B = [x,y] be elements of ».

By applying Eq. 2 to these operators, it can be shown that (3, pp. 8-9)

[v,w]l+ [x,y]=[v+x, w+Vy]
[V,W] - [XIY] = [V - YW~ X]
[v,w] & [x,y] = [min (vx, vy, wx, wy), max (vx, vy, WX, wy)]

[v,wl] / [x,v] = [min (v/x, v/y, w/x, w/y), max (v/%,v/y,W/x,W/y)]

Thus operations on interval numbers involve only endpoints. The
operations +, -, @ can be defined for all interval numbers; however,
the operation / must remain undefined if the interval [x,v] contains
zZero.

If the intervals A and B are regarded as bounds for the real
variables s and t, respectively, then it can be shown (3, p. 11) that
the intervals given by Egs. 3 are guaranteed bounds on s + t, s -1,
sgt, ands /t. For example, if s may lie anywhere in the interval
[v,w], and t anywhere in the interval [x,y], then s +t mustliein

the interval [v + x, w + y]. Thus [v+x, wtylisa guaranteed bound

(3.1)
(3.2)
(3.3)

(3.4)

for the expression s + t, By guaranteed we mean that given any

s € [v,w] and any t ¢ [x,y], the sum s + t cannot possibly be outside
the interval [v + x, w + y]. The interval [v+x, w4+ ylis also the
best bound in the sense that there exist specific values of s and t
such that the lower bound v + x is attained; the same is true of the
upper bound. Thus the bound [v+x, w+ y] is as "tight" as possible.
The same is tmé for the other operations in Eqs. 3.

Guaranteed bounds for the range of any real arithmetic expression
can be computed by changing the real variables to interval numbers
which are guaranteed to contain the domain of the variables, and
replacing the real arithmetic operations by interval operations. For
example, suppose s ¢ [-1, 2] and we wish to compute bounds for the
expression s @ s, Then using Eq. 3.3 we compute [-1,2]=&[-1,2] to
be the interval [-2, 4]. The true bound for the range of smgs = s2 for
s € [-1, 2] is the interval [0, 4]. In this case the computed bound is
guaranteed, but is not optimal because there is no value of s
between -1 and 2 such that s2 < 0. Now suppose we wish to bound
the range of the expression smt for s € [-1,2]and te [-1,2]. We
get the same bound as before, namely [-2, 4]; but this time the bound
is optimal. It can be shown that this technique of bounding real
arithmetic expressions has the following properties (3, p. 11):

(i) A guaranteed bound always results.

(ii) The bound is also optimal if each variable in the expression

occurs only once. E.g., the expression x+y)mz+u/v

would guarantee an optimal bound, whereas the bound for
(x + y) ®y + x/y might or might not be optimal.

Let A=[v,w]and B =[x,y]. The operations & and / can be
simplified computationally by examining the signs of v, w, x, y. With
regard to sign, there are nine cases to be considered. These results
for m are given in Table 1. The notation [-, +] in the A column means

that v¢ O and w2 0, and similarly for x and y in the B column.

Table 1. Sign analysis of multiplication.

Case A B AgB
No. [v,w] [x,v] =
1 [+,+] [+,+] [vx,wy]
2 [+,+] [-,+] [wx,wy]
3 [+,+] [-.-] [wx, vy]
4 [-,+] [+,+] vy, wy]
5 [—;+] [-,+] [min (vy,wx), max (vx,wy)]
6 [-.+] [-.-] [wx, vx]
7 [-,-] [+,+] [vy,wx]
8 [-.-] [-,+] [vy, vx]
9 [-.-] [-.-] [wy, vx]

Similarly, in Table 2 are the results for /.

10

Table 2. Sign analysis of division.
Case A B A/B
No. [v,w] [x.v] =
1 [+,+] [+,+] [v/v,w/x] *
2 [+,+] [-,+] undefined
3 [+,+] [-.-] [w/y,v/x]
4 [-/+] [+,+] [v/x, w/x] %%
5 [-.,+] [-.+] undefined
6 [-.+] [-.-] (w/y,v/y]
7 [-,-] [+,+] [v/x,w/y] *
8 (-.-] [-,+] undefined
9 [-.-] [-.-] [w/x,v/y]

* Undefined if either x =0 or y = 0.

*¥% Undefined if x = 0,

Before concluding this discussion let us note some of the

properties of real interval arithmetic.

Lemma 1.

A-B=A+ (-B)

where -B is defined to be [-y,-x].

Let A=[v,w] and B =[x,y] bein 5. Then

Proof. A+ (-B) = [v,w] + [-y,-x] = [v-y,w-x] = A - B.

11

Interval addition and multiplication are both commutative and

associative (3, p. 9), i.e. if A, B, C € >, then

A+B = B+A
AB = BA
A+(B+C) = A+B)+C
A(BC) = (AB)C

Also interval arithmetic is inclusion monotonic (3, p. 10), i.e. if

A,B,C,Dey andA ¢ C and B ¢ D, then

A+BgC+D
A-B-C-D
AB<- CD

A/Bc C/D provided 0 ¢ D.

Also it can be shown that strict containment occurs if both A<= C and

B « D. Because of this fact, it would be appropriate to say that real

interval arithmetic is strictly inclusion monotonic.

Rational Interval Arithmetic.

Just as real arithmetic cannot be performed on any actual computer,
neither can real interval arithmetic. In order to develop an interval

arithmetic that can be implemented on a computer, we are led to consider

12

interval arithmetic on a finite set of rational numbers. Let Q denote
the set of rational numbers, and let M be any finite subset of Q
whose elements are distinct. Then M can be written as

M = {xo, xl,...,xp}
where, because the x, are distinct, we may assume KXo <Xy < oene
<Xy <Fpe We also associate with this set the special elements -K
and +K such that -K = x0 and +K = xp. (This is simply a notational
conv’enience and does not necessarily imply that -K = -(+K).) Let x be
any element X, of M. Then we will use the following notation:

X =% provided x # -K, and x+ =X provided X, # +K. Thus X

+
and x are, respectively, the next numbers smaller and larger than x.

Now we define the set, R}M’ of rational interval numbers on M as

&M={I|I=(s,t);s,teMand s<t).

We also want to define the operations +, -, &, / on &M so as to pre-
serve the guaranteed bounding properties of real interval arithmetic. The
definitions in Eqs. 3 cannot be used because A‘rM is not closed with
respect to these operations. In particular, there are two kinds of
violations of closure which we shall call violation of magnitude, and
violation of "betweenness". Let us denote by [«,B] the result of applying
one of the operations of Eqs. 3 to a pair of intervals in ;}M and allowing
[«,B] to be any element of ». A magnitude violation occurs if either

@ ¢ -K or B> +K. For example, [+K,+K] + [+K,+K] = [a, B] = [2(+K),2(+K)]
and both @ and B are greater than +K. Hence (, but not «, commits

a violation of magnitude.

13

A violation of betweenness occurs in the following way. The end-
point, say «, exhibits the violation of betweenness if it satisfies the
condition -K < X, <A, < +K for some i between 0 and p-1.

Thus a lies strictly between two successive elements of M. Now let

us consider the following definition of + on

M Let A =[v,w]and

B = [x,y] be in & Then

M-
[v.w] + [x,v] = [max{z | 2<v+x,2e M},

minf{z | z>w+y, ze¢ M}] = [a,b] (4.1)

provided -K< v+ x and w+ y < +K. Thus the interval [a,b] is the
interval of smallest width in '&M which contains the interval [v+x,w+y].
The property of guaranteed bounding is preserved for addition because
by Eq. 4.1 we have [v + x, w + y] < [a,b]. Because it may be that
[v+x, w+ y]le [a,b], optimality in the sense of Eqs. 3 is not neces-
sarily preserved. However, the interval C = [a,b] is optimal with
respect to M in the sense that there exists no other interval D € 3 _,
different from C, such that [v+ x, w+ y] « D= C. Said another way
[a,b] is the best possible interval that can be computed, or represented,
from the rational numbers in M.,

Thus violations of betweenness are overcome by the max and min
operations over M of Eq. 4.1. In order to note violations of magnitude,

we associate with the addition operation an integer F. If no violation

occurs, F = 0 and [a,b] is computed according to Eq. 4.1. However,

three kinds of violation may occur: in the left endpoint, the right

14

endpoint, or both. In these cases the following actions are taken by
the addition operation:
i) If v+xg-K, set F=1, and the result to [-K,b].
il) If w+y> 4K, set F =2, and the result to [a,+K].
iii) If v+x«¢-K and w+y > +K, set F = 3 and the result
to [-K, +K].
By this scheme, the best possible results are computed.

In similar fashion we can define on &, the operations -, &, /

M

as followé :

[v.w] - [x,v]= [max{z]zg v-y,z€ M),

min{zlzzw—x,zeM}] (4.2)
provided -K< v-y and w-x< +K.
[v.w]=m [x,y] = [max (z | z< min (vx, vy, wx, wy), z € M},
min {2 | Z 2> max (vx, vy, WX, Wy), Z € M}] (4.3)

provided -K < min (vx, vy, wx, wy) and max (vx, vy, wx, wy) £ +K.
[v.w]/ [x.v]= [max {z | z2< min (v/x, v/y, w/x, w/y), z € M),
min {z | 2> max (v/x, v/y, w/x, w/y), z € M}] (4.4)
provided 0 ¢ [x,y] and -X £ min (v/x, v/y, w/x, w/y)

and max (v/x, v/y, w/x, w/y) < +K.

The operations ® and / can be analyzed according to sign exactly as
shown in Tables 1 and 2. The treatment of the flag F for violations of

magnitude in these operations and the results produced are given in

15

Table 3. In this table the interval [a,b] is the result produced by

any of Egs. 4.

Table 3. Magnitude violation flag.

F Operation Result Caused by

0 +,~-,8,/ [a,b] No violation

1 + [-K,b] Vi’olation left

2 + [a,+K] Violation right

3 + [-K,+K] Violation left and right

4 - [-K,b] Violation left

5 - [a,+K] Violation right

6 - [-K,+K] Violation left and right

7 = [-K,b] Violation left

8 = [a,+K] Violation right

9 = [-K,+K] Violation left and right
10 / [-K,Db] Violation left
11 / [a,+K] Violation right
12 / [-K,+K] Violation left and right
13 / [-K,+K] Violation left and right

due to 0 ¢ [x,v]

Let us now note some of the properties of rational interval
arithmetic as defined by Egs. 4 and Table 3, First note that the
relation A - B = A + (-B) in Lemma 1 may not hold in & M’ because
x € M does not necessarily imply that -x ¢ M. Therefore, we state

the following lemma for A‘}M.

16

Lemma 2. Suppose that M has the property that for every x € M
then -x ¢ M. Then for all 4, B ¢ bM'

A-B=A+ (-B)
provided F = 0, If F # 0, the result of the above operation

is correct if F is increased by three. (F is set by +.)

Proof. Let A =[v,w]and B=[x,y] be in S Then by our
assumption about M, -B = [-y, -x] € x‘rM; so A + (-B) is well defined
on 5M . Now apply Eq. 4.1 to get

[V:W] + [-y, "X] = [E,B]

and suppose F =0 (from +). Because F =0 we know that -K< v - y
and w - x < +K which implies that A - B does not commit a magnitude
violation; hence F = 0 is also the correct value of F (from -). Now
let [a,b] be the result of applying Eq. 4.2 to A - B, Now we must show

that [7,b] = [a,b], i.e. T=a and b = b.

d=max {z | z< v+ (-y), z€ M)

=max (z |z2< v-y,2€ M) =a.
A similar relation shows that b = b,

Now suppose F =1 as a result of [v,w] + [-y,~-x]. This implies
that v+ (-y) ¢ -K and w + (-x) < +K. Increase F by 3 obtaining
F=4., Now v+ (-y) ¢ -K implies v - y ¢« -K which is a magnitude
violation in the left endpoint of subtract. Now since F = 4, it agrees
with Table 3 and b =b as argued just previously. Similar arguments

hold for F=2 and F = 3. This completes the proof.

17

Lemma 3. Rational interval addition is commutative,

Proof. Let A ={[v,w]and B =[x,y]bein »

M Suppose F = 0,

A+ B

]

[max{z[zg vt x, ze M},min{zlzzw+y,z€M}]

[max{z[zé X+v, z2¢ M},min{z]zZy+w,ze M})

B + A,

Now suppose that in computing A+ B, F is set to 1. This implies
that v+ x ¢ -K. Hence x+ v ¢ -Kand B + A also has a left violation.
Alsoif F=1 from A+ B, then w+ y < +K which implies that y + w < 4K
and the right endpoint of B + A is computed as required. Similar results

hold for F=2 and F =3,

Lemma 4. Rational interval multiplication is commutative.

Proof. Let A =[v,w]andB = [x,y] be in ;}M. Suppose F = 0.

-
AgB= max{z]zg min (vkX, vy, wx, wy), ze M},

_
min {z | 2 2 max (vx, vy, WX, wy) }]

-
= | max {z] z < min (xv, yv, Xxw, yw), z€ M},

.
min {z | z > max (xv, yv, xw, yw)]]

= BmgA

Arguments like those of Lemma 3 hold for the values of F being 7, 8, 9.

This completes the proof.

18

The associative law does not hold for rational interval addition.
Suppose
M={(0,1,2,...,9} u {100, 200,...,900). LetA =B =[1,1] and

C =[100, 100]. Then

A+B)+C=([1,1] +[1,1]) +[100,100]
= [2,2] +{100,100]
= [100,200]
while
A+B+C)= [1,1]+ ([1,1]+ [100,100])

H

[1,1] + [100,200]

[100,300].

This example is not as artificial as it may first appear. An analogous
situation can occur with floating point numbers on a computer.

Neither does the associative law hold for multiplication.
Suppose M = (0, .1, .2,...,.9} u {1, 2,...,9) y {100, 200,..., 900}.

LetA=[2,2], B=[.9, .9]and C =[100,100]. Then

(AB)C = ([2,2}[.9, .9]) [100,100]
= [1,2][100,100]
= [100,200]
while
A(BC)=1[2,2]([.9,.9]1[100,100])

=[2,2][9,100]

= [9,200].

19

The rational interval arithmetic defined by Egs. 4 and Table 3 is
also inclusion monotonic. However, the strict inclusion monotonicity
of real interval arithmetic is not preserved. Consider addition, Eq. 4.1
makes it clear that if A < C and B ¢ D, thern certainly A+ B = C + D.
However, it may be that A= C and B« D and that A+ B = C + D rather
than A+ B =« C + D as in real interval arithmetic. For example, suppose
that M = {-900, -800,..., -100} y (-9, -8,...,-1} y {0,1,2,...,9}
u {100,200,...,900). Let A=[-3,3], B=[-4,4], C=[-7,7], and
D=[-8,8] sothat AcC and B=D. Then A+ C =[-3,3]+[-7,7]
= [-100,100] = [-4,4] + [-8,8] = B + D.

A digital computer operates entirely on a finite set of rational
numbers. Hence by implementing Egs. 4 and Table 3 we can produce
an interval arithmetic that can be used on a digital computer to produce
guaranteed error bounding. When implemented, the interval arithmetic
will have the properties of rational interval arithmetic which we have
discussed. The rest of this paper then is concerned with a set of Algol
procedures which implement Eqs. 4 and Table 3 on the B5500; and with
proving that, in fact, these procedures correctly perform these specified

operations.

20

II. THE B5500 ENVIRONMENT

The following discussion is directly related to the properties of
the Burroughs B5500 digital computer. However, several of the points

are applicable or extendable to computers with similar properties,
The Set M.,

Any digital computer is restricted, for all practical purposes, so
that it can operate directly only on a finite set of rational numbers,
This follows from the fact that any "arithmetic register" can contain
only a finite number of discrete digits. Also most computers make a
distinction between floating-point and fixed-point numbers. Since most
numerical computation is done in the floating-point mode, we will
consider interval arithmetic only on these numbers, Further, on most
computers a floating-point number must be "normalized" so that the
arithmetic registers will operate on it correctly. (Normalization may
mean different things on different machines.) It becomes apparent that
for most machines it would not be practical to implement an interval
arithmetic, as previously defined, that would operate on all possible
machine numbers. Hence the interval arithmetic is restricted to a subset
of the machine numbers.

Every number that can be stored in the B5500 is stored in a 48 bit
word. We shall call this bit configuration an operand to distinguish it

from the number or value it represents. The first three binary digits of

21

the operand are viewed independently by the B5500. The rest of the

bits are interpreted by the machine as a string of 15 octal digits. Thus

a B5500 operand of 48 bits may be viewed conceptually as follows:

619 12115 18] 21| 24 |27 |30] 33 36| 39] 42| 45
4] 7110]13]16] 19| 22] 25 |28 |31 34| 37| 40| 43| 46
8 111 [14| 17] 20| 23] 26 {2932]35] 38] 41| 44| 47

&) €y My My My M, My M, My Mg Mg M5 My M, M4

Figure 1. B5500 numeric operand.

Bit 0 is a flag bit which is always 0 for a B5500 operand so as to
distinguish it from an instruction. Bits 1 and 2 are sign bits of the
mantissa and exponent, respectively; 0 denotes +, and 1 denotes -.

The first two octal digits, e_, e2 of the 15 digit string denote the

1

magnitude of the exponent, and the remaining octal digits, m ..M

1°° 13’

denote the magnitude of the mantissa. The octal point is to the right of

m Thus the mantissa is an ordered set (m_,m

13" 1 2,...,m13)ofnon—

negative octal digits, 0, 1, 2, 3, 4, 5, 6, 7; likewise the exponent is
an ordered pair of non-negative octal digits (e1 ,ez). 1f we denote the
sign of the mantissa, bit 1, by S and the sign of the exponent, bit 2,

by Sg v the numeric operand will then be represented in our notation

ey . > . a iating th
as (sm, S, (el,ez), (ml, m13)) By conceptually associating the
sign of the exponent with each digit of the exponent, and likewise for

the mantissa we can represent the d’perand as the pair (e, m) where e

)

22

denotes the entire signed exponent and m the entire mantissa with

associated sign. Note that both e and m are integers.

e=818+<—:‘2 (5.1)
and
13 13-4
m:Z m8 . (5.2)
i=1

Even though these and later expressions involve mixed base 8 and
base 10 notation, the intent seems clearer than if we were to write the
8's as 108 or just plain 10. For the rational number represented by the

numeric operand (e, m) we use the notation r(e,m). On the B5500 this

number is given as follows:

- e, 8+ e

r(e,m)=m8€= m.8

A B5500 numeric operand is said to be normalized if and only if

the first octal digit of the mantissa, m_, is not zero. For example,

1
the operand (+, +, (1,4), 1, 0, 0, 0, 0, O, O, O, 0, O, O, O, 0))
is normalized, whereas (+, +, (0, 0), (0, 0, 0, 0, 0, 0, 0, 0, O, O,
0, 0, 0)) is not. Let us denote by N' the set of all normalized

operands,

N'={(e,m) |m #0]}. (7)

Let Z be the operand whose exponent and mantissa are all zeros and
whose sign bits are both +. The rational number represented by this

operand Z is zero. Now let N = N' y {Z}. The set M of rational

23

numbers on which we shall implement the B5500 interval arithmetic
is the following:

M= {x|x=r(e,m), (e,m) e NJ,. (8)

It can easily be verified that there is a one-to-one correspondence
between elements of N and M, and that the elements of M are

distinct. Also +K = 7777777777777-877and -K = - (+K). For later
purposes we also need to distinguish the elements O+ =€ =

77 77

1000000000000-8 ' " and 0 = -€ = -1000000000000-8 ' .

Integer Operands.

Some computers make a distinction between fixed-point (integer)
and floating-point operands. On the B5500 this distinction is made
only conceptually. The 48 bit word is interpreted exactly as for
floating-point, so that an integer operand is simply a numeric
operand whose exponent is zero. Hence the B5500 has only one set
of arithmetic commands which work equally well on integer, floating-
point or mixed operands. Note that, in general, integer operands are
not normalized. Hence most non-zero integer operands are not in
N'. However, for every such integer operand which is not in N',
there is an equivalent, normalized operand which is in N'. Thus all
integers which can be represented on the B5500 by integer operands

are in M.

24

Double-Precision Operands.

Two 48 bit words are used to contain a B5500 double-precision
operand. The most significant word appears as a single-precision
operand, i.e. it has the same exponent, mantissa, and two sign
fields. The least significant word has its exponent and two sign
fields all zeros, and the mantissa of the double-precision operand
is continued by using the mantissa of the least significant word.
Thus a déuble—precision operand is a pair of numeric operands

(1) ((1) |

), (O,m 2))) where e = (el, ez), m = (ml,...,m

(2)

((e,m 13),

and where m = (m14, coo 'm26) with associated sign bits found in
the first word. (Note that the least significant word always appears
as a non-negative integer if viewed independently of the most
significant word.) For a double-precision operand we will use the

m L@,

notation (e, m "', a simplification of the above. The rational

number represented by this operand is
26
- e,8+e
i=1

As with single-precision, a double-precision operand is said to be

normalized if and only if m, #Z 0.

1y _(2)

et u=r(e,m" ', m ’). Then we make the following definitions:

=
H

max{z|z$u,zeM) (10.1)

=l
0

min {z[zzu,zeM]. (10.2)

25

Note that u and U are rational numbers, not operands. Henceforth
we will also use the following notational conventions. The + operator
of r(e,m)+r (e',m') denotes real addition, and likewise for double-
precision operands. The + operator of (e,m) + (e',m') denotes
single-precision addition as performed by the B5500 arithmetic unit.

Also (e,m(l), m(z)) + (e', m(l)' , m(z)'

) denotes B5500 double~precision
addition. Thé same holds for the other operators -, m, /. Also we
will make use of the unnormalized single-precision operand (e, 1), i.e.
the mantissa is 0000000000001.

We now present some lemmas concerning relations among elements

of the sets M, N, double-precision operands and the numbers

represented by them.

Lemma 5. Let x € M, and let (e, m) ¢ N such that x =r (e, m).

Suppose X # 0. Then

i) x+ =r((e,m) + (e,1)) provided r (e, m)# +K and r(e, m) # 0.

(ii) x =r((e,m) - (e,1)) provided r (e, m)# -K and r (e, m) = O+.

Proof. Consider first (i). First of all we claim that the single-
precision addition (e,m) + (e,1) is within the capability of the B5500
even though (e, 1) is unnormalized, and we further claim that r ((e, m) +
(e,1))=r (e,m) + r (e,1). Notice that the exponents of the two operands
are equal in magnitude and sign. Now suppose that the sign of M is +.

This implies that m > 0 since m, # 0. The sign of 1 in (e, 1) is also +.

26

Now the B5500 add proceeds as follows. The exponent of the answer,
e, is ea = e, Then the mantissas are added. Suppose the sum does
not exceed thirteen octal digits. Then the mantissa of the answer

m_ is m_ = m+ 1. Thus the resulting operand is (e, m+1). See

(2, p.6-9). Hence the following equalities hold:

r((e,m)+ (e, 1))

i

r(e,m+ 1)

(m + 1) Be

m8€+ 1-8°

]

r (e,m)+r (e, 1) (11)

Notice also that if m is normalized, then sois m+ 1.

Now suppose that when the mantissas are added the sum exceeds 13
octal digits. Then the fourteen digit result is shifted right one place,
rounded to thirteen digits, and the exponent increased by one. Now,
the sum of m and 1 can exceed thirteen octal digits only if

m= 7777777777777. Thus the answer would be (e + 1, 1000000000000).
This is a computable operand provided e ¢ 77. If e = 77, then

r (e, m) = +K; but this case has been excluded. Now

r ((e, 7777777777777) + (e,1))

r((e,m)+ (e,1))

r (e + 1, 1000000000000)

i

- (812) 86 +1
- 813 8e
=@ -14+1)8°

27

7777777777777-8° + 1-8°

m8€+1-8e

]

1]

r{e,m)+r (e, l).

Also again the result is normalized. Now suppose that the sign of
m 1is -, hence m ¢ 0. In this case the exponent of the result is e
and the mantissa is the difference between m and 1, i.e.

m + 1 (m ¢ 0). Hence the resulting operand is (e, m + 1). Since m
and 1 are of opposite signs, the new mantissa will be of smaller
magnitude than m. Therefore the new mantissa does not exceed
thirteen digits, so Egs. 11 apply and r ((e,m) + (e,1)) =

r (e,m)+r (e,l). In this case, however, it is possible for the
result operand (e, m + 1) to be unnormalized. This happens if and
only if m = -1000000000000 in which case the result operand is
(e,0777777777777). However, even in this caser(e,m+1) e M if
e # -77 because an equivalent normalized operand is

(e-1, 7777777777770), We have ruled out the case (- 77,
-1000000000000) because the number represented by this operand is
0 . Summarizing, (i) follows readily: Since (e,m) is normalized,

+
X

"

(m + 1) 8°

m8® + 8°

1]

r(e,m)+r(e,l)

]

r((e,m)+ (e,1)) (13)

28

provided x # +K and x #0 . Notice that it is essential that (e, m)
be normalized before the addition of (e, 1), Otherwise a smaller
single-precision upper bound can be obtained for r (e, m) by first
normalizing (e,m) and then adding (e,1). Part (ii) follows from

precisely the same kind of argument,

Lemma 6. Let (e,m(l), m(Z)) be a normalized double-precision

(2)

operand and let u=r (e,m(l), m' "), Then

u and u (Egs. 10) are

((1)

(e,)+ (e,1)) it m® 5 0,r(e,m) # 4K, r(e,mM)# 0

el
i
e

(1))

r{e,m

~

r((e,m(l)) - (e, 1)) if m(z) < O,r(e,m(l)) # -K,r(e,m(1))# ot

r(e,m(”) if m(2)2 0.

\

: - (1) . : — (2)

Proof. Let x=r (e,m). Consider first . Suppose m > 0,

- 2

r (e,m(l)) #+K, and r (e,m(l)) #0 . Then since m() s 0, m(l) s 0.

We now claim 'thatx<u <X+. If this is so, U = min [z] zzu, z € M)
.'.

= x+ and x+ =1 ((e,m(l)) +(e,1)) by Lemma 5. To see that x ¢ u « x

(2)

1
recall that the octal point is between m() and m and observe the

following:

29

(1) (1) (2)

x=r(e,m)=m(1)86<(m + m)86=u<(m(1)+1)8e
= m(1)88+ Se= r(e,m(l)) +r(e,l) = r((e,m(l)) +(e,1)) = x+. (14)
Now suppose m (2) = 0, In this case u = r(e,m(l),O) = r(e,m(l)) = X,
so
U=min {z |z>u, 2z € M} =x=r(e,m(l)).
Finall (2) ! (1)
. y suppose that m < 0. Then also m < 0. Now we have
that x < u ¢ x, because
X = r((e,m(l)) - {e, 1)) = r(e,m(l)) -r{e,l) = m(l) 8e - Be
<m(l) 8€+m(2) 8e=u<m(1) Bezr(e,m(l))=xo (15)

Hence E=min{z122u,zeM}=x=r(e,m(l)

).

Precisely the same kind of arguments hold for u. This comples the

proof.

Suppose (e, m) and (e, m) are normalized, single-precision
operands. Then we shall say that their mantissas are disjoint if and
only if | e - e I > 1210. (The term is motivated by the shifting
necessary in an addition to align the octal points. Cf. the align-
ments in the next proof.) In the following lemma, we will show that
by using double-precision addition, an exact sum can be computed
for normalized, single-precision operands whose mantissas are not

disjoint.

30

Lemma 7. Suppose (e,m) and (€,m) are single-precision operands
in N whose mantissas are not disjoint. Form the double-
precision operands (e,m,0) and (¢, m,0), and suppose
(e,m,0) + (¢,m,0) = (a,b,c) and no exponent overflow or

underflow occurs. Then r (e,m)+r (e€,m)=r (a,b,c).

Proof. Assume without loss of generality that 0< e - €< 12. Notice
that since e - €< 12, the mantissas after being aligned for addition

must "overlap" by at least one digit. The alignments are as follows:

13 zeros
5= o — 3
e-e=90 rr11m2m3...m13 . . o
m1 mZ m3 m13 0 0
e-e=1 mlm2m3 ..m130 . . . 0
m, m m,.m, .0 0
1 2 12 713 J
12 zeros
e-e=2 m1m2m3...m130 . . 0
m. . m _.m 0
M MmypMemzd 9
11 zeros

31

After alignment, the mantissa m has been shifted right by e ~-¢
octal places. TFrom the above, we see that the resulting sums contain
at least 1310 + (e - &) octal digits counting leading zeros. Let us
denote by m the shifted mantissa of m. Now if m and m are of
different signs, essentially a subtraction occurs between m and .
In this case m + M can contain at most 13 + (e - €) digits; since
e - @ can be at most 12, m + i can contain at most 25 octal digits.
Now since the B5500 result (a,b,c) can contain 26 octal digits in the
mantismsa, the lemma is proved for m and m of opposing signs.

Now suppose m and m are of the same sign. Then since m and m
are added, a carry digit is possible. We will show that for any
m and M, this carry is at most one digit so that in any resulting
mantissa we can have at most 13 +(e-¢€¢) +1< 13+ 12+ 1 =26
digits. Hence again the result can be expressed exactly in (a,b,c).

The greatest possible carry must occur when m and M are as large as

possible and when e ='e. Thus let m =m, = ... =m ="r_ri2 =...=7.

a—

Now (e,m) represents 7777777777777 8% and so does (e, m). So
adding these values,
e , e
TI77797777777.8 4+ 7777777777777+ 8

< 10000000000000-8e + 7777777777777+ 8°

= 17777777777777-8° .

32

Hence the carry in adding m + M is at most one digit. This

completes the proof.

Next we wish to prove a similar result for double-precision
multiplication. The lemma rests on the following assumption: In
general, a B5500 double-precision multiply on the operands

P €D N O NN ¢)

) may generate an error in the result as
large as one in the twenty-fifth digit position (2, p. 6-12). However,
we have assumed that no error is generated for operands of the form
(e,m,0) m (6,m,0). This was verified experimentally for

(0,7777777777777,0) ® (0,7777777777777,0) and (0, 1000000000001, 0)

=® (0,1000000000001,0).

Lemma 8. Suppose (e,m) and (e,m) are single~-precision operands
in N |, Form the double-precision operands (e, m,0) and
(e,m,0), and suppose (e, m,0) & (€,7,0) = (a,b,c) and no
exponent overflow or underflow occurs. Then r (a,b,c) =

r(e,m)mr (e,m).

Proof. The B5500 double-precision multiply adds exponents and
multiplies mantissas. The fact that no overflow or underflow occurs
insures that the exponent can be added. It remains to show that the
product of the mantissas contains at most 26 octal digits. Without

loss of generality, assume both mantissas are greater than zero. Thus

33

— 3
mam< (8'13—1)131(81 - 1) « 826.

But in octal, 826 is a 1 followed by 26 zeros, which is the smallest
possible, positive 27 digit octal number with a non-zero leading digit.
Now m m m is less than this number by an integer amount. Hence

m & m must have less than 27 octal digits, i.e. less than or equal 26,

This completes the proof (under the previously mentioned assumption).

Next we need a result concerning the behavior of double-precision
division when applied to single-precision operands. We are faced with
the octal analog of decimal 1/3 = .333 Accordingly, there is no
result for division corresponding to the exact results of addition and
multiplication given in Lemmas 7 and 8. A result sufficient for our
needs, however, can be obtained by considering only when the least
significant word of the quotient assumes its extreme values, namely

0000000000000 and 7777777777777,

Lemma 9. Let (ea,a) and (eb,b) be operands in N where (eb,b) £ 7.
Form the double-precision operands (ea,a,O) and (eb,b,O),
_ (1) (2)
and suppose that (ea,a,O) / (eb,b,O) =(d,c'”’,c "), and
no exponent overflow or underflow occurs. Also suppose,
as is the case on the B5500, that

) (d,c(l), o2

} is normalized or zero.

34

ii) the resulting quotient mantissa c1 1Copranny o

contains the first 26 non-zero digits of the actual
quotient r (ea,a,O) /r (eb,b,O)

(2, pp. 6-12--6-13). Finally suppose that

r(e_,a,0)
—_—2 =7 (d,c(l),c(z)) + R

r (eb,b,O)

where R is a real number of arbitrary precision. Then

. . @)_ . . - - - - =
(i) if c ~O(1.e.cl4—c15—.,.—026—0),thenR—0

(ii) if =¢c., = 7, then the (infinite)

26

quotient does not consist of all 7's beyond 026'

CI4=C15: oo

Proof. If r(ea,a) = 0, (i) is clear and (ii) does not apply. Therefore
assume r (ea,a) # 0., Let the mantissas be denoted as follows: a is

. . . (1) .
the string of 13 digits a1 at2 b is bl bz. ...b13, c is
(2) .

137 C is €4 Crge-Copr

c-oal3,

c and the total quotient mantissa is

Cl Czo.o

the string c. ¢,...C o0 eC

1 2 13 ©14 %15
) @

26" Because (ea,a,O), (eb,b,()),

and (d,c) are normalized, we have that a, 0, b1 # 0, and
< # 0. Since there is no overflow or underflow, we may ignore the

exponents, i.e. the digits of the quotient mantissa do not depend on

the exponents.

(2) _ 0.

We prove first (i). Let ¢ = Consider the division

schematically shown by the process of long division:

35

—(cl...c13)& (bl"'bi3)

5

where s, of up to 13 digits, is the remainder of the division after c(l)

has appeared in the quotient, While c1 may indeed appear over ay,

we have, without loss of generality shown it over a1 . Suppose
s # 0. Then we may continue to being down zeros from the (augmented)
dividend until the divisor of only 13 digits will go into s 0...0 of at

least 14 digits. Thus a non-zero digit would appear as one of ¢.

14
(2) _

«e,C But this contradicts c

26°
therefore R = 0.

015,. 0. Hence s= 0, and

(2)

For the proof of (ii) let c = 7....7, and suppose the quotient
does consist of all 7's beyond 026. Consider the same division as
before but with Cl4 = 7 placed in the quotient and the next remainder

. t shown:

Y o 7

1 13
bl"°bl3 lal.........al30...0
—(cl...cl3) = (bl”'b13)
s 0
-T® (bl"'b13)

t

where t may be of up to 13 digits. But in order to obtain the infinite

string of 7's in the quotient t must equal s. Since the quantity s 0

36

has relative value 108 ® s as comparedto 7= (bl' . .b13), we have

from the subtraction which gave t

10 ES-?E(bl...b y=t=s

8 13

or

s =bl"'b13.

This says that c¢ should be increased by 1, c(z) of the quotient

(2) _

then becomes 0's, a contradiction to c = 7....7. This completes

13

the proof.

37

I11. THE ALGOL ENVIRONMENT

Extended Algol.

The interval arithmetic package presented here consists of five

-procedures, three initialization statements and appropriate global

declarations. This code uses several of the features of B5500

Extended Algol (1). We shall now list and explain the five non-Algol

60 features that are used.

1.

Conditional statement.
In Algol 60,

< conditional statement » ::= ¢ if statement 3 |

< if statement » ELSE ¢ statement » |
< if clause » ¢ for statement > |
< label v : « conditional statement

< if statements ::=¢if clause 5 < unconditional statement s

In Extended Algol,

< conditional statement » ::= ¢ if statement 3 |
¢ if statement » ELSE ¢ statement s |
< label s : ¢ conditional statement

¢ if statement » ::= ¢ if clause » « statement >

In short, an Algol 60 ¢ if statement 3 requires an unconditional

statement while Extended Algol allows any statement. Thus

38

Extended Algol allows the nesting of IF THEN ELSE statements
without bracketing the THEN and ELSE clauses in BEGIN...END.
The problem of any so-called dangling ELSE is resolved (recursively)
by matching each ELSE with»the nearest previous unmatched THEN in
the source string "unprotected" by a BEGIN END pair. To cause the
desired pairings, ELSE ¢ dummy statement > can be inserted. The
result, ELSE ELSE, appears in this code. The flow of control for
certain conditional statements is the subject of Lemma 13.
The MONITOR declaration and < fault statement .
This is a means of detecting exponent overflow, and taking
appropriate action, The declaration

MONITOR EXPOVR
sets aside the identifier EXPOVR as a reserved word (in the block
where this declaration occurs) for use in ~he < fault statement > .
In general, ¢ fault statement 5 ::= < fault type 5 «— ~ designational
expression 5. As used in these procedures it specifies to -~ fault
statement » ::= EXPOVR « ¢ label 5, . After execution of a < fault
statement » , the ¢ label 5 is used as a recovery point when an
exponent overflow occurs. For example, consider the following code
segment:

EXPOVR «— L 1;

A<«-B+C;

L1:

39

If, in evaluating the expression B + C, an exponent overflow
occurs, control is transferred immediately to the label L 1. The
recovery point label may be changed at any point in the program

by executing a new ¢ fault statment 5. On the B5500 only the

arithmetic operations can generate an exponent overflow. On

some machines the relational operators, for instance, may
generate overflow; this is not true on the B5500.

The FILL statement.

Only one such statement is used: FILL Q7QLIMNO [*] WITH
OCTO77777777777'7777, OCT1771000000000000. This is a means
of inserting octal ¢onstants into Q7QLIMNO[0] and Q7QLIMNO[1].
The value of Q7QLIMNO[0] is +K and the value of Q7QLIMNO[1]
is 0%, It is also true that -Q7QLIMNO[0] = -K and
-Q7QLIMNO[1] = 0.

The DOUBLE statement.

Consider the example, DOUBLE (A, B, P, Q, +, —, H, L). This
statement performs a (hardware) double-precision addition. The
variables A, B are taken as the first operand, P, Q as the second,
and the result is placed in H, L. The most significant word of the
first operand is A, and the mantissa of B is considered as an
extension of the mantissa of A. The rest of B is ignored. The
same is true of P, Q and of H, L. In placing the resultin H, L,

the non-mantissa part of L. is set to zeros. The + can be replaced

40

by & or / to perform multiplication or division, similarly. When
operating on normalized operands, the DOUBLE operators always
produce either a normalized result or zero. An exponent overflow
can be detected within a DOUBLE statement by means of the
¢ fault statement > discussed before. If an underflow occurs, we
have assumed that the following actions are taken:

(i) the B5500 sets an underflow interrupt.

(ii) the Algol-compiled code tests the interrupt, and if it is

set, the result H, L is set to all zeros.
We could not find this assumption explicitly stated anywhere.
However, experimentation both at the hardware and software levels,
and discussion with Burroughs representatives tend to verify these
assumptions.
The point (.) operator.
This is a combination of two features of Extended Algol, the DEFINE
declaration and the partial word designator, and provides a means
of accessing word subfields of contiguous bits. The point
operator and a field name, applied to the numeric operand
A= (sm, Sy (el, ez), (ml, “ee ,m13)). yields the corresponding
subfield. That is,
A.Q7QEXPONENT = e_e

172

A, Q7QMANTISSA = MMy, eee,m,

A.Q7QMSIGN = S

A.Q7QXSIGN = S

41

A.Q7T0M1213 = mlzm13

A.Q7QM1 = m,

A, Q7QSEXPONENT = seele2

The DEFINE feature allows the use of field names rather than
requiring numeric notation. When arithmetic is performed using
any of these subfields as an operand, the bits covered by the

field are treated as an unsigned (non-negative) integer,
Global Declarations and Initialization.

With the one exception of NORMALIZE‘, all of the procedures of
this package have no parameters and, therefore, operate only on global
variables. (This technique is employed to minimize execution time.)
All of these global variables, with the one exception of INTERFLOW,
are prefixed with Q7Q in order to minimize the possibility of a
nomenclature conflict when these procedures are inserted into a
program. However, for the remainder of this paper, all Q7Q prefixes
are dropped except in the actual program listing in the Appendix. The

following declarations, or equivalent ones, are necessary:

BOOLEAN LEFT, SUBFLAG
INTEGER EXP, EXPA, EXPB, I, INTERFLOW
REAL H, HS, L, LA, LB, LS, OPL1, OPLZ2, OPR1l, OPRZ,

RA, RB, RNDR, S, T, X, ¥

REAL ARRAY LIMNO [0 : 1]

42

DEFINE EXPONENT = [3 : 6] #, MANTISSA = [9 :39] #,
MSIGN = {1 : 1] #, M1 =[9 : 3] #, M1213 =
(42 : 6] #, SEXPONENT = [2 : 7] #, XSIGN =
[2:1]#

In addition to the preceding declarations , the interval arithmetic
package consists of five procedures, ADD, SUB, MLT, DIV, and
NORMALIZE, and three initialization statements. (The procedure
names are also prefixed with Q7Q, and only NORMALIZE has a formal
parameter.) The three initialization statements are

SUBFLAG «- FALSE

INTERFLOW - 0

and

FILL LIMNO [*]WITH OCT0777777777777777,0CT1771000000000000

and must be executed before the execution of any of the procedures.
Recall that the FILL statement initializes LIMNO [0] to +K and

LIMNO [1] to +¢ = o',

General Strategy of Implementation.

ADD, SUB, MLT, and DIV operate on the intervals A and B and
return the result in B, A is represented by the two global variables LA
and RA containing the left and right endpoints of A, respectively.
Similarly B is represented by LB and RB. For all four procedures,
the form of the operation is therefore B «— A op B. If, and only if,

a magnitude violation occurs during the execution of a procedure, the

43

global variable INTERFLOW (no Q7Q prefix) is set to the value of F
given in Table 3. (If no violation occurs, INTERFLOW is left
unaltered rather than set to zero, provided INTERFLOW >0 upon entry.
If INTERFLOW ¢ 0 upon entry, it is immediately set to zero.) It will be
noticed that a magnitude violation corresponds to the machine condition
of exponent overflow. The problem of exponent underflow is taken
into account directly by Eqs. 4. On the B5500 we know that if under-
flow occurs, the exact result y satisfies the relation 0 <Y< O+ and
the appropriate max or min can be found as required by Eqs. 4.
ADD, SUB, MLT, and DIV operate on the variables LA, RA, LB, and
RB which are operands >f the set N. If upon entry to any of the
procedures, LA, RA, LB, or RB is not an operand of the set N, it is
replaced by an operand in N. The following 1s done for each of the
four operands not already in N:
(i) If the mantissa of the operand is all zeros, the operand is
replaced by the operand Z.
(ii) The operand is normalized if possible--the mantissa is
shifted left and the exponent reduced until m, # 0.
It is possible that the operand cannot be normalized. 1In this case the

operands are replaced by the operands shown in Table 4.

44

Table 4. Replacements for unnormalizable operands. Z+ and Z are

elements of N such that r (Z-) =0 andR (Z+) = 0+.

r(Z) = 0.
Operand Sign of Operand
+ -—
LA VA Z
RA Al A
LB z zZ
RB Z+ Z

Thus henceforth in the text, we assume that LA, RA, LB, RB are
elements of the set N,

Once having these single-precision operands in normalized form,
the operations of Eqs. 4 are performed, in general, in double-precision.
These double-precision results are then appropriately rounded back to
single-precision according to Lemma 6 to satisfy the max and min
operations of Eqs. 4. It is possible for the procedures to produce an
unnormalized result, However, if this unnormalized result is operated
on again by one of the procedures it will be normalized before such
later operations begin by the algorithm stated previously. The results
of the procedures are not normalized because the B5500 single-
precision arithmetic operations do not require normalization.

The reader may ask justifiably why these procedures were written
as they were. The Q7Q prefixes and the global procedure arguments

certainly do not make the procedures appealing for direct use. The

45

answer is that the procedures were not designed for direct usage.

They are to be part of an Interval Algol language which is currently
being designed and implemented (by Good). The language starts

with Algol and defines a new data type called interval, The initial
implementation of this langliage is a translator from Interval Algol

to Algol; interval arithmetic expressions are translated into calls on
these procebdures. The p‘refixes‘minimize nomenclature conflicts,‘

and the global procedure arguments allow the generation of a relatively
efficient translation. To make direct use of the interval arithmetic in
these procedures more appealing pending an implementation of
Interval Algol, paramelerized procedures which call the Q7Q pro-
cedures have been prepared. For example, INTADD(C, A, B) computes
the interval C, namely C < A + B, by first setting LA, LB, RA and RB

and then calling Q7QADD.

46

IV. THE PROOFS OF THE CODE

The General Strategy of Proof and Notation.

The remainder of this paper is concerned with proving the
correctness of the four procedures ADD, SUB, MLT, and DIV.

Some groundwork, including notation, toward this goal has already
been laid in the preceding, but more is needed,

The actual Algol code appears in the Appendix. Words in all
capital letters in the text refer to program identifiers. In the proofs,
the Algol code is displayed in upper case type. Any three digit
numbers after a line of code or in the text refer to sequence numbers
in the code listing. We have suppressed irrelevant zeros, of course.
We remind the reader that we have dropped the Q7Q prefix from all
names.

In the following proofs and discussion the following notation is
used on Algol variables. Suppose X is an Algol variable whose
content represents the number x € M. Then X+ denotes a variable
whose content represents x+, and X denotes a variable whose content
represents X . If Y is another Algol variable, then (X,Y) denotes a
double-precision operand using X as the most significant word, and Y
as the least. Also in the following, the symbol ¢ stands for O+ and
-¢ stands for 0 . Finally r (X) denotes the real number represented by

X, and similarly for r (X,Y).

47

The first task in proving the correctness of the procedures is to
state precisely what it is we wish to prove. While this could be
incorporated into the main proofs, it seems easier and clearer to state
this separately. The stating of what we want to prove occurs at
different levels. The way in which the proofs at the various levels

‘are combined into the final proof is illustrated schematically in

Figure 2.

Rational Interval
Arithmetic

Values of the Algcl |

Variables: LB, RE,
INTERFLOW

<=+ Algol Code

AN\ /N \ N

B5500 Double Flow of . , Stated
Termination

Precision Control Assumptions

Figure 2. General Proof Strategy.

Thus, the lemmas and assumptions of the bottom row of Figure 2 are
applied directly to the Algol code to show that the variables have
Another set of lemmas shows

certain values upon exit from a procedure.

that these values are indeed the ones required to satisfy the definition

of rational interval arithmetic.

48

More specifically, Lemmas 10, 11 and 12 are the connections
between the Algol variables and rational interval arithmetic, i.e.
Tables 5, 6 and 7 present what the results of the B5500 implementation
of interval arithmetic should or ought to be. The proofs of these
lemmas are based, then, on the definition and development of
rational interval arithmetic and previous lemmas., We are not, at this
point, stating énything about the results that the implementation yields.

Once Lemmas 10, 11 and 12 have stated this task precisely, the
problem of the proof of the procedures is significantly reduced. But in
no sense is the proof problem eliminated or even made trivial, We
must still verify that the implementation, in all cases, produces the

stated, desired results of Tables 5, 6 and 7.

Assumptions,

We list here in one place the assumptions we must make in order
to complete the proofs. Nearly all of them have been empirically
verified or copied from a manual or both, but they have not been proved
as has the rest of the material. We have assumed:

1. DOUBLE normalizes all results or else gives 0. Overflow, but not
underflow, is detected by the fault statement.

2. Unary minus and assignment operators are exact, namely:
(i) - (e,m) = (e,m) except for the sign bit, of course.

(ii) (e,m) - (€,m) inr}plies (e, m) = (€,1).

t

10,

49

Only arithmetic operations and specifically no relational operators
can cause overflow or underflow. Also the relational operators
give correct results for any operand, normalized or not.

The Algol compiler is correct according to the definition of Algol.
We further assume that it or the hardware handles all problems of
+0 and -0. For example, if A is a simple variable, A = 0 is true
if and only if all digits of the mantissa of A are zero, and A 5 0
if and only if A represents a positive quantity.

All results which DOUBLE cannot normalize because its exponent

would become ¢ - 77_ are set to 0 (underflow).

8
Double precision real divide does no rounding.

Double precision multiply involving operands of the form (e, m,0)
and (€,T,0) produces exact results (cf, Lemma 8).

Definition of SIGN function:

(

+1 if AES O

SIGN (AE) = 4 0 if AE=0

-1 1if AE ¢ 0 where AE is an arithmetic
L expression.

DOUBLE always terminates.

SIGN always terminates.

Required Values of the Variables LB and RB.

The next three lemmas show what values LB and RB must have

at the end of each procedure in order to satisfy Eqs. 4 and Table 3.

50

The results of these lemmas are given in Tables 5, 6 and 7. Each
of Tables 5 and 6 is really two tables combined--one for computing
left endpoints LB and one for computing right endpoints RB. If

we let, in all its occurrences, the letter D (standing for Direction)
be L and ignore the RB column, we have a table for computing LB.
Sir;lilarly, if we let D be R and ignore the LB column, we compute
RB. The inequalities in Table 5, for example DA ¢ S « DA',
reflect the dual nature of the table. If D = L, this inequality says
that DA (= LA) is a lower bound and since § < DA+ (= LA+) , LA

is the best machine representable lower bound. IF D = R, the roles.

of DA and DA+ are reversed.

Lemma 10, Table 5 gives the values of LB and RB for the sum
interval in the case when the mantissas of the
summands are disjoint. Recall that we wish to compute
[LB, RB] -~ [LA, RA] + [LB, RB] where the original
[LA, RA] and [LB, RB] correspond to [v, w] and

[x, v], respectively, of Eq. 4.1.

Table 5.

51

Values of LB and RB for Sum Interval, Disjoint Mantissas.

Original Endpoints| DA Bigger in Magnitude DB Bigger in Magnitude
DA DB Bounds on Sum S| LB | RB |Bounds on Sum S| LB |RB
1| 50 S 0 DA<Sc<DA | LA| RA | DB<Sc DB | LB |RB.
2 > 0 =0 S = DA IA | RA S = DA LA |RA
30 >0 ¢ 0 DA"¢S<DA |IARA | DBcSc¢DB' | 1B |RB
4 =0 > 0 S = DB LB | RB S = DB LB |RB
5 =0 = 0 =0 0 0 S=0 0 0
6 =0 <0 S = DB LB | RB S = DB LB |RB
71 <o S 0 DAcscDat |1a| Rat| DB <S¢ DB | LB |RB
8] <O =0 S = DA LA | RA S = DA LA |RA
9] <« 0 <0 DA"¢S¢DA |1A| R | DB ¢S¢DB | LB |RB
Proof. Lines 2, 4, 6, 8. Since one operand is 0, the result is the

non-zero operand.

Line 5,

Let Q stand for the quantity bigger in magnitude, and consider the effect

of the quantity smaller in magnitude.

Lemma 6 and so is given without details.

Line 1. S exceeds Q but is less than Q+.

Lines 3, 7.

The idea is similar to the proof of

If Q > 0, S exceeds Q but is less than Q. If

Q «0,5 exceeds Q but is less than Q+.

Line 9.

S exceeds Q_ but is less than Q.

Lemma 11. If there is exponent underflow in addition, Table 6 gives the

values of LB and RB for the sum interval,

Both operands are 0 so the result is either one, namely 0.

52

Table 6. Values of LB and RB for Sum Interval, Exponent Underflow.

QOriginal Endpoints Comparison of DB,DAJ

DA DB if of opposite signs Bounds on Sum S |LB | RB
ll >0 >0 - 0<Sce 0| ¢
2 >0 =0 - 0«Sce 0
3] >0 <0 -DB » DA ~€ ¢S« 0 -€ 0
4 > 0 <0 -DB « DA 0«Sce 0 €
5/ =0 >0 - 0«Sce 0
6 = 0 <0 - “€«¢S8«0 -€ 0
M <0 > 0 DB s -DA 0c¢Sce 0 c
8 <« O > 0 DB « -DA ~e¢8S«0 - 0
91 <« 0 =0 - € «¢S8¢0 -€ 0
10 <0 <0 - —€¢8¢0 -€ 0

Proof. Note first that -DB = DA (includes DA = DB = 0) would irr}ply an
exact result of 0, not underflow.

Lines 1, 2, 5, 6, 9, 10 are clear since the summands are not of
opposite signs. In fact, with normalized operands, underflow is impossible
in these cases.

Lines 3, 4, 7, 8 follow by considering the sign of the real
arithmetic sum under the constraint of the third column. For example, in
line 3 -DB > DA says DB is more negative than DA is positive and hence

the real sum is negative,

Lemma 12. If the double-precision result (H, L) is exact or if, in division,
any inexactness may be ignored, Table 7 gives the values of

LB and RB for the result interval.

53

Table 7. Values of LB and RB for Exact Double-Precision Result.

L H Should result Bounds on result R| LB RB
be exact zero?
Underflow, i.e -€,0 0,
O N 4 . . [4 ’

1 0 o ~€e¢Rce based on each operation
2 0 0 Yes R=0 0 0
i 0 £0 | - R=H H | H
4 #£0 >0 - H«R¢ gt H gt
5 #£0 <0 - H <«Rc¢H H | g
6 #0 =0 - Conditions are impossible

Proof. Line 1. These are the conditions for underflow (cf. assumption 5).

Line 2. The YES entry says the result is 0.

Line 3. r (H,0) =r (H) so the result is contained in a single~-
precision word.

Line 4. H > 0 and L # 0 implies the result exceeds H but is less
than H+.

Line 5. H ¢ 0 and L # 0 implies the result is less than H but
exceeds H .

Line 6. Impossible else the result is not normalized without any
underflow,
The entries in the "LB" and "RB" columns, namely the values of LB and
RB as best bounds, follow immediately from the "Bounds on result | R"

column. This completes the proof.

54
Flow of Control through IF Nests.

The next lemma enables us to verify flow of control through
certain IF - THEN - ELSE constructions. The lemma is needed because
of such formidable appearing conditional statements as the one at
222-269, We feel compelled to offer some sort of proof that, in such a
conditional statement, the flow of control is as we claim. Lemma 13,
below, is our response to that compulsion,

The recursive nature of Algol constructions makes the conditional
statements in the code very powerful and elegant. But the recursion
also makes it somewhat difficult to state the lemma succinctly. Thus
we shall not attempt to state the most general result possible, In fact,
there will be a few conditional statements in the code to which the
lemma will not apply directly. But additional arguments in each such
case can give the desired conclusion.

The aim of the lemma is to state a sufficient set of conditions
which guarantee that upon the execution of certain statements, control
immediately leaves the conditional statement. For this purpose we
need to define a suitable class of statements which appear within or
as part of a conditional statement. Special problems are posed by
compound statements and the constituent statements of a compound
statement.

For a conditional statement C, we define the set g c of statements.

The statement S e RC if 8 1is part of the conditional C in the sense

55

that S appears immediately after a THEN or an ELSE. That is, S is

a statement allowed by the Extended Algol syntax in the two underlined

places:

¢ if clause » ¢ statement >
where ¢ if clause > ::= IF ¢ Boolean expression » THEN

or

¢ if statement 5 ELSE ¢ statement »

S may be the dummy statement between two adjacent ELSE's. If,

however, S is a compound statement, no constituent statement of S

may belong to R c* A single statement made compound solely for the

purpose of making a COMMENT is not considered compound for the

present purpose. See, e.g. lines 250-260.

Questions of the definition of Rc may well arise. They should be

resolved by noting the conditional statements of the procedures to which

the lemma is (to be) applied:

NORMALIZE 185-192
ADD 222-269
282-329
MLT 370-431
435-449
458-472
Div 600-655
658-672

682-697

including Corollary 13.1 applied to 245-269
including Corollary 13.1 applied to 305-329

modifying 403

deleting 625-629, 631-632 and 655

56

Lemma 13. Let C be a single conditional statement with the same
number of IF's, THEN's, and ELSE's. As a restriction
on Rc, assume that if S ¢ RC, then S is not a
GO TO statement and, further assume that if S is a
compound statement, S does not contain a constituent

conditional statement. Then, after the execution of
each S € @C is completed, control pases directly to
the first statement T following C with no intervening

statements being executed.

Proof. The lemma might be considered obvious from the recursive
definition of conditional statements and its semantics. Nevertheless,
we present the following proof by induction on the number L of IF's in
C. Assume first there are no conditional arithmetic or Booléan expres-
sionsin C. If L=1 (e.g. C might be IFA = 0 THEN B -~ 1 ELSE B — 2),
[c contains two elements and the lemma follows directly from the
definition of the conditional statement. Assume the lemma holds for

L >1, and consider C with L+ 1 IF's.

Find within C a conditional statement U such that U
contains precisely one each of IF, THEN and ELSE, i.e. no conditional
statements appear within U. Because the IF's, THEN's and ELSE's
are nested, U must exist, If U does not exist, i.e. if each
conditional statement contains more than one IF, THEN and ELSE, the

nesting is non-terminating or infinite. Then there is an infinite

number of IF's which is clearly absurd.

57

If desired, U may be found constructively. Since the IF's,
THEN's and ELSE's are nested or grouped similarly to parentheses, we
may discover the nesting as follows: Count each THEN as +1, each
ELSE as -1 and compute a running sum from left to right through C.
Nesting implies the sum is always non-negative. Equal numbers of
THEN's and ELSE's imply the sum at the end of C is zero. A suitable U
is a conditional statement whose THEN has the maximum running sum
value. There may be several such U's, but that matters not. By
assumption, U is not part of a compound statement.

From the definition of the conditional statement, control clearly
passes in one of two ways to the end of U. Modify C, obtaining C',
by replacing U with an unconditional statement V (non-GQ TO, non-
compound, of course) which contains no IF's, THEN's or ELSE's. C'
contains precisely L IF's. By the induction assumption the lemma
holds for all S « RC, . But it is easy to see that the lemma now also
holds for all S € Rc since ﬁc, = RC uf{Vvy) - Ru. That is, control's
unconditionally getting to the end of V, and hence to T, is equivalent
to control's getting to the end of U in either of two ways and hence to T.

If there are conditional arithmetic or Boolean expressions in
C, we may by a similar, but unstated lemma, replace the
conditional expressions by a single (unconditional) value and apply

the above. No circular reasoning is involved since no conditional

58

statements may occur within a conditional expression. This completes

the proof.

If the reader is unhappy with our abrupt dis;nissal of conditional
expressions, the following argument will suffice for our later proofs:
Each of the conditional ekpressions in this code has only one IF-THEN-
ELSE and they are matched as the hyphens show. Therefore, the reader
may simply replace the conditional expression by a constant analogously
to the replacement of the U by V above. The lemma then applies under
the assumption of no conditional expressions. In effect, this argument
proves the unstated lemma for L = 1 but in a larger context than the

= 1 case in Lemma 13,

The running sums used in the above proof may also be used to
verify constructively the flow of control. When control reaches the end
of the statement after a THEN whose sum is A, or when control reaches
the end of the statement after an ELSE whose sum is A > 0, find the first
succeeding ELSE whose sum is A -1. Control passes to the end of the
statement after the designated ELSE. Apply this algorithm repeatedly.

It must terminate since at each step we are finding an ELSE whose sum
is strictly less than the preceding value and zero is a lower bound on
the sum. For an ELSE whose sum is 0, control passes directly to T as
required. Note that "the first succeeding ELSE" exists both after a THEN
and after an ELSE whose sum is positive since otherwise the running sum

is positive at the end.

59

Corollary 13.1. If a compound statement S € Qc is of the form
BEGIN
DOUBLE (. . .);
< conditional statement » ;
END;
then the conclusion of Lemma 13 also holds for the
constituent conditional statement of S. That is,

control also goes directly to T.

Proof. Apply Lemma 13 to the constituent conditional statement of
the compound statement, and note that it has the same T as the main

conditional statement of which S is a part.
The Variables X, Y, S, T, EXPA, EXPB, RNDR, LEFT, SUBFLAG.

L.emma 14. Table 8 gives all the locations in the code where
selécted variables, or their fields, are set or changed.
The use of the point (.) operator denotes that only the
named field in the variable is changed. S is an abbrevi-

ation for SEXPONENT.

Table 8.

All Settings to Selected Variables,

60

Proce-
dure

EXPA

EXPB

RNDR

LEFT

SUB-
FLAGT

ADD

SUB

MLT

DI1v

206

348

492
Pk512
k524
562

206

513

563

362

592

362

592

206

217.MSIGN
219.M1213
277, MSIGN
279.M1213

206

218.MSIGN
220.M1213
278 ,MSIGN
280.M1213

206

229.8
238.8
265.8
286.8
298.8
325.8

362

446,88
469.5
530.8
579.8
592

669.S
694.5

208
211

364
367

594
597

347
352

* If 492, then neither 512 nor 524,

T By 781, SUBFLAG is initially FALSE.

Proof,

Examination of the code.

Our examination was both manual

and with aid of the compiler by undeclaring the variables and

noting the error diagnostics.

This completes the proof.

la.

61

We wish to draw several inferences from Table 8:

X and Y are used only in ADD, and S and T only in MLT and DIV

to hold LA and RA, respectively.

X is used only in SUB for swapping LB and RB.

X is used (492) in MLT to save LB in case of overflow trap to
ERR7F, or (524) to save LB if there is no overflow trap to ERR7F
but never both. LB is needed only for the DOUBLE multiply at 535.
X and Y are used as part of the double-precision compare (512-513
and 562-563). |
In all cases the need for the previous X and Y is gone by the time
the new X or Y is set.

EXPA and EXPB are set to 0 at 206, Only the MSIGN and M1213
fields are changed at 217-220, Thus only the changes at 277-280
are needed to have EXPA and EXPB serve as integers again.

A similar argument to 2 applies to RNDR. It is setto +1 at the
start of ADD, MLT and DIV and then only its SEXPONENT field is
changed. Hence, when used, itis always the appropriate rounding
factor.

LEFT is set only at the start of ADD, MLT and DIV as shown.

SUBFLAG is set only in SUB.

The Values of INTERFLOW.

Lemma 15. INTERFLOW is set only as follows:

62

Table 9. All Settings to INTERFLOW *,

gfl(;ge— Start Overflow traps Finish
ADD 207 273, 335 340, 341
SUB - - -
MLT 363 454, 478, 494, 544 584

DIV 593 626, 678, 704 V 710

* By 781, INTERFLOW is initially zero.

Proof. As in Lemma 14, the proof is by examination of the code.

This completes the proof.

We now explain the mechanism of setting INTERFLOW, We shall
use Table 9. Between calls to the four arithmetic procedures, a non-
negative value of INTERFLOW indicates the last overflow error

condition in a single arithmetic operation as follows: (cf. Table 3.)

Table 10, Meaning of INTERFLOW Values.

Interflow Overflow error condition
value
0 No error
1 Error left in ADD
2 Error right in ADD
3 Error left and right in ADD
4 Error left in SUB
5 Error right in SUB
6 Error left and right in SUB
7 Error left in MLT
8 Error right in MLT
9 Error left and right in MLT
10 Error left in DIV
11 Error right in DIV
12 Error left and right in DIV
13 Attempt to divide by an interval containing 0

63

I1f INTERFLOW is set positive, upon completing a procedure, this
implies that the resulting endpoint (+K) is no longer a bound of the
result. Note that INTERFLOW is initialized to zero at 781. If +K is
still a bound, INTERFLOW is not set. Recall that -K is an upper bound
for endpoints « -K, and +K is a lower bound for endpoints » +K; in
fact, both are the best bound that is machine representable. That
INTERFLOW is set according to this rule follows by examining each of
the overflow traps and observing whether the trap involves a left or
right endpoint computation.

Within an interval arithmetic operation, an overflow condition sets
INTERFLOW to the negative of the value in Table 10. This enables the
operation to know whether a non~zero INTERFLOW value is caused by the
current operation (INTERFLOW ¢ 0) or by a previous operation
(INTERFLOW > 0). This is necessary if a right overflow of, say ADD, is
to tell if an indication of left overflow of ADD is caused by the current
operation or not.

Note that INTERFLOW is guaranteed non-negative at the start of each
operation since the statement

IF INTERFLOW 0 THEN INTERFLOW - 0
is executed by 207 in ADD, by 363 in MLT and by 593 in DIV. (All of
INTERFLOW in SUB is handled by ADD since the actual subtraction is

done in ADD. See below.)

64

An examination of each of the overflow traps in Table 9 shows that
the proper negative error number is set, Note particularly that a right
overflow checks for a left overflow in the current operation and sets
INTERFLOW accordingly. Once set negative within an operation,
INTERFLOW can change in only two ways. It may be changed to
indicate that both a left and right overflow error have occurred, and it
will be changed at the end to make the negative number positive. To
see the latter, note that in all cases, the statement

IF INTERFLOW ¢ 0 THEN INTERFLOW <« - INTERFLOW
is executed by 341 in ADD, by 584 in MLT and by 710 in DIV.
The only other INTERFLOW detail is 340 in ADD:

IF INTERFLOW ¢ 0 AND SUBFLAG THEN INTERFLOW < INTERFLOW - 3
SUBFLAG is true if and only if ADD has been called by SUB since
SUBFLAG is initialized to FALSE and set only as in Table 8. Hence,
any ADD error must be converted to the corresponding SUB error by
subtracting 3 (before 341 makes INTERFLOW positive). Conversely,
if ADD 1is called by SUB and ADD generated no error, then SUB will

report no error,
The Actual Rounding of Variables.

. +
Lemma 5 gives formulas for computing the rounded quantities X
and X . In the actual code open subroutines are used to accomplish

all roundings according to these formulas. But for the purpose of

65

proof it is convenient to define two closed subroutines (real procedures),
ROUNDUP (A) = A+ and ROUNDDOWN (A) = A , where in both cases the
parameter A is assumed normalized and non-zero. A procedure body for
ROUNDUP (A) would be

BEGIN RNDR.SEXPONENT - A,SEXPONENT;

ROUNDUP <« A + RNDR END
and a procedufe body for ROUNDDOWN (A) would be

BEGIN RNDR.SEXPONENT - A,SEXPONENT;

'ROUNDDOWN - A - RNDR END
A check of the code shows that all roundings are accomplished as if by

one of the two above procedure bodies.

Lemma 16. The two procedure bodies above accomplish ROUNDUP (3)
= A+ and ROUNDDOWN (A) = A—, respectively, provided
the parameter A is normalized and non-zero. ROUNDUP (-¢)
is unnormalized and ROUNDUP (+K) will cause
exponent overflow. Similarly, ROUNDDOWN (€) is
unnormalized and ROUNDDOWN (-K) will cause exponent
overflow. The number represented by all other results is

an element of M.,

Proof. The statements in the last three sentences of the lemma follow
directly from the proof of Lemma 5. To prove that ROUNDUP (3) = A+ and
ROUNDDOWN (&) = A provided A is normalized and non-zero, suppose
A is of the form (e,m). By Lemma 5 and the second line of each

procedure body, we need only show that RNDR is of the form (e, 1).

66

When initially set at the start of each ADD, MLT and DIV, the
variable RNDR = (0,1). By Table 8 all subsequent settings of RNDR
occur only as in the first line of either procedure body, namely only
its SEXPONENT field is altered. In fact, the first line gives RNDR

each time the required SEXPONENT e from A = (e, m).

Proof of NORMALIZE.

In the proofs of ADD, SUB, MLT and DIV, it is essential to know
that all endpoints are either normalized or zero prior to any computation.
In order to guarantee this, the procedure NORMALIZE (A) is used, where
A is the endpoint to be normalized and also the result of normalization,
We shall prove below that NORMALIZE obeys the defintion: (Cf. the
comment in the code for NORMALIZE, lines 163-174,and als_o the section
on General Strategy of Implementation including Table 4.)

IF A =0, the result A is set to all zeros.

IF A # 0, normalize A, if possible. If this is not possible, use

Table 11,

Table 11. Result of NORMALIZE for non-zero, unnormalizable arguments A,

LEFT A Result
1{True > 0 0
2 [True <0 -€
3 |False > 0 €
4 i False < 0 0

67

It is necessary first to show that Table 11 is what ought to be done
if A is unnormalizable, NORMALIZE assumes A is a left endpoint if
and only if LEFT = TRUE (and assumes a right endpoint otherwise).
Under this assumption, Table 11 follows immediately from Table 4.

We can now prove the correctness of the procedure NORMALIZE.
Both the key factor and key problem in NORMALIZE is the FOR statement--
the only loop in the entire code. In response, we use basically a
proof method due to R. W. Floyd (4). We have stated predicates or
propositions in the manner Floyd suggested. As he showed was
necessary and sufficient to obtain a proof, our proof consists of
verifying the predicates as follows: Each statement S (or better, each
box of an equivalent flowchart) is both preceded by one or more
antecedent predicates, Pi’ i=1, 2,...n, and succeeded by one or
more consequent predicates, Qj' i=1,2,...m., (Join points of
control cause n > 2, and branch points cause m >2.) Of course, at
a specific point in the actual execution of the code, the unique ante-
cedent and consequent predicate is determined by the flow of control.
But we must consider all combinations for a proof. Therefore, along
each path of control, we assume the Pi predicate is true before the
statement and we show that each time after the statement S is
executed the Qj predicate is true.

In other words, we prove, for each statement S, m ® n separate
theorems of the form: Pi and S implies Qj for all i and j. Fortunately,
m and n are here at most 2. Thus, assuming legal input data, if the

predicates both have been chosen correctly and successfully verified,

68

the desired result will hold at the (assumed) termination of the code. In
short, each predicate is true each time control passes it since we
have shown there is no first false predicate. Proof of termination is

handled separately.
Lemma 17. NORMALIZE (A) implements the previous definition.

Proof. Some notation will simplify the presentation. Let A° be the
initial value of A, and let E° be the integer represented by the value
of SEXPONENT of AO. Hence r (AO) = sign (A) r{A, MANTISSA) SEO. The
superscript zero is to suggest time zero, namely before NORMALIZE
starts to compute. Thus the use of A will follow the usual convention
that a name denotes its current value. We shall show at various points
that we have not altered r (AO) even though A itself has been altered.
Indeed, the purpose of NORMALIZE is to alter A so that it is normalized,
if possible, but has the same value.

We number the lines of code consecutively starting at 0 in order to
be able to refer to them. (We do not use the sequence numbers as
shown in the Appendix.) The predicates or propositions are numbered
as m, where m is the line of code after which the predicate appears,
and the predicates are further identified by ".n". All predicates with
the same m should be considered connected by "Boolean and" to form
the single predicate m. They are so subdivided only for ease of

reference. The ".n" do not indicate separate antecedent or consequent

predicates. The symbol " ¢===" should be read "since" or "is implied by"

69

i.e. the passive of "implies" or " —=>". Where a predicate has more

than one line of code as its predecessor, the number or numbers over
the "¢——" indicates which of the possible paths of control is assumed.
Note that A, MSIGN is altered oniy at lines 14 and 21. In both cases
control passes immediately to the end of NORMALIZE. We know,
therefore, that sign (A) = sign (Ao) essentially throughout.
The proof starts on the next page. It appears between statements

of the Algol Code.

5.2

70

BEGIN
o
| E- | £ 63 ¢=== the magnitude of the exponent of A is
represented by two octal digits (2, p. 2-7). Hence

63. . Note that EO is an integer.

O
| E |S778— 10

IF A#ZO0
r(A. MANTISSA) # 0 ¢== 1 and the definition of # (2, p. 6-13).
THEN BEGIN

I~ EXP « 0;

EXP,MSIGN - A,XSIGN;

EXP.M1213 «— A.EXPONENT;

r (EXP) = E° <=== 3, 4and 5. I.e. EXP denotes a B5500
numeric operand, (sm,se, (e1 ,ez), (m1 RUPYERE
mlz,m13)). Now
3 == (+,+, (0,0), (0,0,...,0,0)),

4 == (sign E°, +, (0,0), (0,0,...,0,0)),
5 —=> (sign E°, +, (0,0), (0,0,...,e ,e,)) where
e1 is the most significant digit of EO and e2 the
least.
r(A, MANTISSA) # 0 ¢=== 1.1 still holds.
sign (8) r (A.MANTISSA) 8" EXF) - (2% 5.1 and
definition of A°,

FORI -1+ 1 WHILE A.M1 = 0 AND EXP 5 -63 DO

I'(A.Ml) =0 L=z 6.

10

71

I’(EXP) > -63 (=== 6.

sian (&) r (3, MaNTISSA) 8"FFF) =+ (2% (2 5.3
<=_9-._ 9.2
r(A. MANTISSA) # 0 ¢=2= 5.2.
=2 9.3.
BEGIN
EXP — EXP - 1;

A ,MANTISSA < A,MANTISSA = 8;

r(EXP) > - 63 «== 6.2, 8 and EXP is an integer.

r{EXP) -

sign (A) T(A.MANTISSA) 8 r(8%) ¢= 6.3,

8 and 9. I.e..the relationship is true at
6.3, In view of 8 and 9 we must make, in
6.3, the substitutions EXP - 1 for EXP and

A . MANTISSA & 8 for A,MANTISSA. Thus,

sign (B) r (A.MANTISSA m 8y 87(EXP-1) _

sign (A) r (A, MANTISSA)r (8) 8" (EXP) +1(-1) _

sign (A) r (A.MANTISSA) 8.87(EXP) g=1 _

r(EXP) _ r(AO).

sign (A) r (A, MANTISSA) 8
r(A.MANTISSA)#0 ¢== 6.4 and 6.1. The latter

insures that there is no overflow of the

A,MANTISSA field by the multiply at 9. In

particular, r(A,MANTISSA) remains non-zero.

END:;

72

10.1 A.M1 # 0 or r(EXP) = -63 <28 6, 5.1 and 0.1.

2:2:8 6 and 9.1,

10.2 sign (a) r(a. MANTISSA) 87 EXP) 2 12 5.6 5 3,

<§“'(2"“€2 9.2,
11 IF A.MI = 0

11.1 T(EXP) = =63 <= 10.1 and 11.

11.2 A cannot be normalized «¢=—= 11 and 11.1.

12 THEN IF LEFT

13 THENA-IFAS O

13.1 Line 1 of Table 11. Result is 0.

14 - THEN 0

15 ELSE

15.1 A< 0. Butby 1, A# 0. Result

is -€ from line 2,

16 : -€

17 ELSE

17.1 Not LEFT, i.e. LEFT is FALSE.

18 A—IFAN O

18.1 | ' Line 3. Result is e,

19 THEN ¢

20 ELSE

20,1 A< 0. Butby 1, A# 0. Result

is 0 from line 4.

21

22

22.1

22.2

23

24

24.1

24,2

25

26

27

27.1

27.2
28
28.1

29

73

0
ELSE BEGIN
A.M1 # 0.
-63 < r(EXP) < 63 ¢ 0.1, 5.1, the fact that after 5,

EXP is changed only at 8, and then 9.1 guarantees it.
A .XSIGN « EXP,MSIGN;
A.EXPONENT « EXP.M1213;
r () = r (A°) ¢e—— 10.2, 23, 24 and 22.2. The 22.2
predicate guarantees that EXP.M1213 is all of
EXP that matters. In other words, m_ through

1

myy are all zero.
A is normalized ¢=—=—== 22.1.
END
END
ELSE

A=0, i.e. r(A,MANTISSA) = 0 ¢ definition of # and ELSE.

r(AO) =0 S 27.1.
A~ 0;

A is set to all zeros ¢ definition of "« 0."

END NORMALIZE;

We summarize the situation when control reaches line 29 (END

NORMALIZE;): If the initial A is zero, A is set 10 all zeros by lines

27-28. If A # 0 but normalizable, 24.1 and 24.2 guarantee a

normalized result of equal value. If A # 0 and unnormalizable, Table

11 is implemented in lines 11-21,

74

We must still prove that NORMALIZE terminates. First observe
that Lemma 13 does not apply directly to NORMALIZE because the
»conditional statement 11-25 viclates the restriction on ﬂc . However,
Lemma 13 does apply to 11-25 considered as a separate conditional
statement. Therefore, if control ever reaches 11, it reaches 26 having
made precisely one setting to A.

| Now NORMALIZE is just one conditional statement. If A = 0,
L control pases from 1 to 27 to 28 to the end. If A # 0, control passes
from 1 to 2 through 5, 6 and. (to be shown below) to 11. From there,
by the above usé of Lemma 13, control reaches 26 and hence to the end.

It remains to show that control passes from 6 to 11 , 1.e. state-
ments 6-10 cannot be executed endlessly. By 5.2, there exists at
least one non-zero octal digit in A.MANTISSA. Because 9 is the only
place that changes A, MANTISSA within 6-10 (left shift one octal place),
9 could be executed at most 12 times before the non-zero digit would
appear as A.M1l. Hence A.Ml1 becomes # 0 so control passes from
6 to11.

This completes the proof of NORMALIZE.
Operations Common to ADD, MLT, and DIV.

The four endpoints are normalized at the start of each procedure
(except SUB) and before any computation starts. If an endpoint C is

zero or is unnormalized, namely C.M1 = 0, NORMALIZE (C) is called.

75

(208-213 in ADD, 364-369 in MLT and 594-599 in DIV.) LEFT is set
correctly in each case, If C = 0, NORMALIZE returns 0. Otherwise
NORMALIZE returns C normalized and equal in value, or else the
appropriate quantity -, O ore .'

With two exceptions the endpoints remain normalized (or
normalizable). This follows since the only arithmetic performed on
them is by the DOUBLE statement or by the round operations. We are
assuming DOUBLE normalizes results, gives 0 directly or else under-
flows with value 0. Except for ROUNDUP (-¢) and ROUNDDOWN (¢),
all rounds remain normalized (or normalizable). However, except t;or
taking the negative of an endpoint in SUB, any unnormalized endpoint
is normalized before any interval computation is performed. This
follows by the paragraph above.

Since LA and RA are not to be changed by any of the four
operations, they are saved in two variables at the start of each pro-
cedure (except SUB where ADD does it). They are restored from the
proper variables just prior to exit. The saving variables are never
used for another purpose. For the most part this is probably unneces-
sary. However, we feel that if either LA or RA is unnormalized upon
entry to these procedures, these unnormalized values should be

restored.

77

we did not do this, and we even chose not to prove the right
endpoints with the one word proof: "similarly." This reflects our

attempt to be extra cautious and complete.

79

THENIFLA#O
Lines 1, 2, 7, 8 of Table 5, 1B is LA. ("LB is LA"
means the new value of LB is the initial value of LA,
and similarly for other such statements.)
THEN LB — LA
ELSE
LA = 0. Lines 4, 5. LB is unchanged.
ELSE
LB « 0.
IFTA#0
Lines 3, 9. LBis LA . LA # 0 and, by 209, LA
is normalized. Thus we may use ROUNDDOWN.ﬂ<
THEN LB — ROUNDDOWN (LA) 229-230
Overflow to SETR.
ELSE 232
LA = 0. Line 6. LB is unchanged.
ELSE 233
EXPA - EXPB < 12.
IF EXPB - EXPA » 12
LA and LB still have disjoint mantissas. LB is larger

in magnitude.

o
"™

1A # € since it is larger in magnitude and hence EXPA 2 -51,

81

(H,L) — (LA, 0) + (LB,0). Lemma 7 guarantees
exact double-precision sum except for under-
flow. Overflow to SETR. Hence Lemma 12
applies.
IFL=0
THENIFH =0
THEN IF 1A # - 1B 249
THEN BEGIN COMMENT EXPONENT
UNDERFLOW;
(H,L) = (0,0) and LA # - LB implies
underflow, 251-259 implements
Lemma 11 (Table 6) for left
endbohﬂs.
IFIA> 0 251
THENIFLB> 0O
Lines 1, 5. LB'is 0.
THEN LB «— 0
ELSE
LB < 0.
LB «—IF -LB > LA
Lines 3, 6. LB

is ~€.

83

END
ELSE
LA = -LB so sum is 0.
IB~0
ELSE

H#Z0. L=0implies H is exact sum.

IB~—H
ELSE
L#0.
IFH<«O
L # 0 and H ¢ 0 implies LB is H by Lemma
12. H # 0 since H ¢ 0. H normalized by
operation of DOUBLE. Thus we can use
ROUNDDOWN.,
THEN LB — ROUNDDOWN (H) | 265-266
Overflow to SETR.
ELSE
H > 0., But H = 0 is impossible. Since
L #0, LBis H by Lemma 12.
IB -~ H
END; 269
GO TO ADRIGHT; 270

85

Hence control never reached 266 in the first place.
c. Suppose LA and LB have oppositewsignsg H = -K and
L # 0 implies (H,L) ¢ -K. But with opposite signs on
the single precision summands, the sum (H,L) >min
(LA,LB) > -K, a contradiction.
In all cases control passes to ADRIGHT for the computation
of the right endpoint RB.

We now show that RB is computed correctly. ERDONE becomes

the exponent overflow label. Since EXPA and EXPB were only set once

in the left endpoint calculation--to hold the respective SEXPONENTs
as integers (see Table 8)--they may be and are used for that same
purpose for RA and RB at 277-280, Control is thus at 282, 282-329
is a single conditional statement which computes RB, Lemma 13

(including Corollary 13.1 applied 305-329) shows that control passes

through 330 to DONE at 338, assuming no exponent overflow. Lemma

13 further shows that RB is set at most once. It is easy to see that
RB is set at least once or else unchanged. RB is not altered in the
remainder of ADD. '282-292 implements Lemma 10 (Table 5) with RA
larger in magnitude, and 293-303 implements Lemma 10 with RB
larger in magnitude. 304-329 covers the case of non-disjoint
mantissas,

IF EXPA - EXPB » 12

282

87

Line 2., RB is RA,

THEN RB < RA

ELSE
RB# 0. Lines 1, 3. RBis RB'. RBis
normalized by 213, Thus we may use
ROUNDUP. RB # =-e. Similar to footnote p. 86,
RB «— ROUNDUP (RB) 298-299

Overflow to ERDONE.
ELSE

RA < 0.

IFRB=0
Lines 5, 8. RB is RA.

THEN RB -« RA

ELSE 303

RB # 0, Lines 4, 6, 7, 9. RB is unchanged.

ELSE
|EXPA - EXPB} < 12, i.e, non~disjoint mantissas.
BEGIN 305
DOUBLE (RA, O, RB, 0, +,-, H, L); 306

(H,L) - (RA,0) + (RB,0). Lemma 7 guarantees

89

-RB > RA, but
= is impossible
by 309. Lines
3,6. RBis 0,
0
ELSE
RA < 0,
IFRBL O
Lines 9, 10. RB is 0.
THEN RB «— 0
ELSE
RB s 0.
RB —IF RB 5 -RA
Line 7. RBis €.
THEN ¢
ELSE
RB « -RA. Line
8. LBis 0.
0 319
END

ELSE

91

ERDONE:
Control reaches here only if exponent overflow at 287, 299,
306 or 326. Assume overflow at 287, RB s 0 and there is
overflow only if RA = +K. Hence result should be +K (Table 3)
and is. INTERFLOW is set since +K is not an upper bound.
Overflow at 299 follows from that at 287 with the roles of RA
and RB reversed.
Assume overflow at 306. Here overflow is possible only if
RA = RB s 0, i.e. they have the same non-zero signs. If
both signs are positive, RB is set to +K and INTERFLOW is set.
If both signs are negative, RB is set to -K, still a lower
bound, the best that is machine representable,
Assume overflow at 326, L # 0 and H 5 0 implies H must be
+K before ﬁOUNDUP operates to cause overflow., Overflow
setting of RB should be +K. Itis if RAS 0 and RBs 0. We
must show that any other sign configuration of RA and RB is
impossible.
a. RA ¢ 0 and RB ¢ 0 implies H ¢ 0, a contradiction to

H>s 0.

b. If either RA or RB is 0, then the same argument holds as

in left endpoint case.

93

Proof of SUB.

The proof of SUB is different from the other three. SUB uses
the relation of Lemma 2, A - B = A + (-B). It therefore changes the
B interval to -B (348-350) and then calls ADD (351). »SUB must also
set SUBFLAG true (347) before calling ADD and back to FALSE (352)
after calling ADD in order that ADD can properly set INTERFLOW
(cf. discussion of INTERI-‘LQW). Thus the correctness of ADD implies
that SUB correctly performs B — A - B,

The only part of the above that is not immediately obvious is
the changing of the B interval to -B (348-350). We wish to show that
B = [u,v] becomes B = [-v,-u]. A simple trace, before and after each

statement, of the variables X, LB and RB will suffice:

? u v
X «—LB;

u u v
LB «— -RB;

u -v v
RB « -X;

u -v -u

This completes the proof of SUB,

95

Thus we may start examining the code (for all cases except 5) in
more detail at 433, 435-449 is a single conditional. Applying
Lemma 13, control passes through 450 to NOWRIGHT at 455 assuming
no exponent overflow. In the code from 434-449 we show that LB is

set correctly.

0 1 2 3 4
EXPOVR < ERR7; 433
DOUBLE (OPL1, 0, OPLZ, 0, ®, — , H, L); 434

(H,L) - (OPL1,0) = (OPL2,0). Overflow to ERR7. Except for
underflow, Lemma 8 guarantees exact double-precision
product in (H,L\). Hence Lemma 12 applies.
IFL=0 _ 435
THENIFH=0
THEN IF OPL1 # 0 AND OPL2 # 0
THEN BEGIN COMMENT BXPONEN'f UNDERFLOW;
(H,L) = (0,0) and OPL1 # 0 and OPL2 # 0 implies
underflow.
LB - IF SIGN (OPL1) = SIGN (OPL2)
THEN 0 ELSE -¢;
Neither OPL1 nor OPL2 is 0. Hence if the
signs agree, then before underflow, the

result was between 0 and €, so 0 is the best

97

Applying Lemma 13 shows LB is set at most once in 435-449, It is

easy to verify that LB is set at least once. LB is not altered in

the remainder of MLT since control does not pass through CASES5.

GO TO NOWRIGHT;

ERR7:

Control reaches here only if exponent overflow at 434 or 447,

Assume overflow at 434, Neither OPL1 nor OPL2 is 0, else
no overflow. If like signs, LB should be +K (Table 3) and is
so set whence control goes to NOWRIGHT. INTERFLOW is
not set since +K is still a lower bound, the best that is
machine representable. If unlike signs, LB should be and is
set to -K and control goes to NOWRIGHT. In the latter case,
INTERFLOW is set since -K is not a lower bound. Now
assume overflow at 447, H # 0 implies neither OPL1 = 0 nor
OPLZ2 = 0. H ¢ 0 implies SIGN (OPL1) # SIGN (OPL2). The

rest follows as in 434 overflow,

In the code from 457-472, we show that RB is set correctly.

NOWRIGHT:

EXPOVR -— ERR89;

DOUBLE (OPR1, 0, OPR2, 0, &, — , H, L);

450

455

457

99

0 1 2 3 4
RB — H
ELSE
L#o0.
IFHS 0

L#0and Hs 0 implies (Lemma 12) RB is H+. H#ZO0
and H is normalized. Thus we can use ROUNDUP,
THEN RB -~ ROUNDUP (H) 469-470
Overflow to ERR89.
ELSE
H< 0. But H = 0 is impossible, Since L # 0, RB is H.’
RB «— H; 472
Applying Lemma 13 (and an easy verification) shows RB is set
precisely once in 458-472., RB is not altered in the remainder of
MLT since control does not pass through CASES5.
GO TO OVERFLOW;
ERR89:
Control reaches here only if exponent overflow at 457 or 470.
As at ERR7, no argument of SIGN is 0. At 457 like signs
implies RB «— +K. 4K is not an upper bound so INTERFLOW is
set. Unlike signs implies -K which is still an upper bound.
At 470 H > 0 implies like signs. In all cases control goes to

OVERFLOW.

101

-€¢ ¢« LA® RB ¢ 0, so the double-precision quantity
(-€,0) is the best lower bound. L = 0 already.

END;

GO TO NEXTLMLT;

ERR7F:
Control reaches here only if exponent overflow at 484, 498
or 531, First LB is saved as X for right endpoint computation.
uIn the first two cases, the product is negative while in the
third H « 0. Thus, in all three cases LB should be and is
set to -K. Since this is the smallest number we can repre-
sent, we have already computed the min, properly rounded.
Thus, set INTERFLOW (-K is not a lower bound) and proceed
directly to the right endpoint computation,

NEXTLMLT:

DOUBLE (RA, 0, LB, 0, ®, -, HS, LS);
(HS,LS) = (RA,0) = (LB,0). Overflow to ERR7F.

IF HS = 0 ANDLS = 0 ANDRA #¥ 0

THEN BEGIN COMMENT EXPONENT UNDERFLOW;
HS «— -¢
-€ <« RA® LB ¢ 0 so the double-precision quantity (-<,0) is the
best low_er bound. LS = 0 already.

END;

498

103

Table 8). Set L,MSIGN from H, LS,MSIGN
from HS in order to have comparison include
signs of the quantities. The SEXPONENT of
both L and LS are already 0.
X-L; Y- LS;
L.MSIGN - H.MSIGN; LS.MSIGN - HS,MSIGN;
IFLL LS
THEN
(H,L) < (HS,LS) so (H,L) is min. Restore L
only since H is already set.
L—X
ELSE
L~ LS so (HS,LS) « (H,L). Move (LS, original
LS =Y) to (H,L).
BEGIN
H — HS;
L~Y
END
END; 523
Note that if the negation of 503 holds, i.e. H « HS, (H,L) is

already the min. Thus, in all cases from 503-523, (H,L) ~

105

(H,L) - (LA, 0) m (X, 0) where X is the original LB by 524 if
no overflow in computing left endpoint, or by 492 if overflow.

Overflow in 535 to ERRSF.

IFH=0ANDL=0

LA ¢ 0 and X = LB ¢ 0 by assumption of Case 5.

THEN BEGIN COMMENT EXPONENT UNDERFLOW:;

LA # 0 and LB # 0 and (H,L) = (0,0) implies underflow.
H-—¢
€ > LA = LBy 0 so the double-precision quantity (e, 0)
is the best upper bound. L = 0 already.

END;

GO TO NEXTRMLT;

ERRSF:

Control reaches here only if exponent overflow at 535, 548 or
580. In the first two cases the product is positive while in
the third H > 0. Thus RB is set to +K, not an upper bound so
INTERFLOW is set. We have already found the max so control
goes to OVERFLOW for the finish, already covered in the non-

Case 5 situation.

NEXTRMLT:

DOUBLE (RA, 0, RB, 0, w, —, HS, LS);

548

107

H>0and L #0. But H =0 is impossible if L # 0. RB is
H+. H is normalized b‘y operation of DCUBLE since H = 0
has been ruled out. Hence we may use ROUNDUP.
RB <—- ROUNDUP (H); 579-580
Overflow to ERR8F.
Control now passes to OVERFLOW for the finish, already covered
in the non-Case 5 situation.
In Case 5, LB is set at 493 if overflow or at either 527 or 531 if
no overflow. Similarly RB is set at 543 or either 576 or 580,

This completes the proof of MLT.

109

control passes to OVERFLOW.

Thus, we may start examining the code in more detail at 656.
658-672 is a single conditional. Applying Lemma 13, control
passes through 673 to REND at 680, assuming no exponent overflow.

In the code from 657-672, we show that LB is set correctly.

EXPOVR «— BIGEXPL;
DOUBLE (OPL1, 0, OPL2, 0, /, —, H, L);
(H,L) -~ (OPL1, 0)/ (OPL2, 0). Overflow to BIGEXPL.
IFL=0
THENIFH =0
(H,L) = (0,0) means either an exact quotient of 0 or an
underflow. It is underflow if OPL1 # 0. The underflow will
be corrected at 662-663,
THEN IF OPL1 # 0
THEN BEGIN COMMENT EXPONENT UNDERFLOW;
(H,L) = (0,0) and OPL1 # 0 implies underflow.
LB < IF SIGN (OPL1) = SIGN (OPL2)
THEN 0 ELSE -¢;
Neither OPL1 nor OPL2 is 0. Hence if the

signs agree, then before underflow, the

656

657

658

662

663

111

L#0and H ¢ 0 implies IBis H . H # 0 since
H « 0. H is normalized by operation of DOUBLE.
Thus we can use ROUNDDOWN.
THEN LB - ROUNDDOWN (H) 669-670
Overflow to BIGEXPL.
ELSE
H>0. But H = 0 is impossible. Since L ¥ 0,
LB is H,
LB « H; 672
Applying Lemma 13 (and an easy verification) shows LB is set

precisely once in 658-672. LB is not altered in the remainder

of DIV,
GO TO REND; 673
BIGEXPL:

Control reaches here only if exponent overflow at 657 or

at 670. Assume overflow at 657, OPL1 ¥ 0 else no

overflow. OPLZ # 0 by the first part of divide proof. If

both signs are alike, LB should be and is set to +K and

control goes to REND., INTERFLOW is not set since +K is

still a lower bound, the best that is machine representable.

If the two signs are different, 1B should be and is set to

-K and control goes to REND. In the latter case,

113

different signs implies 0 is best
upper bound.
END
ELSE
OPR1 = 0 so 0 is exact quotient.
RB —0
ELSE
H# 0. Since L = 0, Lemma 9 (i) implies no inexact-
ness so H is exact result,
RB ~—H
ELSE
L # 0. The statements for the same situation at lel‘:t
endpoints (667) hold. Therefore, Lemma 12 applies,
IFH>S O
L#0and Hs 0implies RB is H'. H # 0 and H is
normalized. Thus we can use ROUNDUP,
THEN RB -- ROUNDUP (H) 694-695
Overflow to BIGEXPR,
ELSE

H < 0. But H = 0 is impossible. Since L # 0, RB is H.

115

Proof of Termination.

It is easy to see that each of the four arithmetic operations
terminates. First, we eliminate failure to return from a procedure

call as a source of non-termination. The only procedure calls are:

NORMALIZE -~ called from ADD, MLT and DIV,
DOUBLE - called from ADD, MLT and DIV.
SIGN - called from MLT and DIV.

ADD - called from SUB.

We have proved that NORMALIZE terminates, and we have
assumed that DOUBLE and SIGN terminate. Hence, ADD, MLT and
DIV cannot fail to terminate because of procedure calls. Since this
holds for ADD, it also holds for SUB.

Second, the only other source of non-termination is ”flow of
control within an arithmetic operation. But flow of control is always
toward the end of each arithmetic operation except:

DIV - 632 when control goes to 625 but then to OVERPILOW and

exit.

MLT - Overflow at 498, 531 when control goes to ERR7F at 490

but then to RIGHT at 533.
MLT - Overflow at 548, 580 when control goes to ERR8F at 541
but then to OVERFLOW and exit.
Thus these three exceptions cannot cause non-termination either singly

or jointly. Hence all four arithmetic operations terminate.

117

2. Unnormalized operands are permitted. Thus both rounding
up and rounding down can be accomplished very cleanly
by the unnormalized quantity RNDR.

3. The point (.) operator to manipulate subfields of operands.

4, A double-precision divide operator which truncates rather

than rounds.

5, Sign-magnitude representation of operands.

6. Overflow trap.

7. Ability to write machine base constants directly (without

conversion from decifnal).

8. 13 octal digit mantissa and 2 octal digit exponent.

We qlearly cannot anticipate all problems that might be encountered
in converting our algorithms to all machines using all possible operating
systems and languages. Nevertheless, we claim that analogs of each of
the features exist on most other computers, namely:

1. The double-precision capability, which is crucial and
central to the algorithms, exists or can be programmed on most
computers. If necessary, it could be programmed on a digit-by-digit
basis starting from first principles. What is important is that
subroutines exist which compute

(H,L) - (C,0) op (D,0)
where the H and L can later be separately interrogated. Further,
the non-mantissa part of the least significant word is considered all

Zeros.

119

of code for this case, only when we discovered our wrong assumption.
There is a subtle problem if an overflow occurs only in the remultiply
but not in the original divide. We had allowed for this. Thus it
certainly should be possible to write a DIV if the machine divide
rounds.

| 5. Other number representations may preseht_ problems, e.g.
representation of negative numbers by complementation. The set M
of numbers may change,and overflow and underflow tests may have to
be altered.

6. Suppose the overflow trap is unavailable to the implementor
at the proper language level. If, for example, an overflow is an
unrecoverable error, so be it. And some systems set the results of an
overflow to zero! Clearly some special testing may be needed to
distinguish this case from a natural result of zero or even from an
underflow.

Another interval arithmetic implementation on the B5500, by
Lord (5), shows an approach if no overflow trap is available. To guard
against overflow, he in effect pretests in a rough way the exponents
of the operands to see if "overflow is likely." These tests give
sufficient, but not necessary, conditions for non-overflow. Thus,
unavoidably some bounds may be overly pessimistic.

7. The current implementation uses octal constants only to
set ¢ and +K, but these values are never later tested for. Some

problems could be avoided by redefining the set M and using

121

The proofs have another interesting use-~-serving as documentation
of the procedures and, therefore, the algorithms. It has been suggested
to us that the statements of the proofs of the five procedures make the
code well-commented; we tend to agree. We do not claim that our
documentation, which is presented in the form of proofs, is the best
possible way to document. Our intent was proof, not documentation.
But we do claim that our proofs meet reasonable standards of documenta-
tion in the sense that all relevant information is present somewhere.
This is true, almo‘st by definition of the meaning of proof.

Finally, if a user asked us to find the error in the prdcedures
because he is not getting correct answers, a not unreasonable reply

might be to ask him first to find the error in our proofs.

123
APPENDIX
This appendix is a listing of the source code of ADD, SUB,

MLT, DIV, and NORMALIZE. It also shows declarations,

initialization, and sequence numbers.

125

0eel
0iey
J0RY
06/l
"Rt
0241
0a/]
AN
a1
URIFR
071
DLl
00Ll
697
Ne91
0791
Jogtl
0691
URAR
0F91
0¢91
5191
09l

{ladX0/03dX 30N

NIY93h
N0 €9=<adX30L0 UNV 0=TwL LY I7[H* THI02U1028 »0i 4
CINANUGXIDLO VIV LINGIO dXINID

INDISXOL0°YVINIISWD 0 dXAL,D OdX 0N
N1ID38 NiMt
0#v 41
vlbdn
£30NLINDVW 1STTIYNS 40 HIGWNN INTHO WA
G3IZITYWHON f3IATLISUA 3HE U1 v 13S o<y 4} -
‘0437 Ul v 138 o>y 41
"INIOGONI LIHBIY ¥ ST ¥ N3IML ¢3STv4 ST 1437040 41
*IANLINIYIW 1SIATVIVAS 30 YIGHON INTHO VN
G3Z1VAYON “INTLVYYIN IHE UL Vv 135 40>y 3]
. *0M3Z UL Vv 135S *0<Vv 4]
*INTOJONI 1437 v S1 v N3IHL ¢3nul S1 J437076 41
$04Z 1 IVHEON
18 LON NYD v I NIWVLE JuY SNOILIOY ONIMUGTITIGA 3HL -
*38ISS0d 4T vV AZIVYWHON N3HL (O#VSSTINVH) L7V 41
"SO¥3IZ MY 0L ¥V 13S NIHL TUHIL ST Y 40 YSS]LINYM 4HL 41 INIWWUD
iV EAER:

COVI3ZE tYwMONBZE IHNQI00Ng

f3ZITVHWEHONDZO® 5 % % 5 x & ¥oOOR ¥ ox % x % % x 3 % x & x [NIwGS

127

Oei2
0212
0ot
0612
onie
32 B
veiz
otz
s01e
0ev2
0802
0102
peoe
aG0e
oroeg
oroe
0c02
oroe:
0002
0r61
0e61l
04hT-
D961

ENOISXDLD*YILLY 2 NOISWUIR*HAXTNLD
(NVISXDLO Y INLG » NUISHEIN YAXIOLY
ENOSTIHYIWOD ¥04 SININUGXI 139

"ISHIA SUINIOHUNT 1437 Quv IN3WW(D
{41395 » HAGSX3
- TN IDIIZITIVREENDLD NIHE O=TrU20°AHO2D 4T
COVHRZP)IZITVINEOND LY NIHL O=TWLLD YuNID 4]
€3SV 4214477040
fCHTIDLDIIZLTVNEUND LD NIHL O=Twb 081020 41
T ACVIRINIIZEIVREUND LG N3ML O0=TwDLt Y1020 41
t3X1+14377026
COPMUTT 4 4LMT NIHLE OO MUTANAINT 41

£12H0NYE LD £028dX VL0V XYL (YNBLEAT)D (VIR LOAXGLO
.) A HAUEX A 0L INOR -
£INUQANUANI LRI HAY #¥13S 136V
NIV 3B
((88920¢97040] =

¥31S193y 8
v

fvap0°v1I0201) ¥318193y

'y NI
LINS3Y 3IHL SiNd OMV SHILSTIY3Y 6 ONV v
IVAHIINT 3HL 40 SINIINOJ 3FHLI SUOY UOYOJID INAWWULD

. . L ; - (UUYHZAL 34H0300vdd -

fUOYOLD » » % ¥ 5 % % % x % % % % % x » x % % x % % % % x [NAWW(D

129

orGe

ug e

0z%e
019e
0092
062
ues?
0icz
ngce
066z
once
0g6e
0zce

0162

oose
verz
opre
0zte
0ot
newe
Ohtve
6eve
0¢ne

N1Y93dy WML
O>HUZY 41 3713 T e e
HOLGa8 IbZb 3573
0288 4ST 4
Un3

SETIUNWIID20= 3STY ¢ NIHL - v - . —

VIDZ0-<8I040 41487040 38713
(TIONWINOLD=+81040 NiHL
G587040 41 3873

0 3873 [VIONWEOL0s NIHL - T ST T T e

VID.0<810/0e 41487040 45713
0+8710.0 NiHL
0<871040 41 N3IMy

- - e ON Ql.@ 4 hm - - . T e e e

£MOT 443ANN ININGAX3I INIWWUD NI936 nIMY
BI0L0=#VI940 41 nNAHY
0=40L0 41 NIHL

PR - . . PO - - e el ﬁw‘"JGNle&N‘ - P - ——

fCI0LOHDLO 24490 ¢BI02H0YI0L0) 318100
NI93H

——— e - J— ..WWJM - e o . S e e e e e e P

VIDLL»8T7040 NIHL

131

001lg

nenNg

(IRRORY
DJ0€
090¢
0s0¢
On0g
0€0¢
0c0¢

O1he

000¢
N66¢8
oRé6e
ul6Z
19672
N6
Onée

0€5eg-

0e¢6é
0156c¢
noée
062
098¢

fMOT4430NN ININODXI ININWUD NIO3IY NIML

BHOLDw#V 00 21 NiKd
U=hOJU 41 NIHY
=020 4l
£C10L0hDL0 3 4608 yB M0 THBLD)INBN00U

el S . . NID3H

3573
VUL L0->84020 N3IHY
O=gbbib A1 I3
a3
fHONHD JO+BBD.E288D20

CININDAXISOLO AUDLO»ININDAXISOLL HONHD LY

- : ©ONEY3e 45713
VELLU2858040 NIWYL
0=H8L/.0 41 N3IHYL
O<vyOLG 41
- €l e« YadXIPLO~rdXILLY
45713
VHOLL28UD 40 N3AHL
0#vybDLL 4
- 4873
(N3

N3HL
3t 3§53

133

N ARY
D1Re
JoNE
IEEE -
oRee
J4¢€¢
J9f ¢
uete
VR AN

¢ UGvdLe UN3
fMUTAYIINTI = + MUOTIHIEN]D N3IHE 0> MUTIMIINT 41
{€=MOTJYILNT » MOTVAHIINT NIHL 9VI48NSCLD UNY OSMUTANIINT 41

o C , ST LRQEBIVETLO < (X209 VI0LE
$3INGG
fLCIONNITIOL02HH0L40 38713

N3

..... (24 3513 €= NIHL TusMOTIHILINT SEomB I3 INT
£LOIUNKITDZD 240D

135

09.¢
ASFA)
or /¢t
0f it
Nelt
Ovif
00i¢t
069¢
286¢
019¢€
1906¢
169¢
ono¢
JESE
WIAY
219¢
$09¢
0eSE
0RGtE
045¢
09%¢E
066¢
OrGe

(YHOLD 2 1714UbLU
§6 ISYD AINIFNRUD NIDHB

N4HL
o > £4B/U 41 N3HL
G > B0 41 N3AWL

e G > Vebl®& 4F NImk

0 > vinlzy 4l

(HHPZDIIZLIVHEUNOLY NIKL 0=1Wdle*HH0LD 41
((YHBZD)IZIIVWEUNGLY N3RL 0=Trdlbwymsn 4l

[

((8I0/0)3IZITIVKEUNDLO N3HL 0= IWb/T*ATI6IYD 41
(VIE20)3ZLIIVHAONLLD NIHL O=Twbize*vmLo 41
¢3hn121437020

LN

- (O0MDIANIINT NAHL O>MOUTIBIINT 417

fSINIOMUNT 1437 ONV LHOIY ONILNAWOD HO3d SONyHIdD 139 INIWKED

gummmu.unmmu.wamx.3cgumu>c.»xcumzcz.ommmu.uxww.mum«o

(11HDID v » » x x 3 % ¥ ¥ ¥ ¥

S TH2HONMOLD fyubib210.0 AR LYEE RN VFAV]
funldx3 ¥ 1 INOW
1B EIXINSLINTLX3N -
738V
nI93da

(9 x ¥V » A LINIRWUD
- - ~EPTINBLY AP0 A0UNY

x » ¥ x x ¥ ¥ % x ¥ x » * » INIWWQDD

38 s L 430LL T

137

22 £697020 + 21dLI20

I12n - - (VHOLD 3 LNdUOZY » T1aUBLO
20an {2 35v) INJIWAOD N1938

0611 | , 4713

NaTh aN3

o21n - e - (40,9 » THAUDLO o
2914 £97040 » TudUILO

0T \ (47049 » ¢1dULO/Y

ohly & (Va0 » 1140020

ogty - - : - - (€ 3SVD INIWnOD NI93E - - -
02th NIH

o11h 0 > 880,09 41 N3HIL
001t 0 > w1920 41 4S13
0600 - - : - R ~ -~ GN3

0RO £YH0.0 » 1HdLOZD

0104 {EH0LD » THAOOLO + 2740820 -
1901 u (V1020 + 114020

LT R e £ A4SV HNIRADY NiI9IH -
oncH ELRE

080 $3S¥0 01 LY 4$13

0204 an3

oten SEEEEIERE, 48100 ¥ cHaUbIY - o o

0coY fVI040 + 14dIbLU

139

0udwy NIU3w N3ML

0z9n | ‘ CeHbst 413874 - oo
0yYoh HOZb»Hua02b 387113

0Gun : - O»8480/0 345713 : -
Otoy uM3

Oty - - - - : 0 33 [VIONWITIOLE N4HL - T e e e
0aoh (Z4dOBLDINYIS=(TH4OLLDINDIS 41268020

019n (MOT4HIANN ININUDX3 INAWWOD NIDIE M4HL

009y ” 0#24d00.0 ONV OrTH40DL0 41 NIHL

06S 1 . e . o . . O=HOZ8 3T NIML- e e
opsy =08 41

0Z26Y {CI0LDHDLD ' x e 0e2HdUDLO 0T HAUL DY ITIHNOG

096G fOHHE] » MAUIXH

nCGy— o o L O L N v —
Onsh fON3 £ =3MUTIYIINT CLOTUNWIIGLD= »87020 NIDIA 3IST3

OEGY FOIUNKRITIDZO2AIRIN NIHL -
02Gh (STd0OBLDINDEIS=(TTdUDZOINDLS 4]

01GH _ . . . C e o . TrHE - S e
JOGh f1HO9T440N 01 09

Q6hy (HOLY 240040 35713

0gvh ON4

diby - - - e SRR CAUUNNO L e L LD AR el

gany fININODXISOLOHOLOPININOLXISO LU HUNHNLY

A . - - - . .- . e s e+ seme s e e — et

141

Irig
DELG
1¢lg
91ig
N01g
ngng
ngng
01409
n19ug
IGNE§
avog
0¢04g
0208
n1og
00049
D6nuh
Nesn
016Y
J9hh
NGHn
Oh6h
NEhY

AP S

INDISHOLO HYJOINDISHD /BB LY
ESTIDL0 » ALY
04 2 XVLY

NT193d
1813
: (N3
£ST1940 » IHJY
§CHDLL » HBLD
Niy3dY
N3HL

FOLD > SHOB/Y 41

SHULG < HOLD
(AON3
- SETIONWETOL0=2SHDZ0

3

» (MOT4430NG IMINDGR 3 INIWWDD NID3A

M3H1
41

N3IHL

NDAVHOLDE ONYV 0=STHu/i0 uNv =SHOD 41}
f(SI0LDSHD /D e9exeQog ID/ D0V HY/0YITI8N0U

fONJ
CIHODIY 41 09
£/=2MUTIHIIN]T

T ’ SELCIOMI IO L ey EB LD

fH0L0-XDLY

143

N06¢g
N66S
URGQ
0166
1966
444
NhaqQ
RIS
A
01694
unaeq
RIS
08ang
NIng
09hg
0&ng
anng
neERg-
0eng
Ding
0onG
06t S -
J8EG

NID3Y
R - - : - NAHL - - e e
MELD < SHOLU i1 N3HIL
SHOZY 3> HOLY 44
{0NA
- - - I TIURATIIO LOPSHOLS o e e

4¢3
UNd - e
£ST104D » LY
$SHOLD 2HOLD

(MO AM3ANN IN3INUGXT INIWWOD N[933 N3IHIL
088020 OUNV 0#vd0.lD OGNV $=S10.0 ANV 0=SHOLD 41
£(SI0LDsSHULD 2exv(+BY0/00Yan 201318000

.- e . C e e " HJ#ANAHXMZ..::\I\% v o - e =

£0ON]
£MUT443A0 UL 09 -
9~ 3573 6« NIAHL Z=-=MUTJHIUINT JIm0T3H3IN]

N1D48
1iey8d
f1MWEEXIN UL U9
e L - P 1 Ve
FLTIONWLITIOLOHDLD

HLOIUHATTOZ0PBEDLY - e

145

VGRG
oneg

: _ TE EIRBE OGN -
FHOTJYIINT= SMUTIYIINT NIHL O>MO1I¥3INT 41

147

J1E9 MID3H

0t 9 3STFY e e
Je?9 UN3

ORdY : fM0Ta84n0 CL GY

3429 fLOIONWITID/0+8HDLD (LOIONNTTIDID=2HTOLY

Jsege S e SRR - fg 1= > MUIIHILNL - - e e
9620 £0 ONINIVINDD 8 A" 3UIAIQ LINAWWOD NI93E 1083ZA10

JE29 sn3

JE29 UN3d

0229 . T T T) {81020 ¥ cydabOLO T o T T
J1e9 fv0.20 » 1440020

0029 (880.0 + cidlogd

J619 £vHDLD » 1714L0 0

ortg - . Como - € 3ISVI INIMWUD NIYILE - TS T T e e
3719 ERE

J9l9 - Uh3 . , T
1619 V0.0 » Lyd400.L0

LANS : o o raNBLD Y E¥dO0LD Y e 1F0bLY - o T e
DE19 . fYH0.0D 4 171dUbLb

3219 . £9 3SVYD INIWWDD NID3E

2119 3573

g0tlg . . e e S ON3 o e e e - e e e e e
0609 fBHOLYD P cHdUDLY

149

0249
09/s9
N6/9

onie

0esL9
0et9
7129
0029
0699

0ge9 -

0.99

0969-

0699

Oro9

0£99
0299
0lvo

0649
09869
1249

19€9-

1669

{OJUNRWLIVZUAHTI0LU NIHL
- o nm4aca~avzo_mnn~4agc~avz¢~m 31 S T
(MOTAYIAG INIWWGD N[{DEF
$ et ndD 1y -
£ONFY UL LY
S o S fHUZpHTIDLG 3873 o o
UNG
{HUNHOLU=HU 2028 IDLD
fAININODX3ISOLO HRZOPLNINOGXASU LU vANYOLD
R U .. NID3IH N e
O>HOLE 41 3S13
HU/Zm28T020 38713
(8770206 45713

fLTIONWITOL0= 3ST13 0 NiHL
(27d0BL0INDIS=(1T1dDDLOINYVIS 41281040 -
fMOTAHIUNN ININULXT INIWWDD NILIE N3HIL

- e — S [- -.A. ﬂﬁJQQQN@»‘&M - 2.1#1&. i it vevimn s e e ——— s s

0=HOLO 41 N3HL
- ERLVAE)
£CIOLDCHDLY 2/ €0 6210200 ¢ 1Td0bLB)TIENDU
T It PP & - 3 B SR TLYi 12 5 B
N3

- . - CZW‘. U VU0 R

151

(VR “ § OALOBLE UNA

Lo R O A o ; O IMUOTAMIINT- MO 3UILMD NAp L OSMUTIAY3IRT dT
06n) IS YREL LR £SD/00TI040
0802 . tMOTSHIN0
040! £UN3

09t - o D e e e CEUIONRIG D286 48T~
0602 (N3

0v0 2 f17e 3573 21= NIHL OTe=MOTAMIAINT Fi+MHUTIHTLIN]

0t02) fLOIONY IO LM28UHDID

oeos : - - - - N193g NIHL - -

01n2 (2ud060INDIS=(TuagbIOINDIS T

