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1. Introduction

A steady flow problem of interest to both engineers and mathematicians
is that of a viscous, incompressible fluid through an orifice (see, e.9g.,
references [1]-[7] and the additional references contained therein). In
this paper we will develop a new numerical method for the study of such
three dimensional problems under the assumption of axial symmetry. If and
when the mathematical flows under consideration do in fact exist physically
(which is often an open question), then the method will be practical, will
be vastly more economical and accurate than any step-ahead method, and
will apply with equal case to cases of both small and large Reynolds
numbers . The power of the method is contained in the application of a simple
smoothing process and in the structure of the difference equations, which

for all Reynolds numbers yield diagonally dominant systems of linear algebraic

equations.

%
Funds for the computations described in this paper were made available
by the Research Committee of the Graduate School of the University of Wisconsin.






2. A Basic Problem

Let us begin by considering a particular problem which contains the
basic components of all axis symmetrical orifice flow problems. Our
formulation proceeds as follows.

Let Sl’ S, S. be three coaxial cylinders joined to form a channel
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with an orifice, as shown in Figure 2.1 . At the entrance and at the exit
of the flow, we will assume Poiseuille conditions are valid. On the sur-
face portions of Sl’ S2 and S3, it will be assumed that the stream function
is constant and that the normal derivativeofthe stream function is zero.
Inside of Sl’ S2 and 83, it will be assumed thzt the three dimensional
Navier-Stokes equations govern the motion of the fluid. However, because
of the axial symmetry, the problem can be formulated analytically as a
plane problem in the following fashion. Let S, the plane polygon shown
in Figure 2.1 whose vertices are A, B, C, D, E, F, G, H be positioned in
the (r,x) plane as shown in Figure 2.2, where Qs Aps ﬁl, BZ’ ﬁz, Y are

all positive. Let R be the interior of S . Then one must find a pair of

functions ¥(x,r), Q(x,r) which on R satisfy the Navier-Stokes equations

32 1o % 2
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and which on S satisfy the boundary conditions

(2.3) v=0, ov =0 : on AH
or
3
(2.4) y=1, o = 0 : on BC, DE, FG
or ;
Y
(2.5) y=1, — =0 ; on CD, EF
ox

2 - 2

- W:<é§2> l'z -BI;> } ; on AB
2 2

(2.6) 4 w=<§;\ [b(—é;} ] ; on GH

LQ=8 . on AB and GH .

In (2.1)-(2.6), v is the stream function, § 1is related to the vorticity
£ by Q= ¢/r, and R is the Reynolds number.

The formulation (2.1)-(2.6) was developed with the help of
R. E. Mever and js in accord with the definitions and assumptions of
Goldstein [8]. The choice of (I as a dependent variable in place of ¢
was motivated by the form of (2.2), which lends itself directly to the
numerical techniques to be developed. The choice of Poiseuille conditions
at the ends of the channel was motivated by previous computations on a
simpler problem [9], which indicated that certain other end condition

choices yielded essentially the same flows as those for Poiseuille conditions.






3. Finite Difference Equations

Because a solution of boundary value problem (2. 1y-(2.6) can almost
never be given in closed form, we will direct our attention to developing a
finite difference, computer oriented method for approximating a solution.

In this section we will develop the difference equations which will be used.

For h > 0, let the five points (x,r), (x+h,r), (X, rth), (x-h, r), (x,r-h)
be denoted 0, 1, 2, 3, 4, respectively, as shown in Figure 3.1, We will,
whenever convenient, use the notation Uy to represent the value of u(x,y)
at the point numbered k .

With regard to stream equation (2. 1), it will be of value to approximate
the second-order derivative terms by the standard five-point Laplace difference
operator [10] and the first order derivative by a central difference, so that
in terms of the notation in Figure 3.!, we will approximate (2.1) at (x,v)

by the difference equation

ST F Y Y Y, L(‘”z"/’4>= _rZQO ,
h

h2 r 2

or, equivalently,'by
h h 2 .2
- - 1 —_—) = - .
(3.1) 4zp0+wl+w2(l 2r)+1p3+2p4( +2r) thO

With regard to (2.2), one must be more subtle in order to maintain the
dominance of the QO term. This will be accomplished by combining central,
forward and backward differences in the following way. First rewrite (2. 2)

in the form






2 2
d | v O
(3.2) "< % - ‘Q'@*"a‘%\,—@ o ——Q+<3+~12+ Qﬂ\b—@: 0
af r BI‘ BX ' ar X r ax ar
As in the development of (3.1), we will use the approximation
2 2
0 Q !
(3.3) —~ - 198, §—-é- ~ ;1'2‘ [-4Q,+9,+0,(1 - h +Q, Q1+
ar r 5]:- ax Zr - .
For -a—-; and éﬁ , it will be convenient to use the central difference
oxX
approximations
(3.4) v - V2-Va, w=N-¥3
or 2h dx 2h
If one then sets
' _o (Y2 va - 1 <<//1 - 3 )
(3.5) M-R( 5h > N—3+r2 +6%———-———~2h )
then 90 and eIy will be approximated as follows:
dX dr
X0 Qo -3 30 Q2 Qg
i > 0 > 0, SL= — QL L =
(a) if M and N =z 0, set Ax h and 3t h
N 1 -Q a0 Q2 -Q
(b) if M<O0 and N = 0, set 7= 21 0 and — = e 0 ;
BX h ar h
30 Qg -93 Y Qg -y
(c) if M2 0 and N0, set T = and — = ——
X h r h
. P ¢ 90 91 -Qg dBQ Qo -Qa
(d) if M 0 and N 0, set Bx_ o an St = N

Thus, making th

e above substitutions into (3.2) yields readily the following

h

2r

).
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difference equation approximations for (3. 2) :

(3.6a) QO(-4-M}‘-_1\§1)+91+Q2(1__211;+_1\153)
o, 0+ M8y vo, a4y =0, i Mz 0 Nz 0
(3.6b) QO(—4+ %—%)4-91(1-%9—)4"@2(1_%“* Nr_h)
b 40 Lty =0, if M<0, NzO0;
3 P P oy ’
(3.60) QO(—4-—1\§11-+N£E)+Q1+Q2(1__2%)ma(HMrg_)
+Q4(1+Eh—r-—1¥-‘)=o, if M20, N<O;
(3. 6d) Q()(-4+-1\-f-rl +Nf")+ﬂl(1 ‘M‘QHQZH—%’;)
+Q3+Q4(1+Eh;-l\§-‘)=o, f M<O0, N<O.

Finally, we will develop simple difference equations by means of which
Q0 can be approximated at points of S which are not in AB or GH. Consider
first the four points (x,1), (x+h, r), (x,rth), (x, r-h), numbered 0,1, 2, 4,
respectively, in Figure 3.2(a). Letus try to determine parameters Qg O

Qys Oys Og such that

%y _ 1 2%y <_5_L/’
(3.7) <ar2 rgng’ >\ ag¥o t oy ¥yt o ¥pt oy ¥yt o\ o

\

In (3.7), expansion of z//l, z[/z and zp4 in Taylor series implies
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In this latter identity, setting corresponding coefficients equal yields
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Similarly, for the four points (x, r), (xth,r), (x,r+h), (x-h,r), numbered

o, 1, 2,3, respectively, in Figure 3.2(b), one has

4 L 2
h

L _ U . 1,2
(.8B) W~ TH AUz Vot Vit vt Y T ) W

for the four points (x,r), (xX,r+h), (x-h, 1), (x,r-h), numbered O, 2,3,4,

respectively, in Figure 3 .2(c), one has

L .. 4 1L 2 L =
(3.80) Y7 TV V=T 7 Vo G2 e Y2t 2Vt (RZF ane ) Vs

and for the four points (x,r), (x+h,r), (x-h, r), (x,r-h), numbered 0,1, 3,4,

respectively, in Figure 3, 2(d), one has

=i

1 4 l ] 2
(3.8d) 21Urr«? ’»Ur“‘?l’XX:‘g'ZWO*'E'ZlefHZ% H?ll/4+(

Note that the :..umbering of the points in Figure 3.2 is consistent with

that in Figure 3.1 .

4, The Numerical Method

Forfixed positive integer n, determine grid size h = “11; . Next, on and
within polygon ABC DEF GH (see Figure 2.2), construct and number in
the usual way [10] the set of interior grid points Rh and the set of
boundary grid points Sh . With regard to Rh and Sh , it will be assumed,
with very little loss of generality, that h can be selected so that 0ys Gy

Bys By By and v are integral multiples of h .

1
- 'r“) (?//r) 0
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We will aim at constructing on Rh + Sh a pair of finite sequences
of discrete functions

(4.1) (0) (1) (2 (k) (k+1)

v Y Y e ¥ Y

(4.2) Q0 ) @) k) gtktl)

with the properties that for some given tolerance ¢
k k+l1

(4.3) ‘w()_w( )l< €

(4.4) o) -t < e

at each point of Rh + Sh . Each function in seguence (4.1) and in sequence

(k)

(4.2) will be called an outer iterate and the particular functions ¥ and

Q(k) will be taken to be approximations on Rh + Sh to Y(x,y) and Q(x, ),

respectively.

(0) (0)

For the above purpose, we begin by defining ¥ and as follows.

(0) _

At each grid point in AH set v . At each grid point in BC, CD, DE,

EF, and FG, set 1,0(0) =1 . At each grid point in AB and GH , determine
1,0(0) from (2.6). "And on the remaining grid points in R}1 + Sh , determine

1//(0) by linear interpolation along vertical grid lines. At each point in AB

and GH, let Q(O) =8 (0) =0

.

, and on the remainder of Rh + Sh let Q

The second element of sequence (4.1) is now determined as follows.

(1) = 0 . At each grid point in BC, CD, DE,

At each grid point in AH set Y
EF, and FG, set z,l/(l) =1 . At each grid point in AB and GH, determine ([/(l)
from (2.6). Next, at each grid point (X%, r) in Rh, write down (3.1) with

Q. =ql®

0 0 The resulting system of linear algebraic equations is then solved
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by the generalized Newton's method [10] with over-relaxation factor rlp .

—1)

The solution is denoted by ¥' ', which is of course defined only on Rh .

The function z}/(l) is then determined on Rh by the smoothing formula

(4.5) w(l)=pw(0)+(l—p)?fm , 0=p=s1l,

thus completing the definition of 1//(1) on all of Rh + Sh .

The second element of sequence (4.2) is determined as follows. At

W,

each grid point in AB and GH, let Q At each grid point interior to

BC, interior to DE and interior to FG, use (3.8d) in the form

1) 2

- 1
(4.6) Qg = Znz [ —w(4’]

to approximate QO . At each grid point interior to CD, use (3 .8c) in the form

=) __2 _ AL
(4.7) Oy = gzpz [1-v37]

tp approximate QO . At each grid point interior to EF, use (3 .8a) in the form

(1)

s __2 _ WM
(4.8) Q =z -9 ]

to approximate QO . At C andat F set le)= 0. At D approximate

QO by

(4.9) 5 ho_ 0,0

1 h_ _ h_
o =2z L2t o -y oy (U oy )]

and at E approximate QO by

R LA R A AL
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Next, on Rh and at each point of Sh interior to AH determine a

system of algebraic equationsas follows. At each point of Sh interior to AH,

set
(4.11) Q(x, 0) = Q(x,h) ,

and at each point of Rh, write down the appropriate equation from (3 .6a)-

(1)

v 1
(3.6d), where ¥ is used for ¥ . Then, with over-relaxation factor r. ,

Q
solve the resulting system and call the solution 0 (1) .

Finally, determine Q(l) at those points of Rh + Sh where only ?2(0)

has been defined by the smoothing formula

(4.12) o) = U,Q(O) + (1 -u)g“z(” , Oup=s1,

thus completing the definition of Q(l) on all of Rh + Sh .
(1)

The numerical method then proceeds by generating z,l/(z) from §

(2) (2)

0
just as t[/(l) was generated from Q( ) and by generating from ¥

just as Q(l) was generated from z/J(l) . The indicated iteration continues

(k) (k)

until, for some K-, (4.3) and (4.4) are valid. Substitution of ¥ and
into the difference approximations of (2.1)and (2.2), to assure that these are

the solutions, terminates the method.

5. Examples.

We will try now to organize in some comprehensive way the large number of

examples run on the CDC 3600 at the University of Wisconsin.
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Convergent results were obtained easily for 10 = « < 500 with

oy = -p = - - - 1074 L
51_7_2,52..53_1, rw-—l.S,rQ~l.0, e =10 and h—lO

Unfortunately, the present choices of ¢ and h were dictated by economic
considerations.The resulting flows are all described qualitatively in Figure
5.1 . Quantitative aspects of the computations are given in Table 5.1 .
Note also that from time to time the channel was doubled in length to check

on the accuracy of the results,

Table 5.1
Ylou || e | M \I;ggget:}cl St xszrewnagicﬂm il'\cI;;tl;Zirs Running time
10 4 4 0.1 0,7 1.3 1,061,(0.9,0.7) 40 8 min 8 sec
50 | 15 4 | 0.1 0.8 6.7 1.109;(1.8,0.7) 70  |22min 18 se¢
100 | 25 4 0.11 0.8 13.5 1,119,(2.8,0.7) 70 40 min 5 sec
200 | 30 4 0.1 0.8 26.8 1,125,(4.9,0.7) 70 58 min 27 sed

It was hypothesized from the resultsin Table 5.3 that the length ¢ of the

vortex at F varied directly with the Reynolds number ® by the relationship

2 =0,134 ® .

The vortex at F in Figure 5.2 became so large for & = 500 that the

channel had to be modified in order to study flows for higher Reynolds numbers.

Thus, for ® = 500, 1000, 2000, 3000, 5000, 10000, and 25000, S,} was

eliminated in Figure 2.1 by setting a, = ¥ . The resulting two dimensional
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configuration is shown in Figure 5.2. The compuations proceeded with

. 1 -4
=7.5,'Y=Z.5, 62=63=1, §1=E,rw=1.8,rﬂ=l.0, E=10 ’

h = '1'1'6' , and with Poiseuille conditions

)

v=s8(l-2t%), Q=8

at exit EJ in Figure 5.2. For each Reynolds number convergence was ac?hieved
in fewer than 60 iterations and in less than 6 minutes of running time. For
® = 500 no vortex appeared at C, but for each successive choice of & a
small vortex did appear, as shown in Figure 5.2. And although the length of
this vortex increased with ® , it was still no greater in length than 0.0 for
® = 25000,

For still another type of channel, the problem for ® =10, which was
described in Table 5.1, was modified by the insertion of a 45° wedge, as shown
in Figure 5.3, the coordinates of K being (0, “l'). The method of Section 4 had to

be modified only in its approximation of O at points of CK and KF as follows. At
1 | | |

K, let (0O, 'Z—), (h, =), (-—h,z), (O’E—h) be numbered 0, 1, 3, 4, respectively, as shown

in Figure 5.4a, and approximate Q at K by

- 4
(5'1) Qoz EZ (4"’;1/1"?//3"27#4)-

If (x,r) is a grid point between C and K, let (x,r), (x-h, r+h), (x-h, r-h),
(x+h, r-h) be numbered 0, 6, 7, 8, respectively, as shown in Figure 5.4b,

and approximate { at (x,r) by

= 1
(5.2) Q, =Tzpz 1 -¥9
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If (x,r) is a grid point between K and F, let (x,r), (x+h, r+h), (x-h, r=h),
(s+h, r-h) be numbered 0, 5, 7, 8, as shown in Figure 5.4c, and approximate

N at (x,r) by

— 1
(5.3) QO = —;2—};'2'(1 —1[/8) .
, 1 1 i 1
If C is numbered 0, let (--2* -h, 1), (- 5 1 -h), (-‘E—h, 1-h), (—'é'+ h, L -h)

be numbered 3, 4, 7, 8, respectively, as shown in Figure 5.4d, and approximate
Q at C by

2

(5.4) Q, = 2

(1 - 7104) .

1
Finally, if F is numbered O and ( TE'+ h, 1), (',L;, 1 -h), (-;— - h, 1-h), (';: + h, 1-h)
are numbered 1, 4, 7, 8, respectively, as shown in Figure 5.4e, then

approximate § at F by

(5.5) 0, = h%(l -v,) -

The derivatives of (5.1)-(5.5) are completely analogous to those for
(4.6)-(4.10). The resulting flow is shown qualitatively in Figure 5.3. The vortex
extended to x = 1.5 and the maximum value of ¥ was (0.6, 0.7) = 1.064.
Convergence was achieved in 40 outer iterations and 9 minutes 49 seconds of
running time.

With those computingfunds which remained, it was decided to repeat
one of the previously run pn,blerhs but with a refined grid. The problem
selected was that described for & = 10 in Table 5.l. The only parameters

L
which were changed were h = -2"('), p=0.05 py = 0.85 and € =10
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Caonvergence resulted in 116 outer iterations and 97 minutes of running time.
The resulting flow is shown between X = -1 and x = 2.5 in Figure 5.4. The
small vortex at C is centered at (-. 55, .95) and has a length smaller than
0.05. The large vortex at F is l.35 units long and has a maximum Yy value
of 1.0529 at (0.95, 0.75). Itis also of interest to note that the same

(n)

-4 -6
streamlines result for both € = 10 and € = |0 ~ , because the ¥
sequence converges much more rapidly than the Q(n) sequence. Finally, we
observe that the construction of the small vortex at C implies that it existed

in all previously considered Figure 5.1 and Figure 5.2 type problems but that

1
a grid size of h = o was simply too coarse to detect it.

6.  Remark

Because the work in this paper is experimental in nature, it is necessary
that other workers in the field be able to reproduce our examples in order to
support or to refute our results. For this purpose, we are including in an
appendix the complete Fortran program used to calculate the flows for the

channel shown in Figure 5.1 .
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APPENDIX

Definitions of Main Program V aiables and Parameters.

PSI, W = stream function and vorticity vectors.
XL < XSL < XSR £ XR = left end of channel, left end of orifice

right end of orifice, right end of channel, resp.

D = width of channel at orifice (D < 1,0, max width)

H = grid size

M, N = number of vertical and horizontal lines in grid, resp.

OMEGAP = relaxation factor for PSI inner -iterations

OMEGAW = relaxation factor for W inner-iterations

XI, DELTA = weights for PSI and W, resp.

TOLP = tolerance for PSI inner- and ouyer-iterations.

TOLW = tolerance for W inner- and outer-iterations.

TOLTEST = number of outer-iterations between tests for problem convergence.

TOLTESTP = number of PSI inner-iterations between tests for convergence.

TOLTESTW = number of W inner-iterations between tests for convergence.

ITERMAX = mé\ximum number of outer-iterations for both PSI and W .

ITERMAXP = maximum number of inner-iterations for PSI.

ITERMAXW = maximum number of inner~iterations for W .

WRTP = number of outer-iterations between commands to write stream
function and vorticity vectors on tape. Must be multiple of
TOLTEST .

Program switches

PCONV = L , if PSI outer-iterations have converged.
TAPEUSE = |, if PSI and W are to be saved on tape.
INPTAPE = |, if PSI and W are to be initialized from tape.

RET = return address from W relaxation-coefficients block.
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PROGRAM NS5

04723768

NIMENSION LST(161,21),W(161,21),PSISAV(161,21),WSAV(161,21)
CQMMON/PARAMS/ M)N)Mi;MSLpMSRpMRDMSLplnNB!NSTnMP:NP!XSL;XSR)XL,

1 H,MS.D

__TYPE INTEGER TOLTEST,TOLTESTP,TOLTESTW,RET,WRTP

TYPE LOGICAL PCONV,TAPEUSE, INPTAPE

C  READ INPUT,
READ 901, NPROBS

901 FORMAT(IS)
pg 70 IPRQOR =1,NPROBS

READ 904, XL:XSL:XSR;XR:D:H:OMEGAP,OMEG

904 FORMAT(10F5,2E5,EL10)

READ 906, MP»NP:ITERMAXnTOLTESToITERMAXP:TOLTESTP;1TERMAXN.
1 TOLTESTW,TAPEUSE, INPTAPE,WRTP

AW,X1,DELTA,TOLP,TOLW,R

906 FORMAT(815,2L5,15)

.
C COMPUTE INITIAL PARAMETERS.
XCH=EXR=XL

XCHL=XSL=XL
XCHR=XR=XSR

XS=XSR-XSL
MEXCH/H+1,.5

M3L=XCHL/H+1.5
MSR= (XSR=XL)/H+1,5

MS=XS/H+1,5
MR=XCHR/H+1,5

MSLP1=MSL+1
MSL1=MSL~-1

MSRP1=MSR+1
MSR1=MSR-1

N81.0/H+1,5
NB=D/r+1.5

NEPlzsnNB+1
NE1sNHE-1
NST=NB
Mi=M=d .
Ni=N=-1
NPTSsH*N=(MS=2)*w(N~NB)

H2sH*H
_ Hé4sH2wHZ

cP00=1,-OMEGAP
 £P0=z0.25%0MEGAP

CAD0=1.0-QMEGAW
CWs5=2./H2

CWwe=1./(DaD¥HZ)
. .. CA7=.B%H/D - -

CiB8=2.%CHWb

e .  CH932./HY e e

CWil=.5«R/H
Cwill=1l,/HE

R2=0.5*R
Cw=1,V
X11=1-'XI
— . DELTAL=1.-DELTA e
RUAXSRMAXPSVEL1.E*5
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1TEH=1TUL=0 ) o

¢ PRINT INITIAL PARAMETERS,
PRINT 909, XCHs XCHL » XCHR» XSsCWsDsH,Ns M, NPTS,OMEGAP , OMEGAN,
L TOLP.TOLWs (OLTEST, [TERMAX e o -
909 FORMAT(1H1,10X,13HPROBLEM NO, 5,10X,51HNAVIER-STOKES EQUATIONS FOR
1 FLOW THROUGH AN QRIFICE //
2 20X,L19HLENGTH UF CHANNEL 2,FB844,31H WITH LENGTH TO LEFT OF STEP.
23,F8.4 / 49X, 29HAND LENGTH TO RIGHT OF STkP =,F8.4 /

2 58X,20HAND LENGTH OF STEP =,F8.4 /
3 20X,22HWIDE PART OF CHANNEL =,t8.,4 / .
4 20X,24HNARROw PART OF CHANNEL =,F8,4 /

4 20X, 15HGRID SIZE (H) =,F10.6 /

30X, 25HND. OF WOROZONTAL LINES =,15,28H AND NO. OF VERTICAL LINES
z,15 / 20Xs,19HTOTAL GRID POINTS =,17 /

5

6

7 20X, 39HRELAXATION FACTOR FOR STREAM FUNCTION =, F6,2 /
7 20X, $3HRELAXATION FACTOR FOR VORTICITY =,F6.2 /
8
8
9

20X, L19HTOLERANCE FOR PSI =z,E10.,1 / 20X,1/HTOLERANCE FOR W =,E10.1
/ 20Xs43HTOLERANCE TEST CYCLE FOR QUTER-ITERATIONS =15 /
20X, SOHMAXIMUM NUMBER OF ITERATIONS =,16 )

PRINT 9091, ITERMAXP, TOLTESTP, I TERMAXW,TOLTESTW,R,X1,DELTA

5091 FORMAT(20X,43HMAXIMUM [TERATIONS FOR PSI-INNER-ITERATIONS, 16 /
20X, 47HTOLERANCE TEST CYCLE FOR PSI INNER-ITERATIONS =,16 /
20X»41HMAXIMUM ITERATIONS FOR W~INNER-ITERATIONS,16 /

20X, L7HREYNOLDS NUMBER =,F10,2 /
20X, 25HWEIGHTING (X1 ) FOR PSY =F6,2 /

1
2
S 20X,45HTOLERANCE TEST CYCLE FOR W INNER-ITERATIONS =,16 /
4
5
6

20X, 25HWEIGHTING (DELTA) FOR W =,F6.2 //)

]

¢ INITIALIZE VECTORS W AND PSI,
L IFUINPTAPE) 5.8 e
C INITIALIZE FROM INPUT TAPE.

e) REWIND 5

DO 6 J=1.N
READ (5) (PSIclsd)alzmi M)
ng 7 JsisN

_READ (5) (W(T,J)»121,M) L R
G0 70 9

C INITIALIZE BY STANDARD PROCEDURE,

8 CALL INITS(WsPSI)

€ PRINT IWITIAL VECTORS W AND PSI,
9 PRINT 911, [TER,RMAX
911 FORMAT(///10%,16HAT ITERATION NO,,16,20H MAXIMUM RESIDUAL =.E12.4 .

1 /20X»15HSTREAM FUNCTION)
CALL PRTIMAT(PSI)

PRINT 912
912 FORMAT(//20X,9HVORTICITY ) - o
CALL PRTMAT (W)

REGIN MAIN LOUP.,

[oReloNeRe!

TEST IF VECTORS TO BE SAVED ON TAPE, .. . . .
10  IF(TAPEUSE .AnD, ITER.NE.O) 1005,101
1003 PisCITER*QI/ZWRTIP e
P2z (11ER+0.)/WRTP
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[F(P1 «NE, P2) GU TO 101
REWIND 5
po 10405 J=i.Mh

1005 WRITE (5) (PSICI,J),1=1sM)
ny 1006 Jsl,N [ U —
1006 WRITE (5) (aCIad)slz1,M)

101 ITER=1TcR+1
1TOL={TOL+1

DO 102 J=2,N1

B N0 102 [=2.M . i
102 PSISAV(I,JI=PSI(1,J)
105 RMAXP=1.E94 . o

ITERP=D
106 170LP=0

12 ITERP=ITERF~+1
. ... 1toLp=1TOLP+1
IF(ITOLP ,LT. TULTESTP) 15,20

C SWEEP STREAM FUNCTION IN REGION BELOW STEP.
15 DO 16 J=2,NB1
cPJ=J-1
— __CPJ1=z2.%CPJ e
CPJ2=CPJ*CPJ

_CPR=(CPJ1=1,)/CPul
Ce4=(CPJL+1.)/CPJL
Dg 16 [=2,M1

16 PSI(IoJ)=CP00'PSX(!»J)#CPO~(PSI(I¢1.J)+CP2tPSI(I.J*i)*PSI(I—laJ)
71 +CP4wPSI1(],J=1)+CPJ2wHd%u(l)J)) [ R
¢ SWEEP STREAM FUNCTION IN UPPER REGIONS TO LEFT AND RIGHT OF STEP.

- .. D2 18 JzNB.NL S e e
cPJ=J-1
CPJl=d.*CP.J
CPrJ2=CPJ*CPJ
N - CP2=(CPJL=1.)/CPJL _ e e

CP4z(CPJ1+1.,)/CPJL

. _....Dho 17 1=2,MSL1 , S
17 PSI(I:J)=CPOU*PSI(I:J)*CPU*(PSI(!+1,J)*CP2¢PSI(I’J+1)*PSI(I'13J)

1 *CP4*PSI(1:J‘1)*CPJ2*H4*N(IAJ’)
Do 18 1=MSRP1,M1
law_mg§J113415QEgg38§J(I,Jligﬁo*tPS!(!*1.4)+CP2*PSI(I,J+1)+PSI(L111J)
i *CP4'PSI(1:J'1)*CPJ2*H4*W(I;J))
. ..Gn T0 12 . e e

C

29 RI1AX1P=0,0

c SWEEP STREAM FUNCTION 1IN REGION BELOW STEP AND COMPUTE RESIDUALS,

. .DD 22 J=2,NB1 U , R . e
crRJ=J-1
BLEREET I 14 N A ———————

cPJ2=CPJ*CPJ
cp2s(cPJi=1,3/CPJ3
cPas(CPJL1+1,)/CPJY

Do 22 1=2,M1 . . . VIS
P5S1QLD=PSI(I,J)
e , .. P3INEW =CPUQ*ESJ(L;JliQPQ:LPSl(I*lLJl+C92*PSI(I’J+1lt3§i(I'lJJ’

"1 wCP4*PSI(1,J=1)*CPJ2xH4vW(12J))
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Pl (L, J)=PSINE
RESSAHSF(PSINgW-PSIOLD)
I {F(RE3 .GT., RMAX1P) 215,22
215 RMAX1P=RES
22  CONTINUE o -
¢ GWEEP STREAM FUNCTION IN UPPER REGIONS TO LEFT AND RIGHT OF STEP,
C  AND COMPUTE RESIDUALS,
DQ 25 JsNB,N1
chJ=J-1

CPJLl=2.¥CPJ

CPJ2=CPU*CPY
cP2=(CPJ1=1.)/CPJY
P4z (CPJ1+1.)/CPJL
Do 24 1=2,M5L1
PS1OLU=PSItI.J)

PSINEA =CP00*PSI(I:J)tCPO*(PSI(I+1.J)*CP2*PSI(I,J+1)+PSI(l*l:J)
4 +CP4*PSI(1,J=1)+CPJ2*HA*W (L) J))
PSI(1,J)=PSINEW

. RES=AHSF(PSINEW-PSIOLD)
IF(RES .GT. RMAXLP) 235,24
235 RHAXLIP=RES
24  CONTINUE
po_ 25 [=MSRP1,M1
PSI0OLND=PSI(IsJ)
. PSINEA_ =CPO0*PSI(1,J)+CPO#(PSI(1+1,0)+CP2#PSI(],J+1)+PSI(1~1,J)
1 CPA*PSI(I,J=1)4CPJ2*HA*u(1,J))
PSI(]sJ)=PSINEW
RESzASSF (PSINEW=-PSIOLD)
o IF(RES .GT. RMAXIP) 245,25
245 RMAX1P=RES
25 _CONTIMUE | e
RMAXPZRMAXLP

¢ TEST PS1 INNER-ITERATIONS FOR DIVERGENCE.
 1F(RMAXP.GT. 1.E%5 ) 32,35 L
XY~ PRINT 9017, RAAXP,ITERP
9017 FURMAT(//T77H wwwxs DIVERGENCE IN PSI-INNER-JTERATIONS, PROBLEM AB
1ANNONED. MAX RESINDUAL =3E15,6,8H AT ITER,16 )
MP=NP=1
PRINT 9009
9009 FURMAT(/ 20Xs20HSTREAM FUNCTION, PSI ) o .
CALL PRTMAT(PSI)
 __PRINT 9050 o
9050 FORMAT(/ 20X,»12HVORTICITY, W )
CALL PRTMAT (W)
GO To 70
¢ TEST PSI_INNER-ITERATIONS FOR CONVERGENCE» I
35 IF(RMAXP.LF. TOLP) 40,45
40  PRINT 915, ITERP,TOLP,RMAXP,ITER .. . __
G135 FORMAT( 26H wwwww AT INNER=1TERATION,16,10H TOLERANCE,E10.1,
1 344 SATISFIED wITH MAXIMyM RESIDUAL z,E15,6,10H FOR PSI1(,15,1H))
o WETGHT STREAM FUNCTION IN INTERIOR,
DN 402 J=2,NBL
ny 402 1=2,M1
402 PSI(I1sJ)3XI*PSISAV(I,J)+X[1#PSI(],J) o
DO 404 JsnNR,N1
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DU 4nd 132,481 -
403 PSI(I.J)=XI*PSI$AV(I.J)+X11*PS!(I.J)
Ny 404 [sMSRPL,H1

404 ' PSI(T1+J)=X1*PSISAVL, )+XT1*PSI(1,J)
IFCITOL.LT, TOLTEST) 50,405 . e
405 1T0L=0
IF(ITER .EG.1) 60 TO 50 . __
RMAX1=0,0

c COMPUTE OUTER-ITERATION RESIDUALS FOR STREAM FUNCTION.
e .._.DD 415 JE2.NB1_ e
0on 415 [=2,M1

RESEAaSF(PSI(IoJ)-PSISAV(I.J))

IF(RES .GT. RMAX1) 44,415

41 RHAAX1=RES

41% CONTINUE
maﬂﬂﬂl_J=NB»N1

DO 422 [=2,MSL1
RES=ABSF(PSI(],J)=PSISAV(I,J))

IF(RES .GT. RMAX1) 42,422
42 RMAX13ZRES

422 CONTINUE
D043 1=MSRP1,M1
RES=ASSF(PSI(1,J)=PSISAV(I,J))
o ___1F(RES .GT. RMAX{) 425,43 o
425 RMAX1=RES
43 CONTINUE

RMAX=RMAXPSV=RMAX]
o — S
c TEST PSI QUTER-ITERATIONS FOR DIVERGENCE.
S [F(RMAX .GT.1.E+5 ) 432,435
432 PRINT 9432, I[TER,RMAX
9432 FORMAT(//56H wwwww DIVERGENCE IN STREAM FUNCTION AT QUTER-ITERATI

10N, 16,20H MAXIMUM RESIDUAL s,E12,4 )
MRsNP21
PRINT 9009
CCALL PRTMAT(PSI) . . I
PRINT 9050

CALL PRIMAT (W)

GO TO 70
. .t _TEST PS1_OUTER=ITERATIONS FOR CONVERGENCE. R
C 1F CONVERGENCE» GO TO COMPUTE AND TEST VORTICITY.
.. .. 435 _PLONVE=O e U
IF(RMAX .LE. TOLP) 440,448
440 PRINT 9440, [TER,TOLP,RMAX

944n FORMATC  26H  #ww AT OUTER=ITERATION,16,14H. PSI-TOLERANCE,E10.1

74 ,344 SATISFIED WiTH MAXIMUM RESIDUAL =,E15.6 /) . ...
PCONV=1

SN o GQ TO %0 e O

c FUR _VORTICITY CumMPyTE OyTER-~ITERATION RESIDyALS EVERYWHERE EXCEPT

c LEFT AND RIGHT BOUNDARIES.
— 4402 RMAX1=0.0 i
DU 441 J=1,NR
e Do 441 1=2,M1 . e
RESSABSF(W(I»J)=WSAV(I,J))
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TF(RES .GT. wMAX1) 4405,941

4405 RMAX1L= ZRES
44}

CONTINUE

no 443 J=NBP1,N

Ny 442 1=2,M5L —

RESZABSF(W(IsJ)=HSAVEI,d))

[F(RES. .GT. RMAX1) 4415,442 i - L

441% RMAX1=RES
442

CUNTINUE

443

DO 443 1=MSR, M1
RESZABSF(W([,J)-WSAVEL,JY) -
IFCRES .GT. RMAXL) 4425,443

4425 RMAX1=RES S

CONTINUE
RMAX=RMAX]

e
C...

TEST VORTICITY QUTER- ITERATIONS FOR DJVERGENCE.

1F (RMAX .GT 1.E+5) 4432,4435

9532 FORMAT(//SOH ‘wexw® DIVERGENCE IN VORTICITY AT QUTER~- ITERATION, 16,

1 20H MAXIMUM RESIDUAL =,E12,4 )

MP=NP=1
CPRINT 9009

CALL PRTMAT(PS])
 PRINT_ 9050

CALL PRTMAT(W)
GO 10 70

oL

TEST VORTICITY QUTER-ITERATIONS FOR CONVERGENCE.,

[F CONVERGENCE, AND I1F PSI HAS CONVERGED, SOLUTION QBTAINED. S

4435 I[F(RMAX JLE. TOLW) 4439,445
4439 PRINT 9443, ITER,TOLW,RMAX o
9443 FORMAT(  26WH  #ww AT OUTER-ITERATION,I6, 190 W-TOLERANCEsE10.1

{1 ,34H SAT]ISFIgD WITH MaXIMUM RESIDUAL =,E15.6 /)

o 444 M

[F(PRONV) 444,48

ipP=nNPsy -
PRINT 9009
CGCALL PRTWAT(PSX) e .
PRINT 9050

CALL PRTMAT (W)

o SAVE SOLUTION ON TAPE, IF REQUIRED,
4441 1F(TAPEUSE) 4442, 70 o o
4442 REWIND 5
o L DI} 4444 J3l:. N . .
4444 WRITE (5) (PSI(I,J),1=1,M)
- no 4445 Jsi,nN
44458 WRITE (5) (WllsJd)al=1,M)
B ) Go T0 .70 . B L
» TEST IF NAXIMUM OUTER ITERATIONS &XCEEDED.
_ 44% PHINT 9445, ITER,RMAX e
9445 FORMAT(26H whw AT OUTFR !TERATION:16;34H MAXIMUM RESIDUAL FOR
{VORTICITY =,E15.6 /) —
IF(ITER .GE. [TERMAX) 447,48
447 _PRINT 913 . - R
913 FORMAT(//6BH *wxsw MAX IMUM NUMBER OF OUTER=-ITERATIONS USED., ABAND

104 PROBLEM. ) . .
MPENP=1
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PRINT 9009 ;
fALL PRTMAT(RST)

. PRINT 9050

04723768

caLL PRTMAT(w)
Gu TQ 4441
c
448 PRINT 9448, [TER,RMAXPSY .

944 FORMAT(26H %%« AT QUTER=-ITERATION,[6,40H MAXIMUM RESIDUAL FOR

1STREAM FUNCTION =,E15,6 /)

GO To 50

c TEST IF MAXIMUM_PS! INNER-ITERATIONS EXCEEDED. .

45 1F(1TERP.GE. ITERMAXP) 47,106
47 . PRINT 9013, RMAXP,1TERP

9013 FORMAT (/7 BAH wxwww MAXIMUM NUMBER OF INNER-ITERATIONS USED FOR S

1TQREAM FUNCTION, MAXIMUM RESIDUAL =F12.4,8H AT [TER,[6 )

MP=NP=1

. .. PRINT 9009

CALL PRTMAT(PSI)
PRINT 9050

CALL PRTMAT (W)
6o To 70

(]

48  PRINT 9009

CALL PRTMAT(PSI)
CPRINT 9050 __ -

CalLL PRTMAT (W)
PRINT 9480

¢ RBLOCK T COMPUTE CW-COEFFICIENTS FOR yORTICITY,

e !

9480 FORMAT(///)
60 T0 10

4800 AS(PSI(I,J+1)=PSI(l,J-1))#CW10%CW12
Ra((PSI(I*1,J)=PSI(]=1,J))*CW10+3,+CA13)*CW12

1F CA LGE. 0.) 4851,4855
_ 4891 1F(B  .GE. 0.) 4852,4853
4852 CWl=4.0+A+B
ciH1=1.0 .
CwWw2=1.".5%CuW12+8
CWld=l,+A

Cwdsl.+.54CW12
gu. Ta 4860 . . .
4853 CW0=4.0+A=B
_CWi=1.0
CVJ2=10-05*CW12
CWd=l.*A

Cw4zsl.+.5#CWl2-3

_ . . GO Y0 4860 _ __

4855 1F(B .GE. 0.) 4856,4857
_ 4854 CwWD=4.0=A+8B
C"‘1=100'A
CN2=10'15*CN12*B

CW3=1.0
CHds1.+.5%CwWl2
GO TO 4860
4857 CW0=4.0-A-B ; . R
cwiz=1.0-A
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C4221.~.,5%Cald

C43=21.0
Cwas=1.+.5%0nWl2"t

4860_C~0 OMEGAW/CwD _ L

G) TO (525,53,54,639, ,6403,648), RET

¢ - . S .
50 RMAXW=1.E91

G SAVE VORTICITY OF PREVIOUS QUTER=JTERAT]ON.

DO 502 J=i.N
nya 502 [=1-M
502 WSAV(1,J)=W(l,J)
¢ CUMPUTE VORTICITY ON TOP AND BOTYOM BQUNDARIES FOR THIS OUTER=ITER.
C  THE LINE AB.
no 5081 1=2,MSL1

5021 W(I,N)= CwdS*(1.-PSI(1,N1))

e £ THE LINE CDo - o

no 5022 I=sMSLPL1,MSR1
_,ﬁﬂag_W(I’N&l=cwaf£Lo‘PSI(I:NBl)) _ R
C THE LINE EF.
no 5023 1sMSRP1,M1

5023 W(IsN)= CWO*(1,-PSI(I,N1))
6 THE LINES €B AND ED, _
DO 5024 J=NBP1,N1 o
Kz J=-1

Culd=l./ (KK*KK)
W(MSR,J)=(1.,~PS](MBRP1,J))wCWO¥CW]id

5024 W(MSL»J)=(1,~PSI(MSLL1,J))+CWIwCW14

DO 5025 l=2,M1
5025 W(l,1)=Wel.2)

"+ THE CORNER POINTS C AND D,
W (MSRsNB)ZCHO* (2. +CW7 = -PS1(MSRP1,NB)=t1.+CH7)*PS]T(MSR,NE1))

€ _THE LINE HG, o

W(MSLsNB)2CWo%w (2, +CW7-PST(MSL1aNB)=(1.+CW/)*PST(MSL,NB1))
e . .. St .
C REGIN VORTICITY INNER-ITERATIONS,
__1TERW=0 S U
505 ITOLW=0
506 _JTERWSITERW+1

ITOLW=ITOLW+1
. IFCITOLW LT~ TOLTESTW) 507,68 . .
¢ SWEEP VURTICITY IN INTERIOR,
€ THE RECTANGULAR REGION BELOW THE STEP, - R
507 RET=1
DO 525 J=2,NEB1

C412=1.70J-1)

Do 525 1=2,M1
G0 _Tn 4800,

525 W(l1,J)ECWOO#W(T, J)*CWO*(CWimW (41, )+CW*W(I, J+1)+CW3wYW(T=1,J)
1 o CWa*W(],J=1))

CW13zCwllwCwi2eCwl?2 e

C  THE RECTANGULAR REGION ABOVE THE STEP ON THE LEFT.
- D053 JaNB,N1
RET=2
_Cwi2z1./04-1)

CW13=CW1lwCwi2+CW12
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40 58 [=2,MSL1
GO Tn 4800
53 W(1s,J)=CWO0wh(1,J)+CUOw(CHlwh(lel, JY+CH2wW (], J+1)+CHIwN(I~1,J)

1 + CWawiw(l,J=~1))
c THE RECTANGULAK REGION ABUVE THE STEP ON THE RIGHT.
RET=3
DO 54 I=MSRPL,M1
60 TC 4800
54 W{lsJ)SCWOO*W (L, J)4CWOM(CWI*W( T+, )+CWR*W (], 1) +CWI*W(]~1,J)

1 « CWédxwW({l,u=1))
- B%  CONTINUE

GO TO 506

"¢ GWEEP VORTICITY IN INTERIOR AND COMPUTE RESIDUALS.
63 RMAXIWNZS0,0

C THE KECTANGULAR REG]ON BELOW THE STEP,
RET=4 -
DO 640 J=2,NB1L

_Cwi12=1./¢J-1) o
Cwid=CWliwCwi2wCwWi2

no 640 [=2,M31

GO TO 4800

o 639 WOLD=W(l,J)

WNEW =CWOO*W(T,J)+CWOW(CWIwW(T+1,J) tCW2*W(],J+1)+CW3eW(]I-1,J)
1 *» Cwa*W(l,J=1))

W(I,J)SWNEW
RES=ABSF (WNEW=WQOLI)

I1F(RES GT.RMAX1W) 6395,640
6395 RMAXIw=RES
640 CONTINUE .
€ THF RECTANGULAR REG|ON ABOVE THE STEP ON THE LEFT.
DO 651 J=aNBsN1
FeET=S

Cwi2=1./7¢4-1)

no 641 [=2,MSL1

GO TO 4800
6403 WOLD=w(],J)

WHEW  SCWOUYW{],J)*CWO*(Ciygww(l+y, ) +CWwW (], J+1)+CWS*w(]~1,J)

1 + CHe*W(l,u=1))
WCLaddSWNEW — S
FES=ABSF(WNEW=WOLD)

. 1F(RES .GT.KRMAX1W) 6405,641 A B

6405 RMAXLIW=RES
641 CONTINUE

9 THE RECTANGULAR REGION ABOVE THE STEP ON THE RIGHT.

RET=6 e e

DO 650 IsMSRPL,M1
GO TO 4800 e e e e
648 wOLD=W(],J)
WNEW  SCWOU*W(T,J)*CWOw(CWivW (] +1, ) +CHR*N(],J+1)+CHI*W(I-1,J)

1 « CWaww(],J=1))
_WCLaJISHNERW .
RES=ABSF (WNEW=WQLD)
IF(RES .GT.RMAXIW) 649,650 e
649 RMAX1IW=RES
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650 CUNTINUE
651 CUNTINUE
RMAXWIRMAXLW

(e Ne}

TEST vOrRTICITY INNER'ITERATIONS FOR DIVERGENCE.
TF (RMAXW.GT, 1.E+5 ) 665,666
665  PRINT 9665, HMAXW.ITERN . . L
g665 FORMAT(// BSH wwwwws DIVERGENCE IN W=ONLY ITERATIONS. MAX RESIDUAL
1 =,E12.4,8H AT ITER,16 )

HP=NP=1

PRINT 9009

CALL PRTMAT(PSI)
PRINT 9050

CALL PRTMAT (W)
60 10 70

C TEST VORTICITY [NNER-ITERATIONS FOR CONVERGENCE,

€ 1F GONVERGENCE, THEN WEIGHT AND GO TO TEST OUTER-ITERATIONS.
666 IF(RMAXW .LE. TOLW) 67,675
67  PRINT 9067, UTERW,TOLW,RMAXW,[TER

9067 FURMAT( 26H wwwww AT INNER=ITERATION,16,10H TOLERANCE,E10.1,
1 $4H SATISFIED WITH MAXIMUM RESIDUAL =,E15.6,8H FOR W(,I15,1H) /)

o WEIGHT VORTICITY EVERYWHERE EXCEPT LEFT AND RIGHT BQUNDARIES.
Na 6715 Js1.NB
DU 6715 1=2,M1
4715 W1, J)=DELTA*WSAV(I,J)+DELTALwW(L,J)

NG 672 J=NBP1,N
ng 6717 1=2,M8L

6717 W1, J)=SDELTA*WSAV(L,J)+DELTALwW (], ))
ng 672 [=MSR.M1

572 Wt1,J)SDELTAYKSAV(!, D4DELTALwW(],J)
[FCITUL LEQ. Q) 4402,10

¢ TTEST IF MAXIMUM VORTICITY INNER~ITERATIONS EXCEEDED,
675 IF(ITERW LGE.ITERMAXW) 677,505

677 PRINT 9677 , RMAXW, [TERW

9677 FQRMAT(// BOH wwexe MAXIMUM NUMBER OF ITERATIONS USEL FOR W-INNER_
1-1TERATIONS., MAX RESIDUAL =,E12.4,R8H AT ITER,I[6 )
Hn“P NP 1 - .
PRINT 9009

CALL PRTMAT(PSI)

PRINT 9050
CALL PRTMAT (W)

el

C  END OF MAIN 1LOUP
70 CONTINUE
STOP

END







