EXTENDING AND REFINING HIERARCHIES
OF COMPUTABLE FUNCTIONS

by
Robert L. Constable

Computer Sciences Technical Report #25

June 1968

g

PREFACE

In part I we extend the Cleave hierarchy of primitive
recursive functions into the transfinitely recursive

functions, The extended hierarchy, E is indexed by the

a °
ordinals a<e 5. For &% Peter's nufoid recursive functions,
§.n=<ﬁn. Emphasis is placed on finding a hierarchy which
c:n be interpreted in terms of computing theoretic concepts.
In part II we examine the low end of the hierarchy using
a new type of machine especially suited for such investig-
ations. The machine is called a rewind automaton, We ex-
amine computational complexity classes based on the number

of rewinds required to compute é funetion,

ACKNOWLEDGEMENTS

I would like to thank Professors Stephen C, Kleene and
Larry Travis for their pPart in this work. 'Professor Kleene
has seen to it that I have had the time for the research
and has given of his valuable time and advice to help me
along., Professor Travis has listened to me, guided me,
taught me and counseled me for three years on this and
other projects, His criticisms and suggestions have done
mueh to shape this wofk.

Finally I give hearty thanks to my wife, Carol, for her
prodigious efforts in typing the manuscript and for her

meny sacrifices while the dissertation was being written,

NOTATION

A function is denoted by f() when the arguments are not
essentlal, When they are it is denoted by hxl.,axnf(xl,,.,,xn).

The non-negative integers are denoted by N, and elements
of Nn, called vectors, are usually denoted by X. The n is
usually specified by writing XeNn,

The lettermwill always denote a program and ﬁf & program
which computes the function f(),

For sets, write A<B iff ASB and A$B,

R denotes the set of (total) recursive functions, and 5§
denotes the partial recursive functions. & denotes the set
of all number theoretic functions. & denotes the set of
elementary functions,

For K a class of functions, K[n] denotes the n argument
members of the class, Also write £(X)<K iff Ib()eK[n]
such that £{X)<b(X) VXenw,

TABLE OF CONTENTS

PREFACE

ACKNOWLEDGEMENTS

NOTATION

PART I

Chapter 1 Introduction | 1
Chapter 2 Random Access Stored Program Machines 16
Chapter 3 Grzegorczyk, Ritchie and Cleave Hierarchies 30
Chapter 4 The Ritchie-Cleave Hierarchy 49
Chapter 5 A New Ritchie-Cleave Hierarchy 63
Chapter 6 The Extended Ritchie-Cleave Hierarchy 74
Chapter 7 Comparison of Hierarchies 105
Chapter 8 Algorithmic Complexity 114
PART 11X

Chapter 9 Finite Automata 122
Chapter 10 Rewind Automata | 133
Chapter 11 Low Level Complexity Classes 146
APPENDIX

A A Computing Procedure for fa(), a<e, 169
B Estimating Gfa() 190
C Arithmetizing the RASP 206

BIBLIOGRAPHY 213

Chapter 1 Introduction

At present works on recursive function complexity fall
into three major categories;
(A1) works by logicians on subrecursive hierarchies
where extensive use 1s made of constructive ordinals,
recursive function theory and the theory of recursive
functionals,
{A2) work by logicians on sequences of formal theories
and the functions provably recursive in them where ex-
tensive use is made of the constructive ordinals, var-
lous formalizations of parts of number theory and anal-
ysis, formalized transfinite induction, and G8del‘'s
theorems on consistency and incompletehess'
{B) work by automata theorists on computational com-
plexity where extensive use is made of automata, Turing
machines and other mathematical machines such as iter-
ative arrays, push-down store machines and generalized
sequential machines,
(C) work by automata theorists on algorithmic complex-
ity where extensive use is made of finite automata
theory, semi-group theory and combinatorial analysis,
Work in category A is by far the oldest, dating back
to Hilbert in 1925, while efforts in area B began in 1960
and have been flourishing vigorously ever since, Category

C has its origins in 1956 but did not become directed SyS=

&

N

tematically and explicitly to complexity problems until
after 1963,

‘These categorlies have been for the most part unrelated,
especially areas A and B with C, We are concerned with pre-
senting all three areas from a unified viewpoint,

There are strong reasons for introducing a unified view=-
point at this time, First, once this viewpoint 1s stated,

many implicit connections between the areas become apparent,

and numerous interesting questions arise, Also each of these
areas helps explain the phenomena of the other areas more
deeply,

The viewpoint we adopt is computing theoretic., Rapid
developments in the field of computers are causing the swift
emergence of computer science, This new science is econcerned
with such activity as computer design, design and analysis
of programming languages and programming systems, analysis
of computations and algorithms, and construction of extremely
complex/programs, Study of these activities is leading to
an abstract computer science already embracing such precise
new notions as abstract machines and formal grammars., The
concept of recursive function complexity seems destined to
play a crucial role in the development of this abstract

computer science, namely as part of a theory of computingql

1We emphasize the use of functlons as central to the theory
of computing rather than that of reooghition problem or set
as is customarily done in areas B and C,

3

The precise goals of a computing theory are being formed
from real computing experience, bult there already exist vague
yet clearly interesting guestions for such a theory. Among
them are these.

Ql., Can we discover a class of functions which repreéents

the functions which are "actually or practically compu-

table" more faithfully than & does? (For example, &1

is a candidate for such a class,)

Qz, ¢Gan we discover intrinsic computational and algo-

rithmic properties of functions? (For example, is multi-

plication intrinsically harder to perform than addition?

Are the multiplication algorithms always more difficult

than those for addition? Is there a natural computational

hierarchy of recursive functions?)

3. Can we define a quantitative notion of the size of

a computation perhaps analogous to Shannon's notion of

information?

Q4, Can we discover trade off relationships to balance

the computational parameters of programs such as time

and memory, time and reliability and so forth?

Q5. What relationships exist between structural bro—

perties of programs and properties of their computations?

(For example, are there functions for which all short

programs are inefficient?)

We will be able to state these and other questions more

brecisely as technical concepts accumulate. We will remain

concerned to some extent with Q1 = Q5 throughout our work.
But the results of the first part of the thesis are better
motivated by more precise conslderations from mathematical
loglc and recursive function theory. These considerations
occur among the branches of logic and recursion theory. which
are least blessed with notational simpiicity, elegant proofs,
deep philosophical content and popularity. To mitigate
against these characteristics we offer in Chapteg 3 an ex-
tenglive introdetion to the technical work. In téé same spirit
we contlinue this introduction with some historical back-
ground on area A,

The study of subrecursive hierarchies has its antecedents

in the 1888 work of Dedekind. The notion of = primitive

recursive function appeared in his Was sind und was sollen

dle Zahlen. The schema of primitive recursion, though not
so nemed, was presented as a natural generalization of the
schemata for recursive definitions of addition and multi-
pPlication. A modern version of that schema is R1 below,
Bl. (a) £(X,0) = g(X) X e NP
(b) f(X,n+l) = h(X,n, f(X,n))

Here f() is defined from known functions g() and h() by
primitive recursion. The primitive recursive functions
were defined to be those obtained from 0, the successor
function, and the projection functions (U?(xl,,...xn) = X,

for i g n), by composition and the schema of primitive

recursion. We denote this class by Olla

In 1925 the schema of primitive recursion found itself
in the limelight of a sweeping proposal by one of the cen-
tuy’s most eminent mathematicians.

Hilbert in "ﬁber das Unendliche" outlined his proposal
for solving the continuum problem, the problem he placed
first on his famous list of unsolved mathematical problems,1
He proposed a hierarchy of number theoretic functions °§d
such that

(1) *F, 1s countable for all a<n, (actual) and

(2) Py © Fg if a<B<o, and

(3) U %, =°F = all number theoretic functions .
aZm
1

Such a hierarchy would allow assoclating a unique countable
ordinal with each f() e ¥ thus proving the continuum hy -
pothesis, Further Hilbert claimed that the processes of
substitution and recursion (transfinite included) were suffi-
cient to obtain any function of F . The claim was based on
his proposed formalization of mathematics and his belief
that all the recursions required could be subsumed under
the ordinary schema R1 if functional variables were allowed,
Thus a large part of the continuum problem was intuitively
reduced to examining primitive recursions with respect to
functionals,

Essential to Hilbert's construction was the notion of

1In 1963 P, Cohen proved that the Generalized Continuum
Hypothesis was independent of the usual axloms of set theory,
ZF + C for example,

“type of a function"., A function is of type 1 if it is a
number theoretic function, it is of type 2 if it is a func-
tion of functions, i.e, assigns a number to a function. A
function of type 3 assigns numbers to functions of functions
and so on, A function is of 1limit type o if it is a func-
tion which assigns numbers to sequences of functions fn
where fn is of type 0 for a, & fundamental sequence to a,
Hilbert could now define a hlerarchy of number theoretic
funstions using 0, the successor funstion, substitution, and
the zcheme Rl with functional variables, A Funetion is said
to be of degree a if it can be defined using functionals of
type a but can not be defined with funectionals of lower type,
For Hilbert's plan to succeed the hierarchy must be proper,
i.e. there must be functions of degree a which are not of
degree p<a for any B, Ackermann produced an example in
1925 (published 1928) showlng that at least for degrees 1
and 2 the hierarchy was proper. He indicated that his
method would Work\to provide examples for all degrees n<e,
Hilbert’'s bold plan was fraught with difficulties, and
although it received little attention, the discovery by
Ackermann which it spawned stimulated further activity in
the classification of recursive functions. Ackermann had
exhibited a function a(x,y,n) which was of 2nd degree but
not of 1lst., It also satisfied the following recursive
equations

(a) a(x,y,0) = xty

(b) alx,0,n+l) = g(x,n)
(e) a(x,y+l,ntl) = a(x,a(x,y,n+l), n)
0 if n=0
where g(x,n) = <1 if n=1
x if 1.
These equations uniquely define a recursive functlon which
is not primitive recursive yet the equations do not involve
functionals, Also they do not follow schema R1 since the
regeursion proceeds on two variables simultaneously. Acker-
mann’s result implles that there is no way to reduce these
equations to the form Rl without introducimg functional
variables,

In the late 1930°'s R, Péter studied recursion schemata
modeled after these equations. Such schemata were salled
multiply recursive or n-Told recursive since the recursion
proceeds on more than one variable simultaneously. She
called an n-fold recursion "nested” if the values of the
functlon itself occurred for the recursion variables, e.g.
as in Ackermann‘'s function., She showed that nested (n+l)-
fold recursions could not be reduced to n-fold recursions,
But unnested n-fold recursions could be reduced all the way
down to l=-fold (primitlve) recursion. Classes of funetions
defined similarly to 0%1 can be based on the notion of n-
fold recursion. Let R®" be the class of functions defined
from 0, the projection function (U?()), end the successor

function by composition and nested n-fold recursion, Péter

proved @& c.cﬁn+l n<®, We call this the Péter subre-~
cursive hierarchy. Péter further demonstrated that her R
were precisely the ‘?% of Hilbert for n<w01
In 1953 Grzegorczyk constructed another hierarcy based
on ideas in Ackermann's work., He used a sequence of func-
tions gn(x,y) similar to Ackermamn’s a(x,yn) to stratify

n contains

(Rl into an m-sequence of classes & where &
gn() and is closed under certain elementary op@xations.
We discuss this hierarchy fully in Chepter 3,

In 1940 Ackermann introduced a notion of trensfinite
recursion, and in 1950 Péter was able to show that her n-
fold recursive functions were precisely the wnatransfinite
recursive functions with respect to standard well orderings
of order type o=,

The notion of ordinal recrusion seemed like the ideal
means of studying hierarchies of recursive functions, To go
beyond Péter's &% into &% for oo might requre only an
a=recursive ordinal schema, The recursive functions could
then be classified according to the ordinal level at which
they could first be defined., Furthermore since Hilbert's
hierarchy also extended into the transfinite the possibility
existed of comparing an ordinal recursion hierarchy and

the functionsl hierarchy. An ideal situation might have
been that (X is obtained at level @, (constructive) in

Lsee Lacklan[31] for a modern , thorough sccount of ®RD,

(7]
both hlerarchies, 1i.e, A 1. O%n and that the hierarchies
1

R and C?a continue through °F for higher type recursion
schemas and higher level functionals as envisioned by
Hilbert, However, this plan ran into o "stumbling block®
discovered by Routledge and Myhill,

The problem begins with the fact that to define the
ordinal recursion hierarchy, the ordinals must be represen=
ted in the integers, Suppose then for the ordinail a, <4 is
2 well-ordering on NxN of order type a. Say that £{) is
defined from g() and h() by unnested ordinal recursion of

order type o iff

(a) f£(%,0) g(X)

(b) £(X,n) hiX, n, £(X,6(X,n)))

ti

(c) (X, n) < B

What Boutledge and Myhill discovered is that for every
recursive function g(), there is a recursive well ordering
of type o, b, @ such that g() can be defined by w-recursion
using <m,g°k (In fact <a g ©on be elementary.,) Thus all
recursive functions turn out to be ordinal recursive of
order type o, The reason Péter’'s hierarchy escapes this
calamity is that she uses only certain standard well or-
derings of types mn, Therefore in order to erect a proper
ordinal recursive hilerarchy, the notion of a standard well
ordering must be clarified in general. This remains an

open problem which has attracted many reseachers yet has

t

10

rewarded none of them significantlyol

In an attempt to circumvent this stumbling block, Kleene
in 1958 proposed a new way of connecting ordinsls with
recursive functions. Of the two basice methods for extend-
ing classes of functions, diagonalizastion and majorization,
Kleene chose diagonalization, First he fixed a standard
énumeration procedure for the cless of functions to be ex-
tended based on the fact that the class of functions from
which the hierarchy begins is effectively cenerated by the
application of certain operations to a finite set of initial
functions, Thus glven the class C, itgs single argument
functions are enumerated in a standard manner by e(x,y).
Then e{ } is adjoined to C as a new initial funetion to
form a class C', As g Specific example, Kleens took C to
be the eclass OQlw

The above method brovides the mechanism for stepping from
2 class indexed by @ to that indexed by a+l. Now given
classes indexed by ao,al,az,.., in a fundamental sequence
to a, i.e, & = 1inm @, the enumerating function ean() can be
combined into & new enumerating function ea().

Kleene pointed out that this combining of enumerators
must be done with care lest the stumbling block materialize
here, Control of the enunerations is given by the Church-

Kleene system of constructive ordinals, Recalling that in

1see Tait[56] for recent work on this problem,

11

this system if the limit ordinal o is represented by the
integer o = 3»5?, for f the G8del number of f(), then the
fundamental sequence for a is represented by the integers
f(n) for n = 0,1,2,,,.. The new initial function for G is
glven by

TEI) = ep((x)) {(F)o)

where the (x)i are the usual "exponent of i-th prime func-
tions"” (see A,20 here),

For a hierarchy beginning with the class OQl it was
found necessary to restrict the ordinal notations so thet
fundamental sequences, e.g. f() above, were only primitive
recursive. It was shown by a student of Kleene’s Paul Axt[1]
that this subrecursive hierarchy was proper and wasg inde-
pendent of ordinal notations for a<m2, He also showed that

Qﬁ'was contained in the Kleene subrecursive hierarchy below

the level o™ 1, 1In later work, [27, Axt showed that the
Grzegorczyk hierarchy for n>3 could be obtained by the Kleene
procedure starting with the class 134,

Although Axt showed that the Kleene subrecursive hier-
archy was proper and unique for adnz, he discovered non-
uniqueness at »2, Feferman[12], in 1961 completed this
negative result by showing that, alas, the hierarchy col-

lapsed at wg. That is for every recrusive function r()

there is an ordinal notation Wf for mz such that f() ¢ qﬁ .l
£

1In 1965 R, Fabian[ll] attempted to stretch the Kleene hier-~

12

Recently J. Robbin[44] building on work by W. W. Tait[56]
has shown what would happen if the problem of standard no-
tations should be solved., By limiting himself to certain
ordinal notations which logicians believe to be "standard"”,
he has compared the Kleene hierarchy, the ordinal recursion
hierarchy, the Péter hierarchy and the extended Grzegorczyk
hierarchy, which he constructed and which will be discussed

in detail later. It turns out that

(f{m:"u C, = U8a=0{< 7}
n-1 % n Pt
O<® 10201} ®

for C@ the Kleene hierarchy classes (CQ = @%)0 8ﬁ the
extended Grzegorczyk hierarchy classes and 0(<a) the func-
tione ordinal recursive with respect to standard well
orderings <&@

- If our results ere viewed in this gontext, then what
we have done is produce a fifth hierarchy, the Extended

Ritchie-~Cleave hierarchy, E which extends beyond the

a!

others up to €y and relates to them by R" = E ne Control
»
of the hierarchy is basically in terms of computing theore-

tic concepts,
Thus after 43 years, the ideas in Hilbert's On the Infi-~

nite seem to be trapped. The method of functionals which

archy further by beginning lower down,, with & the elemen-
tary functions, and by further restricting the ordinal no-
tation using elementary fundamental sequences. But all that
is known is that Feferman‘'s proof will not collapse the
revised hierarchy.

13

he proposed has not developed beyond Péter‘’s work. The
multiple recursions which supercede them are limited by
thelr syntactic dependancy to a hierarchy of type ®, The
transfer of the burden to transfinite recursions runs into
the stumbling block of standard notations for recursive ore
dinals., The attempt by Kleene to skirt this problem led
to another form of it, this time appearing in nis system of
constructive ordinals. What remsins is a whole crop of
short hierarchies all closely related, easch of which can
probably be extended up to any well-understood ordinal a<wl
(constructive) by some tedious 2d hoc method., Recent results
by Moschovakis[36], Feferman and Spector[13] shed some light
on this discouraging situation,

Suppose N is a formalism for the partial recursive
functions, OQVF and g() is an arithmetization of A4/, Let
A be the set of integers corresponding to total functions,
R, under g). Suppose further that A is hyperarithmetic.l
Then for a ¢ @ letting |a| denote ordinal represented by a,

there is no classification of &R into subsets O{a such that

(b) 'lgf<sozac:(}2 if B<og

(¢} the predicate "a ¢® and x e A" is TT%.
If & is replaced by a path P through & , then there is

still no classification satisfying (a) - (¢) with P for & .

[%We]know in fact that A is in ;;g but not 1n‘!Tg by Shoenfield
511,

14

The hierarchies considered above all violate condition
(b) (Kleene, ordinal recursion) or condition (a) (Péter,
Extended Grzegorczyk and Extended Ritchie=Cleave). Further-
more these hilerarchies will not violate condition (¢) under
any reasonable extensions, Thus it appears that a kind of
incompleteness phenomenon arises for subrecursive hier-
archies which pretend to constructivity. This situation
would apparently also preclude a solution to the problem of
standard well orderings which would apply to the above
hierarchies,

In the face of this phenomenon, one can now expect the
following possibilities for subrecursive hierarchies:

1, There is some ordinal B<®l which is a "natural"®
closure ordinal for R i.e. such that the subrecursive hier-
arcles are proper and satisfy (a) = (¢) above for a<B.

2, TFor every m<wl there is e proper subrecrusive hier-
archy up to o which does not reach (R but which may possess
other interesting properties such as relating nicely to
other subrecursive hierarchies up to a (as for B<mm above),
or extending the hierarchies for B<a in a natural menner
or relating to functions definable in certain formal
theories.

3. There is some subrecursive hierarchy which is proper,
satisfies (a) and (b), fails at (c¢) (from above) but fails
in an interesting manner, e.g. perhaps preserving construc-

tivity for certain "smell" ordinals.

15

Since the compelling hope of finding a proper subrecur-
sive hierarchy satisfying (a) - (¢) is thwarted, questions
about the relationship among hierérchies and about their
naturalness or their relationship to formal theories (e.g.
via Z-provable recursion for axiomatic theory Z) or their
applicability (e.g. to classifying decision problems) or
thelr interpretation in terms of a theory of computing or
a theory of constructivity become more attractive,

Therefore we can propose that the work we Ao here is also
in pursuit of this brand of questions, Moreover, we claim
that from the prospect of studying and managing very complex
computations, a task often required in pursuing these
questions, our development and use of the RASP computing
system is advantageous, We turn next to a detailed consi-

deration of the BASP machine,

16

Chapter 2 BRandom Access Stored Program Machines

A particular brand of RASP machine (Random Access Stored
Program) is used to obtain the hierarchy results, The RASP
class of machlnes was developed by Elgot & Robinson[45],

Such machines offer several advantages, They can easily
simulate other types of machines, such as Turing machines,

or register machines, They are among the best avallable
abstract models of "actual®” digltal cowmvuters, Thelr or-
ganization allows for easy expression of complex computations,

2,1 A RASP is an ordered sextuple <A, B, by X, Fl(),
Fz()> where

{a) A is a set called the address set

(b) B is a set called the set of words

(o) b, € B and is called the empty word

(4) Kc B =5e() | £()iA—>B]

k() e g is called a content function and K is

called the set of memory configurations.

(e) Fl()t KxAxBe—> BAo Fl is called the next

content functional

(r) FZ()t KxAxB——> A, F, 1s called the next control

functional

Let £ = KxA, the pairs <k(),a> are called the states
of the RASP., The functional F(k(),x,y) = <Fl()'FZ()>
then maps states and content into states, i.e, F():ZxB ==> 5,

If 0 = <k(),a> then k() is content at 0 and a is control

17

location at g.

The intuitive interpretation is that A is a set of
addresses of memory locations (registers) in the machine;
each register can hold a word, i.e. element of B, (b,
corresponds to a blank.) The function k() gives an assign-
ment of words to locations, thus k(a) is the word stored in
location a, Some words can be regarded as instruetions to
the machine, The location of the word controling the machine
when it is in state ¢ = <k(),a> is given by a, The func-
tional Fl(k(),X,y) takes the content function k() and
alters it depending on what that content is, on what the
control location is and devending on some word, usually the
word in k(x), for x the control location, FZ() determines
a next control location depending on the memory, a control
location and a word. These functionals contain the heart
of the machine, They correspond roughly to transition
tables for a Turing machine and clrcuitry of a digital
computer, These functionals give "operational meaning" to
the words of B,

2,2 We now list some of the more Important properties of
RASP machines, If the subset Kf of BA has finite support
i.e. k() e Ko <=—> k(x) = by a.e, (on all but a finite

subset of A), then we say that the RASP is finitely sup-

ported.

A sequence of states, o; = <ki(),ai> e , 1i=20,1,2,..,.

is called a computation of the RASP <A,B,bO,K,F1,F2> ifrf

18

iy = P(di,ki(a,i)) Yi, If E = {el,..,,enz — A and if
comp(a,) = 93+91:92.94, ... then define compg(o,) =
comp(g,) if a, £ E and compg(0,) = Ogreee, 0y 1if & € E,

Given a fixed b ¢ B, F(k(),x,b) defines a mapping from
L into X, Putting Hb(k(),x) = F(kx(),x,b) we call Hb() an
atomic instruction of the RASP <A ,B,b

K,F F2>a Any map

0’ 1
(functional) H:f—> ¥ is called an instruction., A word

b e B will be called active iff F ¢ eX such that Hb(o) # o
otherwise the word is called passive,
An instruction Hb() will be called finitely determined

iff (a) Ya dni3 Xy, 000,%, such that Fy(k(),e,b) =

n
Fl(k“(),a,b) if kix,) = k°(x;) 1=1,2,3,...,n,
(b) Va 3p3 Xpeeee, Xy 18 Fplk(),a,b) =20 (),
then k(y) = k**(y) if v % x, 1=1,2,3,...,p.
Condition (a) is just the usual statement of finite deter-
mination for F() a functional with individuals as valuess
condition (b) covers the case of functions as values.

If H () is finitely determined for every b ¢ B, then we

say that the RASP is finitely determined,

2.3 An instruction schema for a RASP P = <A,B,bO,K,F1,

F2> is a set of mappings from A9¢p™ into ZE, the set of

Instructions or equivalently it is a map from.ZXAqum into

L. We designate an instruction schema by‘p(o,xl.g...x

qv
y],...,ym). Fixing the parameters Xy0 Iy produces a menber
ofzg' which may or may not be an atomic instruction, Hb.

To make the proper connection with atomic instructions we

19

define a designated instruction schema as a pair €p7u>

where‘f() is an instruction schema and/ﬂ.is a l«l map from

q_m -
A*xB™ 1into B<q,m> C B such thatfv(o,al,..,,aq,bl,.,,,bm) =

Tulag. o iag by, (0
The mapping/u is Jjust a way of assigning computer words
to instruction schemata, that is a way of representing the
schema internally,
A RASP P will be said to be generated by the set of
designated instruction schemata R = Esii where Sy = <Py M

with parameters Fevooes¥ Z o, Q4 > 0, m, > 0, if

zZ 9 8 9y
qi’ i’ my
exactly the active words of P belong to the union of all

B . where BSi is the range of/Mi,

2,4 We next consider the important notion of a program

6]

for a RASP, Intuitively a program is a Tinite sequence of
Instruction words stored in memory in machine language.
The address of the instruction at which the program begins
is ecalled the entrance to the program and the addresses to
which the terminal instructions send control are exits from
the program, We also include in the program certain con-
stants needed in instructions (e,g., x+1 requires a "1" or
transfer "a” to ___ requires an a), Thus a fairly general
formal definition of a program 1 is that m = <p,ao,en,.,.,.v
e where p maps a finite subset of A, denoted Dn, into
EZXB such that

(a) a, € DTT

20

(b) pla,) ez
() 1 # j=> e, # e
(d) e, e A-D_ 1 =0,1,...,m,

i
The set DTT is called the domain of m. a5 1s called the
entrance to T, e, are called the exits of m, If p(a) eZZ ,

then p(a) is an instruction of m; and if p(a) ¢ B, then p(a)

is called a parameter of m (pr constant of 1). We say that
k() holds m iff
-1 B
() Vaae p™(s*), H,)() = pla) and
(b) VYa a e p"l(B), k(a) = p(a).

If kX() holds m = <P,a,€p,...,€,>, then compE(k(),ao) =
<k, ()°ai> is called a comp of T where E = feo*°°°’em}° A

computation terminates if a; ¢ E and does not terminate
otherwise,

2.5 Let £): B> Bm, we define the notion of a pro-
gram m for a RASP, P, computing f(). First let Xqyeeo Xy
and yl,,.,,ym be addresses, A program T = <p,a0,e> is said
to compute f at X, Xj i=1,,..,n, jJ=1,...,m iff

(a) X, 4 D
(b) If k() holds 7 and k(xi) = c;, then letting
= - — ~n
o, = <ki().ai> 1=0,1,2,.,.., and C = <Cq....,C >€B,
(i) if £(C) = C* then compe(do) terminates for
some n with,kn(yi) = ¢}, C°=<c',,,,,cﬁ>eBm,
(11) 1if r(C) is not defined, then comp, (0)

does not terminate,

Notiece that if both kl() and k5() hold m and agree on X,

21

and compe(kl(),a) terminates but comp,_(k,(),a) does not,
then m does not compute any function at Xi and any value
locations Vi

2,6 By the range of influence of a program m = <p, &g,
©hu s, >, RI(m), we mean a set of addresses, RI(m) C A,
such that d e RI(w) iff Jx() such that k() holds ™ and
compE(k(),%Q terminates in (kn(),an) with kn(d) # k(d)
where E = {eo,.,,,em}¢ In other words, the range of in-
Tluence of ™ is the set of registers which do not have the
same content at the end of the computation as they did at
the beginning, no matter what happened in between, By range
of action of program 7 in core k(), RA(m,k()), we mean
that RA{w,k{)) € A, such that s ¢ RA(m, k()), ifrf compE(k(),

) o= g and k() holds m, and ki(s) # kj(s) for some

& G QB
“0- v v n

i, € n,

2,7 To say that a RASP P can compute a function,
f: B> Bm, means intuitively that there is a program TI
and addresses Xi0 ¥y such that nm computes f at Ly Xy
However we also want to express the notion that this pro-
gram can be loaded anywhere in P and can be loaded together
with other programs, that is by running one program T, Sone
memory of the machine is not altered, To say this precisely
we pick any finite subset Al of A and ask that DTT be outside
of Al (thus ™ can be loaded anywhere) and we plck a subset
Ay € A, and ask that RI(m) is disjoint from Ay, thus exe-

cution of 7 does not alter AOe The formal definition follows,

22

2,8 A RASP P can compute a function f: B%—> B® iff for
every sequence Xyvoeo s X, Jysveos Ty 8 of distinct elements
of A and for all finite subsets AO, A1 of A such that
a, 4 A, and Ay © A, there exists a program m = <p,ag, &>
satisfying:

(a) 1 computes f at XyveoosXpe Yooeooa ¥y

(b) D_ is disjoint from S RCIRESTRTRTE SV APRI.

™ m?

(e) 1if A, 1s disjoint from Yyoeee, Ty, then RI(m) is

disjoint from Al“

2,9 Given an m-valued relation, R(Xl,.s,,xn), defined on

a subset of B (a 2 valued relation is ecalled a predicate),

> is said to compute R() at

8 Program m = <p,an,€q,...,€

data loeations dl"‘“'dn provided
1;000gdn
(b) If k() holds m, k(di) = x; and o, = <ki()'ai>

(a} D_ is disjoint from 4
i

i=290,1,..., then
(1) 1if R(xl,.aﬂyxn) is defined and has value
l<rgm, then compu(q) for E = {eq,...,e } terminates
in € “
(i1) if B(xl.o,o,xn) is undefined, then comp,(q)
does not terminate,

A RASP P computes an m-valued relation R(x xt) iff

lvaan'
there is a sequence Xyseses Xy, 8, el,...,em of distinct
elements of A and for all finite subsets Al of A such that
a, ¢ Ay there exists a program m = <P,8(,€q, 000, 8>

satisfying:

23

(a) 7 computes R() at dy,....d

(b) Do (AU fdy,....q) =

(e) RI(mM) A &) = ¢

2,10 A program m is called fixed if whenever <01,05, 000,

n

0,> 1s a terminating computation of m, then kl(), kol).a,

kn() 2ll agree on D where g, = <ki(),ai>. A program 1 is

called self-restoring iff whenever <01,02,,,,,Un> is a ter-

minating computation of m, then kl() and kn() agree on D..
Equivalently w is self-restoring iff D, n RI(m) = b,

2,11 It is a fairly easy exercise to show that the
following facts hold (see Elgot & Robinson[45])., Let P be
a RASP

{a) If P computes fl and fz then P computes the
composition of fl and fz.
(b} If P computes the predicates Rl and R2 then it
computes the predicates Rl & RZ, Rl v R2 and »Rl.
(c) Let chB() be the characteristic function of R,
then
(1) If P computes the identity function i: B—> B,
and P computes predicate R, then P comﬁutes chR.
(i1) If P computes eq() predicate and the func-
tion chR(), then P computes R,

2,13 We are now interested in defining more specific

BASP's to be used as basic machines in the work below. These

machines will be able to compute all recursive functions and

will employ many features of real digital computers. For

24

M = <A,B,by,K,F,Fy> we will take

(a) A=B=0N-=0,1,2,...

(b) by = 0

(¢) K = (NN)f, the set of functions N—> N of finite
support,

The functionals Fl, F2 will be generated by certain
deslignated instruction schemata, First consider the follow-
ing informal instructions.

2.13 Let a be the control location at the time the

instruction is reached and let a®' be the next control loca-

tion.

Symbols for mapping NB——> Informal description of state
transition mapping,

(1) ADD(x,y.,z): a' = a+l add k(x) to k(y) and store

result in z, go to atl for
next instruction

at+l subtract k(y) from k(x) and
store the result in z, go to
atl for next instruction

(2) SUB(x,y,z)s; a°

(3) MULT(x,y,z)s a® = atl multiply k{(x) by k(y) and
store result in z, go to
atl for next instruction

(L) T(x,y); a* = a+l transfer k(x) to y, go to
atl for next instruction

(5) C(x,y,2z);s a* = a+tl if x(x) = k(y), then go to
4 for next instruction,
otherwise go to at+l
We will abbreviate this set of instructions by {+,-,x,T,C}
or by ZO. They each consist of two components, change of

content component and change of control component, The

change of content compoments of ADD, SUB, and MULT are

assoclated with certain functions NZ»@> N in a natural
manner, Conversely given any function f: NP N, an
instruction F(Xl,.,.,Xn, v) can be defined which puts
f(K(Xl),,.,,k(xn)) into y and changes control according
to some function c() applied to a., Such an instruction
will be called an arithmetic instruction, it will be de-
noted’f?(xl,,,.,xn,y).

2,14 We will now provide a designationﬁ/4, for the
instructions above, We indicate how this could also be done
for any set of recursive arithmetic instructions, Providing

a designation can be thought of as defining a2 machine lan-

guage (simultaneously with construction of the machine), the
language is the set of words in the range of/a, l.e. the

instruetion names.

First consider the set £, = {+,- x,T,C}, Define oper-
ation codes for the instructions by letting ADD = 2, SUB =

3, WULT = 5, T =7, C= 11, Then define #(X,x,y,2,) =

2203X05Y°7Z for X = ADD, SUB, MULT, T, C., The range of #
is precisely the set of active words. The desighated in-
struction schemata are: <X(x,y,z), #(X,x,y,z)> for ¥ = ADD,
SUB, MULT, T, C.

We now define Ml(zo) as the RASP generated by the above
five designated instruction schemata, We use MO(EO) to de=
note Ml(zo) restricted so that all programs are fixed.

Given a set S of recursive functions, leﬁES =

26

§Su {T(x,y,2z), C(x,y,2)3} , then a corresponding set of
designated instructions can be defined and used to generate
a RASP M,(£g) as follows, Let«/ be an effective notation
system for S with a:# —> S, e.g., using a Kleene type
equation calculus, the names n e 4 will be equations. Let
BiA'~=> N be an effective arithmetization of/V/. Given f()
€ S and given a change of control function c¢(), define the
instruction schema for f() as above, Select a unique
brancy of @ inverse and denote a“l, then {f%,Bdal(f)> will be
a designated instruction schema for f(), Ml(ZS) is the RASP
generated by §pf,ﬂa"l(f)> for £f{) e S,

2,15 For a RASP of type Ml(ZS) there is a natural way to
present programs, Recall that a programn is an n=tuple
whose first member, p, is a mapping of addresses to instruc-
tions and data., The map p can be presented as & table,
Consider the case Ml(zo): a sample program is m = <p(),

a,e> represented by

p() | argument (location) value

a C(0,0,m); a* = a+l
m T(d,v}; a' = gtl
m+1 C(0,0e); a* = a+l
e scocomaese

Various informal versions of this will be used such as

location statement comment
a C(0,0,m) if k(0) = k(0), then go

to m for next instruction
otherwise go to atl

m T(d, v) transfer k(d) to v, go
to mt+l for instruction

27

m+1 C(0,0,e) if x(0) = k(0) then go to
e for next instruction,
otherwise go to m+2
We will also use some suggestive abbreviations such as
Y ¢— X for T(x,y)
X=Y =>172 for C(x,y,z)
2,16 Given a function f(): NP—> N we denote by Mo
some program for computing f() on either MO(ZO) or Ml(ZS)
depending on the context (which will always be clear).
2,17 As we build up various programs we may want to use
them as "subprograms" in the construction of new programs,

Such a use of programs can be made very explicit by the

introduction of the instruction prefixes SUB, RTN,

A program Wg ig said to be used as an explicit subprogram

of mw, iff DTr < D” , every transfer of control from Drr -

f 2y f £

DTT into DTT “is to'an instruction whose prefix is SUB and

g g .
every return from Wg to Mo is a return to an instruction

whose prefix is RTN. We can thus think intuitively that the

subprogramn ﬂg is bracketed in 1. by SUB and RTN, Also it is

£
clear that given any program ﬂg it can be used in the role
of an explicit subprogram, Since we shall only refer to
subprograms when they are explicit, we drop the adjective,

It is also clear that prefixed instructions can be given new
operation codes and new designations in accordance with 2,14,

T = <p ag,Eg> is an (explicit) subprogram of 1. =

f
<pf,af,nf> iff

28

(a) Dﬂgt: an and Eg < Dﬂf(d hf and if e, € DTTf N hg,

then k(ei) = RTNI for I an instruction of

f
(b) 1if gia) e DTT - DTr and control can transfer into
f g
b e DW in Dﬁ then that next control location b must
g g

be 2, and k(ag) = SUBI for I an instruction of Moo

Given any program wg = <p,a,B> it is clear how to prepare
it to be a subprogram of nf, First replace the instruction
k{a) by the instruction SUBk(a) and then prefix all in-
structions of ﬂf occurring in E by RTHN,

2,18 A program T can generate its own subprograms by
setting up the appropriate code in memory during execution,
We say that program I generates a subprogram ﬂg at input X
LE glven o, (X), o (X), ..., 0,(X),... a computation of Mo
at X f§kn() such that kn() holds My but ko() does not, and
Wg'is a subprogram of nf,

2,19 Before closing this account of RASP machines let us
point out some facts which help in lending perspective to
the hierarchy results, First notice that a RASP serves as a
model of a very wide range of computational devices, Be-
sides being a good abstract model for the behavior of a con-
ventional digital computer, a RASP can model computational
processes described by "problem oriented languages" or com-
putational processes carried out by hand, A RASP can also
be used to represen£ computations on classical Turing

machines, multi-tape Turing machines and vérious general-

29

jzations of Turing machines (such as Cook®s Bounded Ac=-
tivity Machine). Furthermore, there is a precise sense 1n
which a RASP such as Ml(zo) can simulate machines similar to
1% such as the URM of Shepherdson and Sturgis, Moreover if
the elements of A are taken to be ordinals, then various
computation processes on the ordinals can be represented on
a suitable RASP,

One of the primary purposes for which Elgot & Robinson
introduced the RBASP was to study the relationship between
machine oriented languages (MOL) and problem oriented
languages (POL), Since POL‘'s are designed for the con-
venience of the human user whereas MOL's are severly con-
strained by machine requirements, one might regard POL as
abbreviating "pecple oriented language"”, In thelr study
Elgot & Bobinson pose the fundamental problem, called by
them the compiler problem, in terms of extending the
machine language of & RASP P by activating certain passive
words, They seek an algorithm which will operate on any
program in an extension of the machine language for P and
produce an equivalent program in machine language itself,
We will see below that this notion of language (or machine)
extension plays a significant role in complexity theory as
well., Perhaps theoretical insights gained in the study of
computer based complexity theory will be valuable in studies

of programming languages,

30°
Chapter 3 The Grzegorczyk, Bitchie and Cleave Hierarchies

In this chapter we present a proof-free account of the
Grzegorczyk, Ritchie and Cleave subrecursive hierarchies.
The chapter 1s intended to help motivate work in the rest of
this paper. Before getting into these three subrecursive
hierarchies, we define some characterist;cs of RASP compu-
tations and programs which are important for a complexity
theory. These definitions will fix the relationship between
the three subrecursi&e hierarchies and the RASP even before
we get down to details, |

For every partial recursive function é: N D De> N, there
is a program My Such that Ty, computes $ on M,(z,). This
fact 1s proved in Elgot & Robinson for their machine PO
which is easily seen to be a submachine of Ml(EO) in the
sense that all programs of PO are programs of Ml(Zb). The
converse, that every program T on Ml(zo) computes a partial
recursive function, will be established in this paper (Appen-
dix C),

We are interested only in total recursive functions. For
every f{) ¢ R there are infinitely many programs, M1
ﬂf'z, ﬂfaB”’°' which compute f() on Ml(Zb), Certain pro-
perties of these programs are basic to complexity theory.
Consider the following properties,

3.1 Computing parameters

(a) cnf(X) = number of atomic steps in computation

31

f
on(X) is a computation of 7

of T, with input X e¢ N7, 1i.e. if OO(X), ol(x),..“

p at X then an(A) = nt+l,

(b) &nf(x) = number of times the instruction C()

is executed in computation of m_, with input X e Nn.

f
(c) ’tﬂf(X) = number of registers changed in compu-

tation of m, with input X e N,
We say that o() measures computing time, that &)

measures number of decisions and that 7() measures working

space., In general, functions which measure properties of a

computation of m are called measures on computation or

computing parameters of 7., An abstract definition of these

measures is given in Blum[37. According to that definition

o(}J, 6() and Z() are measures on computation.

We write of() < b() for any computing parameter o)
iff there exists a program M. such that awf(x) < b(X)
X ¢ N, In this case ¢() is also called a computing
parameter of f{),

There are other properties of programs 7. for f() which

f
are relevant to complexity theory ahd which are of an en-
tirely different character than computing parameters, In-

formally these are
3.2 Algorithmic parameters

(a) I(ﬂf) = number of primitive symbols in an en-

coding of nf.

(p) i(wf) = number of C() instructions in Mo

32

(c) d(ﬂf) = depth of "nesting"” of C() instructions
in Moo
To define and develop properties of algorithmic param-
eters requires a formalized theory of programs. To move in

thls direction we have to describe our machine in terms of
concrete objects, integers and finite sets of integers,
instead of abstract objects, function spaces and functionals,
This will be done in a later section, The classical develop-
ment of Turing machines proceeds in terms of concrete ob-
Jects and affords exampleS of algorithmic properties, In
particular the state=-symbol product is an example of an al-
gorithmic property of machines (see Shannon[7). A basic
result in this area is the existence of a universal Turing
machine, This fact can be interpreted to mean that there

is an upper bound to certain measures of algorithmic com-
plexity, such as the number of C() instructions in a Pro=
gram, .

Although there are some specific results on algorithmic
complexity, there is yet no general theory for algorithmic
complexity of recursive funstions. For the special case of
finite automata there is a new and developing theory of
algorithmic complexity. This theory may suggest generali-
zations applicable to a wide class of recursive functions,

We will consider this problem in more detail in Part II.

Now we turn our attention to computational complexity and

i

33

present an informal account of the Grzegorczyk, Ritchie and
Cleave subrecursive hlerarchies,l
Grzegoreczyk in [15] presented a subrecursive hierarchy,

s}
g%, for which |) £% = ®' = primitive recursive functions.
a=0

His hierarchy classes were developed in terms of elementary
operations applied to a sequence lxygn(xvy) of functions,
3.3 The elementary operations are given below,
(1) Operations of substitution
(a) Irf h(xlgagﬁvzkwl,qu.aayym,xk+1,eea,xn) =
f(xl,”.,kal,g(yl,e”,ymhxkﬂ,Q.MXH)e then h{) is
said to be obtained from f() and g() by substitution
of gl) in £().
(b) If h(Xl,aoa,X-gy,Xk,oaean) = f(xloeﬂevx"vaYG"°°

J J

n)s then h() is said to be obtained from

£{) by indentification of variables.

A
Je}’:kn"@@cx

(e} If n(x = f(x

1o e os Epelq e Epepqo v oo s Xp) 10000 K1+ C
Xk+l“"°°'xn)' then h() is said to be obtained from
f() by substitution of a constant.

Denote the operations of substitution by OSw

(2) Operation of limited recursion.
If h(X,0) = g(X), h(X,y*1) = £(X,y,h(X,y)) and h(X,y)
< J3(X,y), then h(X,y) is said to be defined from g{),

f() and j() by limited recursion.

Denote the operations of limited recursion by li?).
<3

lFor recent literature on the topic of algorithmic complexity

see Chaitin[5], Engler[10], Krohn & Rhodes|30], Hartmanis &
Stearns[19], Ritchie & Meyer[3L],

34

The functions gn() were defined by the equations

golx,y) = y+1

g1(x,y) = xty

g85(x,7) (x+1) (y+1)

°
L]
°

2100, 7) = g (y+1,y+1)
{gn+l(x+l,y) = 8p4q (X 841 (x, 7)),
where go() and gl() are special cases.

The class £ was defined to be the least class con-
taining x+1, Ul(xwy) = x, Uy(x,y) =y, g, () as initial
functions and closed under the opertailons of substitution
and limited recursion, Grzegorezyk then showed that

o5]
et < 8n+10 L &% = @Rl ang &3 =& the class of elemen-
n=0

tary functions of Kalmar-Csillag,

The class @O of this hierarchy has the property that it
is a basis for the class of recursively enumerable sets,
that is if S is an r.e., set enumerated by the recursive
funetion f(), (S = f(x) | x € N), then there is a re-
cursive function g() e 80 such that g() enumerates S.
The property of being a basis for the r.e., sets is an im-
portant property for a class of functions to possess, It
is a measure of the richness of the class (see Smullyan[54],
Kreider & Ritchie[27] for further information),

The class 83 of Kalmar-Csillag elementary functions

(denoted often by K, here by &) is quite noteworthy since

35

it is so basic to the theory of subrecursive structures, In
his paper [15] Grzegorezyk offered several alternastive defi-
nitions of € , They are worth listing, First define

(3) Limited summation

If h(X,y) = % £(X,1), then h() is said to be defined
<y

from £{) by limited summstion,

Denote the operation by I.
<Y
() Limited maltiplication
If h(X,y) = 77 £(X,1), then h{) is said to be defined
Ky

from £{) by limited multiplication.

Denote the operation by TT .
<Y
(5) Minimum operations

{a) Limited minimum, If

Hz<y for which f(X,z)=0 if such a Z exists
h(x,y) = {

0 otherwise,
then h() 1s said to be defined from f() by the oper-
ation of limited minimum,

Denote this operation by min,
<y
(b) Minimum value, If g(X,y) = min £(X,y), then h()
Xy
is sald to be defined from f() by the operation of

limited minimum value,

Denote this operation by Min,
<y
(6) Maximum operations

(a) Limited maximum, If

36

largest z<y such that f(X,y) = 0
hiX,y) =
0 if no such z exists

then h() is said to be defined by limited maximum

from f(),

Denote this operation by max,
<y

(b) Maximum value. If h(X,y) = max f(X,1) ("max"
i<y

here 1s applied to sets) then h() is said to be de-

fined by limited maximum value,

Denote this by Max,
i<y

He then proves that the follwoing definitions of & are

bl a
equivalent, Let [fl(P O E 01,00.0Op] denote the
least class contalning f,() 1 =1,...,n as initial func-
tions and closed under the operations O, i =1,...,p.

i
Definiticons of & :

(a) [x+1,xty,x*y; O, =, 7]
<y <y

(b) [x+1,xy.x"; 0_, min]

S,
<y

(¢) [x+1,x"; O, 11? (limited recursion)]
<

(@) [x+1,x2y,x.y,%; O, £]

<y
& . Y, T
(e} [x*+l,xty,x-y,x"; Oy, IT]
(f) x+1,x*y.x.y.%x 3 Oy, max, Max |
| <y <y
(g) [x+l,x*y,x.y,x7; O, Min]

<y

Kleene in IM p, 285 and Péter in [39] defined €& in a way
equivalent to

(h) [x+loxty, xey, Lx/y]s 0g %, T

which is essentially the way Kalmar originally defined the
class,

In the familiar way a class of predicates can be assoce-
iated with & ., A predicate P(X) X e N® is said to be ele-
mentary 1ff 3 f() ¢ € such that P(X)<=——> £(X) = 0 YX e N,
Grzegorczyk and Kleene show that the class of relations of

€ 18 closed under
(1) operations of the procositional calculus (&, v, =)
(11} limited quantification (Vx <y, dx < y).

The scope of the elementary functions and predicates be-
comes clear from the fact that all the examples of primitive
recursive functions ##1-21 of Kleene's IM (pp. 222-230) and
all predicates used in arithmetizing his funcion calculus
are elementary, Likewise in Davis[9] (pp. 58-62) all the
functions and predicates used to arithmetize the theory of
Turing machines are elementary. Thus the funection U() and
predicates Tn() of each book are elementary;

The intuitive conclusion is that almost all functions of
practical use in logic are elementary., There are numerous
other ways of lending intuitive significance to & . Since

€ is closed under the usual operations of arithmetic, it

is customary to think of & as representing the class of

38

functions which arise naturally in elementary number theory.
However, to obtain functions beyond € it is necessary only
to allow lteration or primitive recursion as a new operation,
In fact Péter shows (p. 84) that

[z=0,x+1, %2y, x-y, sa(x),5a(x), [Vx s o, IT;] = ®1
where ITl is the operation of iteration of unary functions,l
.8,

(7) Iteration
If h{0) = 0, h{x+l) = £(f(x)), then h() is said to be

defined by iteration. from f().

1

The Grzegorczyk hierarchy itself provides another example
of how to move from & to RT, We now return to continue a
discussion of this hierarchy as preparation for the Ritchie
and Cleave hierarchies,

In subseguent accounts of the Grzegorczyk hierarchy‘(e.gn
Ritchie) the operations of substitution have been replaced
by

(8) Composition

If h(X) = flgy(X), ... g (X)) Xe N", then h() is
said to be obtained from f() and gl() i=1,...,p

by composition.

(9) Explicit transformation

If h(xlp..a,xn) = f(al,.,“,ak) k < n where for each a,

i=1,...,k ai = xj jJ=1,...,n or a = a constant,

15q(0) = 05 sq(ntl) = 1 and 3q(0) = 1, Sg(n+1) = o.

39

then h() is said to be obtained from f() by explicit

transformation.l

Thus 8n can be defined as the least class containing the
aforementioned initial functions and closed under composition,
explicit transformation and limited recursion,

In general for n>3 gp is the set of all functions

elementary in gn() where "elementary in" is defined as
Tollows,

A Tunetion h() is said to be elementary in the functions

.4)a,a,,fr() 1ff h{) can be defined by a finite number

of applications of composition, explicit transformation and

limited recursion beginning with functions fron

(@) (), .., 2 ()
(b) =xt1

{ o) T == i 2
‘\c) 1J1(le o o By Xm) Xj lslSmO

If h{) is elementary in f(), we write h() <, T).

By the glementary degree containing f() we mean fn() |

h() g, £() and r() <o Nl)}. Denoting the elementary
degree of f() by {f()}_ and denoting the class of all
functions elementary in f() by & (f()) we can then state

%= (g () nx3and if () s €% then §f()3«
n ¢ o

n

£ n > 3,
Grzegoreczyk's functions gn() can be clearly understood

B e ——

'This definition is due to Smullyan[547 p. 21.

~

vee Kleene IM p, 286 for an equivalent definition.

Lo

in terms of rate of growth and relative "size” in the struc-
ture <®, <« > where < is a partial order relation defined
as
£) < gl) iff £(X) < g(X) a,e, X e N"

where a.e, (almost everywhere) means for all but finitely
many X € Nn°

Grzegorczyk shows that his gn() satisfy:

(1) gnhgy)> y Vn >1 Vx

(2} g ey (xty,¥) > g (x.7) Vn Vx Vy

(3) Bpe1 (X, ¥T1) > g 1 (x,y) ¥n Vx Yy

(b)) O<ign = g (x,¥) < g 4(x,¥) ¥z ¥y

So the gn() form a strictly ascending sequence of
strictly inereasing functions in <®, < >, We call the gn()

backbone functions for the hierarchy, 8}% This terminology

suggests not only the picture in terms of <&, < > but also
the fundamental role that these functions play in the con-
struction of the hiérarchy.\ Most of the essential proper-
ties of 8n are proved using rate of growth arguments on
the gn().

The functions gn() are closely related to the celebrated
Ackermann function (see Kleene[24] p. 271 or Péter[39] p.
106) which Ackermann produced as one of the first examples
of an effectively calculable function which was not primi-
tive recursive. Ritchie in [43] has shown that functions
kxyfn(x,y) which are essentially like Ackermann's suffice

to obtain the Grzegorczyk hierarchy.

L1

For the purposes of a computational complexity theory
the Grzegorezyk hierarchy suffers from the defect of arbi-
trariness., There seems to be no good intuitive reason for
selecting the backbone gn(). Perhaps because of this the
Grzegorezyk hierarchy (which we denote hereafier as GH) did
not serve as a catalyst to the now burgeoning theory of
computational complexity. A hierarchy which did help spark
the activity in this area was the Ritchie hierarchy developed
in [B2],

Ritehie addressed himself to one of the fundamental prob-
in the foundations of recursion theory, namely to describe
a natural subclass of recursive functions which was more
constructive than (R itself, As we mentioned in the intro-
duction, the difficulty with R is that although every ele-
ment in & is a constructive object, -the class R itself
is not., Thus while we may prove that given a program'ﬂf(),

for every input X there exists a number y such that . com-

f
putes f£(X) in less than y steps, the proof may not tell us
how actually to find such a y. If the method of proof is
open to doubt, say by an intuitionist or a finitist, then
there is doubt about whether £() is in R .’ Without having
a bound on y there is no way directly to test whether f(X)

is indeed defined at X, To some logicians with construc-

tivist tendencles this situation is troublesome, They

See Heyting[23] and Kreisel[29] for a more detailed dis-
cusion,

42

want a "safer" class of recursive functions. It is inter-
esting that such a philosophical demand has now become
assocliated with a more practical demand for a narrower class
of recursive functions., In the expository articles of
Cobham[7 J, McCarthy[327], and others, it is shown that a
good theory of computation is required to support and advance
the exploding field of computer science. Basic to such a
theory will be a class or classes of recursive funetions
whnieh eorrespond in various ways to the vaguely conceived
class of "practically" computable functions, Thus from this
computer science direction came a group of researchers led
by Hartmanis and Stearns to join with the group of logicians
who had been working on such problems as ordinal recursion,
provably recursive functions, independence results in
recursive arithmetle, transfinite progression of theories,
the theory of constructive ordinals and the theory of sub-
recursive hierarchies. Ritchie's work is ideal middle
ground, Its technical features relate directly to computing
theory via automata and Turing machines whereas its content
ties in directly with the philosophical problem of construc-
tivity.,

What Hitchie did is this, He took as his basic class,
F, those functions computable by a finite automaton. For
every f() ¢ F, f(X) can be computed with time bound y =

max X + ¢, From the viewroint of computing theory the

b3

choice of F 1s also judicious because the finite automaton
1s a concept basic to study of computer components,

To generate his hierarchy Ritchie uses a Turing machine
with a single tape infinite in one direetion. He defines
a(M)f(X) as the amount of tape used in the computation of
f() at X on a Turing machine M, The a(M)f(X) can be thought
of as the maximum length of the tapes appearing in the in-
stantaneous descriptions of the computation, Writing f()
< 8 1ff Jb() e 5 such that r(X) < b(X) VX ¢ N the
Ritehie hierarchy is now defined as folliows:

(1) F,=F

(2) Fopq ={fC) | 3Mam, () <F }

o
Ritchie calls the functions in Eb = LJIFi the predictably
i=0

computable functions., The terminology captures the idea

that for f{) e F, the amount of tape used to compute f()
can be predicted from functions of a lower level (thus of
lower complexity). The class En has a very appeasling con-
structive structure, ED are "secure” because at each stage
they can be secured in terms of the previous stage. That
is, if a person believes that all functions of Fn are
"constructive"”, then he ought to believe equally well that

those of the class Fn+ are,

1
Ritchie proves that RB = & . This is a new and inter-
esting characterization of the class of Kalmar-Csillag

elementary functions, However, this result immediately

Li

raises the question of extending the hierarchy. It is
known that € is only &3 in the GH. Why then doesrﬂn stop
at 83? What feature of 8“ keeps it from being included
among the predictably.domputable funetions? Can the hier-
archy be extended while preserving most ot its constructive
features? Can the hierarchy be extended while preserving
its high relevance for computability theory, in particular
toward computational complexity theory? Cleave has given
interesting answers to th@sé guestions,

Te extend the Ritchie hierarchy (RH), Cleave first

changes to a more sophisticated machine, %the URM of Shepherd-

son & Sturgis, Instead of measuring "space used" in the
computation, he measures the number of binary decisions
made during a cémputation of progranm ﬁf,
Let C be the class of constant functions and let E(L) be
the set of URM-computable functions with set of basic in-

structlions £; this is essentially the same as Ml(z). Now

define

r = {+,x, 6}
where

1if X = Y
8(X,Y) =

0 otherwise,

(This set is essentially like our I Then a Ritchie type

OI)
hierarchy is defined

(1) E,=8x)_,=c

(2) Byyq = B(E)yyy = 00) | 88) < E(X), }

b5
co
(3) B, = U=
Cleave shows that @D = F and that the classes Ei have

[43)

properties similar to those of Fi“ Cleave now extends the

Ritechie hierarchy by taking

(L) Em'a+i

That is, at the limit steps, w.a he takes all previously

= E(Ewua)i

obtained functions as new primitive instructions for his
computer, and then he continues with the Ritchie process,
This technique relies on the use of a machine which can
accept Infinitely many primitive instruections. Such a

device is a kind of super computer, However, we can inter-

pret Cleave's results in another way. At the limit step,
®ea, we can imagine that the method of "telling time"
(measuring computation steps) is changed so that whenever a
program Wf computing a function f() e Em.a appears as a
subprogram in a larger program, then the steps used in com-
puting Te are counted as only a single step. This inter-
pretation might be called the primitive subprogram interpre-
tation as opposed to the super computer interpretation be-

cause programs of E

n.q 2T regarded as primitive instructions

of the machine as far as counting running time of programs,
The Cleave hierarchy generating process works well as an
extension of the Ritchie process., Cleave shows the following

(1) Ew'a = (8a+2' thus E = F =& = 83

2 -
(2) a<Bad” => B, < EB

L6

(3) E 5 = lQl = primitive recursive functions,
®

So not only does Cleave extend RH using computing theoretic
methods, but he obtains a refined GH as a byproduct. The
classes Emna preserve some of the constructive character
of Fm’ and the theory is quite relevant to questions of
computational complexity. Furthermore, Cleave has provided
intuitive content to the GH and has revealed certain pro-
perties of OQl that help explain its fundamental role in
recursion theory, But agaln, the question of extension
arises,

Péter has constructed a very rich and powerful hierarchy
of recursive functions, At ¢ p? < R<, . = a?
called the multiply recursive fuﬁctionsm This hierarchy is
based on a syntatical description of recursion equations,
and it is not immediately clear how such a hierarchy is
related to those based on computational camplexity.l Since
E 5 = (Rl we can ask questions about the Cleave hierarchy and
ﬁg@ Péter hierarchy analogous to those asked about the
Ritehie and the Grzerorczyk hierarchies. In fact, the work
of Robbin shows the Péter hierarchy to be an extension of
the GH (called Extended Grzegorczyk Hierarchy, EGH), thus
the analogy is quite exact. Can the Cleave hierarchy be

extended to inelude the EGH? In what sense are the elements

1Robbin has recently clarified this relationship in terms of

Hartmanis & Stearns complexity classes, and at this writing
it seems that Dennis Ritchie is also working on this rela-
tionship (expected Ph.D, thesis),

L7

of LRn >l less constructive than those of E 2? Can the
o

Cleave hierarchy be extended while preserving most of its
constructive features? Can the hierarchy be extended in
terms of purely computer theoretic concepts? What is the
next natural stopping point (closure ordinal) for this
Ritchie=Cleave type hierarchy?

As a starting point to the investigation of these ques-

tions let us examine why the Cleave hierarchy closes off at

mzo What we show is that E 2 = B e By definition
w +1L @

E, = E(E 2)0 and E , = (~)§a° If ™ is & program with
W+l o0 0 o<
instructions from E 2, then since programs contain only a

2
finite number of Instructions, say hl(),,.,,hp(). we can
find an n such that hi() € Eyopp ¥ = 1,002, Now to say .

f{) ¢ E(E 2)1 means there is an E , program, m,, computing

o o

f() with a bound g() ¢ E(E 5)
®

1v

or Since g() e E(Emz)o.

there is a program m, computing g() whose instructions all

for some n,, so g() e E(Ewcnz), Choose ny

» Then if m
n

come from E
. ®-n,

so that the instructions of ﬁl are in Ew.

I

max{n,,ny}, £() e ED’mC:.%DZ.
From the above argument it is apparent that an essential
reason for the hilerarchy‘s collapse at m2 is that programs

for URM contain only a fixed and finite number of instruc-

tions. What happens if programs can reflexively change

L8

thelr own instructions or contain infinitely many instruc-
tions? The stored programs of actual computers can alter
themselves in the course of their own computations, For
programs with such a capability it is clear that the above
argument will not work to collapse the hierarchy. Will
other arguments work or will self-modifying programs extend
the hierarchy? ‘

One of the features of RASFs (in contrast to URMs) is
their capablility of using self-modifying programs., We
prropose to study the Cleave hierarchy on such machines,
First we will present the Cleave hierarchy in detail on
& HASP using only fixed programs, Our approach is different
from Cleave's, We give the proefs in terms of ¢o() rather
than g(2 and we proceed directly to the hierarchy results
whereas Cleave also presents results relating his machine
to simultaneous recursions, It is not possible to simply
carry over Cleave®s results on simultaneous recursions to
RBASPs, Approximating such results would require developing
some elaborate applications of recursive functionals, In

place of this we use an arithmetization of Ml(ZO).

b9

Chapter 4 The Ritchie-Cleave Hierarchy

The subrecursive hlerarchy which is presented below will
be called the Ritchie-Cleave Hierarchy (RCH) rather than the
Cleave Hierarchy because the role of Ritchie‘'s ideas is so
central, (From a technical point of view it might be called
the Bitchie=Grzegorczyk-Cleave Hierarchy since many of the
proof technliques come from Grzegoreczyk as well as Ritchie,
However, to keep the computing theoretiec character of the
hierarchy distlinguished we stieck with the term Rltchie-
Cleave Hierarchy,)

4,1 Baslic to the technical results about the RCH are the

notions of a normal set of functions and of a pormal element

for a set of functions,
1. A function f() is said to majorize a class of

funetions S iffVYg()es dp ¢ N such that g(X) <

f(p)(max X) X e N9,

For 8 a set of functions let 3 = SUEU?()} where for lgign

n - 3
Ustxq,.00,x) = %, and let Su be the closure of S under

i
composition., Then

2, S is a normal set of functions and f() a normal

element for S iff
3¢
(a) £() e S,
(b) £f() is striectly increasing
%
(¢) £() majorizes S .

3, A function Axf(x) dominates the one argsument

50

functions of a class S iff Yh() ¢ S dm such that

hix) < f(x) x> m,

4, A set of instructions I = Au{T(), C()} where A is
a set of arithmetic instructions is called normal iff
the assoclated set of arithmetie functions 1is normal,

A set of programs, P, is called normal iff the set of
functlions computed by members of P is normal, For
example the basic instruction set £= {+,-, =, T(),C()}
is normal with normal element f,(x) = (x+1)2,

The usefullness of the notion of normality derives from
the fact that most of the arguments whiech establish the
basie hiersrchy propertlies are rats of growth type argu-
ments, It is convenient to handle monotonie functions in
sueh arguments, and 1t is necessary to have closure under
sonposition, Moreever 1t is useful to be able to treat
& single function, the normal element, when examining the
growth behavier of & set of instruetions., Thus s normal
set of Iinstruclons 1s roughly one which has a largest
instruction in some sense,

L,2 Before defining the RCH we need the notion of
op=-computing time for P a set of programs,

1, @Pﬁf(X) = number of atomic steps relative to P

in the computation of T, on MOQ:O) where a single step
relative to P is either the execution of a program of

P ocourring as a subprogram in nf or the sxecution of a

single instruction ofi;O not occcurring in such a sub-

Progranm,

51

2, A subprosram ng of P occurring in a program m is
called primitive with respect to P, Such termxnology
‘ndicates that ng acts as an instructlion when counting
Gchomputing time,
3. For convenience in defining the RCH we first define
the map *¥a, If P is a set of programs, then
p e ={f() | Mo € P{ ., Given a set RD S we also
define the inverse type of map, a%*, Let Sa%={nf| ()
& S,
L.3 For P a set of programs put L(P)mls C = {constants}
and pus L(P)i 2{'ﬁf ! UPﬂf() < (L(;’é‘—‘)gﬂ_ﬁl)}?‘gi . Then define
(a) Ly = L
(b) Lb,i b)i

(6) Ly, = iQOthi

o) g _ *g
Now set &bgi ze (Lb,i) . By = (Lb) . The classes Eb,i

correspond to Em«b + 1 of Cleave, For the RCH it turns out

0
L(L

it

that Eb 0= Eb , but this 1is not the case for the new

hierarchy, ﬁb' defined in Chapter 6, The classes Eb with
the single index are the classes of primary interest since
they are the most invarliant classes of the theory. The
refined classes Eb,i are quite dependent on the exact
computation parameters chosen (e.g., 6 vs 0) and on the
initial set Zo of instructions,

We will now prove the followlng theorems about RCH. For

convenience in these theorems we shall use the notation

g, in place of o, ,

4,7 Hierarchy Theorem

(a) Eo 1S Ba g41

(b) Ea 15 normal with & normal element fa() fora> 20

(c) 2 < b < @ implies E,< E .

4,12 Actual Time Theorem

If s <wand g() ¢ E then og() < E_

a,i’ , 1’

4,13 Comparison of Hierarchies Theorem
_ Lat2

E, = &7,
These theorems are proved with the help of the following.
4,5 Main Lemma |
Let © () be a normal element for Ea and define

_ o(n)
Fawo(n,y) = f_ (y)

P ey ny) = f;Fé’M(ney))(y)f

Then (a) for each M,n \yF_ (n,y) e B,

a, M)1

(] v

{p) for each M knyFaqM(n,y) e EagM+1

(e) for all g() e E, yAm such that
z{(X) <\Fa'M(m,max X)

{d) for each M AxXF pix,x) e E

1

g, M1 and dominates

the one argument functions of Ea M

Proof, Part (a) By definition F O(n,y) = fén)(y), and

9

£,() is normal for E, . Since f_() e (Ea)ﬁ it follows
that dafa(y) = constant. To compute fén)(y) a standard
iteration block (see A,5) is set up with control parameter
n which is Tixed and may be stored as & program constant;
Thﬁs computing kyFa O(noy) requires only c¢c«n = 1 steps for

¢

fixed n which means hyFa'O(n,Y) e Ea,o .

the inductive argument we also notice ¥d Ip such that

For purposes of

clo Ayl
a a

tte v

O(n,y)) < WP, o(n,y) ¥y > p.

Continning now by induction assume the result Tor M and

for simplicity use FM() for Fa M(). Then by definition

(FM(n°Y))(y)

AyFm+l(nqy) = Ayf, . To compute%yFM+1(n,Y) a

standard iteration block 1is set up with FM(n,y) a8 con=
trolling parameter, By the induction hypothesis this
varameter can be computed in less than.kyFM(n,y) stepg for

v » p., Using the methods of the case M = 0 it 12 known that

O‘a}\ayF (Yloy) < {G‘i’l)cFl\qéK’?e u‘i}) y < pa

M+l
Letting S_ be the number of steps needed to compute for

v « p we have O_AyFy . (n,y) < (etl)-Fy, (ny) + s Vy .

4

Now notleing that S and Fy(n,y) belong to D, , and using

Y
bon Ty g

lemma 4,6 below it follows that kyFM+1(nwy} e Ea,M+1 .

jasd

q.e.d, part {(a)

i, 6 Lemma Ya VM Ea - is closed under addition and

9

multiplication,
The proof of 4,6 is by induction on M, Returning to 4.5

we conslder the next part.

Part (b) Again Fo(n,y) is computed by setting up a
gstandard iteration block. But now the control parameter n
is input. As in part (a) we have anO(n,y) < ¢c.nVy.
Putting bln,y) = c.n we clearly have b() ¢ Ea o SO by

9

O() e E, 1. For future induction notice that
¢

dc caFOQn,y) < ceFO(n,y) since f;n)(y) > n by definiton of

definition F

normality in 4.1,

For inductlon assume knyFM(n.y} e Ea . Arguing as

M

avove 3d o F,(n,y) < d-Fyln,y) end o F jinvy) <

54
< (d+C)~FM(nay) Vn ¥y so that by 4,6 and the induction
hypothesis FM+1() e Ea,M+2° To verify the remaining
condition notice Fy(n,y) < FM+l(n,y)since
Fap(n,y) = e 0y 5 5 (0 y) vy 5.1, 2. (0).

q.e.d. part (b)

Part (c¢) To say g() e B, o lmplies that 3m, in which the
instructions or primitive subprograms, say hl(Joooushpl)
'(using function notation for the subprograms as well as the
instruebions) all come from Ea and for which the 9=
computing time is & cbnstantvca Siné@ £,) is normal for
B dmy h(Y) < fé_mi)(ma,x Y) YeN't i=1,.,,,p. Let
m = max my and let the input to Wg be X e Nro Suppose the
maximum constant of Wg is d, Then on the first step of the
computation the marximum value accessible to ﬁg will be
fQM)(max{Kad§) . Therefore after s steps the maximum
value acecessible to m, will be fémwS)imax§xod} Vo
If aaﬁg(x) = ¢ YX , then
i g(X) < fim°@)(max X,&) X e n¥,

Let q be the largest value of fém"c)(max{xod}) for all X
such that max{X,d} = d, Then since f;n)(y) >n, an e can
be chosen such that fée)(y) > q for all y., Thus putting
b = maxi{m.e}+ e it follows that

glX) < fim"a + e}(m,a.:v: X) = Fo(b,max X) vVx .

For induction assume the result for Da,M . take
g() e Ea,M%l . Proceeding exactly as above to line wE

Sy

netice that @awgixﬁ < bl{X) ¢ E&VM VX & nF,

Applying the induction hypothesis te bl)} it follows that

55

Im oang(X) < FM(E,max X).
Using the inequality in line *¥ yields
g(X) < f;m'FM(E'maX X))(maxixgd})
and as before
Je glXx) < fém°FM(E°maX X) + @)(m&x ¥)

Sinee E_ . 1s closed under summation, moFM(E,max X) + ec Ey

and so using the induction hypotheslis again we have

m-Fy(m, max X) + e < Fy(b,max X),
(n)q

Thus since Amyf& y) is increasing in both arguments,

(F,.(b,max X)) -
M (max X) = L

g.e.d, part {c)

giX) « (b,max X) X e W%,

Part (d)} For each M AxxF . (x,x) ¢ E, w4+ end dominates ths
.

M
one argunent functions of E@OM « To eompute AKEFM(X,K) use
the program for AnyFM(n,y) plus an instrustion to use the
invut 2o iterstlion parameter, Now use part (b), The fact
that AxxFMQXQX) dominates Ea,M follows lmmedistely from
part (&),
g.e,d, Main Lemms
&,7 Hierarchy theorenm |

{(a) E E

2,1< "a,1+1

(v) E, is normal with a normal element
fa() € E, for a>0

(c) &< b implies E < E_ ,

Proof, Part (a) We show Fi(x,x) ls contained in E,

but not in E, , Conteinment is just 4.5 part (d),and non-

containment follows immedimtely from the definition of

AL R aT,
LGOI A TIBN

56

Fart (b) E_ 1s normal with normal element fa() and for

a>o0 fa() € Ea . Recall that fo()} is normal for 20.

| - plx)
Define fa+1() from fa() by the condition fa+l(X) =1, {x),

We have produced normal elements for I. (see 4.1). These

0
cover the above result for the case a = 0, Continue by

induction and assume fa() is normal for Ea“ Then notice

fa+l(x) = (X)(x) = - Fa,O(X'X) € Ea,l‘

So fa+l() € E . = fvia jo To complete the definition of
normality fa+1() must be strictly increasing and must

ma jorize E since Ea+l = (E for a > 0 by 4,8 below,

a+1)u
That fa+1() is strictly inereasing is proved in 6,23. To

at+l’

show that fa+1() majorizes E 4+, we must show that

gl) e E, ; implies 3n g() < fén)(max X) X e n%,
But by 4.6 part (b) it is sufficient to show

(m)

VMVniam F_ M(n x) < fa+1(x) Vx.

Since f(n)(x) >n Vx ¥n it follows that
Foolmex) € Fpopya(1,x) that is
(oot (x)) } ntl
O(nvx) = fén9X)(x) < f;fa a (X))(X)

So by induction on M

FaaM(n'X) < Fa,M+m+l(1'X)

Also a m(l x) < éfll)(x) by induction on m, e.g.,

a’90(1,,1:) = fa(x) and

F(1,x) = 0172l (x) < £{faE (2 (x)) =

faep(Fax)). < 22 (x) | ete,

57

: (M+m+2)
Hence Fa’M®,x) < Fa,M+m+1(l'X) < faig (x).

qg.e.d, part (b)

Part (c¢) a < b implies E, < E Consider b = a+l and

b‘
let fa+l() be a normal element for Ea+1' then fa+1()
belongs to Ea+l' Suppose fa+1() € E, . then there is a d
such that fa+l(x) < f;d)(x) and for x = d a contradiction
results,

q.e.d. part (c)
4,8 Composition Theorem

Let £) e E[n] , and g, () e E[m] for 1< i1 <n. Then

a, a,J
m
h(X) = f(gl(X).,..,g (X)) implies h() € EE %+J .
Proof, To compute h() first compute each of the gi()

n
= -
at X, This requires sl(x) 121 agi(X) steps. If J = 0,

then Gagi() = ¢, so sl(x) sy = i=l°i’ If J > 0, then

0,8, (X) ¢ E and 8,() ¢ E

(0]

a,J=-1 a,J=1 (lemma 4,6)., To finish
the computation requires caf(gl(x),,,,,gn(x)) = Sz() steps,
If M =0, then S,(X) = s,. So elither oh() =8, + s, in
which case h() e Ea,O or g h() e Ea,J giving the result
for M= 0, J > 0,

If M > 0, then3b o,f(g (X),...,g (X)) <

< Py pop(b, max g, (X)) and g, (X) <‘FavJ(mi,max X) so taking

[}

m = max m; 1t follows that
Opfla) (X),uoe 8, (X)) < Fy (b, Fy ;(m max X)),
Now by the lemma 4,9 below we conclude
daf(gl(X),.,..gn(X)) < Fa'M+Jul(d,max X) for some

d. Thus h() € Ea,M+J by defini@ion: qg.e.d,

58

4.9 Lemma, VM VJ Fy(n,F;(mx)) < Fy . (p,x) V¥x
Proof. We can either prove this directly using a tedious
inductive and combinatorial arguméht or we can appeal to

Cleave's paper in the following manner. Since XXFM(n.X) e

w"\e
By
M

then using his proposition on composition (Corollary L

and XXFJ(m,x) € E§ where Eg denotes Cleave'’'s hierarchy,

p. 342), kxFM(n,FJ(m,x)) e Eﬁ+J. So by his Lemma 4 p. 342

Bmenﬁbmﬁd)<FWJ®Jd Vx

g.e.d.

4,10 Limited Recursion Theoremn.

gln+2] [n] -
If a<w, h() e ha,s+1' z() e Ea,r and there exists a func

tion k() e Egnzlj such that

£(X,0) = g(X)
f(X,y+1l) = h(X,y,£f0 ,y))
(X,y) < k(X,y) £ e N' ye N,

Then

[n+1]
£) e E‘a‘,s'f*rnax(t,nt')+1

Proof, To compute f(X,y) start with £(X,0) and compute
£(X,1), £(X,2),...,f(X,¥). This involves computing g(X)
and computing h(X,0,z(X)), h(X,1,g(X,1)),..., h(X,y, £(X,¥)).

The total number of Ga steps is thus

y
S{X,y) = ¢ h(X,i,f(£,1)) + of(X)
i=0

59

Since h() e E , and g{) e E, . this can

0 $

a,s’ Kl) e ha
be estimated by

y
T Fs(bl,max X,i,F

=0 (bzﬂm‘axng 1})) + Frwl(bB,X)

max {t, r}

and since max{X, i} < Fmax{t,r}(d’m&xzx°i}) and maxi{X,i] <
max {X, y}

S(X,y) < y-Fg (b, F (by,mex {4, 51)) + F,_, (b, %),

maxsit, rl
Now to handle y-F() consider the following argument,

yoz < f;c)(maxiy,z})
since x is in Zge So that for z = Fa(m,q(y)) where qly) > y

it follows that for some e

7' F, y(maly)) < f;G)(Fa,i(m,q(y)) < Fy (e, q(y))

Applying this to ¥,
S(Xu y) < FS+maX {t'r} (domax ngy}) + Frnl(b’X)‘
So

£() e Ea,s+max{t,r}+1

g.e.d,
b,11 Notice, the methods of this proof also give us that

for >0, Ea T 1s closed under limited summation and limited

multiplication, i.e, if f(X,i) ¢ E and S{X,y) = 1 (X, 1)

a,r

3,<y
and P(X,y) = T|] £(X,1), then S(), P() ¢ E, .
iy v
L,12 Actual Time Theorem,
If a<w and if g() e Ea'i, then og() < Ea,i,

Proof., We proceed by induction on a and i,

60

Consider the case a=0 for all i, If &=0, then g, = 0 so
the result is in fact stronger than stated, namely g() e
Eo, 1-1°

For induction assume the result for a, For induction on
i, consider g() e E_ o ‘then there is a m, SO that Gag(X)

<c¢ Xe NP Suppose m, uses instructions hl().....hp()

e Ea' then by the induction hypothesis Ghi() < Ea so

(si) : n,
Ghi(Y) < f, (max ¥) Y e N
and also ‘
(vy) ny
hi(Y) < f, (max ¥) Y e N ™,

Putting m = max{si,vi}, then after ¢ oa-steps,

og(X) < f;m)(max X) + fém)(fém)(max X))

deoe

fém()fa(m'c)(max X)) X e N,

Applying a simple estimante to this sum yilelds
ag(X) < c«fém)(fém'c)(max X)) X e N,

With these facts the next line follows immediately from

line #* and from closure of Ea under addition (using 4.5

, 0
part (1iii)).

og(X) < c-f;m'°+n)(max X) < f;m)(max X) X e NV

form>m., So g() < Ea,O'

Continuing the induction on 1, assume the result for

i = M and suppose g() ¢ Ea,M+l' Thus Gag(X) < b(X) e E, u

v

Y X ¢ NB, Proceeding as in 1=0 case to line # and putting

61

b(X) in for c we get
og(x) < b0 e MAB P (ar %)) x e WP

Now noticing that 3e b(X) < Fyle,max X) (by 4.5 part (111))
and applying the methods of i=0 case agaln, we have

(moFM(e,max X)+d)
a
Picking e such that m.Fy(e, max X)+d < FM(E,max X) and noting

og(X) < FM(e,maxX)°f (max X).

that -
(FM(@,max X)) _
£, {max X) = FM#l(@,max X),

it follows that

og(X) < Fyle, max X)°FM+1(e,max X).
So since Ea M1 is closed under multiplication there exists
a d such that |

og(X) = Fy .(d,max X) X e NO,

M+1
So g(X) < Ea y+7 Which completes the induction on i, and
[

since Ea+1 = OJE

1:O‘awi the result holds for Ea+

1°
qg.e.d,
k,13 Comparison of Hierarchles
(a) Let E:,M denote Cleave‘'s hierarchy classes (in

.
terms of 6§). Then Va, Mo E, u=E

(b) Let 8n be Grzegorezyk's hierarchy classes, Then

I - ate
Ea = Ea = & a <o,

Proof, First s _m(X) < o g(X) VX. Since a RASP, M,

can fully simulate a URM (as discussed in Chapter 2), it

follows that EZ m & E, - On the other hand, given a fixed

62

program for computing g(), 3 nvcag;(X) < ne 8ag(X) VX, and
since Ea,M 1s colsed under addition for all a, M«o, the
containment, E:,M o any, holds. ‘
Finally (b) follows from (a) and the results of Cleave,
q.e.d,
Note: We will demonstrate these results in an alternative

manner in Chapter 6.

63

Chapter 5 A New Ritchie-Cleave Hierarchy

5.1 Our extension of the Ritchie-Cleave Hierarchy relies
on a difinition of program modification over an infinite set
of instructions. or alternatively (and equivalently) on the
notion of regarding subprograms of & program introduced by

the program itself as primitive subprograms, those whose

execution time 1is counted as a single step regardless of the
actual number of steps required, The question confronting
us is how to define these notions sco that the hierarchy
generated using them is interesting, There are seversl
applicable criteria determining interest:
Ql. How far into the class (K does the hierarchy
extend? |
Q2, How does the hierarchy relate to other known
hierarchies (in particular the Péter hierarchy and the
Kleene subrecursive hierarchy)?
Q3. How natural is the hierarchy (how independent of
arbitrary choices, whether of ordinal notations,
sequences of functions or operations on functions)?
Q4, Can the hierarchy be described easily in terms of
computing theoretic concepts of conoeptsAfrom logie ?
Suppose we allow a main program to generate any sube
program of level Ea as primitive at input X, Then it is
possible to construct a program n which generates primitive

subprograms only over E1 and yet can compute any recursive

64

function within an elementary bound on E1~computing time,
i,e, on the time measured by counting execution of primitive
subprograms over El as single steps, Thus E2 would already
be 0{.
5.2 Considering the above argument more precisely define
the notion Esmcomputing time for S a set of programs,
Gsﬂf(X) = number of steps relative to S used in com-
puting Wf at input X where execution of any of the
following is regarded as a single modified step:
program of S occurring as a subprogram in e
program of S5 generated as a primitive subprogram
in T,
an instruction of ZO not occurring in either of
the above,
5.3 Suppose that every My © Ll is allowed as a possible
primitive subprogram at input X. Then consider any arbltrary
f() e R and T, computing £(), Define gn(X) = f(x) if

X £ n, 0 otherwise and define the sequence of programs

ng () e Ll by the program schema for N = n where output of
n

nf is placed in Y,

(1) X <« N => (2)
Y €= 0
C(X,X,B)

e

(3) exit

(2)

Thus Wg with entrance 1 and exit 3 computes gn() at X
n

65

with value at Y, Each program ng has the same segment na
‘ n :

which does most of the work, It is thus easily possible to
construct a main program 1 which given input x first gener-

ates ng and then executes it for the value x, All that is
- :

required 1s that m contain some program constant which is
an encoding of the schema described above., It then decodes
and loads the program inserting the input value ¥ in N,

Such a program can generate ﬂg in & constant number of
: n

steps, say c¢, and execute it as primitive in one step. Thus-
in ¢ + 1 steps relative to E; the function f() can be com-
puted, So clearly f() e El,O C E,.

It is not surprising that the above unrestricted method
of selecting primitive subroutines breaks down because it
is not in the spirit of the previous hierarchy Processes,
Ritehie and Cleave, Those processes were carefully cone-
trolled from below whereas generation of subprograms as used
above is not., What is needed is a stronger connection be-
tween thé hierarchical structure on @n and the use of pro-
gram modification over Qn to generate primitive subprograms,
In looking for this stronger connection, the example given
above can be looked at from two viewpoints.

From the vanpage point of computational complexity the
difficulty is that we have allowed the main program W to
list members of L

1 "too fast". From the vantage point of

algorithmic complexity the difficulty is that the ng are
n

66

"improper programs", They are not purely Ll programs be-
cause they involve subprograms like Wf which may come from
a "higher language",

In Chapter 8 we will consider the algorithmic complexity
viewpoint. We will see there that by selecting a subset of
L1 and restricting ourselves to Programs from‘this subset,
1t becomes possible to define parameters of algorithmic
complexity, [() for "length” and d() for "depth" and to
define the class of primitive programs allowed at input X to
be those whose algorithmic parameters are bounded by func-

tions in E With such a restriction the hierarchy does not

1°
collapse at Ezo However, a more general restriction can be
described in terms of computational complexity,

5.4 Intuitively an interesting restriction on the gen=
eration of primitive subprograms would be that the speed at
which primitive subprograms are generated i1s bounded by a
previously obtained function, In other words, a function
t() already obtained in the hierarchy is used to predict
the index i of Ea,i to which the subprogram wg being gener-
ated belongs.

To be précise about the position of a subprogram ng in
La we can use the normal elements, We know that
* if g() e E . then Mg such that cng(X)<<f;p2max X).
The constant p has the property that ng() e La«l,i for

some i < p.

67

Thus one precise way of controlling the position of sub-
programs in Ea is to control the p in line ¥, The speed at
which primitive subprograms are genefated can be taken as
the rate of growth of pﬁwith respect to input,

5.5 Let Te be a program which generates subprogras wg
and suppose at input X to m the subprograﬁs generated are

denoted by m, 1i_ = 1,293..9,,nx. Also let Y denote the in-

X
put to any subprogram, thus for each ix' Y may be different,

but for notational simplicity we aveid writing Y We then

1x

say that a subprogran T, can be generated as privitive in i

x
over L at input X iff m, ¢ L_ and de() VxVYy
x

omy (1) < £55)) (max ¥) & £() € B,
X

It is significant that this condition must be stated in
terms of the f_() rather than solely in terms of the
hierarchy class indicies, a,i., We will see in Chapter 8
how this conditlon relates to algorithmic complexity. We
will discuss its intuitive significance more fully in
Chapter 6, At this point we wish to examine how the RCH
behaves when primitive subprograms are generated as above,

5.6 Recalling definition 5.2 of Ep-computing time and
definition 4.2 of the ¥a map we define for a set of programs
P

f(P)ml = C = constants , and

D(R), = §mp | Spmal) < (T(R), 1372,

68

Also define
(1) L. =73
(11) Lb'i = EiLb)i
(311) Ly, = é;%Lb,l

E . =(C 0% E = ()" The c1 E th
Put b1 = (b, 1 o By o= (L) T e class E, form the
new Ritchie-Cleave Hierarchy. Notice, we will often write

g -computing time for 0;, =—computing time.
a

In this chapter we wish to compare the E with the E

b, 1 b, 1
and in the next chapter we wish to extend the Ea beyond .
Comparison of the hierarchy classes is easy once we have the
main lemma for the Eb,i’ We turn to this lemma after the
preliminary lemma 5.7,

We shall establish the convention that the notation Ea

¢

L. Ea, will be used for the new RCH only when there is some
possibility of confusing the new RCH with the old, i.e., with

E L 0.. Most often we shall simply use Ea La' o, for

a° a’' "a ’

the new RCH, The remaining theorems all apply to the new
RCH as defined above,

5.7 Lemma, If ﬁh() can be generated as primitive over
E, at X, then ds() e E_such that
n(y) < fés(x))(max Y) Xe N9 Y ¢ NT,
Proof., By definition 5.5
chrh(Y) < f;t(X))(maxY),

Since the instructions for computing nh() come from 2o

69

which has normal element fo(), the methods of 4,5 Main
Lemma part (c) can be applied to coneclude that for S com-
puting steps needed to determine h(Y)

h(Y) < fés * d)(max Y),

If a = 0, then h() is a basic instruction, and the result

is immediate, For a > 1 féy)(y) < fa(y) Vy

so that ,

n(¥) < (e{%F) * @ (max v)) = 250y v
where s(X) = t(X) + e + 1 ¢ E, (because t() ¢ E, by defi-
nition).

a.e.d,

5.8 Main Lemma,
Let fa() be normal for E_ and define

Fo olny) = f;n)(y)

a, w1 (0 7)

Then (a) for each M,n xyFa'M+l(n,y) ¢ E,

(b) for each M AnyF_ ,(n,y) e Ep M

(¢) for all g() e E, y J3m such that X e NB

g(X) < FanM+l(m,max X)

(&) for each N, AxxFa'M(x,x) ¢ E, y and dominates

?

B, -1,

Proof, (For simplicity we use FN() for Fa N() when no

?

confusion is possible,)

70
(n)
(™ (y))

a (y). A

Part (a) 1In this case hyFl(n,y) = f

subprogram hi() can be generated as primitive if

(£$%) (max %))
hi(X) < f, (max X). One subprogram whioh satis-

fies this condition is the standard program for kyFl(n,y),
This fact is verified in Appendix B, Thus a program for
computing AyFavl(n,y) would first generate the program for
AyFa,l(n'y) and then execute it. To generate such a sub-
brogram only requires determining the iteration parameter
for fa(). That parameter is f;d)(max X) which can be com-
puted using f;d)() and max() as fixed primitive subpro-
grams (both are in Ea, a>03 1if a=0, both can be computed in
a constant number of steps). Thus total caacomputing time

for AyFl(n,y) is a constant,

For induction assume the result for M, Reecall
(Fy(n,¥))

a (y).

Fupp(nay) = ¢

Notice that AyFM+l(n,y) could be computed in Fy(n,y) steps
from a fixed program if the value Fy(n,y) were known. By
using fa() as a primitive subprogram. But xyFM(n.y) can
be computed with a bound in Ea'Mez,so Since Ea,M-2 =

Ea,Mal' kyFM(n,y) e Ea,M~1 and Ea y 1s closed under addition

14

Op A F iy (n,5) < B, g,

thus AyFMﬂ(n,y) € Ea'M.

g.e.d,

71

f(n)

o (x) can be computed in one

Part (b) hnyFO(n,y) =

step using knyf;n)(y) as an instruction. Since by Appen-

dix B ;gwf () such that
a

(d)
(n) (r =7 vx})
Ufan (X) < fa a nax {n X} (m&X{no X;) Vn VX,

£(n)

a () can be generated as primitive, This can be done in

a constant number of steps (store program schema for iter-

ation as a constant, insert n as iteration parameter). Thusz
aahnyFO(n,y) = ¢

so knyFa'O(n,y) e Ea,O'

For induction assume knyFM(n,y) e Ea y end consider

’

e (F [
P (0 y) = £ n y))(y).

Knowing F(n,y), Fue1{n,¥) can be computed with a fixed pro-
gram in c»FM(n,y) steps. Thus by the induction hypothesis

Tofmry (7)) = o Fylny) + c.Fyln,y) < B, .

’

So knyFM+l(n,y) e Ea,M+l°
g.e.d,

il

Part (¢) Let m, compute g So that Gag() = ¢ and suppose

h, (),.ga,hp() are the instructions and fixed primitive
subprograms of ng, Let p be the maximum program constant.
In addition to the fixed subprograms hi(), Wg may generate
other primitive subprograms ki(), but by lemma 5.7 they

nmust satisfy

(£{%) (max x))

Ty
a (max Y) X e N *,

ki(Y) < f

72

Since fa() is normal for E_ we also have

(m,) n,
hi(Y) < f (max Y) Y e N -+,
a ,
Let n = max m;, then by methods of 4,5 part (c) after s
steps

(d)
* g(X) < f((fa (max X) + n)°s)(maxiX,P}),
a

For cag(X) = ¢ this can be reduced by methods of 4.5 to

(f;m)(max X))

g(X) < £,

(max X) = Fl(m,max X).

For induction we éssume cag(X) < FM(e, max X), Pro=
ceeding exactly ag above to line * and taking s = FM(d,max X)
the result is

((fgd)(max X) + n).Fy(d, max X))

g({X) < £,

(max{X,e}).
Now sincé Ea M 1s closed under addition and multiplication

the case M = 0 methods yield the result

(FM(m,max X))

- - n
g(X) < ¢ (max X) = FM+1(m,max X) X e N,

a
qg.e.d,
Part (d) This follows immediately from (b) and (¢).
g.e,d, Main Lemma

Having established the Main Lemma in terms of the same
functions, Fa,M(), as used in the Main Lemma 4,5 we can
carry over the results 4,7 - 4,10 with no effort. We thus
have:

5.9 (New) Hierarchy Theorem

(8) By € Eaiq o

(®) By 1€ By i

(¢) fa() are normal for E,

(d) a < b ==> E < Eb

5.10 Composition Theorem

Let F() e Eg?gg g,) e Eg?} for lgign., Then

h(X) = f(gl(X),.,,,gn(X)) implies

n() e Eg?&i; X e NB,

5.11 Limited Recursion Theorem

L[n+2] [n]
If h() e Ea,s+l and g() e Eaer and there exists a

[n+1]
ES

function k() = such that

t
£(X,0) = g(X)
f(X,y+1) = g(X,y,£(X,5))

(X, y) < k(X,y) X e N y e N,
Then £() e Eé?ziaax t,r +1°
We can also prove an actual time theorem for the new RCH,
5.12 Actual Time Theorem

It g() e E then og() ¢ E

a,i’ a,i’
The details of this proof are given for a more generel

case in Chapter 6, namely in theorem 6, 35,

74
Chapter 6 The Extended Ritchie-Cleave Hierarchy

Following our plan to investigate the possibility of
basing an extension of the Ritch;e=C1eave hierarchy on the
concept of program self;modificaﬁion, we turn now to find-
ing adequate restrictions on the generation of primitive
subprograms over Em in particular and over Ea in genersl,
Example 5,3 shows the difficulties that must be avoided, but
the solution of Chapter 5 is not available since Em does not
contain a normal elemént (if i1t did, the hierarchy would not
collapse at Ew' ¢, f. Main Lemma 5.8). However, we can
attempt to implement the idea which motivated our previous
restrictions. That is, we want to use Ea‘to control which
programs of La will be generated as primitive subprograms in
programs bonstruoted at level atl.

Pursuing the analogy with Ritchie, we want a function
b() e Em to control the hierarchy class Eb(X) from which
primitive subprograms of a main bProgram can be chosen for
input X, But we require more than restriction to Em'as we
have already $een., Thus by analogy with what we did before,
we want to select a normal element from Ea' say fa() a<o,
and we want a t() to control iteration of £, (). We could
then allow ﬁé to be generated as a primitive subprogram in
m at input X if

6.1 om (¥) < £l (nax 1),

b(X)
Such a method depends on being able tochoosefa() from E_

75

in a manner which is both uniform and controlled by Em‘

One way to make the notion of a "uniform Ea selection
procedure” precise would be to ask that the précedure be a
functional, F(), associated with E,. F() would be required
to map normal elements of En into normal elements of En+l'
and it would be assoclated with Ew in the sense that
F(g(),X) would be “E_ computable in g()".1 We would then
be required to show that such funetionals existed. (They
do.)

A simpler technique which avoids explicit use of func-
tionals would be to first use a standard functional of the
above type to select a standard sequence of normal elements

6.2 f ,(x) =F(£ (), x)
starting with fo() normal for E,. Then define a class of
admissible transformations of the standard seguence fn()
where the transformations were controlled by Em“

This approach has its analogy in other branches of math-
ematics. An example from geometry would be the definition
of a tensor product or a differential form; One caneither
give the definition invariantly (independent of coordinate

systems) or one can plck a standard coordinate system and

a group of transformations and then give the definition on

1Relative computabllity with respect to the hierarchy classes
is considered in Chapter 7., A stronger condition on F()
which is more in line with what we actually do is that F()
also be E bounded, that is the number of steps used in
computing®F(), oF(), satisfies

Jt() Vgl) oF(g(),X) < t(max X) ¢ E,.

76
the particular system, showing it is preserved under the
transformations.

A standard functional is suggested by the Hierarchy
Theorem 4,7, It is shown that if fn() is normal for E .
then £ ,,() is normel for E _,, Where

6.3 f,1(x) = £{%)(x);

Thus define F(g(),x) = g(X)(x) so that chosing fo() € (zo)i,
we can generate a

6.4 standard sequence of normal elements (s.s.n.e.)"

£ol) 20), e, £, .,

To determine an appropriate class of transformations
assoclated with Em and an s.s.n.e, for Em' we observe that
given any normal element for Ea’ say ha(), there is a con-
stant C, such tha%c)

6.5 hy(x) < f_ % (x).
Thus since fa() is used in 6.1 only to prowide a bound, we
can represent the effect of choosing ény arbitrary sequence
ha() of normal elements by finding a function s(a) such
that

6.6 h_(x) < £{8(a8))(x),
The degree of arbitrariness of ha() is reflected in)as(a).
Thus to control the choice of h,() we need only control
s(). The obvious requirement is that s() e E_. Thus
given an s.s.n.e. for Em' say fn(), the suggested con-
dition 6.1 becomes

6.7 cng(Y) < fé?&?(X)) + t(X))(max Y),

Since Em 1s closed under composition and summation, it is

77

sufficlient to require only 3It(), b() e E, such that

6.8 ong(Y) < fé%§§))(max Y),

In terms of the analogy with coordinate systems and
transformations, 6.1 is a reasonably natural statement of
our intuitive condition on primitive subprograms. Pursuing
this analogy, the question arises of whether a completely
coordinate free statement of condition 6.1 is possible, i.e.
whether we can avold any reference to standard sequences of
normal elements. The import of this question can be seen by
recalling the relationship between the Cleave and the
Grzegorczyk hierarchies, As we discussed in Chapter 3, the
Cleave hierarchy provides an invariant significance to the
Grzegoreczyk hierarchy in terms of computing theoretic con-
cepts. The question now is whether there is a similar way
to avoid explicit use of the fn() indefining the ERCH, We
shall see below that this question has two parts. Can we
eliminate reference to the normal elements? Can we elim-
inate reference to standard sequences? We answer both
gquestions affirmatively, the first in Chapter 7 and the
second in Chapter 8. ,

Let us now consider extending 6.1 to Ea for a>w, lThe
problem is to define the notion of an s.s.n.e., for Ea' By
analogy with the o case, the obvious definition is that we
take a fundamental sequence Bn for a, i.e. write Bn-> a if

Bn is a sequence of ordinals whose limit is a., Define a

énasequence of normal elements for Ea as that sequence

78

generated by some normal element fO() applying iteration
and diagonalization, That is,
- ~{x), ’
6.10_ (a) fu+l(X) = £y (x) and
(b) £ (x) = fg (x) for a a limit ordinal.
X
The generalization of 6,1 then becomes

6.11 onm (Y) « fét(X))(max Y) for t(), b() ¢ E
g b(X) @

where BX=w> a. N
Howéver, if the concept of an s.s.n.e., is to retain its
intuitive significance, we must restrict ¢ to the construc-
tive ordinals and must require the fundamental sequences to
be effective, The following example illustrates what can
happen if the fundamental sequences are not controlled,
6.12 Let h() be an arbitrary element of R and let g()
be a strictly increasing member of A such that for sone Wh
om (x) < glx) Vx.
Then g(n)—> ® so fg(n)() is a sequence of normal elements,
and since fn(x) > n for all normal elements (see 6.17) it
follows that
fg(x)(x) > g(x),
thus if fg()() were allowed in condition 6.11, then taking
t(x) = 1 and b(x) = x, Wh() could be introduced as a prim-
itive subprogran,
In light of the above example, we must introduce some

further standardization. In rarticular we must define the

notion of a standard fundamental sequence in a manner con-

sistent with the motivation behind condition 6.1. That is,
how can we give invariant significance to such a definition?

We recall from Chapter 1 that the matter of standard
fundmental sequences was crucial to the basic subrecursive
hierarchies, e.g, ordinal recursion, Extended Grzegorczyk,
and the Kleene subrecursive hierarchy. Cleave avoids the
problem in his hierarchy because he does not use the ordinals
in an essentlial way. They serve only to index his gener-
ation process, We shall proceed in a like4manner, but for
several reasons which will become clear later, we present
the extension first in terms of ordinals and a standard
fundamental sequence, It is to this task that we now turn.
Then in Chapter 7 we consider a justification for these
sequences,

6,13 We define fundamental sequences for a<eog this can
be done in a very straightforward manner. Define an =
fundamental sequence for o as follows., First put a in its
normal form to the base o (see Sierpinski[537 p. 323) so

84 B

= ; n _ .
@ =o ".a; t...t o ray where Bl>82>.,,>8n, a, € N=0, This

i
normal form is unique.

ft

(a) if o = B+y, then a, B+yn
B-n, then a_ = 8. (n-1) + B,

B

¥

il

(b) if o

(¢) if a = o then we consider two subecases:

(1) if B is a 1limit ordinal, then a, = n

(ii) if B is a successor ordinal, then a =

B-1) 0

m('n (recall o~ = 1),

80

We will usually write a,=> a, Thus, for example, n——> ,

2

. n
® ® n-=-===-> o , ete,

m2+nu_> w2+w, O Ne==> O o> a , @
6.14 Given any function Axh(x) we define the standard
sequence of functions generated from h() as follows. Let
a<e
(a) ho(x) = h(x)
_ (%)
(b) ha+1(x) = h," ' (x)

(c) ha(x) = h, (x) if a is a limit ordinal,
X

We can extend this sequence of functions beyond €y if we
have a method of choosing standard fundamental sequences,
Whenever we have something we want to call a standard
fundamental sequence for all ordinals a<B, then we can
define s,s. derived from h() for a<B,

6.15 Recall the definition of a normal element for & in
the Cleave hierarchy. We will say that fn() is normal for
E,» If £() is a normal function for %y ={ +,-.x,ICY we call
any standard sequence generated from f() a standard Se=
guence of normal elements (s,s.n.e.). The reason for this
wording is that fa() are normal elements for the E_ of the
Extended Cleave-Ritchie Hierarchy (ERCH)., We Show this fact
in 6, 31,

6.16 Given ordinals a and B in base o representation we
say that a+f is canonical if a+B is the base o representa-
tion of the sum. For example mz+m is canonical but m+m2 is

not., We now state and prove some basic facts about the fa().

81.

6,17 fa(x) >x VYx VYa,
(%)

6,18 If O<B<a and a+B is canonical, then fa(x) < T

) Vi,

6.19 If y,+8 and v,+B are canonical and le(X) < fy?(x}

x > M, then le+B(x) < fY2+6(x) x > M,

at+B

x > 0 and f_(x) < fQ+B(x

6.20 o>0 implies f(x) < £ (x) x> 0 and fy(x) < f_(x)
Y x.

6.21 If ot+B is canonical, then fB(x) < fa&B(X} x > 0.
6.22 If o is a limit ordinal < ¢q and o —> a, then

f (x) < f (x) x > 1,
an an+1

6.23 fa(x) is strictly increasing for a < ¢ > 1,

g X
6.24 If m(a) = the maximum of the integers in the base
® representation of o, then a<pf implies fa(x) < fB(x)

Y x > m(a),

6.25 For a<B<ey let mc(a) = the maximum coefficient in

the base o representation of a, then fa(x) < fB(X)

Vx> me(a).

We now turn to the proofs of these statements.

6.17 fa(x) >x Vx Va.

Proof. To say fo() is normal means that it is strictly
inereasing., Clearly no strictly increasing function can
satisfy f(x) < x for any %, thus we already know fo(x) >
x Vx. Suppose fo(xo) = Xq. then fo(y) =y Vy < X, and
fém)(y) =y Vn Vy < %y, but this is impossible since fO()

is normal for {+,-,%,} and taking Axg(x) = 2% there must

82

exist m such that 2x < fém)(x) Yx. Thus folx) > x for all
X, We now show that fa(x) > x Vx Va. We proceed by
Induction having established the proposition for a = 0,
Suppose the result for o, we then show that fém)(x) >x Vx
Y m. To this end, assume fém)(x) > x VYx. Then

) = £ e () > 2 (1) 5 5
by induction hypothesis on m and on a, So

fa+1(X) = féX)(x) > x \fx.
Now suppose a is a limit ordinal with a,—> a, then since
o, < @ we have by the induction hypothesis that fan(x) > x,
So

£ (x) = faX(X) > x Vx.

q.e.d,

Notice that this result does not depend on any particular
choice of fundamental sequence nor on any bound on a,

6.18 If O<B<a and if a+B is canonical, then fa(x) <

fa+B(X) x> 0and f (x) < fa+B(X) Vx.

Proof. By induction on a and B,

1. Suppose a is a successor ordinal, then for at+B to be
canonical, B must be an integer., Consider B = 1, by defi-
nition

forp(x) = 2% (x)
and we notice since r(x) > x

fém)(x) > f (x) Vx

(fa(fa(x)) > fa(x)

oo
2

(m) (m-1) . \

fo (x) > T (x) >...> £ (x) v x.
Thus

fa(x) < fa+l(x) YV x.
Now taking a+l for a

. . \

o lx) < f o q(x) < f (%) <...< forp (T Yz,
So we have the result for B.

2, Suppose o is a limit ordinal, for induction on B
assume result Tor B then we show result for B=1 and for B+1
exactly as above taking o and a+ respectively as a in 1,
Agsume now that B is a limit ordinal, Bn~w> 8. By induction
hypothesis

£.{x) < farg (*) Vx ir 8 > 0.
S0

fa(X) < f (x) = fa+B(X) if BX>O°

+
o BX
We need that a+B is canonical to sonclude that a+Bme> atB.
We observe that if x>0 then By>0 for all fundamental se-

guences for 0<E . I B=0, then we get the < result,

g.e.d,
6.19 If y;tB and Y,+B are canonical and fyl(x) < fyz(x}
¥ x> M, then ij+B{X) < fy2+B(X) r> N> 0,
Proof. We are merely starting thé standard sequences

with two different bases. The proof is by induction on 8.
sSuppose

AY7+B(X) < fY2+SkX) Vx> ¥

84

then we show

fi?ls(X) < fi?ls(x) Vo Vx> n,

For m = 1 the result is clear. But also
(m) : (m) (m)
f (r (x)) < r (f (x)) < ¢ (f (x))
Y1+B Y1+B Yé+8 Yl+B Y2+B Y2+B
Vx > M
which follows by induction hypothesis on 8, assuming

fY +B() is strictly increasing, and by induction hypothe-
2

sis on m (since fy (x) > x Vx we can assume strict in-
i

creasing for x>1 as we have in 6.,21), Thus the result,
Suppose now that B is a limit ordinal, Bnm~> B. Then

f (x) < ¢ (x) x> M,
Yl+Bn Y1+Bn

But

f (x) =f_ .. (x) <* (x) = r (x) x> M,
Y1+8X Y2+Bx Y2+B

Y,+8
We use thatvl+B andY2+B are canonical in this last step to
obtain the proper fundamental sequences.
g.e.d,
Notice we have proved this statement under the assumption
that 6.21 holds forvl,vé. This causes a technical difficulty
with 0 which accounts for the hypothesis x> M, It also

causes us to be careful in the proof of 6.21 that we do not

use this statement for ordinals Y,, Yy for which £y (),
1

fY () have not already been shown to be inecreasing.
2

g.e.d.

6.20 If o>0 then fo(x) < f (x) x>0 and fo(x) <

fa(x) Yx.
Proof. First consider a=1l, Notice by induction
(m)
fo(x) < £y (x).
In particular m=1 is clear and
- . (m)
xo(x) < f,{f, (x))
since
fém)(x) > % ¥Yx Vm (see 3.2)
and fo() is strictly increasing.

Thus

(m+l)(x)

fo(x) < £s

hence
. A(x) -
fo(x) < £, (x) = fl(x) x > 0,
Now suppose result holds for a, to know

a+1(x)

we notice from 6,18

fo(x) < f

fo(x) < fa(x) < fa+l(X) x > 0,

85

Suppose a¢ is a limit ordinal, anww> o, then again as in

above

f0§x) < fan(x) x > 0

fo(x) < faX(X) = fa(x) x > 0.
g.e.d.

6,21 Corollary. If atB is canoniecal, then fB(X) <

fa+B(X) x > 0,

Proof. Take v,=0, y,=a, M=0 in 6.19,

86

6.22 If a is a limit ordinal and a,~>a, then f_ (x) <
n

f (x) x >1, a < e,

an+l 0

Proof, To prove this we proceed by offering a tedious
analysis of the form of the terms an in a fundamental se-
quence, We see from our definition of fundamental sequence

that every term o, is of the form

Yt+m

)
H
.<

g
g

or

®n = Y1+®

For example, in mzwn we have yl=Y2=O andp=0; in o®.2 + wz-n,

o® w“.2+w3.n mm

Y1=Y2=wm'2u P=2; in o +o Y170, Y2=Yt=a))+°2- p=3.

First we analyse terms where Y15V, ©.8. y+mp-n, We wish to
show

f (x) <r (x) x >1,

y+mpen y+mp-n+l
By definition

f (x) = r
y+mpon+l y+mp~n+m

(x)
°X°-1+. s .+0)'X
(x).
Y’m)po n+a)p“lux—1+. .‘.+X
We notice that for x > 0

p=1

= f

Y+mpan < ‘Y+a)p' n+0~)p~1‘x-l+n o n+x0.

So we can apply 6,18 to conclude

87

f (x) < f (x) x>0,
yﬁmpvn y%mp.n+l

We must now examine the more complex case where t > 1,

Z
. i) o
First consider a simple example, a = o a, = o® n

To show

r .. (x) <f (x) x>1
o @ ntl

consider

T {x)

mm~n+1(X) =T m»n+x(X) = T pentx-1

o) s
which in turn is equal to fe(x) where 6 ="

wa).n'{-x-.l M NFx=? wen+l n

. X140 cx=14, , .+ cx-1+0® P T4

We observe that for x > 0 we have

f (x) = ¢ (x) B. >0 if x > 1
wm«n#l- Bxﬁdbsn X

Ben

and furthermore B_ > for x >1., Thus by 6.18

f m-n(X) <f (x) = ¢ x) x > 1,

((
o Bx+wm«n d)a»n-i-l

We want to show for t > 1 and x >]..38X such that if

'yt'%'(b°n+l
‘Y2+CD‘ ¢ o
Syl = Y170
and
yt'!'d)"n
Y2+m0 o ¢
oy = vy7®
then
£ (x)< r (x)
®nt1 Bx*on

. > 5
for BX én,

88

First we examine the case

Observe that

f (x)
ythpon+wp'l.x

v, to
is equal to

T . (x)
+mV2hmponﬁ»P'1=x—l+...+m-x-1+x

Y1
which is equal to

f (x)
yoroP Pl 14, | 4w x-14x-1
y1+(1) «X
which for
yoroPent, +x-1
votoPont, , +x-2
- 2 o 0 @
62 = o
Y2+(bp°n+|o -m.X-l
A =o
is equal to

f (x)
Yl+61'x"'l + 62'}(-1 +|0¢+ X'X
which is equal to

f (x)

Y1"Px
where

yotoPont, +x-1 Yot. ..o yotoP.n
o » X=1+w X=1+,, 40 e Xe=1

89

At each step we apply the rule for obtaining the fund-

amental sequence, and we observe that the term wYZhb'n

appears as a summand, So we have
f (x) < f (x) x > 1
Y2+U)p'n ngp‘n
Y1+® Y Ry /
by the principles of 6.18, So finally the left hand side

of the above is less than

f (x) x > 1
yotoPintl
yl+m ’
as was to be showrn,

We must now observe that these sane principles apply

to give the result for any t. If we put

yt-{-a)pan-i-]_
A e
th2+m
Qn = Y1+m e
and
ytﬁbpan
-+
+myt=1+BX ®
Veo2
8 n = yl+m
and if f, (x) = fé,(x) , then B_ contains a term of the form
n n
thp"n“'u © 9+X"‘1
o +X=-1 as a summand, The reductlion of

f(x) at the y, _, level will result in a term of the form

yt%ﬁpvn
'Ji"'{i)

90
where Bi contains a summand of the form

| yoroPontle, | 4x-1
Yt=’1+BX+ﬂ) °X"’l+q e 0+X"1
iV o X=1

This will happen because in reducing
ytﬁmpvn .
wvt"l+m terms of the form myt"1+a=x will
‘appear for each term a in the exponent of ® and for each
term obtainable by a decrement of the integers in the
proper order, Since BX contains a term of the form

ytﬁmp°n+,..+x~1 yt+mp«n

o the term o will occur as a

result of decrement of the integers (first the coefficient

gets reduced to 1, then the summands get reduced to 0). Thus

yt+wp°n
Vi1
a will appear, Noting that

yt+mp-n yt%mpon

Y +w Y40 Yy _qtO
o -1 xel + o t-1 = q t=1 . x

yt+mpan

gives the result as claimed,
We can now obtain this result for all t by an induction
on t and the forms presented., This leaves the case with

terms of the form

Yy T
Yi1™®
Y2aoo

Yl+a) °

91

This case proceeds in an entirely similar manner to the last
6.23 Corollary. If 1 <x <y, then f_(x) < fa(y). Also
if x <y, then fa(x) < fa(y) x<y. In each case a < e.
Proof. By induction on a, Suppose the result holds
for a, Recall that f_,,(x) = féX)(x) and let x < y. The
induction hypothesis gives fa(X) < £ ly)., We get
f‘((lm)(x) < fém)(y) for all m by induction on m. Using the
induction hypothesis and the fact that fa() is strictly
increasing it follows that
P g = p (el) < or e gy = P (),
Applying this to the definition of fa+l() we get
£ () = 2) < 29 = ()
For the limit case, fa() with a, —»a we must show
fao(o) < fal(l) < fuz(z) <0< fan(n) <eos
But this follows directly from 6,22,
g.e.d.
6,24 Let m(a) = maximum integerlapperaring in the base
o representation of a, If a < B and m(a) = m, then
£ (x) < fB(X) for all x 2 mtl,
Proof. By induction on B, For B = 0 there is nothing
to prove, Suppose the result holds for B, then since
fB(X) < f8+1(x) x>0, the result holds for B+1.

Suppose B is a 1limit ordinal, Bn >3, If o < B, then

a < Bn for some n, 3o fﬁ(x) < fB (x) for x > mtl,
o4 n

If we now had n £ m+tl we could say

92

+
fu(x) < fsx(x) x > m+l
and we would be finished. All we need is that for each
a < B we can find n such that a < B, for n ¢ m(a)+l, Call

such fundamental sequences admissible for the represen-

tation defining m(). We now show that all fundeamental se-

quences for B < ¢, are admissible. Consider 8 < o®, Say

n n n
1 2 s
°bliﬂ) ‘b2+eac i(}) °bS

and given a < B (hs # 0) where

B =

m
a = w 1“8.1

let m(a) = m for « and B in unique base o representation,

m
+, .40 Pog
P

n

Let o lnbl be the first term in B such that
m n
i i
W wai < O .bi,
Then if 1 # s, clearly a < Bn Y x. Thus we need only cone

b'e
sider the case of B = mncb and o = mmaa with a < B, If

m<nand b>1 then clearly a < By ¥x. Thus we need only

consider o%. g < o Ir mtl < n, then again o < Bx Vx. So

consider mmea < mm+1. Then Bx = mm«x so that mmna < Bx if

x > mla) » a. So if x > m(a)+l the result follows,
We handle B8 > a® in levels according to the power of w,

o for n < ® is of level 0, o” of level 1, and if B is of

B

level n then " is of level n+l, At level n+l are those B

B
of the form 1-b1+a°~+m S'bs where B, are of level n.

Since level 0 ordinals are the B's < mm, we have proved the

result for level O, Now assume it for level n., Let

9L

(¥) < £ 800 (nay)
X b(X)

Jt() ¥VX VY om,
and
£(), () e B

6.27 Definition 5.2 can now be extended to a > ®, We
write ¢ for © £ 5.2,
rite o or Iy of 5

A hierarchy can now be defined as in 5.6 by taking a for
b in conditions (b) and (¢) and adding

- UL, ir o 1 it or
(a) L, B<aLB if @ is a limit ordinal.

However in this hierarchy Em is not normal so that the
main lemma does not hold., What we need at limit ordinals is
the following modification,

_ T(T_), if a is a limit ordinal

6.28 ﬂ(La)={_ a0

L otherwise

a

6,29 We present the ERCH fara<<eo.

(a) Ly =%,

(b) LC".1 = L(Jﬁ(La))i

() Lyip = J:%La,i

(a) La = AZéLa if o is a limit ordinal

Also put B, = (L.)% E = (L))" ana I(E) = (T)"

°© P o, i a,i’ ' “a a a ol v

As in Chapter 5 we will delete the bar and use Ea' La to

denote the hierarchy classes when no confusion with RBCH is
possible, Before we can assert that the hierarchy is well
defined we must show that Jﬁ(Ea) is normal for all a < e,
Relying heavily on the properties 6,13 = 6.25 of the

fa() we show that the ERCH is well defined (6,31) and we

93

B B g
B=ow 1°b1+m 2°b2+»,.+m S.b
a a a
_ 1 2 p
QA = o a1+(D aa2+qn‘m cap

8

and again check for the first terms which determine the

ordering. Given
a B.
i i
w 2y, <O 'bi’
if a;+1 < B, and b;>1 then a < B, Vn.

Ir ai+l < Bi and bl = 1 then, if Bi is a successor ordinal
we have o < Bn Yn, Ir B, is a limit ordinal, then using
the induction hypothesis on levels, oy < Bi' we know

i
B, =@ N se a, < Bi for n > m(ai), Thus since m(a) >
n

m(ai), we have o < B, n>mnla), If By = ai+é, then b, >
ay implies a <« Bn Vn, 1If bi = 1, then Bn = o inn, and for

n>n(a) > &, we have a < B
q.e.d,
6.25 The proof occumed as a special case of the proof
of 6,24,
6.26 We now present the precise definitions for the
ERCH, Let e be a program which generates subprograms
and suppose at input X to nf the subprograms generated are

denoted by m i, =1,2,..,,n_, Also let Y denote the in-

iX X X

put to any subprogram, thus for each ix Y may be different

but for notational simplicity we avoid writing Y We then

1 a
: X
say that a subprogram ni can be generated as primitive i i

% ——

over L at X iff

95

exhibit its main features in parallel to those of RCH,
First appears a lemma giving us control over the value of
functions in 37(Ea),

6,30 Lemma, If g() e Qa(Ea), then Jt,(), byl) e E,

such that

(t,(X))
g(X) < £o (max X)
L7
To say that g() ¢ Qﬁ(Ea) is to say there is a program such
?hgt Gdﬂg(x) < ec. Let hy()..oa,hp() be the fixed sub-
programs and instructions of ngo They must come from La'

thus there exist Vi and ni such that

(vi) m,
hl(Y) < f (max Y) Y e N
%n

i
Ir hj() is generated as primitive, then 3 t(), b() such
that

m
n,(Y) < fét(x))(Y) = S(X,¥Y) YenNJ,
J b(X)

The subprogram hj() is composed of instructions from Loy SO

that after S steps at input Y

hj(Y) < fés)(max Y).

Thus from the above

n(¥) < féS(X'Y))(max Y),

and since ab(X)+1 < 0

(f(t(x))(max ¥Y))

O -
o(X) (max Y) < £ (f(t(x)) (max Y))
0 b(x)+1 %b(x)+1

f

96

< plEXFL) (o vy,

*(p(X)+1)
Now take M = max n, and V = max Vi then
m
h, (¥) < fét(X)+V+l)(max Y) YenN? X e N7,
b(X)+M+1

Thus after ¢ Od»steps the maximum value which can be pro-
duced is

f(do(t(X)+V+:L))(maX X)

for d > ¢ depending on the
S (X)+M+1

program constants,
So taking tZ(X) = d. (£{X)+V+1) and bZ(X) = b(X)+M+1l we have
the result,
g.e.d, lemma
6.31 Theoren. éﬁ(Ea) is a normal set of functions and if
fa() is an s,s.n.e, for E_, then fa() is a normal
element for ég(Ea)a
Proof, We must show the following:
(1) any s.s.n.e,, fa(), belongs to ;5(Ea)§
(2) fa() is strictly increasing
(3) any s,s.n.e,, £,(), majorizes éﬂ(Ea)ﬁa
(1) We in fact show that f () e J(E), This work is
guite involved and has consequently been reiegated to Appen-
dices A and B, It enters the proof here as
6,32 Lemma, fa() € Qﬁ(Ea) Va O<a<e .
For a a non=1imit ordinal greater than 0, the proof will

be covered by the Main Lemma as it is for a<w, We are in-

terested only inthe case that a is a limit ordinal. Then

97

Q?(Ea) = h(ha)O. To show fa() € E(ha)o we must show that

there exists a program'nf such that
o

oJfJx)<c x e N,

By definition f_(x) = f_ (x) for a_—> a So an obvious
o a x

way to compute f_() would be to introduce M. () ¢ L,
a x

X
as a primitive subroutine, This could only be done if
dt(), b) e E, such that

%* o, (y) < fézéxi)(y) Vy Vx e N
a x

X
and if there were a progran oY which satisfied
(a) g u(x) < ¢

(b) my(x) generates m_ as a subprogram,

L
In Appendix A we present a computing procedure for fa()
and we exhibit a m,, which satisfies (a) and (b), It in
fact satisfies (av) Ty € Ly, We also prove *,
Returning to the proof of 6.31 we consider case (2),
fa() is strictly increasing is known from 6,23,
(3) We consider the followlng subcases:
(a) g() e E,
(b) g) e 33(Ea)
(e¢) &() e QW(EQ)K

(a) If g() e E, consider the case for a a successor, then

g() e i;%bawl,i by induction hypothesis, fa-l() is normal

for Emwl and by the Main Lemma 3J M

98

g(X) < F (e, max X) X e N,

a=-1,M
Then by the arguments of the Hlerarchy Theorem 4,7

&(X) < F 0 < ") (max x).

a«l,M(e'
So fa() majorizes E, If g() e E, and a —> a, then by

induction hypothesis f_ () majorizes E. , If g() ¢ E_ =
a, a, a

\UE_ , then for some n g() e E_ , So g(X) < f(d)(max X) <
a @ a, T

f, _(max X) if max X > d. Thus if max X > max{ntl, d}, then
n+l

g{X) < ¢ (max X) < fa(mai X).

an+1
So 3 V such that g(X) < fév)(max X).
(b) To show g() e T(E)) notice first E, S J(E)). We have
considered g() e Ea' thus we are only interested in those
g()'s defined by programs using program modification over
Ea‘ For this result we need only estimate the maximum value
of functions computed by such programs with a constant bound
on a.

First determine a bound on g(), If g() e 37(Ea) then

by 6.30 there is an fa() such that

g(X) < fét(x))(max X) X e NP
b(X)

with t(), b() e E . So since E = L)Ean, for some n,, ny

(eq)
£() e B . bl)eE, andt(X)<rf, © (max X), b(X) <
2 ginl gl
(e5)
f (max X). Now taking e = maxf{e = ;
'anz ax X). No g e = max{e;, ey}, m = max {n,,ny} we

get

g(X) < f

And since fée)(y)-c < fég)(y) e > e

we have

g(X) < o

AN

<

99

(fée)(max X)ec)

af(

m

m
ae)(max X)

(max X) X ¢ N,

m

m

(f(g)(max X)

a
ol
o

(2)
fla
.

f(q
f

o (max X)
ezmax X)
m

(max X)
= +1)
ée)(max X)
m

(max X)
- +1)
ée)(max X)
m

fa(f

f(c)
a

(e)
o (max X))

(max X) X ¢ N,

We now want to show that for any f&(), not just fa(),

we can bound g()

. To do this we need only compare £, ()

The following lemma handles this task,

and £ (),
6.32 Lenmma.
Ea’ a<ey, then

If fa() and f&() are two s.s.n.e,‘'s for

dm Vx Ya O<a<e g f‘&(x) < f&(x+m),

Proof. For a=0, by definition of normality

fé(x) < fém)(z) Y x

so that

100

(x+m)

0 (x+m),

£1(x) = féX)(x) < féX+m)(x) << f

So
fi(x) < fl(x+m),

For transfinite induction assume
f&(x) < fa(x+m)

Then simply as above

flep(x) = f&(X)(x) < féX)(x+m) << féX+m)(x+m)

= £ (xtm)

For the limit case assune

f! (x) < f_ (x+m).
%y %y

Then since

£, (xtm) < £ (x*tm) p> 0 (by 6,22),
n n+p

we have

f&(x) = f&x(X) < fax(x+m) << fax+m(x+m)°

Thus
fe(x) < £ (xtm),
gd.e.d, Lemma
Having established that Jﬁ(Ea) is normal with normal
elements fa(), Wwe can apply the Main Lemma 5.8 to conclude
the following for all a < eo. |
6.33

101
(a) E C Eppq
(e) E, 1s closed under composition

(f) EOL is closed under limited recursion

Notice, we can also establish that E, = P(E,) C E, , since

fa() majorizes E .

Using the above we then easily conclude

6,34 a<B<eO=m> Ea c:EB

Proof, For transfinite induction on B, suppose a<B==>

Ea<: EB then since EB C.EB+1 by (d) above the result holds

forp+l. If Bn-> B and the result holds for all B* < B8,

- -
then o<B==> 4 n a<B, and so E EB and clearly EB < Eg

n n

since EBC' UE so E_C E

Bn' a B*
g.e.d,

To finish this section we want to prove the actual time
theorem for a<eo, thus complete the parallel treatment of

RCH and ERCH,
6,35 Actual Time Theoren

If g() e Ea then og()} < E

.1 o, i’

Proof,

(1) Case a=0 for all i, Here g() e E, 4 implies g() <

E . fi i
F%l_l Vi by definition,
(2) Case for successor ordinals. For induction assunme

the result for E. . Vi, Let g() ¢ E then by defi-

@, i a+l, 0°
nitionem, 12() < ¢ which means 3 T, such that g .7 () < c.

Let hy (),,.,,hp() be the fixed instructions in Moo

102

Since hi() e Ea+1 = ;;%Eaei we have by induction hypothesis

hi(Y) < Ea’j,

Thus by definition of normality

} (sy) | o
hi(Y) < £ (max Y) YeN~-41=1,,.,,p,

and ,
| \ (Vi) | m,
hi(Y) < fo4] (max Y) YeN"i=1,,..,p.
If h() is generated as primitive in m, &t X then by

definition 4 t() sueh that

(tl(X))
a+l

m
(max ¥Y) Xe N YenNZT ¢

Gh(y) < f) e E

l(o+l
and by lemma 6,30 j}tz() such that

(t,(X))
h(X) < Lot (max Y).

Since t,() e Eg+1s 1t follows by Main Lemma, that e, e,

’ (eq) |
tl(X) < fo47 (max X)

(e5)
tZ(X) < fo1 (max X).

So after S steps in the execution of ng(), putting m =

maxielgez,vi,si} the maximum number of actual steps is given

by (m)
(fa+l
at+l

(max X))

Gﬁg(X) < f (max X) +

103
(m)

(m)
(2 2(max X)) (£ . 7 (max X))
+ fa+%+l (fa+%+l (max X))
+
+
(féfi(max X).S)
Lo (max X)
and as before
(m) .
(r (max X)-8)
* cné(X) < S-fa+§+1 (max X).

For S = ¢ a constant the right hand side is in Ea Now

O e
. 14
assume g() e Ea 1 then by definition

0- bl
aﬂg() < By 1e1®

So by the Main Lemma e such that

n
cang(x) < Fi(e, max X) X e N,

Applying the same analysis as above up to line * and putting
S = Fi(e,max X) yields
(f(m)(max X)+F.(e,max X))
. atl it ‘(max X)
Gﬂg(X) < Fi(e,max X) L
which is
< Fi+l(p,max X) e Ea,i’

(3) Case for limit ordinals. Assume for induction that

the result holds for all B<a. Let a —=> o with o ()
n
. (

s.s.n.e, for E . Let z() e Ea,o Withﬂﬂg computing g{)
such that caﬂg() < constant, ¢, Suppose as above that
hi() i=1,...,p are fixed instructions. Then bv defini-
tion h,() e :U(Ea) so that by definition of é?(Ea) and by

lemma 6,30 respectively 3 Si. vy

104

(si) n,
Ghi(Y) < fa (max Y) Y e N

(Vi) n,
hi(Y) < f (max Y) Ye N -,
a
Furthermore, if hj() is generated as primitive over 53(Ea),

then by definition

(tl(X))
Uhj(Y) < T, (max Y) tl() e E,
and by lemma 6, 30
(t5(X)) , | n n,
hj(Y) < f, (max ¥Y) X e N Y e N to() e E..

We are now in the situation for case (2) and can proceed

exactly as before,

105
Chapter 7 Comparison of Hierarchies

In the first part of this chapter we consider the rela-
tionshlp between the ERCH and the other subrecursive hier-
archies, In the second part we show how the cholce of the
s.s.n.e,'s can be made to depend rather naturally on a io-~
tion of relative computability with respect to the hierarchy
classes,

The main theorem for the first part is:

7.1 Theorem,

+
- - o n__ .
(v) Un..lc“ = 0(< m“) = &€= R==E.
A<D ®» oc<mn o

Here the C,, C, = 6%1, are the classes of the Kleene sube-
recursive hierarchy, O(<a) are the unnested o-=recursive
functions, Eq are the classes of Robbin's Extended Grze-
gorczyk Hierarchy, Q,n are Péter's n-fold recrusive func-
tions and EOL are the classes of the ERCH,

For a<w in part (a), the result is essentially Cleave's
theorem 3, the theorem we promised in Chapter 4., We prove
7.1 by establishing (a) and then citing Robbin[4h] for (b).

lMost of the real work in proving this theorem is done in
the Actual Time Theorem 6.35 and in 7.2,

7.2 Normal Form Theoremn,

There exist predicates Tg()‘elementary in 8 = 5h1().

,o.,hn(k)} and there exists an elementary function U() such

106

that if g(): N> N and g() is Ml(ES) computable, then
Je sueh that
(2) &(X) = UluyT>, ,(e,X,¥)) VX & NP,
(b) if g() is Ml(ZO) computable by program “g() and
h() is such that ang(x) < h(X) VX ¢ N, then J1b()
e €(n()) such that g(X) = Uguy < b(X) T(e,X,y)} so
that g() ¢ E(n()).

(¢) if g() ¢ E, then g() ¢ & (fa(}) for any nor-

mal element fa() for éﬁ(Em).
This theorem is proved in Appendix C, What we must do here
is show 7,3 and 7.4,
_ X _ ylx)
7.3 Lemma, If wo(x) = 2% Wa+1(X) = W, (1), and

wa(x) = W (x) for a a limit ordinal with @ —> a, then
X

Wor1l) € Briygyyg a0d W () e J(E) a<e,
7.4 Lemma, For all a, -l<a<n®, there is a b{) ¢ & and
(m)
dm such that £, .. (x) < W (b(x)) Vx.
With these two lemmata we can easily prove 7.1 (a) as
_ a+l oe-
follows. First to show & = 8(wa*1()) © E(1+a)+1 we
observe that by 6,33 EB is closed under composition, explicit
transformations and limited recursion for all B, Thus since
wa+1() e E(1+u)+1 by Lemme 7.3, it follows from the defi-
ot -
nition of £ (W ()), 3. that & S E(qiq)+1
f C i =
Conversely, B(14g)+1 S 23(wa+1()) for lga<e because
by the Normal Form Theorem, g() e B(14q)+1 implies g() e

€ (h()) where h() is any funection such that jBng ong(x) <

107

h(X) YX and by the Actual Time Theorem 6,35 and Lemma 7.4
we have cng(X) < f§3&+l(max X) = h(X) e 8(w@+1(})}. Thus
the burden is to prove the lemma,

Proof of 7.3, First define ww1(X) = 2.x, then wii)(l) =
2% = WO(X), We notice that wnl() e E, since multiplication
is a basic operatiori, Now proceeding as in Appendix A we
can compute wa() according to a slight modifiecation of the

procedure outlined there, We need only show that for this

procedure, say (), we have
o

(t(x)) .
oTr (x) <« ¢ (x) %()esr

oty (1+a)+1 a
and
g (x) < fét(X))(x) t(), b) e Ej.

B b(x)

But since the procedure for the wa() takes less steps than
the procedure for f(l+a)+l(), the result follows by the
methods of Appendix B,

Proof of 7.4, First we notice that every £10) is ele-
mentary. We can see this quickly by ncticing(ynf() < Eoc:

1
€, so by 7.2 part (e) £,() e & .

Next we observe that if Axg{) ¢ & ., then Im such that
g(x) < Wém)(x)g This is another tedious result, but for-
tunately it has essentially been demonstrated by Ritchieﬂuzj
where he shows

g() e & implies dn g(x) < Wén>(kox+k) V x
end since kextk < Wék)(x), we have g(x) < Wén+k)(x).

Som= ntk, Thus dm fl(x) < Wém)(x) V’x, and gince

108

wén»l)() ¢ £ we have the result for a=-1, Now since

w(m)(x) < w(m+X)(1) Y x we can continue by induction to show
t5(x) = i) (x) < u{™) (x) < w0 (1) = w (200m).

Further it follows that
wﬁx)(2x+m) < W§QX+m)(l)

since wl(x) > 2x+m VY x > m., So that

W§) (2241) = w (20(20(, .)+m)+m)
< Wy ity (i (1 (0 L 0))))

< w:&-LPX'ﬁ’m) (1)

since wl(Zx+m) < M§2X+m)(l).

Thus
_ (%) (x) (4x+m) _

f3(x) = £537(x) < Wy (2x+m) < Wy (1) = w2(4x+m).
We can continue in this manner knowing that wn(x) > on-x+m
V x > maxin,m} to conclude

fo1 (X)) < W (2n.xtm),
Thus

. 5

£,(x) = fx(x) < fﬁl(x) < wx(zx +m),
Since

wm(x) > 2x2+m Vx> mel
we even have

(m)
ﬂm(x) < Wy (x).

Using induction and extending the above techniques it is

thus clear that for each a<®® ywe will have

109

' 1
£ (14q)+1(X) < W (X) ,
as desired, TFor details see the method of Appendix B,

7.5 In this section we will examine a relativized ver=
sion of the ERCH., The goal is to show the hierarchy in a
more ‘abstract light and to point out how the standard fune
damental sequences for a<eo can be explained in terms of the
hierarchy. We do not eliminate reference to normal elements
altogether, but we show that the standard sequernces can be
defined in terms of the hierarchy process,

The extended Ritchie=Cleave hierarchy process can be
relativized to any set of basic instructions %, However,
if ¥ is not normal, then the methods of proof used in Chapters
4-6 are no longer applicable, and it is not known how such
relativized hierarchies behave in general, Let Ea() de=-
note the relativized hierarchy up to a and c¢all it the class

of functions Em computable in % We are interested in

Ea(fB()) for fB() 2 normal element, In this special case,
the relativized hierarchy can be treated like the ERCH it-
self,

We first notice that although Ebn = A% n = 0,1,...
(CRO = €), the notion of "E . n computable in" is not the
sSame as the‘notion "(&n recursive in", For example,
S(fl()) = £ whereas B (£,)) = E,, Moreover, the notion
of RASP relative computability allows & to be infinite,
raising the possibility of using program modification over

a highly non-constructive set Z, No anzlogue to this con-

110

dition occures in ordinary recursion theory. 1t is probably
an interesting task to attempt defining "Ea recursive in"
for a>mma

Next we abstract from the ERCH process the foliowing
notion,

7.6 An gﬁaextending sequence from E 1s a sequence of

Y
unary recursive functions, g,(), such that
i

(a) () ¢B,
(b) g0 () £ ER = Ey(g,()

1 D x}
(G) E§+l EV
N n
(a) Ey ~ 2 Ey,

If the gi() are normal elements generated from the same
fo(), then the sequence is called a normal Eémext@nding
sequence iggg.gye

We say that the E ;~extending sequence from E.. gyl),
reaches the class EB iffe EB ls the least hierarchy class

containing LJJEi.
i=1

7.7 Glven a pair of hierarchy classes <A, B> define the
ordering <A ,B> £ <A® ,B*> iff B' D B or if B = B then
A* © A, For Ea define the minimal palr sgy,§62 for Ea to be
the <-least pair such that every normsl Lg-extending sequence

from EY reaches g&. Call E6 the basic class for Ea'

7.8 Irf E, has a minimal pair <EY,E6>, then define Ea =
m

least hierarchy class containing f]Eé(gn()) for all normal

Es extending sequences g () from E.

111

Ir EOL exists 1t is called the s.s.h.c for Ea‘ clearly
n

it is unique., We will prove that the a, of Ea constitute
n

the standard fundamental sequence for a, Thus the s.s.h.c.
can be used to select the s,s.n.e. This method will allow

generation of the hierarchy up to E o° The class E ® does
® ®

not possess a basic class, but there exists for it = Se=

guence of basic classes %mn = Bnu This sequence can be used
to define the s.s.n.e. for the extension of E nanely using

o®’
the correspondence @ %> ¢, the standard fundamental seguence
for Em defined by s.s.h.c. determines s fundamental sequence
for o®,

We show that in general every EOL for 0<€, possesses either
a basic class or a sequence of basic classes. In each case
the basic classes determine & s.s.h.c. which can be used to
define the s.s.n.e,

First we prove the following basic relationship between
the BERCH and the notion of Ea computability.

7.9 Theorem, For all o1 Ea(fB()) = EB+a°

Proof by induction on a. We cleim E,(fg()) = Eg,, =
S(fsﬂ()). Let Zg =2,y i}, then L3 is normal with
fB() as normal element, Taking fB() as & new instruction
we can define f8+1() just as it is defined using fB() as a

primitive subprogram. Since ZB 1s normal, the methods of

Chapter 6 imply that El(fB()) is closed under composition,

explicit transformation and limited recursion. Thus we get

112

c
E(fs+l()) € El(fB()). On the other hand, whenever fB()
is used 1in a program as a primitive instruection, it can be
replaced by a subprogram for fB() which by the Hierarchy
Theorem can be generated as primitive at level B of ERCH,
So B (rg()) < Bg,,.
By induction using the above and the equations
Eyep (£5()) =

co

izOEa,i(fB()) = é;%Esza,i = E8+a+1

Ea(fB) - éz&EY(fB()) = ¢EQEB+V= Bgaq

the theorem follows,
q.e.d,
The main theorems are
00
7.11 Theorem, TFor every a a limit ordinal < e

7,10 Theorem. The basic classes are E 8 B<e
®
0 Ea
elther
(2) has a basic class or
(b) 1is limit of a sequence of basic classes,

In each case the basic classes determine the s.8.h.¢c. E

%n
and the s.s.n.e, fan() for E_,
To state theorem 7.11 in more detail, let a = mBl.al +
+,,..F wsseas be the base ® decomposition of o with a, # 0,
For brevity write a ='Y+mB«a (soB=B,a=a, v= anmsoa),

8’ s

Bwa determines the case (a) or (b). If a>1 then

The term w

(a) holds with E , as basic class and <E , E > as minimal
P Y ToP.g

113

pair. If a=1 and B is a successor ordinal, then case (a)

holds with basic class bwﬁvl’ minimal pair <EY’§nB~l>. If

a=l and 8 is a limit ordinal, then case (b) holds with
B g @s the sequence of basic classes. These

n
®

theorems are proved by a simple application of Theorem 7.9

and the definitions.

114

Chapter 8 Algorithmic Complexity

The class Ei(Ea) = gnfl £f() e Eg§ 1s quite badly
behaved, It is not r.e. Programs may have arbitrarily
long running time. They may display exceedingly complex
and inefflicient program structure and some programs may be
for all practical purposes unrecognizable as elements of
E,. Thus ;C(Ea) is a bad notation system for E,.

La is a better system but it too has drawbacks. In
particular the program structure for T € La may involve

essentlal use of subprograms w,. belonging to higher lan-

g
guages, Lﬁv B >a, Such was the case with example 5,3 0f
page 64 (Chapter 5). Furthermore for certain programs of
LOL it may be virtually impossible to prove that they halt
for each input (i.e. are total).

For %mn we know there are subsystems, L“mn which are
well behaved, namely those arising as direct translations
of the Péter formalism. The L& has some particularly simple
subsystems, It 1s interesting that among these systems are
those possessing measures of algorithmic complexity which
lead naturally to a new way of stating the condition
on progrém modification over Ew“ Using such languages it
becomes possible to state the extension éondition for E,
in terms of the time it takes to "process certain Program
descriptions®”,

What we can prove is that for certain langhages for

Eyo LSm' there are measures of algorithmic complexity, d(),

L(), such that

115

mgl) e LSC&)
implies
L(mg)
omg(X) < fd(wg)(max X).
g .
Moreover £() and d() can be used to define the concept
of program modification over Lsm, The basie¢ fact is
8.1 The programs m i, =1,2,,.,,n, for x e NO
gix X X
can be generated as primitive in w over LSm irf
ﬂgix € Lsm and
3t(), b(-) ¢ E, such that VX ¢ N"
1) Qg) < w00
11) d(wgix) < b(X)

and d n* e L, which generates w at X,

51
Thus by using the special language Lsmxand the notion of
algorithmic complexity we can avold explicit reference to
the fn() in defining conditions on program modification,

The special language st we originally used was ob-
tained from Kleene’s calculating system for primitive recur-
sion. This system was chosen because S, McCleary in a 1967
paper had already analysed the computation bounds in this |
system in terms of a measure of algorithmic complexity,
(number of R's in a computation expression.)

In the Kleene system if

£(X,0) = g(X)

and £(X,y+1) = n(X,y,f(X,y))
then a standard way to compute f(X,yo) is to set up a loop
which computes g(X), h(X,0,g(X)), h(X,1,n(X,0,g(X)),

h(X,2,h(X,1,(hX,0,g(X)))),..., until y reaches Yoo In

116

general, we pick a uniform method of translating recursion
schemata into programs and we use only programs in this
menner, Thus by restricting ourselves to programs which
can do only this type of looping along with compositions,
we get a system adequate for 021 and easy to analyse‘with
respect to computation bounds., This original brocedure was
somewhat ad hoc. Since then Meyer & Ritchie have Published
a paper which allows a much neater treatment of this ide=.
Using the new Meyer-Ritchie results not only affords s more
elegant treatment,but it affords a simpler treatment because
they use bounding functions, b,() very similar to our fn()
whereas tedious effort is involved in showing that McCleary's
bounds are compatible with our fn(). Thus instead of
basing our observations on MeClear¥s work with Kleene‘'s
system as originally planned, we base it on the system of
loop. programs of Meyer & Ritchie,

Loop programs are defined as certain finite sequences
of the basic instructions (1) X e ¥ (2) X <= X+1
(3) X <= 0 (4) LOOP X and (5) END, The instructions (4)
and (5) always come in pairs of the form LOOP X, P, END
where P is some loop program, The meaning is that the pro-
gram segment P will be repeated x times where x is the con-
tent of register X. Thus for example LOOP X, X < X+1,
END will double the contents of X, The execution of LOOP X
places the contents of X into a special register which is

used to control the loop. The end statement can be regarded

117

as a test and decrement of this special register (performed
just prior to execution of P). The set of loop programs 1is
denoted Loop. '

We may translate these loop programs into RASP programs
in a uniform manner regarding them as higher level languages
which are compiled as RASP programs before being run, The
translation is clear. The instructions (1) - (3) can be
directly translated (by fixing a 0 register for each pro-
gram), Given the loop instructions LOOP X, P, END, they
are translated into the BASP statements

XL &= X
n C(XL,0,)
XL <« XL - 1
P .
c(0,0,n)
m
where SL, n and m are chosen not to conflict with other reg-
isters,

Loop programs will compute functions in the same manner
as general RASP programs, i.,e, input locations and value
locations are specified in core, We need only discuss loop
programs which compute functions. Following Meyer & Ritchie

we define Loopn = the set of all loop programs in which

LOOP instructions are nested to depth of at most n. Re-

.

calling Loopna = if() | e € Loopn§ it can be proved
% +

8.2 Theoren Loopna = (gn 1. E,p n22

(see Meyer & Ritchie)., This allows us to assert that if

() e E , then 3 me € Loobyyy n L.

118

Now define these measures of algorithmic complexity on
loop programs,

8,3 d(m) = maximum depth of nesting of loops, 7 & Loop

]

A(w) = length of the program, T € Loobp,
The running time, on, of a loop program 7 will simply be
the running time of the corresponding RASP program, For
W) as defined in Chapter 7, Ritchie & Meyer prove
8.4 Theorem, If m. ¢ Loop and d(m)=n, then 3 p<b« L{m)
am.(X) < w;p)(maX,X)q
We have shown in 7,4 that Jq Vn Vx W (x) < fé&{(x). Thus

Wwe can say Ta € Loop implies

(6o L(m)+q)
Gﬁf(X) < fd(n)+l (max X) VX,

In terms of algorithmic complexity the condition on pro-
gram modification over Lgb becomes

=12 n
8.5 The programs ng ¢ Ls, iX 1, RERFE xeN
X

can be generated as primitive in T over Ls, iff 3%(),

b() e E such that VX ¢ N
(1) _K(ng) < t(X)

1y
(11) a(m_) < b(X)
&y
X
and J T e Ls, which generates My at input X,
i
X

The if part follows from the preceeding remarks, For the

only if part, suppose Uﬂf () are generated as primitive;
i

X
then

119

P (X) < fé?iﬁ))(max Y)

iy

gt

so f{) e El(fé%§§))()) = Eb(X) so by theorem 8,2 above,

e Loopy (yy. Thus a{m,) < b(X)., Also by taking t'(X)
i
X X
= max{f(ﬁf), iy = 1,2,ea,,nx}we have f(wf) < t°(X) and
i i
X X
t() e En because a program T € Lqﬂ must generate the 7

k1)
Ty

fiXo
Thus ny can be computed in En' The significance of this ob-
servation is simply ﬁhat the RCH can be extended without ref-
erence to normel elements,

These observations can be pursued in two interesting dir-
ections, First they lead to consideration of hierarchies of
languages starting with Loop which will allow the entire
ERCH to be generated on the basis of algorithmic complexity
conditions rather than normal elements, The resulting
language is type theoretic, being based on nesting of diagon-
alization and looping,

The other main direction inveolves the attempt to find a
general description of the class of languages or measures of
algorithmic complexity which behave as do the loop programs
or the direct translations of primitive recursion. We have
seen some propertlies that are cruciasl for these "natural
languages" in example 5,3 of Chapter 5. We would like an
abstract characterization of such languages for the classes

E .
a

120

We shall not pursue either of these paths into algorithmic
complexity but shall follow a third path in this direction.
We are interested in directing our results toward a level of
investigation more relevant to a bpractlical theory of com=
plexity. This means we shall limit ourselves to functions

within Em"

121

PART II

122
Chapter 9 Finite Automata and RASP Machines

9.1 The ERCH emphasizes only one dimension of funetion
complexity, We picture the ordinals as measuring the height
of a function along this dimension, Another dimension,
breadth, is measured by the complexity of the elementary
operations whiech define Ea+l from fa+1() or equivalently
is measured by the structural (algorithmic) complexity of the
programs used at each level,

The breadth of the ERCH has been fixed at € (in the sense
of theorem 7.1), so in order to study this dimension we
shall look more closely at € r'g role in ERCH, One of the
first questions is whether a simpler class @B of operations
would generate a hierarchy Ba compatible with Ea' i.e., for
each E. 1 8 > a such that Bg = E;. The goal would be to
find an extremely simple 8 which sufficed, The simplest
basis would probably be the finite automaton operations,

But it is easy to see that they are not adequate, Being in
a sense much too narrow,

To pursue this problem we have decided to examine com-
putations within & with respect to the simplest operations,
finite automaton operations, We shéll attempt to build up
to an adequate class & starting with this simple basis.

From a practical point of view we recognize that most
functions of interest in normal computing probably occur

within the class Ey (€), certainly within E, (ﬁgﬁ, Thus

123

our subsequent investigations can be construed as an effort

to better understand the "practically computable functions.,®
9.2 The first step in this new direction is to define

the class of finite automaton cbmputable functions in terms

of the RASP computing system, At this level of complexity

research it is usually necessary to specify an encoding of

N in terms of a finite alphabet, A = iaOD,,.,ap}s Given

alphabet A, let A¥* denote the set of all finite sequences of

elements of A, We use a binary encoding of N based on the

alphabet {OelvB} where B is a special symbol read as "blanka"l

9.3 We distinguish between a bipary encodine (be) and a

unigue binary encoding (ubc), By a ube of n ¢ N we mean the

binary numeral for n preceded by a finite sequence of
blanks, e.g. a ube of 4 is BB100, By a bc of n we mean a
member of $0,1,B}* such that the removal of all B's and
those 0's which are not preceded (left to right) by a 1
results in the binary numeral for n, Thus BB1BOBBOB is a
be of 4 and so is 0BOOBB10O. If X e §0,1,B}*, let |X|
denote the length of X, e.g., |10Bl| = &4,

9.4 We next define a special type of RASP, Let A =

Eal,.me,a and

p}
F=<N, Ny 4, B, kK, F{(), Fp()>

N
where K = (N y A) and Fy(), Fy() are generated by

This alphabet is standard in Turing machine Theory, see
MyhillE38 , Shepherdson & Sturgis[50], Ritchie[427 and
Hermes| 22|, but not in automata theory where t0,1} is used,
see Moore[35], Rabin & Scott[35]. '

124

speclfic instructions to be given below. The registers,
addressed by N, hold either integers or the symbols of A,
When the registers hold only elements of A they are regarded
as cells, The cells will hold the data while the other
reglisters will hold instructions or will serve special pur=
poses, The following instructions are used to define the
particular RASPsg of interest here, Let d() : N ::> N,
d() + N => N such that d(d(x)) = x and d(x) > x Vx and
let o ¢ A, Also let e¢tl{) : N —=> N such that etl(x) > x
and 1f ctl(x) # d(x), then for all n ct1{) (x) # atn)(x),

(1) w(s, a)

Write the symbol a in the register whose address is

stored in s ¢ N, then put d(k(s)) in s and if the

current control address is e, go to ctl(e) for the

next instruction,

(2) W(s, a)

Same as above except d(k(s)) is stored in s,

(3) C(s3 ap, bgs 8y, bys...s 8p. bp)

If the content of the cell k(s) is a; then go to

location bi for the next instruction,

(4) s <= "p"

Store the integer b in register s,

The address s is called the Storage Address Register

(STAR). It holds the address of the cell to be operated on
by the instructions., The instructioqs aré said to use STAR,

s. The functions d() and d() control changes in STAR and

125

are called locator functions. These functions must be

chosen so that there is room in the RASP memory for the
program and the STAR., For example,

d(x) = x + 2

d(x) = x = 2
or d(x) = x.p P prime
d(x) = [x/p]

are possible, The control function ctl() must be made
compatible with the locators, e.g. take ctl(x) = d(x) in %he
above,

9.5 A program T on a RASP F with locator functions d()
(a) s, d(s), d(a(s)),..., d(m)(s) hold X when
begins,where m = |X| and
(b) d(n)(s) is disjoint from the domain of m for all
ne N,

9.6 A Turing program on F is a finite sequence 1,, I,,

o v, In of instructions such that
(a) Iy is s <= "b"
(b) I; i > O are either conditional or write in-
structions each of which uses the same STAR, s,
9,7 A finite sutomaton (f.a.) program on F is a Turing
program such that

(b*) 1,

3 i > 0 are elther conditional or write in-

structions each of which uses the same STAR, s, and

the same locator function d(), i.e. no f.a, program

126

contains both W and W instructions,

9.8 A RASP F with an f.a, program we'shall call a finite
automaton. A state diagram (graph) can be derived from a
flow chart for an f,a, brogram, First observe that flow
charts can be made uniform if successive conditionals are
compressed (since they are redundant),and successive write
operations are considered to have implied conditionals be-
tween them. In this form the flow chart for the case

A = {0,1,B} can be represented with blocks of the type

e

and an initial block of the form !a<mwb where <:::>

represents a conditional and a write statement., To

form a flow chart,the blocks are connected in obvious

fashion, outward arrows go to the in terminal of some<<::>>.

For terminating conditions, outward arrows are absent,
9.9 A state diagram can be derived from the flow chart

be letting conditionals, represented now by 's, COTTresS=
1/u

pond to states and writing Ci:f-%::> to mean that

127
when the symbol being tested by conditional S is 1, then

u 1s written and control is transferred toconditional S5

The initial block] is simply represented by an arrow
into a state symbol, Thus

becones

1

The states are called the states of 7 and the set of them

is written Sn' The following is a complete state diagram,

0/0,171,B/B

9.10 A transition function Gn(a, y) 1s defined for a

program as follows, Gnﬁx, Si) = 8y iff there is a connection

-=> between Sy andJsj in the state diagram (a ¢ A). An

output function A;(, x) is defined so that @, x) = B Afr

128

there 1is a connection => from state X in the state diagran,

A machine table of 1 is defined to be the set of guadruples

<\;(a, s}, 6n(m, s), @, s> for all a ¢ A and all s ¢ S, We
determine the initial state in the transition table by
assligning it the least value among the addresses (N) assigned
to conditionals,

9.11 The usual definition of a finite automaton over A
with initial state, Sg. 1s a quintuple

Q@ = <3, Sg, A, 8, X

where S is a set of states, Sy € S 1s the initial state,
A a finite alphabet, 6 a map from AxS into S called the

transition function and A a map from AxS into A called the

outout function. The machine table for Q is defined as
above taking 6 for 6n and A for hﬂ.

9.12 Given the finite automaton Q over A there is a RASP

QR = <N, Ny A, aq, K, Fq, Fp>

with an f.a. progranm ﬂQ such that the machine table of ﬂQ
is lisomorphlic to that Q. Thus the study of RASPs of type F
with f.a. programs includes the study of the usual finite
automata., Among the concepts we need from automata theory

is the notion of a state machine. This is a finite autome

aton with no output funection A(),
9.13 There are two quasi-physical models of finite

automata commonly in use, One we call the tape model, the

other the channel model. For the tape model imagine a tape

inifinite on the left end composed of squares over which a

129

control head moves from right to left one square on each
step. The head starts at the right most square and is
allowed to write a symbol of A in the square under sean on
each step., The head stops moving upon completion of its
work, This is the model Ritchie [427] employes,

For the channel model imagine a black box havingwinput
terminals X1s00, %, and output terminals Yyseees ¥y and
having a single exterior on-off light, The box is fed
symbols on its input terminals and may or may not produce
output symbols on terminals y;., For the case A = 0,1,B} we
say as long as the box 1is receiving 0 or 1 symbols it re-
mains on, but after receiving only B symbols it may go into
an off state (light goes off),

The stop states in each model correspond to those states
s for which A(a, s) = B and 6(a, s) =8 a ¢ A,

9.14 Considering automata over {0,1,B},the channel
model provides the imagery for the definition of forced
and autonomous responce, When a finite éutomaton is re-
sponding to input pulses (0 and 1) its output is said to

be its forced responce. When the pulses cease (only Brs

are input) any remaining machine responce is called auton-
omous, In the tape model, if Q is processing a string X e A%
which is the ubc of n ¢ N, then the autonomous responce
begins when the control head reaches the first B of the
terminal string of blanks,

9.15 We wish to use our finite automata to compute

130

functions £() : N® —> N, We need conventions for the
input of multiple argument functions, Given an n-tuple
<Xqyeee, Xp> € N7 and letting Ei denote the binary numeral
of Xy we consider the following input formats.

(a) series format: §n BXx,7B...8B X7, for example

<101, 100> is 101B100 in series format,

(b) mesh parallel format: Wy My p »ee Mg where the
m; are defined by the rule; the first n digirts,
My, e 00, M are the rightmost digit of Ei in the order

Xn"'°’§l' the next n digits are the second digit of
Ei in order (if for some i ;1 is exhausted then 0 is
taken as the second digit), ete, For example

<101, 100> is 110010 in mesh parallel format or more
generally <d3 do dl, ey eq ep eq> is ey d3 es3 dy ep
d; eq and <ea ey ey ey, d3 dy, d> is g 0 e d3 e, do
e dlw
(¢) parallel format: for this format we need the

alphabet {O,l,B}n where the elements are written in

column form, e.g, / 0\, then
1
QDBO
4, p 4, p-1 4112
d2 o dp po1 d2 1
dn,p dn,p-—l dn,l

is the parallel format where p = max |x;| and

131

di,p di,pal coe dl,l are the digits 0 0 ... O x; where there
are p - |x;| 0°s, For example <101,100> is 100
: 101

and <d3 d2 dl’ ey 83 e, e;> is ey 93 es ey,
0 dj dp dy
We shall primarily use the mesh parallel format. This
allows us to consider only finite automata over §O,1,B§
and gives canonical mappings N —> N so that attention can
be restricted to single argument functions,

9.15 We define the class FA, finite automaton computable

functions over {0,1,B} to be the class of all functions
£() + N —> N such that Jq and J an f.a. program Te on
F which started with <Xq,..0,%,> 1n mesh parallel format,
beginning at a,will produce the be of f(xl,.,a.xn) in
locations a through d(m)(a) for all m > q,

Other definitions of the f,a, computable functions over
go,l,B} differ slightly from ours, For example, Ritchie
uses parallel input format and requires the output in ubec.
Most automata theorists use a channel model with parallel
format over the alphabet $0,1{ and output is a member of
{0, 1§ %,

Our class FA 1is slightly broader than either of these
usual classes, Nevertheless, the important basic theorems
on finite automata continue to hold for FA , Among these

results we shall need the following,

132

9,17 Theorem, If f{(}) ¢ FA , then 4K ¢ N such that
|f(x)]| < Ix] + K VzxeN,

For a proof see Ritchie[427 p, 164,

9.18 Theorem, Let F be a finite automaton on 50,1, B}
with |F| = n = number of states of F, then if F has & 1
output, there is an input sequence x, |x| < n which causes
that output,

For a proof see Rabin & Scott[357] p. 75.

In eclosing this chapter we should point out that the RASP
computing system is able to subsume the numerous machine
models in current use such as multi-tape Turing machines,
push down stack automata, Post machines, multi-tape finite
automata and so on, The technique of defining these
machines is similar to that used above in defining Turing
programs and finite automata programs. The unifying treat-
ment given the class of extant machines in Scott[49] could

Just as well be given using the RASP system,

133

Chapter 10 Rewind Automata

10.1 Finite automata are the stuff of genuine computers.
For the computer designer they are good mathematical models,
But for the computer scientist they are not adequate be-
cause they fall to provide a natural model of computing;
for instance, even the function x.y is not f.a. computable,
What the computer scientist seeks is a generalization of
finite automaton computability., This generalization should
permit all recursive functions of practical importance to be
computable,

Previously we approached the same problem from the view-
point of Turing machines when we asked for a subclass of the
Turing computable functions which is more realistiec. That
was an approach-"from the outside"., Now we are looking for
a similar kind of class, i,e. the practically computable
functions, but we approach the problem “"from the inside" by
seeking a generalization of finite automaton computablility,
From this perspective we stress the relationship to finite
automata whereas from the previous perspective we demanded
only a vague type of constructivity.

There already exist generalizations of finite automata,
Turing machines, push down stack machines, and others., But
there is little transfer of concepts from these machines to
finite automata and conversely. The notion of an iterative

array 1is another generalization of finite automata which is

134

more related to automata theory in technique and concepts,
but these devices do not lend themselves to a theory of
practical computablility.

In looking for a way to extend finite automata to more
general computing devices we are led to consider variocus
compositions of automata, Hartmanis & Sterns[19| define
two types of composition, series and parallel, But these
concepts do not lead outside the class FA., We introduce bew
low a type of composition which does go beyond FA, viz. in-
put controlled composition.

10,2 Let C = <8, s,, A 60()> be a state machine over

O’ m'
Am = ?aoa,,p,am} with SO = %SO 1+ Sg 20001 S n0§° Let
F, = <S;, s, 1. {0, 1, B}, 61(), ki(> 1=1,,..,9 < n, be

a sequence of finite automata over {0,1,B} having states

S =

3 = 185 9. 08

129009, Si ni}u

Consider an assignment € which is a pair of maps, a total

onre |4

map fl() ¢ Sq =—> ;=7 18; {} and a partial map £) e

(()Si - é;&isi 14} —> A . That is,f,() assigns to each
state of C the initial state of =ome F, and f,() assigns

non=-initial states of the F, to the alphabet of C. For cer-

i
tain states fz() may be undefined., The F.. Cand 6 will be
used to define a composite machine denoted Ce(Fl,,uev Fq)

and called an automatic composite of C, Fi'

10.3 To precisely define the f() - C composite machine

of Fy, let P =<8, A, Us,, r (s;), {0.1.8}, s_(),

is 0" “m’ P

135

hp().8 > where SO is the set of control states, Am is the
control alphabet, US1 is the set of component states,
£1(s, l) is the initial state, {0,1,B}] is the working
alphabet, 6p() is the transition function, Ap() is the

output function and 6 1is the assignment. P is called the

€ automatic composite of Ei‘ The Fi are called the com-

ponent machines and C is called the control machine. The

transition and output functions of the composite machine P
satisfy the following where 61(), ki() are the corres-
ponding functions of the component machines and state
machine, 1 = 0,1,.,..,9s If f‘z(si j) is undefined then

)
) = xi(a, s

6p(a, s éi(a, S5 j) and

)

173
}\.p(ae S5y

and if f‘z(si J) is defined

13

5 (a,) = 1,06 ,(£,(s £71(s; 1)) and

i j)'

10.4 The product machine operates as follows; if F

Sij

kp(ag =, (a,

4y
is the machine assigned to the start state, s0 1 of C then

Fi begins processing the input x, if during processing Fi
1 1

goes into a state si which is assigned to a letter aj of

1 t

Am, then processing by Fi terminates and the tape is sent
1
to the machine assigned to 6O(aj, g 1) (say ﬁo(aj, g l) =

Sy 2 anq f‘l(sO s) = 812]) then F12 starts processing the

tape (starting at the left edge) until it goes into a state

136

s which is assigned to a letter a, of A_, then pro-
12 by k m

cessing by F terminates and éo(ak, So 2) determines the

1
next componeni which will process the tape, This process
continues until the control machine goes into its stop state
and the machine assigned to this stop state halts., The
process 1is undefined at x if C or the component machines
used never gossinto a stop state when given x or the machine
Fi’ assigned to some control state reached given X, never
goes into a state for which f£() is defined.

10,5 The notion of a computation of P can be made Prae=
éise as follows, Define a configuration to be a triple
<t, s, q> where t is an element of 0,1 B}, s ¢ USi i =
l,0..,0, @ € N, O<gg|t]|. Call t the tape in P, s the

current state of P and q the number of the scanned square of

t. Next define a yield relation, —>, between configurations,

<ap ap 1 e 81, 8, Q> —> <bmv bmu1 RPN b1° s, g‘»
if and only if
(a) b, = a; Vi igm and i#q and 5p(aq, s) = s°*,
xp(aq, g) = bq and |
(b) if f,(s) is defined, then q' = 1, m® = m and
(¢) if f,(s) is undefined, then q' = q+1 and if q = m,
then m* = mtl and bmy = B, otherwise m° = m,
Using the above tape model the product automaton can be
thought of as an automaton on a one way tape whiech not only
moves along the tape square by square in one direction (as

a finite automaton) but which can alsc move in the opposite

137

direction from any tape square to the end of the tape in a
single step. A suggestive description is that during
processing the tape moves along under the head and can be re-
wound at any moment. This leads to calling the machine a

rewind automaton.

10,6 Below is an example of a rewind automaton which
computes the difference x - y. This function'is clearly
not f.a, computable since there is no way to deterumine
whether x > y before the subtraction must be started, The
machine below performs the subtraction in two passes; the
Tirst determines whether x > y while the second either sub-
tracts (x > y) or prints out 0 (x < y), The component

machines are Fl’ fz, and FB’ the control machine is C,

Flz tests x > ¥y

138

Fzs subtraction

0,1,B

G~

C: control

The assignment ¢ is

SO 1 e Sl 1 K> omwan > al
SO 2 "“"='> 82 1 y> ““=‘°> a2,

803m>831

10,7 We can make the definition of a rewind automata
more general by defining s machine <S, R, A, g 5C), »()>
where S and R are sets of states, Sn B =¢, Aan alphabet,

Sy an.initial state, 8() a transition function and A () an

139

output function such that 8() : AxXS UR ~> S and A ()
AxS UR —> A, and é(a, r) =6(8, r) Va,B for r ¢ R,
A configuration is defined as before and the yield rela-
tion is defined as follows,
<8p 8p_1 ce0 89, 5, @> =—> <bm, b
if and only if

m"ﬂl °"° blo ng qﬂ)

(1) b, = a, Viigmand 1 # q and 5(aq, g) = s°*

da = b
an x(aq, s)

q
and
(11) if s ¢ S, thenq®' = q + 1 and if qQ = m then m' =
m+ 1 and bm° = B otherwise m* = m
.and

(1ii) if s ¢ R, then q’' = 1, m' = m,

10.8 VUsing this more general definition of a rewind
automaton the Ce composite machine can be interpreted as a
canonical form for rewind automata, Given a Ce composite
machine of Fi it is clear how to define a rewind automaton,
namely let R = {si 5 | §#1 and f‘z(si j) is defined} and
take 5p(), Ap() as 8(), a(),

10.9 Conversely, given a rewind automaton, F, there is
a unique control automaton C and canonical form for F,
Namely, let the states following rewind states be denoted
So 1v 83 e cev sq 1 and let So 1 be the initlal state of
F. Consider the Sy 1 @s initial states and define a finite

automaton F1 for each as follows,

140

(1) S, 7 ¢Sy and if for s ¢ S, and ¢ R &a, s) = s°,

i
then s* e Si”

(1i) if s ¢ and s ¢ R, then Gi(a, s) = 8a, s), but

Si
R, then §, (a, s) = s,
S
H

[0

if s

(1ii1) if s ¢ and s ¢ R, then A(a,s) = xa, s), but

i
if s ¢ R, then ki(a, s) = a,

To define the control machine pieck an alphabet A such
that [A] = |R| and for each r ¢ R assign a, € A, Then

C=<fs; 11, 4, 8()> where % (a, s = s, 4 iff

i l) J

(a, r) = Sy 1-
10,10 We can require further uniformity in the cecanonical

form by stipulating that if fz(si j) is defined, then

S la, sy 4) =54 j

and by stipulating that for stop states xi(a, s. .) = a, We

13
can also require that no component automaton go into a
rewind state until after its forced responsz2, Without loss

of generality we shall consider only C composite machines

6
of the restricted type.

10,11 In terms of the RASP computing system a rewind
automaton can be presented by defining a rewind program T
to be a finite sequence of instructions <— "“b", C(a;),
W(a,) beginning with a <= "b", That is w is like an f.a.
Program except unrestricted use of the a <= "DH" instruction,
which initializes STAR, is allowed.

10.12 Another interpretation of rewind automata as a

EASP computing system results from taking FA along with the

141

class FA, of finite automaton n-valued relations and the
conditionals on these relations as basic instructions on a
RASP which uses one reglister, a, for computing and the others
to hold the program, (If R() is an n-valued f.a. relation
with values 0,1,...,n=1, then C(a; 0, by 1, blg;.ag n=1,
bnml) means "if R(k(a)) has value m (0 < m < n-1) then go to
statement b " and is the conditional on R().)

10,13 The rewind automaton is a very natural result of
an attempt to pursue.the question we raised in the last
chapter, how to refine the Ritchie hierarchy of elementary
functions., Ritchie’s original definition of his hierarchy
contains a "discontinuity"”. He begins with the class FO
of f.a, functions and then jumps to the class Fl by allowing
his machine to operate as a full Turing machine, i.e. move
in both directions, It seems "natural” from the viewpoint
of finite automata to define Fn+l = set of all rewind sutom-
aton computable functions whose computations require an
amount of tape bounded by a funetion in Fno

It is easy to show that the resulting rewind automaton
based hierarchy still reaches precisely € at the limit .
Thus the work which follows can be construed as an inves-
tigation of refinements of a version of the Ritchie hier-
grchya

10,14 To begin these investigations we define the

following parameters on computation

142

(1) zmw(x) = maximum number of tape squares used in
the computatlion of w at input =x.
(2) om(x) = number of steps used in the computation

of w at x.

(3) Jpn(é) number of rewinds in the computation of
w at x,
10.15 We are primarily concerned with the vparameters =
and/p and we define the classes
Let(), 20)> = §me | ama(x) < t(x) & pra(x) < p(x)]
A<t(), r()> = §r() | dm e I<t(), o()>1.

Notice that because of our input format these classes
include multiple argument functions when t() and r() are
only single argument functions, i,e, the same string of
symbols can be treated as either a single numeral or as a
uniquely decodable merger of n separate numerals,

10.16 Employing a rough analogy with geometry we can
speak of co-ordinatizing a subset S oftﬁ_using tape and
rewind parameters., By selecting a principal axis in each of
the partially ordered sets of tape and rewind bounds we have
8 omething analogous to co-ordinate axes for which we can
then seek some appropriate scale., It turns out that a scale
based on logz() is very natural and convenient (as we shall

see later). The diagram below illustrates these ideas,

143

tape axis

Log()2

2elop() 4 = = = = = = = = =

A<2.log(), log()>
log()

A

rewind axls
Ol?‘ 9 0 o noau lOFK() ® ¢ 0 ?'locﬁ;(-—) s o @ 10”(

A natural question suggested by the dlagram is
Ql: How are the functions distributed in this plane
e.z. 15 there a function which is in A<log(), log()™> but
not in A<log(), log()> or more generally in
A<t{), »()> but not In A<t (), r*()>?
Questions of the type Q1 are in general difficult to answo=-
\

for c¢lose values of £(), t°() or vr(), r*(). Anctror

difficult type of question 1is

N

Q2: Given a function f() what are bounds on tf

and r() such that £() ¢ A<t(), r()>, e.g. is5

rultiplication in A<log(xy) + 1, 10@(3)2>?
Ancthier question sugceastod by this context is

Q3: Is there a tr de-off rolotionshin betweon

covl reuind parameteors, i.o. 10 00) ¢ A«ct(), r(>

doothoen evigt r0) < () and v () »orl) sveh

cOY manr (), Tl)
o v bl A

by

Another basic question is

Q4: How do various known classes such as é}v g
relate to A<t{), b()>? An especialliy interesting
case 1s the location of a basis for the recursively

enumerable sets, (A set of recursive funections, B,

is called a basis for the r.e. sets iff every r.e,

set is enumerated by some f()} ¢ B,)

Questions Ql = Q3 are all closely related, They are
similar to gquestions condidered in the papers of Hartmanis
& Stearns[177, Rabin[417, and Cook[87. Such questions are
crucial to the problem of deciding when a given function
can be computed under specified conditions, Such problens
must be solved in order to yield the most basic evidence for
a theory of computational complexity., For example, knowing
under what conditions multiplication is harder to perform
than addition is central to any complexity theory. Unfor-
tunately such results are hard to come by. At this stage
of our knowledge we are apparently forced to examine sSpe-
cific computing systems and in particular the "low level™
computations of these systems in great detail in order to
produce the required evidence. Such work requlires a kind
of combinatorial analysis which is tedious and difficult.

10.17 In attempting to develop new techniques for such
problems, one is led in many directions. We are especially
interested in those directions which lead toward automata

theory. Since the problem of relating intrinsiec function

145

properties, such as rate of growth or speed of oscillation,
to properties of computations, such as number of steps or
volume of memory, 1s apparently central to answering the
questions raised above, the following technigue recommends
itself.

Technique 1, Given a property P() of f.a, functions,
diséover how P() behaves under inereasing rewinds,

We will illustrate this technique below, but our main
effort in the next chapter will be to give answers to special
cases of Ql and give an answer to Q4 as 1t pertains to a
basis for r.e. sets. We use the later result to shed light
on the main question of the previous chapter, is there a

smaller basis for the ERCH than & ?

146

Chapter 11 Low Level Complexity Classes

Rewind automata are well suited for the investigation
of complexity at low levels of the hierarchy. In this
chapter we prove some fundamental facts about A<t(),r()>.
When we are only concerned about rewind behavior, we let

A(r()) = (L& A<t(),r()>. The basic theorems are given
t eR

below,

11,1 Theoremn. A(n) = A(1) =n > o0,

11.2 Theorem, If Vc 4 n such that b(x) < loglog(x)/c

for all x>»n, then A(b()) = A(1).

11.3 A<log(),log()> contains a basis for the r.e, sets,
The theorems are all proved by generalizing the tech-
niques of finite automata theory. Theorems 1 and 2 offer a
start on Ql Ef Chapter 10 by giving a complete description
of the rewind axis below loglog(). Theorem 5 answers Qi,
Numerous other results locating known classes A<t(),b()>

can be obtained in a routine manner, but they are not
needed.,

11.4 For f(): N—=> N a value f(x) will be called singu-
lar iff there are infinitely many n e N such that f(n) =
f(x)., n is called a singular argument of f(),

11.5 Define the lower derivative, fo(), of £() as
follows., Let ¥1.Y2, ... be the non-singular values of f()
in their natural ordering. Define xX; as the largest x such

> x,., If

that f(x) = y.. Then put fo(x.) = min f(x.) x
i i J J 1

147

X. < X < X then fo(x) = f(x). The lower derivative

i i+ 1+1
is well defined iff fo() is total, i.e. infinitely many yi“s
exist.

An equivalent definition of #9¢)\ is that it is formed by
taking the sloweést growing monotone subsequence of f()'s
non-singular values and filling it in with~the largest step
function, Notice, £9(x) < f(x) Yx and r2(x) is monotone
increasing. Also notice that fo() is not recursive (uni-

formly) in f{) nor necessarily recursive if f(} is, We

call £%() the minimum rate of growth function for f().

Another way to see fo() is to consider the usual partisl
ordering of functions, f() <o e g() iff f(x) < g(x) for

all but finitely many points. Put £() g g() iff f(x)

s,
< g(x) a.e. on non-singular points.

We can then characterize fo() by the following.

11.6 Proposition, If m() is monotone increasing and

n() < £(), then m{) < £2() < (), i.e. £2()

“n.s. =n,s.

is the greatest monotone function below f(),

Let [y] denote the greatest integer less than y. We now
wish to prove

11.7 Theorem, Suppose f() ¢ FA and £9() is defined,

then 3 L such that £0(x) > [XI/LJ/Z Vx.

The theorem follows from the lemma, BRecall that for x e
€0,1,Bi*, |x| denotes the lensth of x,

11.8 Lemma, Let f{) ¢ FA, then there is an L such that

for all x if f(x) is non-singular, then |f(x)| > |x|/L

148

where f(x) is the binary numeral of f(x).

Assuming for the moment that the lemma holds, let us de-
rive the theorem. We ask for the minimum possible value
that f() could have while satisfying |f(x)| > |x|/L. Such
a value occurs when the digits of T(x) are 0's except for

the last. So mapping each‘x to its minimum possible valug
Means X-——> Q[fX’/L]Q Put L(x) = ZE!X’/LJQ

Now compare L{x) with [xl/L]v notice [Xl/L] is monotone
increasing, For x's of the form 2k, we have]?ki = R+,
and [(2k)1/L] = EZK/L]. Compare ZEK/L] with [2k/L], Suppose
28, ob/L,

k/L = a + b/L, so that [k/L] = a and 2k"/L = Since

b/L < 1 we get pk/L _ patl 2[k/L]+l. Since [x] < x we

nave [25/77 < 2lW/LWL g rok/Lyn _ olw/L] o

% L(2K) = SLe+1/L] [2k+1/L]/2

by taking k+1l for k above,
We now claim L(x) > [xl/L]/Z Vx because for 2% <« x < 2K7L

we know L(2k) < L(x) < L(2k+1) and [zk/L] S [XI/L] <
(2k+1/L]° So

(P2 < (202 < L2") < Lix) Vx
by ¥,
Hence we now have f(x) 2, & L{x) 2 [xl/L]/Z Y. But

since L() is a monotone function lying below f(), we know

by Proposition 11.6 that L() < fo() < ().
=n, s,

g.e.d,

11.9 We now prove 11.8, |r(x)]| > |x| /L for f(x) non-

149

singular, £() e FA,

Suppose finite automaton F with N states computes f().
Given any input Xq, rartition it into disjoint sections of
length I>N (starting from the right). If on every segment
there is a 1 output or if on every segment which is followed
by a segment with a 1 output, there is a 0 or a 1 output,
then the result clearly holds. We consider now the remaining
case,

What we show is that if a segment not followed by a 1
produces all 0's or B's as output or if a segment which is
followed by a 1 produces all B's as output, then f(xl) is
singular. Consider the later case, Let the digits of the
input segment which has produced all B's be denoted by

Record beneath each digit the state s

XL XL“l LI XZ Xla 1
of F when it receives the input digit Xy ©.8.,
XL XLwl e 8 e XZ Xl
8. S, sos S5 S; .
L tL-1 2 N
Since L > N, two of these states must be identical, say
s, =18, ., Let wy,w,,...,w_ be the digits between x.
i ; 12 ’ © i
‘p o tptg 4 p
and Xy o Let w denote the entire sequence wq unl cee Wy
pTq
let y = x;...%, Z = X, ...Xq; and define
L ' 1
‘ptq 'p
X, =ywz
Xo =y WWZ

Yy W WW2Z

3 o

>
i

150

Observe that f(xl) = f(xi) i=1,2,3,... since the output

on w is all B’s and since F isg in state s1 when it
ptat+l

starts y for each X4 Thus f(xi) is singular which is =
contradiction,

In the case when the segment is not followed by a 1, the
0°s count as blanks in determining the value of f(xl) so the
same argument applies,

g.€.4d,

11.10 A class S of functions is said to have a minimun

rate of growth, m(), iff £() e S implies £O() 2o o, ml)

whenever fo() exists, What we have shown is that FA has
1/L

a minimum rate of growth, That is, since log(x) Sa.e, X
log() is a lower bound on the growth rate in FA,

11.11 We now ask ‘'ow fo() behaves as the number of re-
winds increases, We will prove that the only classes
A<t(),b()> which possess aminimum rate of growth are
A<t(),0> = FA and A<t(),1> ("1 rewinds"). In each case
t() tolog()¢c. This result shows that minimum rate of
growth unlike meximum rate of growth can not be used to
characterize A<t(),b()>,

11,12 If we attempt to directly generalize the method
of Theorem 11,7 to the case of multiple rewinds, we en-
counter the following difficulty. The input sequences
X, YWZ2Z, ywwz,,,, which were used to produce the singu-

lar value in the FA nase may not produce a singular

value in the rewind case. The response of the automaton can

151

depend on future diglts as well as past digits sinece it may
survey the input before processing"it, There 1s however a
way to reduce this problem to the case of finite antomatsa,
The method illustrates one of the nice features of rewind
automata, their close connection with finite automata.

11.13 We first introduce the notion of a path automaton,
Suppose that the rewind automaton F in canonical form is
composed of the component automata F F If F is de=

1,080, pa
fined at the input x (computation terminates), then x is

processed by a finite sequence of finite automata Fi . Fi]
1 2
ses, Fy (n depending on x) where Fy processes the out-
n !
put of Fi and Fi processes x itself, This sequence of

3 1
automata can be put together to define a single finite autom-

aton, P, called a path automaton which processes x so that

the output of P(x) is identical to the 6utput F(x)., We
define P precisely next.
P=«<5, x,,.x8, ,<s
4 n' h
Let R = rewind states of F, then

,,..,siné,go,l,B},ép()J\p(>

kp(a,<slgoaoysn?) =y
and

6 ® 06 = 4 a 0 o 9
p(a,<sl, . 8,>) <sq, . S5>

irf

(61 (a,sl) = 8 & xil(a.sl) = Bl) &

1
(512(81,32) =54 & xiQ(Bl.sz) = B,) &

L)

152

(6, (B, 4,8) =282 & A, (B, .,8.) = v)
in n=1'"n n in n=1'"n

Recall in the canonical form 61(a,s) = 8 and hi(a’s) = @

if s ¢ R,

11,14 To illustrate the notion of a path automaton

consider the simple rewind autometon F given by
%N %% % Y% % Y Y % R
£\

Consider the path sutomaton Fle. It begins as follows,

153

11.15 We now consider a generalization of Theorem 11,7
to the case of multiple rewinds, Suppose f() e A<t(), 1>
and is computed by F, say |[F| = N, If Py, Ppyeee, Pq are
the path automata of F, then IPiI < N2 g = 1,...,9. Arguing
as in Theorem 11,7 we suppose that for some input x with
lz] > N2 the output sequence contalins N° or more conseoutive
B*s, Then the technique of Theorem 1107~6an be applied to
the path automaton P which processes x. We need only guar-
antee that the state cycle produced in P can sctually be ro-
alized by F.

This will happen if the rewind behavior is not altered
by repeating the tape segments, w, which produce the state
cycle. Bubt during the state cycle in P no component can

go into a rewind state, Lo This 1is because once it goes
J

into such & state it remains in that state until the pass
is completed. In the canonical form the pass is not re-
peated until after the forced responce. Thus the component

state would remain Ty o and it would thus be impossible for
J

a state cycle in P to occur. Thus a rewind state r can

J

occur as a component state in a state cycle of P only if it

i

occurs in the first state of the cycle which means that
the rewind behavior has been determined before the state
cycle, |

It now follows that the segments W can be repeated with-

out changing the rewind behavior. Thus the inputs X, ¥ ¥ Z,

154

YWWZ, YWWWZ,.,. are all processed by P since rewlnd
state behavior controls selection of the component automatsa.
Hence we conclude
TG 2 =l

if x is non=singular. We state this result formally.

11.16 Theorem, If f() ¢ A<t(),1>, then I L such that

£0() > [P,

The above argument clearly generalizes to b() rewinds
so that we can conclude more,

11.17 Theorem, If £) ¢ A<t(),p()>, then IN such

that |FE] 2 |x] AP, |

But now unless b(x) < loglog(x) x>n the statement is

loglog(x) _ 1 gpq clearly for all g()

meaningless since |[x|/N
|g(x)] > 1 ¥x. We ecan in fact show that the above result
is applicable to only a narrow class of functions. Namely
if Ve dm such that for x>m
b(x) < loglog(x)/c,

then A(b(x)) = A(n), Thus the range of application is some-~
where between loglog() and loglog()/c. We will prove
this fact in 11.21, Pirst we prove a result that allows a
further reduction.

11.1 Theorem. A(n) = A(1l), n>0,

11,18 The theorem asserts that a bounded number of re-
winds provides no more power than a single rewind., More-

over we can arrange the computation so that the first pass

is merely a recognition pass, i.e. no writing is done on

155

that pass, This result offers an interesting contrast with
Hartmanis[deg He shows that for Turing mschine complexity
classes based on tape reversals, ntl tape reversals gives
more functions than n reversals,

The idea of the proof is that if f() is computed by F
which requires at most n rewinds regardless of input, then
it is possible to list all path automats of F and build a
new machine F°' which uses its first pass to decide which
path automaton is applied and its second pass to actually
apply that automaton. The only fact to be proved carefully
is that F' can select the path sutomaton in one pass,

The intultive argument is that given F 1t is known which

component automaton is applied first, =say F As F°' passes

11°,
over the tape the first time it simultaneously computes with
each path autometon and keeps track of the states of all
bath mechines that it is running, say it keeps a table of

current states in the path automata P °.,,,Pq. When the

1

§. Boes into a rewind state, then F°*
1

knows what the second pass component is, say F

flrst pass component F

i and can
2
then eliminate from consideration certain of the Pi’ those
not having Fi as their second component, It keeps track of
2

thiselimination by marking its table of states with 0's, P

continues along the tape until P rewinds unless it already

i,

has in which case this fact is recognizable from the state

156

of P1 (the second component will be in a rewind state). In
either case after a finite number of steps (possibly 0) Fr

will know the third pass component, F and can eliminate

13 !

more table entries. This process continues until one of the

path automata remaining under consideration, say Pi , stops.
0

Then F°' rewinds and processes the tape using P The fact

iOf

that all this can be done by a finite asutonaton follows

because the table for keeping track of the P, is finite

1
which in turn follows since the number of rewinds is bounded,
11.19 To be more precise about the above arguments let
be the path automata and F

Pl'""'P .,,Fp be the compo-

q 1
nent automata of F., Construct a sequence, L, whose elements
are states of the Pi' integers k < n and integers ¢ < p.

The integer k keeps track of passes over the tape while ¢
keeps track of which component of F is used on that pass.,
The states S1 i=l,,...p are assumed to be disjoint. The

states of Pi are denoted <ei,l‘ei,2'°°“°ei,t> for t<n where

each ei 3 é Sk . Where kj depends on the order of the com-
1] j -

ponents Fi in the path,

11.20 The sequence L is <s1'j.szgj,.,..sq'j,k,c> where
Si,j is a state of Pi’ The initial state Ll will be <Sl,1’
.e,,sq‘1,1,11> where Si.l are the initial states of Pi and

11 is the first pass component of F. We can define transi-
tion and output functions 8, (), kF,(). The "usual”

transition will be 6F,(a,L) = L = <87 s ...,8) . k'.c'>

0 d a, J

157

where si

g = 6Pi(a’si.3)’ k* = k and ¢' = ¢, And the out-
put on the first pass of F' is AF,(a,L) = @, But, whenever
F rewinds this usual transition is interrupted and certain

states si j are set to be zero (and remain zero),

The first rewind 1is detected when for some i, Sy j =
<@1,1‘ei,2'°°°'ei,ti> and ei,l goes into a rewind state, i.e.
ey 1 ¢ R. When this happens the next component, Fi ., can be

' 2
found from the control component for F. Then ¢' = 12 and k°¢
= k+l, Also all path automata which do not have Fi as
2
second component are eliminated, i1.e, if 8p (a,si j) = Ei
| ' . .
= <ei,1’°°°°ei,ti> and 612 4 biz, then Si,j = 0, Once the

i-th component of L is set to 0, it remains 0, 1.e. if
Si;j = 0 then Si,j = 0 for all L,

This transition for L to L° continues as described above
until a stop state is reached in the remaining path autom-
ata, those not represented by 0 in L. Then F' rewinds and
applies that automaton to the tape,

g.e.,d,

Pursuing the line of questlioning implicit in the last
theorem we wonder for what value of r() will new functions
appear in A(r()). We can use the methods of studying
minimum growth to obtain the following interesting result.

11.2 Theorem., If Ve Vn Jm such that n < b{x) <
loglog{x)/c Vx > m, then A(b()) = A(1).

158

11.21 Suppose £) e A(b()) and is computed by F. Let
|F| = 2® (b a real number). Pick d > 2b and m such that
b(x) < loglog(x)/d Vx > m. In order for the hypothesis to
hold for 4, there must exist an x > m such that F rewinds
less than b(x) times for all y < x and b(x) times at x. Let
x have digits Xn X1
times, then the largest number of states in the path
’ than 'Filogicgéxﬁ/d -

cee Xq. If F rewinds at most b(x)

automaton P followed by x is less
lFflog(n)/d < pb-log(n)/d < n1/20 So |P| « n1/2o

Thus while processing x, P must go into a state loop of
length L g |P| < n during the forced response. Since the
loop occurs in P (rather than only in component automata)
there is an input y with |y| < |x| which is processed by P
- and which avoids at least one passage through this loop
(using inverse of process in Theorem 11.7).

Moreover we know that removing the loop preserveés the re-
wind behavior because no component machine can can go into
a rewind state during one of these loops., It must do so
elther before or after because a rewind is represented by
the appearance of a rewind state as a gomponent in a state
of P, Such a component can not change until the first pass
automaton rewinds which it does not do until after the
forced responce, Thus F exhibits the same rewind behavior
on x and y. But this means that F must rewind b(x) times

at y although |y| < |x|. This contradiction means that F

can not rewind b(x) times for b(x) satisfying the hypothesis,

159

But if £() e A(b()) this means f() must be computed with-
in n rewinds, By Theorem 11.1 we have the result,
g.e.d, d

11.22 We conclude with 11.3 showing that once log()
rewinds are used there is enough computing power to produce
2 basis for the r.e. sets., We also polnt out that a cer-
tain especlally interesting class of rewind automata can
be used to produce a basis,

For this result we need an arithmetization of a classical
theory of one-way tape Turing machines, Bitchie‘s[@Z] version
1s adequate and Tortunately comes already arithmetized. We
alter his presentation inessentially by using mesh parallel
input rather than series input. It is a simple exercise to
construct a Turing machine which will unscramble the mesh
input to produce a series input, We also modify his arith-
metization by using configurations <t,s> where t is a number
representing the tape of the Turing machine along with the
cell being scanned and where s 1s the current state of the
Turing machine,

11.23 What we shall do is show that a rewind éutomaton
can be built to fecognize the "T-predicate”,

T(e,%,y) iff e is the number of a Turing machine with

input x and y is the number of a computation of e at x.

The rewind automaton will recognize T() in A<log(),

log()>. Then we show that the function U() of the normal

form theorem can be computed in A<log(), 0>, These facts

160

will allow us to enumerate any r.e. set in A<log(),log()>.
11.24 As a by-product of this effort we obtain the
result that rewind automata compute all partial recursive
functions (the converse is trivial since a Turing machine
can directly simulate a rewind sutomaton), The result
follows by simply building a rewind automaton which given
input x successively produces e x y on its tape for y = 0,1,
2,... and then checks T(e,x,y). If the predicate holds,
U(e x y) is output, if not e x (y+1) is produced, T(e,x,
yt1) checked and the process repeated. |
11.25 Preliminary to our basis result are some coding

conventions, similar to those of Bitchieﬂ42], A Turing
machine over {0,1,B} is a set of quintuples

<output, next state, direction, input, present state>,
where the directions are L (left), R (right), S (no move),
Inputs and outputs are members of $0,1,B3¥*,
The states sl, 85,... are represented by sequences of 0's
assigned as follows,

s, to O‘O 000

85 t0 00 0000

S5 to 00 000C0CO

S to 00000 ... 0
n e~
L n

This leaves 0, 0 0, 000, 00 0 O available as special

161

markers in appropriate contexts., For the alphabet we make
the assighment

1 tol

0 tol1

B tol 11,
Directions are

L to 1

Rtoll

S tol11,

Quintuples are represented as strings

output-state direction 0 input-state.
For exanmple, <B,32,R,1,sl> is represented by
11100000011 0100000, The representation
has a unigque decomposition from right to left.

If Ay, qz,.o,, q, are guintuples, then the set of quin-
tuples is represented by En 0 Encl 0 ... 0 31 where Ei
represent the quintuples. Again the sequence has a unique
right to left decomposition as a sequence of quintuples,
We also observe that the resulting representation is a bl-
nary numeral.,

We next deseribe the binary representation of tapes as
part of a representation of configurations (Ritchie calls
them instantaneous descriptions), We use 0 as a tape
spacer and also as a special marker to mark the square
which is exactly one square to the right of the square being

scanned (unless that square is the rightmost). The tape

162

segment [1|B]|OJ1J1]B[1]0] is represented by

1011101101 0010111 Q 1011, A configuration

consists of <tape,state> with 0 again being useq as a

separator., Thus if t is the above tape then <t,82> is

represented by t 0 Ez, i.e,

10111011010010111010110000000,
Since eXactly three and exactly four consecutive 0's

do not occur in any representation given sbove, we can use

000 and 0 0 0 0 as markers between configurations. Thus

if Kl’ K2°°'°' Kn is a sequence of configurations, then
Kn 0000 Kn»l 000 ... 000 Kl represents the sequence
where Ki represent the Ki' The sequence 0 0 0 0 is used to

separate off the last item in the sequence of configurations,
It is clear what it means for a sequence of configurations
to represent a computation, for details on this see Ritchie
[#2].
11.26 Computing T(e,x,y) involves two basic procedures,
1. Checking state transitions: if Ki = <t1,si>, then
given the computation Kn’ anl,.a.. K1 it must be verified
that ﬁe(a,si) = 8;49 for o the scanned value on t,.
2, Checking tape transitions: it must be verified that
if'he(a,si) = 8 andvﬂ(a,si) =y (where y is R, L or S),
then ti+1°s head marker is in the right place (e.g. one
left if v = L) and.;’immediately follows the marker,
The basic task for 1, is to locate the proper quadruple
in the encoding of the sequence of quadruples represented

by e. This is a linear "table look up” procedure, Once

163

the quadruple is located it 1s possible to check the next
state against the next configuration state symbol by symbol,

The basic task for procedure 2, is simply to compare the
tape representations symbol by symbol using the relative
locations of the special markers to determine whether the
head moved right, left, neither or invalidly (e.g., if
the special marker appears first on the tape ti+l and in
the next square on ti then the head moved one right). Also
procedure 2, must locate the scanned symbol of t,, say Py,
and communicate it to procedure 1, (a task performed on one
pass over &,),

The work is done by careful use of blanks as markers
using internal mMenory to distinguish the varlous uses of the
blanks., Recall that e, x, y are stored in mesh parallel

format so that the tape appears as

AR AN R R A1 R R A Vllxlleli

But 1t 1s best thought of as a parallel input in the form

e
X
Vo
In more deteil, 1f y =X 0000k ;000 ... 000K,
e = Em 0 Emal 0 ... 0 El and X = X, X, ... X; where
Q; = <Bi'bi'yi’qrai> and Ki = <ti'si>' then the tape is

best thought of as

164

noeo 83 b3 YB 0‘“‘3 aBOBZ bz Y200«2 &.2031 bl Yloal a.l
.. 00 Typo oo XS Xo Xq

v

oo _%2 0s,0_ %1 o

1
11.27 Procedurse 1, in detall involves these steps.

1

(a) On the first pass put a B in the first digit of s,

and in the first digit of each a The a, are detesrmined by

i° i
thelr appearance in the sguares 3:ntl in a specified order,
i.e. that glven by q, 0 ..., O Eln So it is possible to tell

when the lst digit of an a, begins, Bewind after encountere

i
ing a B following an appearance of O- 0 0 0 in the configur-
ation, y, positions, e.g. 3:n forn=1,2,....

(b) On subsequent passes replace the B of 8, with a 0
and move the B one left if next symbol is 0. Also replace
B of ay with 0 and if next symbol is part of the state repre-
sentation, then write B. If not, then no B appears which
will indicate that 8y # Sy

(¢) On the pass when the end of S, 1s recognized (by
spotting a 1 in next position), a check is made of all
quintuples of e still candidates for the one beginning
«++ Py Sy. Those beginning with 4 (only three) can be
spotted on thls pass and marked with a B following the B
placed by step (b). After placing this marker B the machine
continues over the tape to see if ai = pl (the scanned sym-
bol of tl). Another B marker is placed after a, to indicate
the corréct gquintuple, <Bi,bi, Y, Py, 5>, The directon sym-

bol, Y, and the output, Bi’ are remembered internally to be

165

used in conjunction with process 2,

(d) All B's except that following the double B are re-
placed with their 0's and the first diglt of the next con-
figuration state, Si47 1s made blank, The B in the correct
quintuple is advanced one and & check is made for the end of
the state, If the end is detected, then Si4q = bi is
checked., If it is false, then the computation terminates
with a no result. If it is true, then step S is executed,
If the end is not detected, then the leading digit of 8449
remains B and a second B is used as in (a) for a compariscn
marker with bi and the digit by diglt comparison continues,

(e) When S;41 = Py 1s determined, the marks of e are

all removed and the machine returns to s whose location

i+l-
is determined by B, and starts process (a) with 8547 for sy.

11.28 Simultaneous with the above state transition PO =

cess a bape comparison process ig run, For the initial cone-
figuration a check is made to see that x is recorded on the
tape. On subsequent tapes a check is made that the right
symbol 1s written and the right move made. The detailed
steps are below,

(a) The initial configuration tape. ty, must be checked
to see that it contains exactly x. This ig done by making

a symbol by symbol comparison (1og(tl) rewinds) until t. is

1
exhausted, Blanks are used for markers as in process 1.
The end of tl is indicated by 0 0 0. Then a check is made

to see if remaining x digits are all 0 (requiring one pass).

where ci X is the i=th argument of a three mesh parallel
decomposition of x, “

The function g() can bé computed by first defining s
machine which stores a and e internally and computes
T(c3 X, Co x,cl X) & 03 X = e, The computation of the predi-
cate requires less than log(x) rewinds (in fact 1og(e1 x)+1)
- according to the above procedure, Next the machine either
computes U(x) or a each of which require only one pass over
the tape. Thus g() ¢ A<log(),log()>. But g{) enumerates
precisely S because if z ¢ S then j]xl such that f(xl) = 7
and de dx such that cyX=e, 0y X=X & T(c3 X,Cp X, 04 z).
Thus g(x) = U(x) = f(xy) * z e 8,

qﬁ eﬂd'ﬂ

169

Appendix A Computing Procedure for f_() @ <€,y

The computing procedure glven here is designed to be in-
telligible and general rather than efficlent, It is designed
to be applicable to s.s.n.e.'s defined for a<B where B is
a constructive ordinal satisfying some additional conditions
(not made precise here) which Intuitively correspond to the
exlstence of very effective notatlon systems for 8. (The
first strongly critical number, (Schiitte[48]), is probably
an example of such aﬂB.)

The procedure can be seen clearly if it is first presented
in terms of a RBASP having ordinals as addresses. After pre-
senting the procedure on such a machine, we will convert it
to a procedure on our basic machine Ml(zo) by picking a
notatlion system for a segment of ml which includes eo.

A.1 The special RASP, OM, has a memory which is made up
of blocks, The blocks come in pairs and are addressed by
an ordinal and an ordered palr of integers, Thus

AOM = L0, n, > a<e neN, meN,

OO

The contents of OM come from N, i,e, BOM = N,

The ldea behind this memory organization is that the

registers <a,_,_> will hold the program e (), the first
a

column for the instructions, the second for data and work

space, A progran Te () operates on input x as follows,
a

A,2 (1) If a is a successor ordinal, say B+n, then e
o

170

successively

O A E T LN ¢S

(2) If a is a limit ordinal, then m. uses a and the
o

input x to compute e It a. 1s a successor ordinal, then

m, Proceeds as in (b). Otherwise
o
(a) . loads a copy of w into <o, _, > (the in-
£ f bl
o a
x
struction in <q, ,1> the data in <qw1,m>) and gives
2 instructions to return its value (and control)
Sy
back to Te o Thus Tp having assured itself it will
o o

regain control, turns over to e the input x and
o

control of the machine. x

(b) For @, @& successor, m,. loads in locations
o

<ax._,l>,,,,. <axmx,_,l> subprograms which perform
the iterations of step (1). Then m. loads w, in B,
a 8

where B is the limit ordinal axux. It also instructs
e

Ox

sends the input x and control to w

to return its value (and control) to m, and then
o

f@x

This method of computing fa() follows the definition of
fa() quite closely as we will see below. The procedure is
wasteful of space because it reproduces entire programs (in
step (2)) whiech are nearly exact copies of itself. Thus

during the course of the computation of fa(), the core is

highly populated with subprograms most of which are almost

i71

exactly the same, Such a situation indicates that o Pr o=~
cedure must be available to compress these copies and save
considerably on space, Indeed there is, but the sost of
this space saving is that the computation is harder to
visualize and harder to analyse, (Furthermore, since a
Space saving compression seems possible without drastisally
altering the time bounds, the program presented here can be
thought of as an instructional version of a good one which
also works,)

An example will help clarify the computing procedure.
First recall the definition of the £,0).

A.3 Rule I (Iteration). If o = B+1, then £,(x) =

£3%) (x).

Rule II (Diagonalization), If a is a limit ordinal
and a 1s 1ts standard fundamental sequence, then fm(x) =

faX(X)’

Notice an appropriate choice for fo() is Ax(x+l)2,

A.4 Now compare the computation of f » (4) by hand
W 2

(using an informal equation calculus) and by the program

e on OM, Since m2+m-n«»> m2.2 a8 n=—> ®, Rule I yields
m2-2
the equation

£ 2‘2(4) =f, (4,
w e

o e Ly
The program e with input 4 will apply step (2). Thus
m2-2
it will compute mzﬁm«u, load the program e into

m2+wo&

172

mzhn-@, give that program the value 4 and turn control over

to it., Since m2+w-3+nw@> wzﬁmwa, Rule 11 yields the equation

® ol @7+ o 3+

and Rule II yields

£,) =3 W,
® e 3L ® "+ e 343

At thls point in the computation by hand it is expedient

to begin working on f > (4) without fooling with reduce
W W 3+3

tions of the type

(%) (3)
f () =r (f
m2+ma3+3 m2+m°3+3 m2+m»3+3(4))°

Thus the next equation, by Rule I, is

i)
£ (4) = gt
m2+m~3+3 m2+m-3+2(“)°
Then
£,) =3
® e 3+2 ® e 3HL
and
£, () = {3 (.
® e 342 ® D2

Then application of Rule II yields

£, (B)=r, (%),
o o3 » w24y
Corresponding to these steps, the program Te applies
@ ol
step (2b) and loads interation subprograms at locations
2 2

@ w3+, ..., ©"H+m:3+1, The iteration subprograms are linked

173

up so that they send data and control back and forth properly

(see page 175). At location w2+m-3 it loads w

£
m2+mo3
Then control 1s turned over to subprogram Te which
m2+m-3+u
passes control through Te o tow . These pro-
2 ‘ f
o Hme 3L m2+m03
gram steps are seen to be quite similar to the hand steps.
The reason the Tp behaves differently than the other
mzﬁnsh
limit programn, U 'y, is that loading all iteration sub-
2
w2

programs at once wlll allow us to use simple techniques in
estimating running time for the iteration subprograms,

The computation of f > (4) now continues
o .2

f 5 (b) = ¢ 5 (4)
o Hme 2+ o e 2+ 3

H)
™
.
=
S’
L

£, (4)
® Hne 2 m Hay o Ly
£,)=
o +ot+l o +o+3

e}
™
=
L]

£ o, (&)
@+ 1

(4)
f (&)
m2+u m2+3

ey
_
=
N
i

f 2(“’) = f{,ﬁ.a(u’)

17k

L
@
¢

folll) =
A value can be computed at fo(h) and the "long journey"”
back up through the equations begins. The journey is "long"
because for every step up, we must repeat the entire Pro=
cedure below again, In the machine computation the trip

back up to T p is controlled by the programs which have
w2
been located in memory on the "downward trip”. Thus, for

example, w, having computed f, (&) = y,, the value y, is
£y 0 Ly b

taken by the iteration subprogram in location 1 and sent

back to me » This is done four times producing fé“)(u)
0

which is sent by the iteration subprogram in location 2 back
to the iteration subprogram still in location 1,

A.5 Let us now describe the computing procedure on OM in
more detail. First look at an iteration subprogram, This
program will compute g(X)(x) if a program for g() is linked

to it properly,

<a,l,1> 1 HOLD <== HOLD + 1
<a, 2, 1> 2 IF INPUT = 0, GO TO 8
<a, 3, 1> 3 HOLD <== INPUT
<a, b, 1> L LINKgIN <= HOLD
<a, 5, 1> 5 GO TO LINKgCTL
<a,6 . 1> 6 INPUT <= INPUT - 1
<, 7, 1> 7 GO TO 2
<a, 8, 1> 8 OUTPUT <= HOLD
<0, 9,1> 9 GO TO EXIT

This program will be located at some registers <a, n, 1>

n=1,.,.,9. The word LINKgIN will refer to some register

175

<B,1,n> while LINKgCTL will refer to some register <8, m, 1>,
We also allow that EXIT may refer to some <f,n,1> in which
case OUTPUT will refer to <vy,1,m>,

With the above conventions we can use the formst B(B,a,Y)
to indicate the above program where a is the location of the
program, B is the location of the program for g(), and Y
1s the location of the upward exit which may either be
another program or a stop condition, We also say b is the
location of the downward 1ink and ¢ is the lécation of the
upward link. Using the notion of an iteration subprogiam

we can describe the computation of w on OM in detail, We

e

consider the following,

A6 (1) If a = B+n, then m. consists of a program Mo
a B

and lteration subprograms linked as follows;

"“\
-y ey -

B(STOP, &, v;) B(a, vl, Y,) B

-~ -~ PR

(Y Y20 ¥3) ... B(Y,

-
- ~
-'ﬂ

(2) If o is a limit ordinal, then among the program

constants of e is an identification constant, referred to

in the program by ID, which is @a. If the input tonf is
a

X € N, then-nf operates as follows;:

(a) compute the ordinal a (described as computing
the downward link),

(v) test whether a, 1s a successor ordinal, if it
is go to step f, otherwise,

(¢) 1load a copy of this program in a_ and store o

176

as the indentification constant of that program,

store o as the upward exit,

(d) transfer the input, x. to the input of Te .
o

(e) transfer control to Mo x

. o
(f) load the iteration subprograms B(a,ax,axwl),av.
B(B+2,B+1,8) where B is the largest limit ordinsl
< a, (B = axmx),

(g) load a copy of this program in B and store B as
the identification constant, store B+1 as the upward
exit,

(h) go to step (d),

We now take up the task of implementing this computing
procedure on a mere RASP of the type M. To accomplish this
we must represent the triples <a,n, m> for a<e0 by integers.
This entails répresenting the ordinals a<€oa Moreover we
need an effective and manageable system of ordinal notation.
To keep the system manageable we are led away from maximal
systems wuch as Kleene’'s 57(83) and led to systems such as
Takeuti’s[57] or Schitte's[t8]. We choose the system given
in Schutte since it meets our requirements. It is readily
avallable in both English and German and is a frequently
studied system., We denote this system by,g , To describe
1t we need the following notation.

A,7 Let Py denote the prime number 2 and Py denote the

n-=th odd prime number., If a#0, put (&)p = exponent of p,
) i

1

e

in the prime factorization of a. Now define the relation

Zq (a:gs b denotes the negation of a Sg b) inductively as

followsy a g b iff at least one of the conditions below

is true,
(1) =0 and b=0

(2) 1v#0 and a <q (b)p for at least one i
i

(3) a#0, b#0 and (a)pi < (b)Pi for'&ll i

(4) =a#0, b#0 and there are numbers mgn such that
(2) (a)p =0 for all i < m # 0
i

(®) (a), <5

(¢} © {S (a)p. for all j m<j<n
J

(a) (b)p gS (a)

n pn

b L]
(e) (a)pk < |)pk for all k>n

It 1s easy to show that 2 is a reflexive total ordering

and therefore that a = b iff a g b and b <g @ is an equiva-

lence relation on N, An irreflexive ordering, <gs is de=~

fined as; a g b iff b £, e.

In the familiar manner the integers can now be associsted

with ordinals, and we sey that a represents a finite ordinal

or a transfinite ordinal (with respect to <s) according as

a < 3 or 3 <g &
A.8 By a path in 5& we mean a set P < N such that
(a) P is well ordered by <g
(b) If a < P and b <y &, then I b* < P such that
b* = b,

178

Thus a path provides a unique set of notations for some
initial segment of ordinals, We shall be interested in a
path for €qe

We can define addition on the ordinals using the following

as auxiliary functions

e
&=

a 8
A.9 8, if 2 0,571
twia) {
0 otherwise

al'

t

20
ay if a=2 Y3
th(a)

a otherwise
A,10 Now define
bifa=0
{Z(tw(a) ® b), 5(th(a))

a® b=
otherwise,

Since tw(a) < a the definition is recursive and jrab (a & b)
is computable,
It is easy to show, see Schiitte[48] p, 284, that if =

represents a then Ba represents ma, This allows us to use

Cantor’s normal form, i.,e. for any a=0 there exist cl..uacm
(m>1) such that
_ % Cn
Ap 11 a8 = 3 @ ¢ a0 @ 3 Cm S_S cmal SS 2 0 @ _<_S cl
where the cy are unique mod =, The cy are also computable

for a#0 so that we can give a computable definition of multi-
plication of ordinals as follows,
A,12 (1) axb=0 if a=0 or b=0,
(2) ax1=a if a#0,

(3) If e < ... <

n s Ss ©1 (mzl)»and e#0, then

179

c ' °1 B e

c
®...03"%x3 31 7

3
(4) If a#0 and e

1

nSg +o- Sg € (n>1), then

ax (5Lle...e 37 = (ax 3L e.. .6 (ax 3)°n,
(5) Ifa=cand b=4d, then s x b =¢ x 4,
Using +, x and the condition A.11 it is easy to plek
out a path in xl for € Nemely using 3 for o we Just per-

form the operations used to define the ordinals < e To

, 0°
facilitate a quick familiarity with g’and with the path for
eo, we list examples‘from eo. We first present some func=

tlions which are useful in manipulating and representing
these ordinals,

A.13 Let p(x,y) = 2%.37 p(Z)(x,y) = z iterations of
p(x,y) in the first argument, e,g, p(o)(x,y) = x, p(z)(x,y) =
plp(x,¥),y). Let expa(y) = a’ for a8,y ¢ N, Then eprX)(y)
is the x-fold iteration of expa(yl e.g., exp;O)(y) =y,

¥y
, a
expéB)(y) = g% |
A,14 ordinal inteszer representation
0,1,2 0,1,2

3 2F
n expén"l)(l)

o+l 2:3

®+n p(expén)(l).l)

®.2 23-3

o.n pnml)(5 g

180

@2 32
oa pl® D (exp (exp™) (1)), exp(n~1) (1))
ohatn p(®) (exp{™ (1), exp{™ 1) (1))
o™ 33 |

One final example,

n
mmva 0 1°a +m
o 1 2

is represented by

(a,-1) (a) (n,-1)
expy(p © (p 7 (expg™ (1) exp, 1 (1)),3)).

It is convenient to represent the ordinals a<e,, in terms

of the functions expé)(), expé)() and p()(). To be

somewhat precise about this we define a term A as follows,
A,15 (1) 1If neN, then expén)(l). exp§n)(1) and 0 are
are terms,
(2) If neN and if A and B are terms#0, then
expén)(A) and p(n)(A,B) are ternms.
We can now prove A,16.

A, 16 If axe then a is represented by a term and the

0°
unique decomposition of o to the base w is represented by
a unique tern, ta“ referred to as the term representing
G

A.17 Conversely, every term represents an ordinal a<eo.
We prove only A.l6 since we never have ocecasion to use

A.17. First we notice that every neN is represented by a

181

term; O represents 0, @Xpéo)(l) represents 1, expél)(l)

(

represents 2, In general expznwl)(l) represents n. These
are defined to be the unique terms representing n, The

unique term for @ is 3, Inductively, if ta is the unique

t -
term for o, then 3 ¢ = expB(a)is made the unique term for

%, That it represents o® was proved in Schittte[#8], wow

we show that if n>1, then p(n”l)(expB(ta),ta) represents
©%'n, It will be designated as the unique term for that
ordinal. Proceed by induction on n, If n=2, then

t
a *t
p(l)(expB(a),a) = 23 .3 @

but &

t t a
3&@364:23 °3a°
Now suppose the result for n. We claim that p(n)(expj(ta),ta)

Ca
represents ® “.n+l., By the induction hypothesis
t t
(n=1) _ L a
p (expB(ta),ta) =37 9,,.0 3

(associativity is shown in Schiitte[487), But

p(p(nml)(eXDB(ta),ta),ta) = p(n“l)(expB(ta).ta) o 3°

by definition of @, and is also equal to

(3% 6. . .0 379) ¢ 30
by the induetion hypothesis,
Pinally we claim that if ta uniquely represents o and BtB
uniguely representS'mﬁ, and @GDB, then p(n)(ta,ts) repre-

Bent
sents mB nre Proceed by induction on n, For n=1, m8+a

182

tB ta tB
is represented by 3 ~ @ t_ = 2 %3 %= p(ta,ts). Notice
that this is

(0)
p (eXPB(tB)°tB) ® t,

p(ta,tB),
Suppose for induction that

m84n+1+a
is represented by

(n)
P (eXPB(tB)'tB) ®

]

(n+1)
P (ﬁawtﬁ),
Then by the above result on a unique representatiocn for @B
and by definition of 9,

B

p(n+2)(exp3(t3).ts) represents o +n+l

and

B

p(n+2)(eXp3(tB)’tB) ® t, represents o .ntlta,

By definition of &

%) (exp (ty), t5) @ & p(o{™ 1) (exp,(55), 15008, 5,).

So by the induction hypothesis

p(p(n+1)(ta,t8)

(n+1)
P (eXPB(ta),tB) ® t,

_ (nt+2)
- p (tantB)o
Combining the above cases we can conclude that if a<eo

then there is a unique term ta corresponding to a. This is

because a can be represented uniquely to the base o as

B B

1, n,
o aq +,,.+ o a, where aieN, Bi<eo and Bi<83 if i<j.
And using induction on the level of By (0 is of level 1,
o® of level 2 and ® raised to the ® n times is of level n,
an ordinal whose unique base o decomposition contains s

summand of level n is of level n) and applying the above

183

definition of unique terms on a from right to left produces
a unique term for «,
g.e.d,

A, 18 Given a term ta we define the depth of ta, n, as

the number of expB, exP, and p’s oceuring in ta'

A,19 For this‘representation of ordinals a<e, write o
to dencte the unique integer representing a. Using o we
can map the addresses of OM into N in a simple manner.
Namely the triple <o,n,m> is represented by a-5°:7%, Sinse
for a<ey, o does not contain a 5 or a 7, this representation
is unique,

Our task now is to implement the computation proecess on
M,(Z,) using the above representation of addresses. The
only steps which require work are those involved in compu=
ting the fundamental sequences and the loading addresses.

A,20 We handle this task using the functions p(), expa(’,

()2 and ()3, We use () (n) to denote n iterations of
P
i

()pia Thus (X)Z(O) = x, (x)z(l) = exponent of 2 in prime

factorization of x, (x) (2) = ((x)z)z, Notice that in this
2

notation (expén)(x))z(n) = x

The functions (), and ()3 are sufficient to break down
any a for a<e Iinto its component parts, To build a routine
which computes Ex it is only necessary to apply the functions

(o,)3 in the proper order to break down a according to

184

the deflnition A,15., Then build a routine to compute the
term determining the fundamental sequence, Finally apply
p() and exp_() to bulld back up to EX. The only bother-
gome part is keeplng the "logic" of the breakdown straight.
A detalled program is given covering this part of the com-
puting procedure. Before presenting that program we offer

an example of how it works,

A,21 Suppose the identification constant is o = m3.2+w2+wn

Then

3.2 52
227037 25 52

3

a =2
which is equal to
p') (plexp,y (1), exp,p (1)), expf?) (1)) = 8

The program 1 recognizes a to be a sum, It locates the

o,
first summand (from left to right) which is m3e2 and it
stores the sequence 22, 2, pon a list (denoted LST), The
sequence will guide the program in building up ax, The
Program again recognizes a sum and records 2, 1, p on LST,
Finally the program recognizes the critical term, o, It
then forms expéX)(l), stores this in L and begins the pro-
cess of bullding o using the list

LST = 2%, 2, p, 2, 1, p
and

L= expéX)(l)
as a guide. The p indicates that the next term to be built

is p (next sequence value, first from next sequence value),

185

e.g. p(l,2) or p(2,22) in the above.

The details of the program for computing the downward
link are given below, We do not howevef give the detalls
of the copying routines, steps (c), (f) and (g) of A.6,
because they are quite straight forward. (To copy the main
program we merely write a routine which goes through the
instructions of the program itself and loads the same op-
eration code with appropriately changed addresses into the
new program location, ’To load the B() subprograms the
program can use a schema for B() which it has stored as

data,)

A, 22

Decide whether limit

Y<=1ID

START (Y)2 = (0 ==>

(¥), =
A<mQY

0 ==>
GO TO SP1
Logic for 1imit case

LO a =0
A<~=m(Y)3

L1l al==gt]l
(A)2 = (==>

(A)3 = 0 =>
Exit
LST< =g

i‘ST<wl'e"

GO TO SP1
log%()

L20 = (==>

(A)
A<w;(A)3
GO TO L1

»” form, this sets up o

B emn Qe]
a = 0 => L35
LST<—=g

L30

£8T<wme

X
L<—3 ©

L]

or sum

LO
(Pr)

L20
(Lf)

L30

)

186

Program for determining downward link.

Is Y of form o%? Yes, go to
limit, LO,

If not & limit, then go to sums
and products case.

Initialize counter

Reduce Y by o=power, i.e, take
"10g ()n

Incrément counter _ ‘
See if reduction is still =a
limit

If not an o=limit, check for n
integer limit exponent, i.e. o
Record number of iterations of
log() on LST

. means to advance the list
Put e on LST to signal type of
iteration for RETURN

Cheek for form ml

Execute 10&3()

If a=0 do not record a or e
Record information on iterations
Of wlog"

Load "fund seq" in L for RETURN

GO TO RETURN
GO TO- RETURN
Set up mn.xo
Lf gl |
a =0 => Lf5 If a=0 do not-load a or e
LT c =g
ilST(e
i‘ST(mel
iST<wP
(A)
Leme3 2
GO TO RETURN

Logic for sums and products case

SPl1 a=]1
We=={(A)
B<—=(4),
SPL (B)3 = W ==> prod

(B)3 = 0 => (Pf)
Load information on terms of sum
(sp) LST<—W

LST< g,

LST e " P

i<~wB
GO TO START

Itefation loop for products

(prod) (.B)2 = 0 => (PP)
ag=—=g, = 1
B<w(B)
GO TO S%U

187

188

Pure produet information loading
(PP) LST<ww i

iST<wma

LST<om " P"

i<mwB
GO TO START

Special exit for ordinals of type ma+n
(pf) LST<=—W

LST<—a

LST<eP

iST<mm(B)2

épkmul "
GO TO RETURN

Logic for return

RETURN LST = P => (P)
LST = e ==> (L)
LST = 0 => (end)

Reassembling sums and products

P PN . . decrements the list
8 = [,ST
L<p'8) (1, Ls7)
GO TO RETURN

Reassembling powers

L SPL = 1 ==> (SPL)
P
L<amexp§a)(L)

GO TO RETURN

Encorporate term determining the fundamental seguence,

SPL o .

(end)

SPL<-?O |

x

L<--p 0 (3% 1)
<= [,ST=1
L<——exp(a)(L)

GO TO RETURN

Program exit

189

190

Appendix B Estimating of ().

B,1 Ya 3T() 3IB() Vx Vn if ¢ is a limit ordinal and
a < eo, then

(a) Gfan(X) < féz(n))(x) &T() e E,

(T(x)) =
(b) or (x) < f“B(}xc) (x) &T() ¢ B, & B() ¢ E_,

We actually prove a stronger statement, namely that B ()
can be chosen as

x if ¢>w
B()={

xt+2 if o =w

and that T() and T() can be chosen in E, if a>», We recall

from 6,31 stép 3 part (b) that (b) above implies 3IC

(e) or (x) < £{%(x).

The proof of B.l is based on the idea that the steps in
the computation of fa() according to the method of Appendix
A can be classified into two categories. TFirst there are
the steps associated with carrying out>the actual iterations
and dlagonalizatlons., Second there are the steps associated
with generating subprograms, i,e., steps which involve cal-
culating the downward links, modifying the loading instruc-
tlons, and loading the subprograms., The second category of

steps 1s sald to constitute the overhead computing. Ac-

cording to the computation procedure overhead computing
occurs only at limit ordinals. In terms of that procedure,

the function, Qx(x) = number of overhead computing steps of

191

level a (for a. a limit ordinal), is precisely defined if we
agree to regard all steps up to and including transfer of

control from ﬁf to T as overhead steps,
a a
x

In terms of counting Ga, the overhead steps are those

used to generate T By establishing B,1 we are showing

f o
%n

that U can be generated as primitive at level & in the
a .
n

hierarchy. For simplicity in the work below we will use the
notation oqx() in place of Onﬁa().
We notice immediately that

B,2 Gfa(X) = La(X) + G?ax(x).

A useful notion for the proof of B,1 is that of the total
overhead computing time, 0y for fa() which is defined in-
ductively as follows

B.3 g,fy(x) =0 Vx

Uofa+l(X) = 0,f (x) Vx
If a ~>0, then aof (x) = LH(X) + Goqxx(x).
Now define
B4 o,f (x) = of, (x) - Gofq(x).
We then have

B.5 of (x) = 0of, (x) + 01y (%)

and at limit ordinals by B.5 and B.2

B.6 'ofa(x) = La(x) + Gofax(x) + °1fax(X)'

Equation B.& is the basis of the proof procedures for B,1.

192

Functions qx() and qa() will be found such that

B,7 For Vx VnVYa if 1is a limit ordinal < e€,, then
(t_(n))

(a) Glfan(X) < fan“ (x) ¢ ()eE
(sa(n))
(b) Uofmn(X) < i‘an (x) Sa() & E,

and a constant %1 will be found such that

(L,)
(c) Ia(x) = fuB(X)(x)o

Then by B.5, B,6 and . B.7 degining ?l(x) = gm(x) + qm(x) + a
and T, (x) = T, (x) + (a+ym) we have
B,8 For VYx Vn Va, if a is a 1limit ordinal < €

(sa(n)) | (ta(n)) (Ta(n))
(a) O'fan(x) < f“n (x) + f“n (x) < f‘an (x)

for 1&() e E, and

(Ta(x)) _
(b) of (x) < faB(x) (x) T,(), B() eE

Thus showing B.7 will complete the proof of B,1.

20

In what follows we show B,7 (a) then B,7 (b) and in the
course of showing (b) we get (¢). The techniques in the
proofs involve only simple bounding procedures. We could

find much better estimates for o, and Iy but that would

0
involve even more tedious and unattractive work, We do not
offer completely formal inductive proofs at every point in
the analysis, but it is clear how the formal proof would go.
First we define some important constants, a, p, °l‘ Cor
whose denotation remains fixed throughout this appendix,

193

Since xty e Lgs the definition of fO() implies Fa suech
that

B.9 x+y < féa)(maxix,yﬂ Vx,ys
also since X.y.z ey & dp such that p>a and

B,10 x.y2% <« fép+1)(maxix,y.zﬂ.
Let ¢y be the number of lines in a B() iteration subprogram
(cl = 8 in Appendix A) and given fol) plek ¢, Such that
B.11 ¢y > mex {cl.a,ofo()}.
Notice then

c
O —
folx) << £y © (x) Vx for some ¢y £ o

Since féy)(O) > ¥,

According to the computation procedure described in Ap-
pendix A

N = (x-1)
B.12 of,(x) = of o (x) + cl~cfo(fo(x)) *oot eqeaf (1 (x))

(€0+le)
< cl'(xm1)~f0 (x). _
(co+x~l)
Recalling the definition of p and noticing £y (x) >
cl'(iml) it follows from B.1l2 that
(30+p+x) _ (EO+P)
cfl(x) < £, (x) << fl(co+p+x) < fy (x).

These are simple estimates which could be much improved if

it were necessary (e.g. since fiy)(o) > fl(y) >> fo(y), EO

could be reduced eventually to 1 for some fn() n << EO)‘

Continuing

B.13 o;f,(x) = o f (x) +.. .+ clvclfl(fixﬁl)(X))

194

(cytptx-1)
< eq°(x=1)-fy (x),
and as before
(cy*t2p+x) (cy+2p)
alfz(x) << fy (x) < £y (x).
So that in general
(cy*np)
B, 14 alfn(x) << £, (x).
Thus at the limit stage,
(e +xp)

B.15 Glfm(x) = olfx(x) << f_ (x).

Putting qw(x) = EO + .xp we can state this as

B.16 o1, (x) << £.3%))(x),

®
We now set out to find a 4 such that Olﬁm(x) < f, (x).

Clearly qm() ¢ E. so that 3dc' such that

1
B,17 ey * Xep < fﬁcv)(x) Y x.
In fact we clalm ¢ can be chosen max{ Eo,p} < ¢’ < co+p

because if ¢ = max §c0,p}, then
f(C)(x) > fo(xte) > f(x+C)(x+c) > ¢oX
1 1 0
and

(atc+x)
0

So since Eo+p > cta the claim is justified., We thus have

ererx < 283 (£{770) (x40)) = ¢ (x+e).

from B,16 that
(£{¢") (x))

x (x),

B, 18 olﬂ”(x) << f
and we notice that for x > ¢'+1

(£, (e) (x))

B.19 f_ 1 (x) << f2+x(f§°°)(X))

(e

< f2+X+l)(x) << f3+x(x),

195

Thus clf&(x) << fx+3(X) if x > ¢*'+1. So since ¢'>2
B.20 clfm(x) << Q”(x+c°+l)

< §£°'+1)(x)

(¢ +p)
0

® (x) Vx.

S0 we have found that dm = 30+p 1s an acceptable choice,

The same analysis now shows that
(¢_+(n+1)-p)
§ O

dentl (x)

B.21 0yf ., 4q(x) <

by taking Eo+np as 36 in the above anslysis. (In general,

(e otnpmep)
g, f (x) < r

150 ntm . n+m (x).) Thus

(co+xp)

oﬁ;ﬂx)<f&ql (x).

So that as before

(f(cq)(x))

o, f 2(X) < fu.%

(x) < f(m,x)+3(x)

if x > ¢'+l., Since by 6,24

%xx+n(x) < qu(x) n
It follows that _

(co+p)
B.22 1 2(x) << f 2(x+c +1) < f o2 (x) Vx.

In general

(¢ +a . pt, +a +p)
: l e ¢
B.23 o.f n, n () <r nl n

® agt,, A S'as o ~a1+..,+m S'as

(x)

the principle being if o,f (x) < f(d+£)(x) (d>co), then
o+ o

by taking °O = d+p and starting the process with f o)
o +o

196

we obtain

+ -3
o f (x) < £(&* Py,
o+ atd °n

B.24 We can now analyse ﬁx() for q>»" using the prin=
ciple that

(04*p)
olﬂ§(x)<:fagolj(x) Vx V8 <s,.

We prove this by & simple induction. Suppose the result for
B, The m3=n > ms+l as n==> ® so0 that by the above prin-

and repeating the process up to @5

ciple taking co+p and cq
we have -
() < £ 0 (5
G, f x} < T x),
1 mﬁ°x msex
And as before
~ Z +P)
0
B.25 clfm6+l(X) < me'*‘l (x) V=,

If 8 is a 1limit ordinal, then assume the result for all
a<B, thus for all Bx such that Bx«m> B. Then |

(e, tp)
(x) < ¢ ;O P (x) Vx.

X ®

26) = (eo*P)

B, =

olﬁns(x o.f Bx(x) < T 8
o o

This concludes the analysis of o, because given fa(),

the function ta() either has the form ta = cgtd ptx.p or
ta(X) = cytp. In either case ta() ¢ E; as was to be shown,
Thus B.7 part (a) follows,

B,27 We now turn to & look at the overhead computing
and Gofa(). fhe first overhead steps arise in computing
ﬂn(). The overhead, ;&(), satisfies Lh(X) < dloexpéX)(l)

+ x:b + d, where b is the number of steps required to load

197

an iteration subprogram (we will look at a general method
of estimating La(') below), Thus Qm() < E; so that dm
such that

(m)

Qm(x) < £y (x)
and ;Hs such that
(m) (S)
£,(x) = L (x) < £ (x) < £, (x) Vx.

Now applying techniques used above to the iteration process
we can infer

B.28 0of .q(x) = of (x)+o,f (f (x))+..,+00§b(ﬁix”1}(x>)

(s,Fx~1)
< (x=1)- f (x)
(s +ptx)
< ﬂn%n P (x)
so that
(s, +p)
o f&+l(x) < f +1 (x),

Continuing as before we generalize to

(s +nap+x) (s, +n-p)
B.29 o,f, +(n+1)(X) < f. (x) < ¢ o+ (n+1) (x),

At stage ®°2 we have an added complication., We can conclude

as before that
(sw+x p) (s,*p)
(x) < £ 2 (x).

B, 30 (x) < £

0 m+x
But now

(s +x.p)
Oofp.2(x) = L ~(x) + 0of o * P (x).

w+x
We can easily show that ;Hsmug such that

(8p.2)
L0 < £, 22 (x),

So that combining the above two lines yields

() (s +p)
B.31 04f,. olx) < g 2 (x) + £ 2 P (x) <

198

) f(a+max{sa)°2,sm+p})
<D°2 X °
Now assuming gn < Sp.o We have

(a+p+smo 2) (

B.32 o,f, ..(x) < .2 x).

Starting the analysis again with a+p+qn°2 for Sp and con-
tinuing inductively with the aséﬁmption that

B,.33 Sw°n < Smen+1
we have
(n(a p)+ Sy

B, 34 (x) < £y x) Vx.

O @®°n

Now we want to show that Ax x(atp)+s ¢ By, (this will

®on
be done in more generality below). Then finding s > such
that (g)

L(Dz(X) < f{jazm (X)

2
and finding s® such that
2
(x(atp)+s,_ _) (atp+s®)
WX
T x (x) <r 2 (x) Vx
weé have

(S 2) 0)2
B.35 a,f ,(x) < fzd) (x) + fé&+p+s)(x) <
6+ [43]

(atmax{s 2,,(a+p)+s $)

< T 2 ® (x),
Now assuming
2
B.3 s 5 > s®
fas]
we have (2a+p)+s 2)

B.37 05f p(x) < 1, (x),

199

Given the assumptions

B.38 (1) s » s

(2) Arzxs e B

(3) Saﬁmvn < Sa%m«n+l’

we find that the form (2a+p)+s, 1is the basic form for the
X

0, analysis in the same sense that (Eo+p) was the basic
form for the Gl analysis (with (2a+p) corresponding to p

and s corresponding to EO), To see this, take at+(atp)+s ,
x o

for S in the preceding analysis, Use the above assumptions,
and proceed with an inductive argument as in B,19 - B.26 to
conclude

o 4 n (x)

1 . r
& +]
n aq 00 o T a..

is less than

. +)
(iélai (2atplis ny N,
i) val+...+m ‘a
£ T (x).
nl n P '

» °a1+,,o+m r-ar
We can carry this over to n, = Bi,ﬁ3<eo just as in B,24,
B.39 In order to justify the assumptions (1), (2), (3)
which are sufficient to complete our énalysis of ooﬂx(),
we must examine the form of the Ih() DL <E 5. The overhead

computing procedure involves the following basic steps:

1. Dbreaking down a, this involves the functions () ()
2

200

2, computing expéX)(l),
3. bullding o back up with expéx)(l) as a new ternm,

this involves @xpé)(), expg)() and p()(),

L, copying main program which is c, lines long,
5. copying iteration subprograms each b 1ineé long.,
We can estimate the number of steps involved in terms of
o and x if we have estimates for (x) (n)’ (x) (n)* expéX)(l),
2 3

eXp§X)(l) and P(Z)(X,y)o Very crude estimates are given by

the following (r@caliing that proper subtraction is a basiec
operation),

B.40 (a) (x)z(n) < 2¢(eqy°x) + 3'(nx)
(b) (X)B(n) < 2:(ey°x) + 3-(n*x)
To see (a) and (b) we consider the program which com-

putes (x)_.,

y
b <=0

x = 0 ==> error
x = 1 ==> (4)

8 <==()

a

o~
DN s
—

X = yoa => (5)
OUT <==b

X Lemg)

b <C===btl

TO (1)

L, PN
n W
N St S

Since +, &, and x are primitive and since x/d+x/d2+..,.+x/dn
< x for d = 2 or 3 we have (a) and (b). By similar analysis

it is clear that the following fold.

(c) G@XPQX)(y) < cg'eXPéxnl)(y) < expéX)(y)

(@) oexp{™ (y) < eprexpl™ N iy) < explF(y)

(e) cp(Z)(x,y) < 03-(p(z"1)(x,y)+y) < p(z)(X.y)

With these estimates at hand it is easy to provide a
crude but workable bound on,Iu(). We associate a bound
with each of the steps 1. - 5, of B.39: 1. 2-cl=§:

2, expéX)(l), 3. c@'a, L, ¢ 5. b'x., Taking ¢ =

o’
maxicl,,..,cuj and summing we find

B, 41 Lh(X) < 3ecea + expéX)(l) * bex +ocp.
Recalling from A,16 the construction of the o, wWe observe
that o_ is at worst in E, for all a<e,. Thus B.41 yields
B.7 part (e),

Now to verify assumptions (1) to (3) of B,38 we must de-
fine s, and s, We can easily see that an adequate (but

crude) choice for Sy, is just a+m where m = 3+et+btete and

e satisfies expéX)(l) < fée)(x) Yx since

B.42 L (x) < féa+m)(x).

For reasons which will be clear below we include another

. Thus define
ax

B, 43 Sax = 3ace(M+a)°ax+m € E,,

Notice, assumption (2) of B,38 is justified,

term, 3-.c:(Mta), in s

Now to define sa, notice that if p satisfies

(py)
B o < £, (%),

then

p +m)
(d+s_) (a+f, & (x))
X
B.45 f“x (x) < f“x (x)
(d+p +m+2)
< fa a (x)

where the last inequality follows by the methods of B,21 -
B.24, So

B.46 s = p +mi2,

We now find a uniform method for choosing p and then show
that s > s and in the process that s < 8 if x<y. The

X y
idea here 1s that we want to chose 18 to be small, The only

fact we must really show to prove %a > s* is that there 1is
a uniform method of choosing %a large and ga small simul-

taneously, The fact is intuitively clear because xxsa e E2
b ¢
and we can use any fa() a<w to majorize the s, » The
X

details which follow are tedious but quite elementary. (It

should be noted that even if Sy > s did not hold, we could

still prove the main result on coqa(). but the arguments
might be even more tedious,)

The numbers(; and the functions Ex arise from compositions

of p(). @Xpé)(1) and expB(), e.g.

2
® a3+m3=2+w2ﬁ3+m

is equal to

p{ 2 (o1 (p(%) (exp (1), exp, (1)), ex0f?) (1)), exp, (2))

We know J p, &>, €, such that

3

203

B.47 (a) p®(q,r) < £{P) (xhqtr)

(e,)
(b) expéX)(s) < fy 2 (xt+s) and

, (e,)
exng)(s) < fy 3 (x+s)

B.48 Let M = maxgﬁ,el,azg and consider a composition of

the following type
(aq)
p(X)(p 1

Then using the inequalities above
y

(q,t),r).

(a
B, 49 P(X)(P 1 (q,t),r) < fz(x+féM)(a1+s+t)+r)

< féZ’M+a>(x+al+q+t+r).

B.50 Likewise for compositions of the types exp§X)(A)

and p(X)(A,B) where A and B are expé)(), exp§)() or
p()(). Continuing inductively on the levels of composi-
tion we can conclude that
— . . n
B.SL & < eiteimea) o),
x R |
i=1 .
where n is the level of nesting in o (defined in A,18 as the
total number of p(), exp,() and exPB()'s in represen-

tation of ¢) and a, are iteration parameters of p() and

exp().
n
Letting An = 3 a; we have
i=1

- ((nt2). (M+a)+4_+3.¢c)
B, 52 3=c°(M+a.)eaX < f, n (x) Vx,

Thus put p, = n‘(M+a)+An.

We now turn to showing that §1 > sa, We have

204

Jege (Mta) otm = g
and

s = p +m+2,
We check that

3ees (Ma) o 2 p +2 = (nt2): (M+a)+A +3-c+2,

Proceeding by induction, for n=1 the least transfinite g
is 3 = @ipB(l) 8o we have
3ece (Mta): 3" > 3. (Mta)+xt3.042 for x = 1.2,3,...
Since (Mta) > 3 end ¢ > 1, taking x = 1
3°3.c* (Mta) > 3eec (Mra)+3c+3 > 3« (Mt+a)+3.c+3
so clearly the result holds for all x>1.
Now suppose the result for n, Then g has the form

expéX)(A) or p(X)(AQB) where A and B are level n expressions.

(x)
3

3ecr (Mta)-A > (nt2) - (M+a)+A +3.c+2

In the case of exp (A), we have by the induction hypothesis

where clearly A > A and A > 3. Thus as above for x = 1,2,..,

3-ce (1t+a) - exp{™) (A) 2 (w#3): (Wra)+(a +x)+3. c42.

In the case p(X)(A,B) we know
3ece (Mta) A > (n1+2)° (M+a)+An+3a c+2
3.ce (Mta) B > (n2+2)°(M+a)+Bn+3nc+2
where n;+n, < n,
To show
3eo- (1+a) p XV (4,B) > (n¥2)« (Mta)+(A +B_+x)+3: c+2

Just notice

Jeeo (M) p XV (A, B) > 3rc- (Mha) - (A+B)+2- (H+a)+x

205

> (nytnyth) . (Mra)+(A +B +x)+6. o+l

> (n+2)-(M+a)+(Anan+x)+3.c+2,
We have now verified assumptions (1) and (2) of B.38.

To verify (3), that s

ntnen < Sgqiment 7€ need only verify

that

atmen < atweontl |
This is easy since o+n = p(nnl)(j,l) < p(n)(B,l) = ®en+tl
and to formo+w.n we can use q+b.n which we see by induc-
tion satisfies
a<b ==> c¢8a < cob
This concludes the case for qul(), namely B,7 part (b),
and we recall that B.41 gives part (¢). This concludes
proof of B.,7 and thus by B.8, B,1 is proved.

g.e.d,

206

Appendix C Arithmetizing the RASP

In this appendix we brove the following theorem referred
to in Chapter 7,
C.1 Normal Form Theorem for RASP, Ml(Z), Computable
functions, There exist predicates TS() elementary in
S = hl(),,..,hn() and there exists an elementary func-
tion U() such that if g():N'e=> N and g() is 4y (Zg)
computable, then Je suech that _
(a) g(X) = U(uyT> (e, X,¥)) X e NP
(b) if there exists a program Te for g() with re-
spect to Z such that UWg(X) < h(X) VX e N? then
360) ¢ €(n()) such that g(X) = Uluy < b(X)
T(e,X,y)) so that g() ¢ & (n()),
(¢) applying the above for Z% = 25, if g() ¢ E
then g() ¢ E(fa()),

a!

We prove this theorem in the Standard manner, by arith-
metizing the theory of RASP, Ml(Z), computability. The
T-predicate here will have the meaning T(e,X,y) iff e is
the number of an initial condition and y is the number of a
Sequence of instantaneous descriptions for a computation

0Qr01reces0pseo. Which satisfies the initial condition e
at X on a RASP Ml(ES).

C.2 The initial condition for a RASP 1s the triple

<D,m,V> where D is the array of input locations, 7 is a

program and V 1s the array of output locations., For

207

g():N"—> N, D has the form (d;,...,4,) and V has the form
vl.

We first arithmetize the notion of a program. Suppose
£g = {*+,=.x,T,C hy(),..,hq()}, and suppose that the stan-
dard designation (c.f, 2.3 and 2.1%4) assigns operation codes

(op codes) to the instructions by the correspondence

+ == X T C hl() g0 0 0y hq()
To an instruction hi(xl,..,,xs,y) is assigned the number
h, =x _
2 1.3 1°a,,°pg+l where hi is the op code,
Given a program 1 = <p()’aO'e1‘°"’@m> it will be re-
presented by W =
. e
2<<aO.P(aO)>>3<<al,p(a1)>? . <<an°1,p(an_l)>? Ze' 2 m
¢ e & 3 pn"‘l Pn LI p

where <<x,y>> = 2x-3y,
To represent the initial condition <D,n,V> we first re=-

d2u d

.' n
LI pn

_ d
present D = (d,,d,,...,d) by D= 2 1°3 _1+ and

n
then the initial condition is represented by 2ﬁo3ﬁ-5v.

C.3 We now consider the representation of a computation,
which is a sequence of states, 00'01’°”°’0n'°'“' We actually
represent a sequence of pairs called instantaneous descrip-
tions <a1,<ﬁi,mi>> where 8y is the control location of oy

and <ﬁi.mi> is a representation of a finite section of

memory. The only memory we need represent is the part that

is active during the computation, So we start with the

208

registers holding the program and then add to this segment
any registers referred to in the computation. Since Ml()
1s finitely determined, the memory represented in«:o,cl,,...

o, is only finite, Let

n
o, v, Tm,
By S PPy t..tPg)

for some integer Eie The number Ei bounds the memory ac-
tually needed at state 0y and my is a numerical representa-

tion of the segment of core contailning the addresses 0,1,...

14

51»1 and for which register r < ﬁl contalns b_, Thus

1!

<Ei,mi> represents the active memory at Gi.
C.I We next consider a notion of cause and effect

between 1d°'s (instantaneous descriptions), i.e., we define

Ci«m> Ci+1 for Ci' ci+l ld's and we say that Qi causes C

i+1
or Qi vields Qi+l° Suppose Ci = <a,,<m,,m,>>, then Cimm>
Ci+l = <ai+l'<mi+l'mi+l>> iff a; < my and
X X X
(a) if (m), =2%31.52.973 tnen
8y
8447 a1+1 and
m, 49 = max gmi,xl,xz,XB} and
(mi+l)3 = (mi)j if § < my and j # X3
(m,). = (m,)_ + (m,)
i+l XB i Xq 1'x,
(mi+l)j =01if my < J <my,q and J# X3
_ 23,271, .52, %3 -
(b) 1irf (mi)al =273 7577 7, then a,,; = a,+1 and

209

M, 4q = max § my . Xy.%p, X3} and
(mi+1)j is just as above replacing + by <.

X X, X .
25°3 l'5 2°7 3. then repeat the above

(e} irf (mi)&i
replacing = by x.

(a) 1ir (mi) = 27°3 l.g , then
ay ‘
Bi4q = ai+1 and
my,q = WAX {mi,xl,xzz and

(my49)y = (my)y 3Ff J<my and j# x,

(mi+1)j = 0 if my < J < m, and j ¥ x

3
(e) if (mi)ai = 211~3X1»5X2°7X3, then
if (mi)xl (mi)xz' then a, ., = x5
otherwise Q447 = a1+1 and
Dyyy =Wy, Wyyp = my.
(f) ir (my),, = zP-3X1,5X2°,.a-p§S-pg+l for p < q, then
By = a1+1 and
Ei+1 = maxsfai,xl,...,xs,y} and

(mi+l)j = (mi)j if j < Ei’ J#Ey

(m'+l)y = h((mi)x ,,.,,(mi))

L 1 Xs
(mi+1)j =01ifm < J<my,q
(g) otherwise 8541 = @ and m, ., = m,. This is equiva-

lent to the machine halting,

210

.5 Let I ={1 | ((My);=0 V3 o<y}
We now say that a computation 00,0’1.02,,,..01,1,”c satisfies
the inltial condition e = <D,w,V> at x iff

(1) (m,), =
Mg dy x3

(11) (mo)((;) = ((;)1)1 Vie ITT

170
(1i1) (mo)j = 0if § & (I _u{dy,...,d).

C.6 We let % p§<ai'<<mi’mi>> >> represent the sequence
i=0

of instantaneous descriptions «a,.. <m, .m.> > 1 = 1,2,...,n,

A T §

We now show that the predicate TS(@,X,y)EE e is the number
of an initial condition and y is the number of a sequence of
Instantaneous descriptions for a computation 60,01,.,.,0h...0
which satisflies the initial condition e at X for a RASP f
Ml(ZS) is elementary in S,

To see that TS() is elementary in S we first recall that
if a function f() is elementary in S, then the predicate
f(X) =y X e N" is elementary in S, Furthermore if the
predicates Pl(), P5() are elementary, then so are Pl()&
Po(), Pl(JvP,() and ==Pl() and so are Ql(X,Y) =
J x<y P(X,x) and W (X,x) = Vxgy P(X,y). Using this infor-
mation we look at the definition of "sequence of instantan-
eous descriptions for a computation” and "sequence of instan-
taneous descrlptions which gatisfies the initial condition
e at X",

The first definition merely reqﬁir@s that we show X—=> y

-

- 211

is an elementary predicate because if it is, then to verify

CO C C

that z = Py °pl e.,n-pnn is the number of a sequence of id*'s
for a computation we need only check that Yi<z P(z,1) holds

where P(z,1) = {(2);#0 & (2),,,7#0 ==> (2)y—> (2);49}-

To see that P() is elementary in S we merely notice
that ()i is elementary as are =, x and [/] so that all
clauses in the definition of —> are elementary in S, for

example consider clause (f),

m, m
ai 2 153 1
In that case, for Ci =2 T3 the condition for =>

is Cimm> Ci+l iffr

(((C;) 1))y = b &
(((e)3)), = 0 &

(Cyrq) = (Ci)'*‘l &

i+l

((C349)7)0 = Iszli,l;’i{((cfgl)o, (e} e
- P

Vi< ((cy))),

LC)y = (e)y & 3 # (e), &

P
(((Cya)q)q) =
1+17171 (((ci)l)l)ng

B ((((Cy)1)7)5, ..., (((C &

i)l)l)np
V< (€)1 §U(C 1))y = 0 & ((e)))), < 3}
All the conjuncts are predicates elementary in hp(), so

clause (f) is elementary in hp().

The definition of a sequence of id's satisfying an ini-

tial condition is clearly elementary by the same reasoning,

212

Thus the predicate TS(,) is elementary in S, beéing a con-
Junction of predicates elementary in S,

C.7 We now turn to considering parts (b) and (¢) of the
Normal Form Theorem, namely if 3 My and h() such that ﬂé(X)
< n(max X) X ¢ N®, then there is a function b{) e En()
such that

de g(X) = Uluygb(X) T(e,X,y)),

Let e be the number of the initial condition <D m,6V>,
Since fo() is normal for ZO, the largest new number that
can be lntrcduced into a computation satisfying the initisl
condition e is fo(d) where 4 = max{max X, program const&nts}.
Surely d<e, thus we can use fo(e). After s computing steps,
the largest possible value of the number z representing the

sequence of id's for s steps satisfies z < Z«fés)(e).3d(s-e)

= b(s,e) where d(s,e) = PE where u = fés)(e), We first
observe that b(x,e) is elementary. This follows since
féy)(x) can be defined by limited recursion from wl() as we
observed in Chapter 7 and since the operations of multipli-
cation, exponentiation, and P, = n-th prime are elementary
(see Kleene p. 230 & p. 285), Thus b{h(max X),e) is ele-
mentary in h(), Take b() = b(h(),e).

For part (c¢) notice that according to the Actual Tine
Theorem, if g() e E,, then 3d such that11g(X) < féd)(max X)
and observe that for fixed 4 féd)(max X) is elementary in

r,().
g.e.d,

213
BIBLIOGRAPHY

[l] Axt, Paul, On a subrecursive hierarchy and primitive
recursive degrees, Trans, A,M.S,, 92, 1959, pp.85-105,

[2] Axt, Paul., Enumeration and the Grzegorczyk hierarchy,
Zeitehr. f, math, Logik und Grund, 4, Math,, 9, 1963,
PP, 53=65,

[3] Blum, Manuel, Machine-independent theory of the conm-
plexity of recursive functions, JoAC.M,, 1k, 1967,
PP, 322336, “

[4] Cannonito, Frank B, Hierarchies of computable groups
and the word problem, J.S,L,, 31, 1966, pp.376-392,

[5] Chalitin, Gregory J, On the length of programs for
computing finite binary sequences. J,A,C,M,, 1b, 1966,
PP, 547-569,

[6] Cleave, John P, A hierarchy of primitive recursive
functions, Zeitschr., f., math, Logik.und Grund, d. Math,,
9, 1963, pp.331-345,

[71 Cobham, Alan, The intrinsic computational difficulty

of functions, Logic, Methodology and Philosophy of

Science, Amsterdam, 1965, pp.24=30,
[8] Cook, Stephen A, On the minimum computation time of
functions, Ph.D, Diss,, Harvard, 1966,

[97 Davis, Martin, Computability and Undecidability,

New York, 1958,
[10] Engler, Erwin, Algorithmic properties of structures,
Math, Syst. Theory, 1, 1967, pp.183-195,

214

[11] Fabian, Robert J. Hierarchies of general recursive
functions and ordinal recursion, Ph.,D, Diss., Case
Inst. of Tech., 1965.

[12] FPeferman, Solomon, Classification of recursive
functions by means of hierarchies, Trans., A, M.S.,
1962, pp.1l01-122,

[13] Feferman, S., and Spector, C. Incompleteness along
paths in progressions of theoriles, J.S5. L.,
1962, pp.383=390,

[147] Golomb, Solomon W, Shift BRegister Sequences,

San Fransisco, 1967.

[15] Grzegorczyk, A. Some classes of recursive functlons,
Rozprawy Matematcyzne, 1953, pp.l-=45.

[16] Guard, James R, The independence of transfinite
induction up to o in recursive arithmetic, Ph.D.
Diss., Princeton, 1961.

[17] Hartmanis, J, and Stearns, R. On the computational
complexity of algorithms, Trans, A.M.S., 117,

1965, pp.285=306,

(18] Hartmanis, J, Stearns, B, and Lewis, P, Classification
of functions by time and memory requirements, Proc.
IFIP Int., Cong.,l, 1965, pp.31=36.

[19] Hartmanis, J, and Stearns, R. Algebraic Structure
Theory of Seguential Machines, Englewood Cliffs, 1966,

[20] Hartmanis, Juris. Tape reversal bounded Turing machine

computations, Cornell Tech. Report No. 68-=7, 1968,

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

215

van Heljenoort,J., From Frege to Godel, Cambridge,l9§7,

Hermes, H, Enumerabilitg, Decidabilitg, Comgutabili@y,
New York, 1965,

Heyting,A. Infinitistic methods from a finitist point
of view, Infinitistic Methods, New York, 1961, pp.185-92

Kleene, Stephen C, Introduction Lo Metamathematics,

New York, 1952,

Kleene, S.C., Extension of an effectively generated
class of functions by enumeration, Colloq. Math.,6,
1958, pp. 67-78,

Kleene, S,C. On the forms of the predicates in the
theory of constructive ordinals (second paper),

Amer, J.Math,, 77,1955, pp. 405-428.

Kreider, D.L, and Ritchie, R.W, A basis theorem for a
class of two=way automata, Zeitchr. f. math, Logik
und Grund. d. Math.,12, 1966, pp, 243-255,

Kreider, D.L, and Ritchie, R.W. Pred&ﬁably computable
functionals and definition by recursion, Zeitchr. f.
math Logik und Grund. d. Math,, 5, 1963, pp. 65-80.,
Krelsel, Georg. Mathematical loglie, Lectures on

NModern Mathematics, vol. III, New York, 1965. pp.95-195,

Krohn, K, Mateosian.R, and Rhodes.J. Complexity of
ideals in finite semlgroups and finite state machines,

Math, Syst. Theory, 1, 1967, Pp. 59-66.

216

[31] Lachlan, S.H, Multiple recursion, Zeitschr, f. math
Logik und Grund, 4, Math,, 8, 1962, pp., 81-=107,
[32] MeCarthy, John, A basis for a mathematical theory of

computation, Computer Programming and Formal Systems,

Amsterdam, 1963, pp. 33=70,

[33] McCleary, Stephen. Primitive recursive computations,
submitted for publication to Notre Dame J, Logic.

[347] Meyer, A.R, and Ritchie, D,M, Computationsl complexity
and program structure, IBM Research, RC-1817, 1967.

[35] Moore Edward F,(editor) Segquential Machines,

Reading, 1964,

[36] Moschovakis, Yiannis N, A remark on subrecursive
hierarchies, personal communication,

[37] HMyhill, John, A stumbling block in constructive
mathematics (abstract), J.S.L., 18, 1953, p. 190,

[38] Myhill, John, Linear bounded automata, WADD Tech,
note, 60-165, Wright-Patterson AFB, 1960,

[39] Péter, Roza, Becursive Functions, 3d ed., New York,
1967.

[40] Platek, Richard A, Foundations of recursion theory,
Ph,D, Diss,, Stanford, 1966.

[(41] BRabin, Michael O, Real time computation, Israel J,
Math,, 1, 1963, pp. 203=-211,

t42] Ritchie, Robert W, Classes of predictably computable

functions, Trans, A,M,S,, 106,.1963, pp. 139-=173.

217

[43] Ritchie, Robert W. Classes of recursive functions
based on Ackermann's function, Pacific J, Math., 15,
1965, pp. 1027-1044,

[44] Robbin, Joel W. Subrecursive hierarchies, Ph,D, Diss..
Princeton, 1965,

[45] Robinson, A, and Elgot C.C, Random-access stored
program machines, an approach to bProgramming languages,

J.AC.M,, 11, 1964, pp. 365-399,
[46] Rogers, Hartley Jr. Theory of Recursive Functions and

Effective Computability, New York, 1967.

[47] Boutledge, N,A, Ordinal recursion, Proc. Cambridge
Phil. Soc., 49, 1953, pp. 175-182,

(48] sSchittte, Kurt: Predicative well-orderings, Formal
Systems and Recursive Functions, Amsterdam, 1965,

ppw 280"'3030

[49] Scott, Dana. Some definitional suggestions for
- automata theory, J. Comptr.& Syst, Seci., 1,
1967, pp. 187-212,
[50] Shepherdson, J.C, and Sturgis, H.E. Computability of
recursive functions, J.A.C.M., 10, 1963, pp.217-255,
[51] Shoenfield, Joseph R. The class of recursive
functions, Proc. A.M.S., 11,1958, pp.‘61~62.
[52] Shoenfield, Joseph R, Mathematical Logic. Reading,l96?

[53] sierpinski, Waclaw., Cardinal and Ordinal Numbers,

Warsaw, 1965,

[54]

[55]

[56]

[57]

(58]

218

Smullyasn, Raymond M, Théogx of Formal Systems,
Princeton, 1961,

Spector, Clifford. Recursive well-orderings, J.S.L.,
20, 1955, pp. 151-163,

Tait, W.W, DNested recursion, Math., Ann,, 143,

1961, pp. 236=250,

Takeutl, Gaisi. Ordinal diagrams I, J. Math. Soc,.
Japan, 9, 1957, pp. 386-394,

Takeuti, Galsi. Ordinal diagrams II, J. Math., Soec.
Japan, 12, 1960, pp. 385-391,

