A SELF-DIRECTING TEACHING PROGRAM THAT
GENERATES SIMPLE ARITHMETIC PROBLEMS

Jonathan D. Wexler

Computer Sciences Technical Report #19

May 1968

Abstract

This paper describes a digital computerl program (COACH)
written in extended Algol that is currently operating on the Burroughs
B55600. The program automatically (1) generates its own problems in
simple arithmetic, (2) evaluates responses to questions by students,
(3) provides hints when possible, and (4) uses probability switches
and the student's past history in order to decide the type of question
to ask him next.

The specific topic metrics, problem generation methods, and
teaching strategies used in COACH are explained in detail. The
program operates in a dynamic environment in which teletypes are used

for communication between the student and the computer.

Introduction and Background

Program Operation

Table of Contents

page

5000000080000 0000060000U00D00G6OGCOCGEO0GCOO O

O8O BB OEU GO0 0T0606000G000E0O0000C0DE 00066 G 0BG 6 O

Levels of Difficulty and Ranges © 808500060068 c00060600c0060000ce.s

Teaching Strategies

4,1

4.2

oooou-oosaooooaoacneaaoooouoaoooaoo.eo.oo

Acceleration Factor

Special Question Lists

@9 0000600 DLG0O00 S0 B G00ODGO OGO DO DO B O

Probability Switches and the Flow of Control s asceccse

Metrics and Generators

6,1

6.2

Answer and Hint Modules

Miscellaneous Features

8.1

8.2

8.3

¢

® 0" 00 00O 0D OO OO0 0T OO0 0000000 G O

6,1.2 POSItioN SCOIES 4o oveoooecosocaoccooesssseses

6.1.3 Operand Difficulty SCOTES u e oooeoovoonsosnsne

6.1.4 Problem Difficulty SCOTES .« veveocecceocoessnn.

QUeStiOn Genefators P55 0000090000000 G00000G60CGCOGECESEOOVEGEGD

6.2.1 The Question Generator for Addition Problems ...

6n202 The MAKENUM Routineoaoooiooooooaaoe.aao-to

$ 0090000 0PPOECE0O000000000C G020 0GCG6G0O0O0COG O

D 6060030600000 00©0000COCOLEO 6 S00OC060GCD0OCOCGOCSE

'I‘hePrac.ticeOptionQG00GODOQOOBQO.D.O000"000000000000

The Monitorprinter ©© 6000000006060 00C00O0GGEOGEODOODOS0GGCGE 6 0 0

Control Mode Options

© 0 00 000000000000 00000000000 TO00G6 D @

1
2
6
8
10

12

19
19
20
20
20
21

22

27
30
34
34
34

35

8.3.2

8.3.3

8.3.4
9. Current Results .,
10. Conclusions
11. Acknowledgements
12, Bibliography.....

Appendix A

Appendix B
Appendix C

Appendix D

Table of Contents (Continued)

page
Setting Probability SWitCheS . .cevevecececcccesss 35
Setting INCREMENTSPERLEVEL 400 ceoccoocccesse 36
Recovery Procedurecocceceoecsoccocccocss 36

DebuggingAidS @9 @00000000C0000C0O00606QQO0000O0OCO0OQCEG QO 37

© 0@ 200060000 060C0006000a@0000OCO0 600 O0D000CGCOCC O 0COCOOG G O 38
aoeaoanoooonu-aeeoaeuocaooneoaaoao-oooooocoe4‘1
oaoaoonooeoouae-uooacooenoneoooeoooeaoonen-4.‘3

© 006000000 20000009000000MO0OCO6®00GCO0OC0 G 0000GCOCOCGOCOCG O 44

Special Conventions in COACH . cvvoeeoocnoonnn 45
A1 String/List SIOTAGE . .veoocccceccccoccsss 45
A.2 Internal Representation of Questions 46

A.3 TFormat Specifications for Teletype
Questions -BBQOOQOQGOOOOQDBOG0000&0..00049

Student/Teacher Operation of COACH +vevvvevea. 52
Sample Teletype OULPUL v vveeocecoosoccocaceses 55

Sample Monitor Printer OULPUL o ovocoocccocessss 60

1. Introduction and Background

The use of digital computers in instructional environments provides
an opportunity to study explicit teaching strategies and to help students
learn course materials on an individual basis.

Early work in programmed instruction on teaching machines con-
centrated on the construction of specific sequences of question and
subject matter frames., Much of the recent work in CAI (Computer Assisted
Instruction) continues along the same lines, although the frames for
questions and information are now stored in computers instead of teaching
machines. Special purpose languages (e.g. PLANIT, reference 1) have
been developed to facilitate the construction of frames and to allow a
more sophisticated analysis of student responses,

There is a one to one correspondence between the questions the
computer can ask a student and the questions explicitly constructed for it
a priori., Frame sequences containing these questions must be written
with certain "typically average" students in mind. This in turn limits the
sensitivity of the computer to individual differences, which is undesirable.
If a student needs more practice in some special area he will be limited by
the finite size of the question pool for that area,

It is natural to consider the idea of having a digital computer in a
student/computer environment automatically generate additional
appropriate questions when needed, however, there has been relatively
little work done on this subject. In an earlier monograph (reference 3),

Smallwood used a statistical model to deal with the problem of selecting

the next question or information frame from among several specific
possibilities, however this is considerably different from the generative
problem.

A subsequent paper by Uhr (reference 4) dealt with some of the
problems associated with automatic question generation in very simplified
situations. This paper is the most immediate precursor to the present
report and has influenced the design of COACH.

In order to gain familiarity with the organization and techniques that
might be useful in an automatic instructional environment, a well
strzﬁctured problem domain was selected for stydy, namely arithmetic.

The program (COACH - Constructed Arithmetic and Controlled Help)
described in the following pages constructs its own questions for
arithmetic using pre-selected topic metrics and a generative technique
which is explained in detail. An attempt has been made to have the
internal organization as modular as possible in order to clearly delimit
specific areas. By giving the program (i.e. the system) the capability of
generating its own problems the limitation of a finite question pool is
removed. It is also possible to examine and alter specific teaching

strategies as well as handling deep remedial sequences automatically.

2. Program Operation

The student is initially asked to choose the course or courses for
which problems should be generated. He specifies a level of difficulty

for each course, which is a digit from 1 to 8. Examples are given in

Figure 1 of the types of problems generated by the program for various

levels of difficulty.

Addition Subtraction Multiplication Division
Level 2 86 822 20 63/7
+ 69 - 651 x_ 8
DS=32 {30-33) DS=50 (50-~53) DS=21 (20-22) DS=60 (60-64)
Level 4 648 7124 974 455/35
22; - 6960 x 37 DS=156 (150-155)
+ 827 DS=102 (100-108) DS=87(80~84)

DS=123 (120-123)

Level 6 5222 21013670 7977 5778/835
2280 - 3517521 x_679 DS=270 (260-268)
5820
2222 DS=240 (240-245) DS=155(150-155)
2600
+ 694

DS=207 (200-205}

Level 8 72601 6662229525 329991 602826,/42002
62915 - 2008176872 x_41206
280255 DS=414 (400-430)
600682 DS=352 (350-365) DS=267 (250-254)
+ 251212

DS=356 (350-355)

Sample Problems with Associated Difficulty Scores and Ranges

Figure 1

The difficulty score of the level 2 addition problem in Figure 1 is 32.

The numbers in parenthesis indicate the range of difficulty which the

generated problem should fall in,
After making his selection (s), the student is presented with a
~ series of problems. If he chooses all four types at level 1 he would

receive a sequence of problems like those in Figure 2,

8 4 6 6 51 4
-5 +6 -1 +6 -6 9/3 x1 +6
10/5 52/2 52 16/2 50 50 26 20
—6 4 -25 -9 44
57/3 9/3 5 67 84 57/3 56/7 522
X2 -42 -66 -77
50 218 11 56/17 568 860 14 5
+55 -4 +21 -168 -559 +24 x4
80 624 770 30 690 46 4 44
+45 -616 - 73 +69 -178 +48 +6 +78
27/9 28/7 861 5 8 4 27/3 576
=720 x1 X2 x1 ~-534
756 28/7 72/12 678 577 34/17 66/22 120/60
- 573 -322 - 4
968 60 28/4 78 79 33 21/7 96
- 342 x37 +26 x11 x21 x60 . .

Intermixed Problems, Each Type Beginning at Level 1

Figure 2

As the student answers each question he is told whether he is correct
or incorrect. 1If the student gives an incorrect answer he will be given a

few hints, as shown in Figure 3,

ADD THESE NUMBERS
143

64
295

503 &

PERHAPS SOME HINTS WOULD HELP
YOUR ANSWER OF 503 IS INCORRECT
YOU ARE JUST A LITTLE HIGH

ONE OF YOUR DIGITS IS WRONG

A Wrong Answer and Some Sample Hints

2

Figure 3

The complete problem is then presented again, and if he gives another
wrong answer he will receive the correct answer as well as any applicable
hints. The program will then keep presenting the problem until he types in
the correct answer,

When a student gets tired, or for other reasons, he may type in the
message QUIT instead of an answer. The system will ask him if he wishes
to continue at a later time and will save restart information on disk if so
desired. At a later time he may begin at that restart point. If the problems
are too difficult or if the student wishes to change his selection of topics
or difficulty levels, he may type the message RESTART and then specify
another curriculum.,

A record of the conversation between the student and the computer is
generated for the teacher on the line printer during a student's run. This-

record contains additional data such as the difficulty scores of the

generated problems and elapsed processor and input/output time. It
should be noted that the timing information should not be used to estimate
a student's latency of response time on particular problems because
hardware considerations and the monitor system on the Burroughs B5500

invalidate such estimates.

3. Levels of Difficulty and Ranges

The selection of eight major levels of difficulty within each course
instead of ten, twelve, . . . was completely grbitrary. It was originally
intended to be suggestive of the eight levels or grades in grammar school,
Subsequently it became useful to have a new level signal a change in the
parameter specifications for particular problem types as well as specifying
higher difficulty scores. This may be illustrated by observing the effect
of moving from level three to level four problems in multiplication: Problems

of the form XXX can be generated in level 4, but not in level 3. (Level 3
XX

multiplication causes problems only of the form XX or X or X to be
XX XX X

generated.)

There is a threshold difficulty score associated with each level for
each type of problem. Originally the scores were the same for all four
types of problems, but because of changes made to metrics for various
courses this arrangement was found to be undesirable, The scores

currently used for levels of difficulty in subtraction are given in

Table 1.

Score

Level
50

75

100

175

225

275

350

ax 500

zOO\)O\Wv&wNH

Threshold Difficulty Scores for Subtraction

Table 1

A given level of difficulty is subdivided into a number of ranges,
The number of ranges within a level is specifiad by the variable
INCREMENTSPERLEVEL, This variable is currently set to a value of
ten, so within level 4 of subiraction the ranges are: 100-108, 108-116,
116-124, 124-132, 132-140, 140-148, 148-156, 156-164, 164-172,
172-175,

Higher score problems generated within a level of difficulty will
gradually become more difficult. The first few subtraction problems
generated in level 4 will fall within range 1 {100-108), As problems are
answered correctly the range numbers will be changed to higher values
until the last range in the level has been reached or passed. The reader
should examine Figure 4 which gives complete sequence of level 4
subtraction probhlems. The sequence assumes the student answers each

problem correctly.

Problem

7124
- 6960

7647
-~ 6151

21282
- 16224

15314
- _6961

56722
- 16189

51747
- _3699

122266
= 23735

212659
- 29667

Difficulty
Score

102

101

117

118

135

132

157

157

Range
Scores
100 - 108
100 - 108
116 - 124
116 - 124
132 - 140
132 - 140
156 - 164
156 - 164

A Sequence of Level 4 Subtraction Problems

4., Teaching Strategies

The basic teaching criteria adopted are the following:

Figure 4

Range
Number

1

1) A student should correctly answer two of three consecutive

questions from the same problem difficulty score range (henceforth

"range" will be used instead of "problem difficulty score range") in
the course before the range is raised.

2) A student who misses two consecutive questions from the
same range should be asked easier questions, i.e. his range should be
lowered. A question is considered "missed" if it is necessary for the
program to tell the student the correct answer,

3) A student who has not answered the current question correctly,
but who has answered the preceding question correctly, should be asked
another question in the same range, and similarly for the case when the
current question was answered correctly but the preceding question was
missed,

If the first answer supplied by the studen! is wrong the program will
give him at most two hints on why his answer is wrong and then ask the
question again. If his second answer is also wrong the student will
receive the correct answer, and also all the hints applicable to his
second incorrect answer, He will then be asked the question again and
again until he types in the correct answer,

The sequence of steps in presenting a single question is the following:

1. Present question to student,

1A. If student is wrong, ask question again.

2, If answer is still wrong, give student up to two hints,

3. If answer is still wrong, give correct answer, hints, and

cycle thru this step 3 until the correct answer is typed in.

10

Step 1A originally compensated for typing errors. It has been
eliminated on the basis of actual teletype experience. (By the time step
3 was reached students were becoming bored with seeing the same
problem.)

COACH has adopted the philosophy that the entire question should
be repeated for the student rather than simply asking him to give another
answer., This has the advantage of minimizing the chance for loss of
data and other hardware difficulties in transmitting the problem from the
computer to the teletype (particularly since echo-checking features are
not available). The drawback is that additional time is spent typing out
the same problem again, but this seems to be acceptable to students. It
can easily be changed if it turns out to be undesirable on the basis of
additional data.

One special situation will also cause the student's range to be
lowered: if he misses the current question, and if the preceding question
in this range was not answered correctly the first time it was presented,
and if the second question back in this range was missed, then the

program assumes the student is fumbling and will decrease his range.

4.1 Acceleration Factor

The subtraction problems in Figure 4 also illustrate the use of an
acceleration factor. This factor allows a student to make faster than
normal progress if his performance seems to warrant it, Normally, a student

would be asked two questions in the first range of a level, two questions

11

in the second range, two questions in the third, etc. If he answers all
these questions correctly, a slow rate of increase in difficulty may bore
him. An acceleration factor is used in order to speed up this process.
The factor is added to the last range number in order to produce the next
range value which may yield a higher than normal problem range for his
next question. For example, the acceleration factor might s‘tart at one at
the beginning of a level {e.g. level 3). If two consecutive ranges have
their questions answered correctly the acceleration factor is increased by
one. If a student answers all the questions in a level correctly the

following progression of ranges can occur:

Range in level 3 1 2 3 5 7 10

Acceleration Factor 1 1 2 2 3 3

In order to keep up the "momentum" when passing from one level to
another, the acceleration factor is simply decreased by one instead of
being reset to one. Thus the next level would have the following
progression of ranges if the student continued to answer all the questions

correctly:

Range in level 4 1 3 5 8 10

Acceleration Factor 2 2 3 3

When the student misses several questions in a range the acceleration
factor is used in deciding which lower number range to use next. At that time

the factor may be decreased by one and succeeding range drops may cause

12

it to be further reduced to its minimum value of one. If the program needs
to give the student the correct answer at any time during a particular
range then the acceleration factor will not be changed when the range is
raised, e.g. if a question was missed in level 3, range 7 {above) then the

next range would be 9, instead of 10.

4.2 Special Question Lists

A question generated within BABYG may be viewed as an independent
manipulable entity. Associated with each question is auxiliary information
on the type of pfoblem (addition, subtraction, ...), the difficulty score of
the problem, the format to use in presenting the question on a teletype
along with its operands and correct answer, a list of hints possibly
applicable to incorrect student responses, and the last two responses made
by the student to the question. A detailed schematic of a question is given
in Appendix A.2,

There are two question lists specifically built into COACH, OPMISSLIST
and REDOLIST. When a question is missed it is added to.the front of
OPMISSLIST. At a later time it may be asked again, as dictated by
probability switch 1 (probability switches are discussed in the next
section). REDOLIST holds questions that have been answered correctly but
may be asked once more. Before a student is allowed to advance to the
next level in a subject, OPMISSLIST is scanned to see if it contains any
questions on the same subject with a difficulty score lower than that of
the next level. If any such questions are found they are removed from

OPMISSLIST and asked. Thus a student will encounter questions he missed

13

earlier, hopefully with better results the second time. More difficult
questions will be retained in OPMISSLIST even if the student's range

drops. Ultimately he will encounter them again.

5. Probability Switches and the Flow of Control

By means of probability switches (PSW) a teacher or supervisor is
able to exert a limited amount of control on some performance features
of COACH.

Probability switches make use of a pseudo random number
generator that is part of COACH. Each time the flow of control reaches
a probability switch a random integer between 0 and 99 is generated by
the program. This integer is compared with thz current setting of the
probability switch and then one of two branches is taken by the program.

The L (lower) branch is taken if the randomly generated integer is
less than the probability switch value; otherwise the EH (equal or higher)
branch is used.

The symbol is used in Figure 5 to indicate the points

lEN

in the program where probability switches are used to make decisions.

By setting a probability switch to 0 or 100 it is possible to force the EH

or L branch to always be taken,

14

student
types in
name

“"is he a

former

student continue
e N .
no no

student selects
topics and
difficulty levels

7

Vi

COACH selects a topic
from list of selected
topics

_@

Flowchart of COACH

Figure 5

““does he_\;
want to Yyes o

load past
history from
disk including
the last
question asked

compute a ifficulty
range for question

in topic __]

OPMISSLIST {decide whether to2
s S iry to select a

Cquestion from

is there

an appropri-
ate question
on OPMISSLIST

J, 1no

is there an
appropriate
question on
REDOLIST

J,no

set up primary
& secondary
specifications
for question to
be generated

L

Ny
use question ask student the choose
generator for fselected/ P furthest
selected topic generated question
question back

yes

if student wants
| to quit, save
restart information| "

if requested

if automatic answer mode
is active, generate a
correct or incorrect

response for student model \[@

Flowchart of COACH

Figure 5 (cont.)

/
Accept student responsée
and use an answer module\ incorrect

J

io determine if it is
correct or not

correct

inform student
his answer
is correct

was the

question answered)

correctly the
first time

no

16

\

was asked

no i

/1s this the ‘
' second time

ne

i5 this the
first time
>\ the question/yes

the question/ yes

tell student
his answer
is wrong and
give up to

2 hints

_ﬁ%:::>

Student has

J missed
question, add
it to
OPMISSLIST

J

give situdent the
correct answer and
any hints applying
to his wrong answer

-®

2decide whether 3
to try to add
2question to
2REDOLIST using
SPSW #5

Y EH

add
question
to front of
REDOLIST

€
®

Flowchart of COACH

Figure 5 (Cont)

was the preceding
guestion {one
back) in this
range answered
correctly the

first time

yes

no

S A

as the two-
back question
in this range

yes

yes

{(keep

range)

answered
correctly the no

{raise

range)
if remaining
in same level,
increase
L——>acceleration
factor by 1 if
last two ranges
had same a.f.

raise range using
a.f. or if at new
level, then first
ask any questions
on this topic
which are on
OPMISSLIST with
difficulty scores
falling below next
level and tell
student he is rising
to a higher level

)

as the curren
question

was the currenf

question
answered no answered
correctly the correctly the
first time second time
ves
Va
N
was preceding \
question in this
(keep range answered
/,\.& range) correctly the first
P20)<& <
yes

é_,

yes

(drop
range)

decrease a.f.

by 1 to minimum
of 1. Decrease
range by 1, If
drop to a lower
level, tell student

P30

Flowchart of COACH

Figure 5 (Cont)

time or is this the
Qs.t question asked

in the current rangy

no

N
did COACH have
to give the correct
answer on the pre~
ceding question

no

as the two-back
question missed
and the one-back
question not
answered

correctly the
first time

{keep
range)

sdecide whether to
.sgenerate another

Question on L @
2using PS\%‘ 6

EH

decide whether to

2generate another @
¢question on same topic L

Flowchart of COACH

Figure 5 (Cont)

19

6. Metrics and Generators

The following hypotheses are explicitly embodied in COACH:

1) By using a suitably chosen metric for each topic it is
possible to assign numerical scores which represent relative difficulty
for problems within each topic.

2) Problem generators can be constructed for topics with

well~defined metrics,

6.1 Topic Metrics

The following considerations entered into the design of the
heuristic metrics adopted for arithmetic:

1) The difficulty score for a problem should be a linear
combination of the difficulty scores of its individual operands.

2) The linear combinations in 1) may be different for metrics
in different topics.

3) The operand scores should be such that an n digit operand
generally has a higher score than an m digit operand if nsm.

4) The fact that certain decimal digits are easier to work with
than others should be taken into account. (It is easier for a student to
manipulate the digit 2 in a problem than the digit 9.)

With these constraints in mind the actual metrics used in COACH

were specified as follows:

20

6.1.1 Digit Scores

The digit socres assigned to decimal digits are the following:

decimal digits

digit score = 1 0

digit score = 2 1 2 5
digit score = 3 4 6 8
digit score = 4 3 7 9

6.1.2 Position Scores

The digits in a number are identified by a particular position, for
example the number 1492 has the digit 2 in position one, the digit 9 in

position two, and so forth. Position scores are the following:

position position score
1 2
2 3
3 5
4 7

l\/
w
O

6.1.3 Operand Difficulty Scores

The difficulty score for an operand is set equal to the sum of the

products of the digit scores times their respective position scores for

19

6. Metrics and Generators

The following hypotheses are explicitly embodied in COACH:

1) By using a suitably chosen metric for each topic it is
possible to assign numerical scores which represent relative difficulty
for problems within each topic.

2) Problem generators can be constructed for topics with

well-defined metrics.

6.1 Topic Metrics

The following considerations entered into the design of the
heuristic metrics adopted for arithmetic:

1) The difficulty score for a problem should be a linear
combination of the difficulty scores of its individual operands.

2) The linear combinations in 1) may be different for metrics
in different topics.

3) The operand scores should be such that an n digit operand
generally has a higher score than an m digit operand if nsm.

4) The fact that certain decimal digits are easier to work with
than others should be taken into account, (It is easier for a student to
manipulate the digit 2 in a problem than the digit 9.)

With these constraints in mind the actual metrics used in COACH

were specified as follows:

6.1.1 Digit Scores

20

The digit socres assigned to decimal digits are the following:

digit score = 1

1
(4]

digit score
digit score = 3

digit score = 4

6.1.2 Position Scores

decimal digits

0
1 2 5
4 6 8
3 7 9

The digits in a number are identified by a particular position, for

example the number 1492 has the digit 2 in position one, the digit 9 in

position two, and so forth. Position scores are the following:

position
1

2

position score

2

6.1.3 Operand Difficulty Scores

The difficulty score for an operand is set equal to the sum of the

products of the digit scores times their respective position scores for

21

each digit in the number, Thus the number 1492 has an operand

difficulty score = (digit score of 2) x 2 +

(digit score of 9) x 3 + (digit score of 4) x 5 +
(digit score of 1) x 7 = 2 x 2 4+ 4 x 3 + 3 x5 4 2
= 45,

Similarly the number 16 has an operand difficulty score =

2 x 2 4+ 3 x 3 = 13,

6.1.4 Problem Difficulty Scores

The addition and subtraction metrics used the sum of the operand
difficulty scores for their problem difficulty scores., Thus 1492 + 16 and
1492 ~ 16 each have problem difficulty scores equal to 58. The
multiplication metric uses the sum of the operand scores times 1.5 and the
division metric takes the sum of the operand score for the denominator and
twice the numerator, and multiplies this sum by two. These metrics are

summarized in Figure 6,

0 = operand score = 3 (digit scores x position scores)
metric score for addition (a#+b+ct...) = 0a+ Ob + 0C +oee
" 1] 2] — -
subtraction ({(a-b) 0a + Ob
" " " multiplication (@ ° b) = (Oa + Ob) x 1.5
" " " division {a/b) = (2 % 0a + Ob) x 2

Topic Metrics for Arithmetic

Figure 6

22

In practice the following situation can occur: three problems may
be produced with difficulty scores 110, 115, 120 and the problem with
difficulty score 120 appears (on a subjective basis) to be easier than the
problem with difficulty score 110. If the difficulty scores have a wider
spread, such as 110, 140, 170 their subjective relative difficulty
rankings coincide with the ordering of their scores more closely. The
reader may observe this phenomenon by studying the eight subtraction

examples in Figure 4,

6.2 Question Generators

Using the topic metrics in Figure 6, question generators were
constructed for COACH. The function of a question generator is to
produce a problem within some specified range of difficulty. For example,
if the question generator for addition were asked to produce a problem with
a difficulty score between 55 and 60 it might generate the problem
1492 + 16,

The information required by question generators consisis of primary
and secondary specifications, The only primary specifications currently
~used are the two score specifications for a range (upper and lower
difficulty score bounds). Secondary specifications are peculiar to the topic.
In arithmetic secondary specifications specify the maximum number of

digits to use in operands for a problem,

For purposes of illusiration we will now consider the operation of a

particular question generator in detail:

23

6.2.1. The Question Generator for Addition Problems

A sample set of specifications to the question generator for addition
could be the following:
Maximum problem score = 33
Primary
Minimum problem score = 30
Maximum number of digits in first operand = 3
Secondary
Maximum number of digits in second operand = 3

The generator first decides on the number of operands to use in the
problem. The maximum-minimum scores lie in a difficulty level and
associated with each such level is the maximum number of operands to use
with problems in that level., The 30-33 range falls in level 1 and so exactly
two operands are speciiied, If the range were in level 7 then up to six
operands would be possible and the program {using a pseudo random number
generator) would decide on the number of operands to actually try to use.
Based on current parameter values, the programm would generate a six~operand
level 7 problem 60% of the time and one with fewer operands 40% of the time.
Similarly, within the 40% cases in which a six operand level 7 problem was
rejected, it would generate a five-operand level 7 problem 60% of the time and
one with fewer operands 40% of the time, and so forth.

After deciding on the number of operands to use the generator considers
specific difficulty scores for operands. It will make up to five cycles thru
an assignment process that attempts to allocate difficulty scores so the
problem difficulty score falls within the desired range. If the generator

does not succeed it will arbitrarily accept the operand scores and

accompanying problem generated during its last cycle.

24

On each cycle a bias factor is computed by taking the difference
between the maximum and minimum range values and dividing it by the
number of operands and the cycle number, Thus the denominator will

increase in size in later cycles and the value associated with the bias

i

factor will decrease. In our example the bias factor on the first cycle
33 - 30) / (2 + 1) = 1.

A guess is made at the score for the first operand by taking the
average operand scores {minimum problem score (30) divided by the
number of operands (2) = 15) and adding a random integer in the range
1.%2.... bias. In our example this means the first operand would have a
difficulty score of 15 + 1 = 16,

The difficulty score for the first operand is subtracted from the
maximum problem score and the difference represents the amount of
"problem difficulty" left to be distributed among the remaining operands.

The score for each remaining operand is determined by computing the
average operand score for the remaining operands using the undistributed
amount of "problem difficulty" and then adding to it a random integer in
the range 1,2,,.bias. Thus it is possible to have four of the five
operands absorb all the “problem difficulty" in which case the problem is
changed from one having five operands to one having only four.

This process reflects the nature of the metric chosen for the topic
of addition. Similar considerations apply to other topics. Obviously

other allocation schemes could be used, but the one described above

appears to function well and it produces a nice variety of problems,

25

The generator is aimost ready to use the MAXENUM routine (which
is described in detail in section 6.2.2). This routine produces a
generated number as output whose operand difficulty score is close to a
requested score. The input to MAKENUM consists of a requested
(operand difficulty) score and a limitation on the number of digits to place
in the generated number,

Before using MAKENUM the generator,using the secondary input
speciiications, makes a guess on the number of digits to place in the
generated number. For example, the maximum number of digits in our
first operand is three., This figure will be used 2/3 of the time. Two will
be used 1/3 x 2/3 = 2/9 of the time, and one will be used 1/3 x
1/3 = 1/9 of the time. This decision process is similar to the one
used in deciding the number of operands,

A problem is constructed using the actual operands produced by
MAKENUM. This problem is checked to see if it falls in the allowable
range and if not another cycie is made.

In our example, on the first cycle, the two operand scores input to
MAKENUM were 16 and 18, MAKENUM generated the two numbers 67 and
78 with operand difficulty scores of 17 and 18 respectively. The problem
difficulty score was 35 and it exceeded the maximum problem score. The
generator increased the cycle count by one and looped back to recompute
the bias factor. On the second cycle the operand input scores to MAKENUM

were again 16 and 18 but this time the routine generated the numbers 66 and

26

78 with operand difficulty scores of 15 and 18. This made the problem
difficulty score 33 and hence it was accepted by the generator.

The generator accepts the first problem that falls within the
specified difficulty range. It then selects a question format to use in
presenting the problem to the student, computes and stores the correct
answer, lists the potentially applicable hints, and returns control to the
main program.,

The question generators for subtraction, multiplication, and
division operate in a similar fashion. The problems generated on
repreated cycles and their relation to the problem range are represented

schematically in Figure 7:

¢

Problem Difficulty Scores

Allowable Range X

cycle number

Potential Problems Produced in a Question Generator

Figure 7

Because of the heuristic nature of the metrics and the threshold
difficulty scores and the generating processes, it is possible to have

generated problems in addition and division miss the allowable problem

27

range. This situation has been remedied by having the allowable
range bounds vary by one percent in addition problems and by two
percent in division problems.

In order to give the student some practice with negative numbers,
level 7 and 8 subtraction problems may have the subtrahend greater than
the minuend. Division problems in levels 1 thru 3 are constructed so
the denominator always divides into the numerator an even number of

times,

6.2.2 The MAKENUM Routine

The MAKENUM routine is used by all the question generators in
COACH. Given a specific operand score and a limitation on the number
of digits to use (referred to as N below) as input specifications the
routine generates a specific number, i.e. it generates an operand.

MAKENUM begins by comparing the maximum number of digits to
use with the desired operand score, If a minimum assignment of digit
scores produces an operand score greater than that desired, N is
decreased appropriately.,

N (or its altered value) is now used to compute the maximum possible
operand score for an N~digit number. If this is greater or equal to the
input score N is left unchanged; otherwise N is increased until the
maximum possible score equals or exceeds the input score specification.

The routine next computes an n-component (digit score) vector (n =
current adjusted value of) in which it places tentative guesses for digit

scores. It selects a component randomly, inserts a digit score, computes

28

the resulting tentative operand score, chooses another component, and
repeats the process, As each component guess is made the current
operand score is compared with the input score and if the current operand
score is less the process repeats; otherwise minimum digit scores are
assigned to the remaining empty components,

The routine now compares the "tentative" operand score of the
n-component (digit score} vector with the operand score input to the
routine. If they are identical all is happiness and the digit selection phase
of the routine is activaied.

If the "tentative" operand score is differznt from the input operand
score the routine will proceed to "jitter" component positions. (A
maximum of five component positions will be jittered.) In "jittering" it
selects a position and may increase or decrease the digit score by one,
Then the routine compares the new "tentative" operand score with the
input operand score, and if there has been a decrease in the difference
between the two then the change in the digit score is accepted and
jittering is repeated. When "jittering" is completed the digit selection
phase of the routine is activated.

In the digit selection phase MAKENUM chooses specific digits for
insertion in particular component positions by using a random selection
process on the decimal numbers that have that particular digit score.
This completes the operation of the routine.

A simple example of MAKENUM in operation now follows. We assume
the operand input score was 18 and follow the process that produces the

generated number of 78,

29

The maximum number of digits, N,is set to 3 by the question
generator, which in turn uses the secondary specifications.
Step 1: Check the minimum operand value for N digits
= (56 4+ 3 + 2) x 2 = 20 which is greater than 18.

N is decreased by one so N = 2,

Step 2: Check the maximum operand score for current value of N,
= {3 + 2) x 4 = 20 which is greater than 18. Leave

N unchanged.
Step 3: Setn = N = 2,
Step 4: Choose a random position (1) and a random digit score (2).

Step 5: Choose a second random position (2) and another random

digit score (4).

The n-component {digit score) vector now looks like
[2 [2]

and its operand score is 2 x 2 + 4 x 3 = 16

Step 6: Choose a component position and jitter; In this case

position one is chosen, the digit score is incremented

by 1 and the vector appears as

4 3

its operand score is now 18 and the difference is zero.

Step 7: Randomly choose a decimal number having digit score 3

(the number 8 is chosen) and randomly choose a decimal

30

number having digit score 4 (the number 7 is chosen). Thus

the number (i.e. operand) 78 has been generated.

7. Answer and Hint Modules

Answer modules are individual programs that compare the student's
reply with the correct answer and determine if the two are the same, At
the present time there are two such modules, one for problems in addition,
subtraction, and multiplication (ASM) and one for problems in division.,

The ASM answer module is quite straightforward, It merely scans
the student's integer response and compares it with the correct answer,
The module for division is somewhat more complicated because division
problems may have remainders, for example, the problem 22/7 = 3,142857...
may have its answer typed-in as 3 R 1 (three with remainder one) or the
student may type-in a result that has been rounded to n decimal places
(n < 9). Thus the student responses of 3 R 1, 3.1, 3,14, 3.143, 3,1429,
3.14286, 3.142857, etc, are recognized as correct answers for the
problem 22/7.,

A schematic diagram depicting the relationship between the main
program énd the various types of modules in COACH is given in Figure 8,
This organization allows special conventions to be established between
particular generator, answer, and hint modules that are essentially
independent of the main program. In such an environment modules can be
constructed and added for other topics, additional problem types, more

hints, etc. without the need for large changes in the system,

31

(specifies question type, primary
and secondary specifications)

MAIN
PROGRAM
/ \\

/ | \
question question question
generator generator generator
module module module

MAIN PROGRAM
ASKS QUESTION
~
/.// ™~
o
answer answer
module module

S
) =

IF ANSWER IS WRONG
MAIN PROGRAM CALLS
ON HINT MODULES
SPECIFIED BY QUESTION

GENERATOR

(generates a
particular
problem and
specifies hint
and answer
modules to use)

{tells main program
if student's answer
is right or wrong)

hint hint hint hint hint
module module module module module
N\ - —
L e
- e

MAIN PROGRAM
REPEATS QUESTION
OR TAKES OTHER
APPROPRIATE ACTION

Ordering of Modules in the Flow of Control

Figure 8

32

The current version of COACH contains ten hint modules, Several

of these compare the student's incorrect response with the correct answer

and attempt to provide him with feedback on the cause of his error, Six

hint modules are for addition, subtraction, and multiplication problems

and perform the following functions:

Hint Module 1:

Hint Module 2:

Hint Module 3:

Hint Module 4:

Hint Module 5:

Hint Module 6:

Types the correct answer.

Types a message to the student telling him his
answer was not correct. It repeats his incorrect
answer, thereby providing a check for the case
where hardware or data transmission failure caused
the computer to receive a response different from
that typed by the student,

Informs the student his answer was too large and
tells him whether this difference was small or
fairly large,

Informs the student his answer was too small and
tells him whether this difference was small or
fairly large,

Checks to see if the sign of the student's answer
is correct,

Checks the digits in the student's answer with
those in the correct answer and tells him how many
are wrong. For example, if the correct answer was
1564 and he answered 1554 he would be told one of

his digits was wrong; if he answered 564 he would

33

be told his answer did not have enough digits
in it,

Additional hint modules can be added, such as one for addition that
attempts to analyze a student's carrying mistakes, or one for subtraction
to analyze mistakes in borrowing, however such programs have been
postponed indefinitely as the present system operates in a reasonable
manner without them.

Obviously question generator or hint modules could present
additional factual or informative material before or during the time a topic
wag being covered, When a particular level of difficulty was reached a
question generator might tell a student something about a specific sub-
topic, e.g. it might explain how to do multipliration problems of the

form XX if the student had been doing those of the form XX . The
XX X

teaching strategies that decide when to present such material could be
built into either the main program or specific modules, The present
program does not present such informative material, although it could.

There are four hint modules for division:

Hint Module 7: Types the correct answer, If the student typed-in
an incorrect answer with n decimal places, the
module will type out the correct answer rounded
to n decimal places,

Hint Module 8: Tells the student his answer is wrong., Its
function is similar to hint module 2 although its

detailed actions are slightly different.

34

Hint Module 9: Checks to see if the student's quotient is correct
but the remainder is zero and wrong. If this
occurs the student may simply have forgotten to
type-in a remainder; he is reminded of this,

Hint Module 10: Checks to see whether the student's quotient
and/or remainder is wrong and tells him whether

his answer is low/high.

3. Miscellaneous Features

8.1 The Practice Option

In order to allow for repeated drills begiqning at the same level
but having different problem sequences an option was included so the
student could type~in PRACTICE 1 at the time he specified level 2
problems in subiraction instead of typing-in only SUBTRACTION 2. A
different but comparable sequence of problems would then be generated,
At a later time he could type-in the messages SUBTRACTION 2 and
PRACTICE 2 and receive yet another sequence that was different from the

earlier two sequences. Similar remarks apply for the other topics and

other levels of difficulty.

8.2 The Monitor Printer

As mentioned earlier, a copy of the teletype communication between
the student/teacher and COACH is produced on the monitor printer. This

copy includes additional information on the generated problems such as

35

their ranges, difficulty scores, and elapsed times.

&.3 Control Mode Options

A special control mode of operation can be activated (by typing-in

the word CONTROLMODE).

use of several special features.

8.3.1 Setting Probability Switches

This allows the teacher/supervisor to make

The settings of the probability switches are initialized by the main

program, In control mode it is possible to alter these values dynamically

by typing a message like:

This would set the threshold value for probability switch #1 (PSW #1)

equal to a value of 20.

SET PROBP1 = 20

probability switches is given in Table 2,

#1
#2
#3

#4

#5

#6

#7

#8

(take question from OPMISSLIST)
(take question from REDOLIST)

(probability of having COACH generate an
incorrect answer while operating in the
automatic answer mode - discussed below)

(has no effect at the present time)

(add a question answered correctly
the first time to REDOLIST)

(no change in range, should another
question of same type be asked)

(range is to be dropped, should another
question of same type be asked)

(range is to bhe raised, should another

question of same type be asked)

Initial Values of Probability Switches
Table 2

A summary of the current initializations for

20

10

10

40

10

50

2.0

36

8.3.2 Setting INCREMENTSPERLEVEL

The number of ranges within a level of difficulty is determined by
the variable INCREMENTSPERLEVEL mentioned in section 3. This
variable is currently set to a value of 10. In control mode this value
can be altered to 20 (or any other integer) by typing:

SET INCREMENTSPERLEVEL = 20

Making the variable larger would tend to cause the system to
prochice more problems in each difficulty level. A smaller value would
cause it to generate fewer problems per level and the problems thus

generated would be further apart from each other in difficulty scores.

8.3.3 Recovery Procedure

At periodic times during a student's run the system will save on
disk all the restart information needed to restart the student at that
point., This provides a partial recovery feature for a student in case a
mechanical failure causes the computer/system to die. Up to ten
students may have this information saved for them. A student will
receive a warning at the start of his run if his restart information
cannot be saved on disk but he will be able to continue the run. In
control mode the teacher may type-in

DUMP NAMES
and receive a listing of the students having current restart information

available. The teacher may also remove a student's file from disk by

typing:
ERASE JOHN jOWNES

37

8.3.4 Debugging Aids

In control mode an automatic answering feature may be turned on

by typing the message:

AUTOANS ON
This causes the program to activate another set of modules which use
the correct answer to construct a pseudo-student response. Depending
on the value of probability switch #3, the correct answer may or may
not be permuted into an incorrect one. It is possible to view the role of
the student as simply a supplier of answers vwhich are either correct or
incorrect. Then AUTOANS in combination with PSW #3 effectively serves
as a simple model for a student. More importantly, AUTOANS is a
valuable aid since it provides a way to study the action of particular
metrics and problem generators in long problem sequences.

The other useful debugging aid in the program is a bit controlled
dynamic trace option. Each routine in BABYG has a trace bit associated
with it. In the event of a program mulfunction it is possible to follow
the problem sequence from the last restart point up the the point of
danger, enter control mode, type-in:

TRACE 1 THRU 47 ON
and then continue running the program. A large body of additional
information on the detailed functioning of the program is then generated

on the monitor printer.,

Difficulty Score

38

9, Current Results

Although the program is operating, few students have used it.
Experimental runs have been made with some first, second, and
fourth grade students. A profile for a second grader is given in
Figure 9 for a run on addition 2 problems that lasted about half an
hour. The following symbols are used in Figures 9, 10, 11:

I_ indicates the range within which problems should be generated.
e) @& indicate the difficulty score of the generated problem and
whether it was answered correctly the first time O, or after hints were
given @, or after the correct answer was given to the student @

connects two instances of the same question which are asked

at different times (from OPMISSLIST or REDOLIST).

50
48
46
44
42
40

38

36

34

8 TP @ 0 © 000606000806 000O0Qa e © 00 0 0 0000
© 0f0 @ 0 Al0 00 0 009G Y T 00O S0 00000600 0S 6000000000000 000G Y00 O 6 E 0 QO
32
G Ofc 0 0 0l6 00000000 0D 2O000DS OO VO O00C0AOOA0T0G0 0000008 60000000 Q@
=3 > 0 @ 0 0 0 8 0026 Ce 0060000000000 0GC06 0000030000 0G0 600G 006 OO

30
1 o 3 4 5 6 7 8 9 10 11 12 13

Question number

Half Hour Run on Addition 2

T ~1svres Q

- R, o Ely‘,!.‘ et e e e, x. I e e e e e . .No
(O = Answered Correctly First Time 4 Aﬂ T
= Answered Correctly After Hints Given | o | % mw

(@ = Correct Answer Given to Student

M = Problem Range _ MM

==w= = (Connects Same Question
® 0
MM o 50

PROBLEM DIFFICULTY SCORES
W i
o o

oo
o

0

Asked at a Later Time Mu
@ |
; [1]
SRR, < - :m., . Level 3 40

o I 5 by

O
H @ o H 9 H H Level 2 smemeeee . 20

i
-4

10

Llevell ____

O

Intermixed Level 1 and 2 Multiplication Problems Done By A Fourth Grader

Figure 10

PROBLEM DIFFICULTY SCORES

40

130 130
= Answered Correctly First Time o
= Answered Correctly After Hints Given |
= Correct Answer Given to Student ’
1203‘ : - ‘ Level 4 ; - 120
’ | Same |
cmem , Legend
as Fig. 10
110° 5 110
H t
o
100 100
90 90
80 80
70 . 70
e
LU
[T:1
60 Level 3 " 60
\ b ITé
50 I. 50
O- -+ rroiiIonnIiToo
. Co
' ' - \)
T 17 SO
oo . 17 ")
20 L5
30§Y IT; - - Level 2 30

Esctended Run On Addition

41

The results of a forty minute mixed run by a fourth grader are
summarized in Figure 10, Figure 11 contains a longer run on addition
starting with level 2, Initial reactions from most student users have
been favorable. Many more runs have been made with COACH
operating in the automatic answering mode.

It is difficult to make an accurate estimate of the cost per student
per hour at the teletype, particularly since user demands on the local
time sharing system may cause charged times to vary by a factor of
ten or more, depending on what other programs are running at the same
time, Local accounting practices are also a significant factor. Based
on current operating experience the cost seems to be between $5 and

$15 for each hour the student is at the teletype.

10, Conclusions

COACH has achieved its goals of automatically generating simple
arithmetic problems using topic metrics and serving as a convenient
vehicle for the study of some rudimentary problems in CAI. The most
important questions revolve around the selection of topic metrics and
the inverse generation procedures needed in order to produce questions.,
The procedures adopted in COACH are fairly specialized, reflecting the
nature of the problem domain for study and other ad hoc considerations.

During the development of the program small chanées in the
metrics sometimes produced very large changes in the nature of generated
problems. This sensitivity is undesirable but it is not immediately

clear what can be done to circumvent the problem.

42

It would be nice if there was an easy way to construct metrics
for more general problem domains. At the same time it would be nice
to handle automatically the inverse construction problem of question
generators using metrics, It is no"c at all clear at this time whether
this can be done in any type of general fashion.

From the specialized metrics considered above the following
comments may be made: numeric scores obtained from a metric should
be useful; the components of a metric should be such that topical
subgoal problems can be generated. Notice these components
effectively constitute a hypothesis on the inherent structure of the
problem domain.

The modular design of COACH helps to isolate certain areas in
which little work has been done. For example, the construction of
appropriate hint modules for problems generated automatically has not
been investigated in any great detail yet this problem, among others .
will need to be studied if truly interactive programs sensitive to
student needs and requests are to be developed.

One of the largest drawbacks in the present program involves the
addition of other topics. Making such additions presently requires a
knowledge of Algol programming for the Burroughs B5500 as well as a
knowledge of the conventions adopted in COACH, some of which are
indicated in Appendix A. For this reason teachers are not in a position

to add new topics to the system,

43

Present plans for future work are aimed at studying a specialized
instructional environment in which skeleton patterns and other informa-
tion provided by a teacher are used to construct questions and analyze

incorrect answers,

11. Acknowledgements

T would like to thank Professor Leonard Uhr for his encouragement
during the course of this project. Special thanks are due Tom Moran,
Laird Beaver and other staff members at the University of Wisconsin
Computing Center whose help and suggestions contributed significantly
to program debugging, |

This research has been partially supported by grants from the
National Institutes of Health (MH 05254, MH 12266), the National
Science Foundation (GP-7069 and the Wisconsin Alumni Research

Foundation.

44

12. Bibliography

(1) Feingold, S. L. PLANIT - A Flexible Language Designed

for Computer-Human Interaction, in AFIPS Conference Proceedings

Volume 31, Fall Joint Computer Conference 1967, Thompson

Books, Washington, D. C.

(2) Rath, G. J. and Anderson, N. S. and Brainerd, R. G,

The IBM Research Center Teaching Machine Project in Automatic

Teaching: The State of the Art, E. Galanter (ed), John Wiley &

Sons, N.Y. 1959,

{3) Smallwood, R. D. A Decision Structure for Teaching Machines,

MIT Press, 1962,

(4) Uhr, L. The Automatic Generation of Teaching Machine

Programs, unpublished manuscript 1965,

45

Appendix A Special Conventions in COACH

The following discussion of some of the detailed conventions
adopted in programming COACH assumes the reader is familiar with

Algol programming on the Burroughs B5500 computer, among other things.

A,1 String/List Storage

In order to store strings of characters such as those in guestion
formats, student responses, etc. a two dimensional array is defined, the
X array with maximum dimensions of 256 rows and 1022 columns. FEach
cel: in the array can hold six 6-bit characters ¢f information or 36 bits of
intormation. Cells may be linked together in strings and a ten-bit
forward pointer is stored in the cell which poinis to the next cell in the
string in the same row. Thus these local pointers have an implied 8-bit
row specification. The end of a character string is indicated by a bit in
the cell being set to one., In the last cell of a string the local address
field holds a character count instead of a row address. The character

count is zero (for 6 characters, i.e. full words) or one thru five,

Typical X array cell

bit O l 20.600011 12no.o.-nooaooo-onoooo-oooo47

I l ! Pl f s]

V4 N - V“"‘“_____________,/""’
‘Y 36 bits of data

10 bit local address

end of string bit, 0=no 1 = yes

B5500 flag bit

46

For example the word ANTIDISESTABLISHMENTARIANISM might

be stored as follows:

olib P ‘ 47
Row 3 Cell 001 000000000010 | A I N ' T i1 D 1]
I Y v 0 . T

Cell 010 00000000101 [§ i E Ts 1T A]

Cell 101 0000001101 | L i1 is IH {M: E|

Cell 1101 0000000011 | N | T ia iR {1 I al

Cell 011 10000000100 | N ! 1 i s iM : o o

VAN g /

The eighteen bit binary string address of this word (henceforth simply

referred to as its string address) would be 00000101 0000000001

AN J . J/
Y "

row first cell in string

Cell 0 in each row keeps track of the available cells within that TOwW.,
Unused cells are linked together on a list. Word 0 also contains the
number of unused cells currently available in the row. If a string or list
requires more cells in a row than currently available the next higher row
will be tried or a new row will be opened. This organization provides the

program with a large amount of working storage.

A.2 Internal Representation of Questions

A question occupies at least seven cells and has the following

format in the Q array:

Q [o]
Q (1]
Q [2]
Q [3]
Q [4]
Q [5]

Q [6]

Q[7]

47

12 29: 30 47

[List left link ! List right link]
12 ‘ 23: 24 47

| Topic code Problem difficulty score J
12 29: 30

[Answer module to use i Question format to use l
12 29: 30 47

l dkHint Ligtis i Parameter for hint list 1
12 29: 30 47

l *%1-back student ang%% : ¥%2-back studeni angi:k]
12 29: 30 47

L**Cor:r.eet answersksk ! Number of operands]
12 29; 30 47

I *¥¥Operand 1 **

! ¥%QOperand 2 *%]

e and possibly --

30 47

12 29§
| #%QOperand 3 %% :

ceono |

etc.

FE, o000 indicates this is an 18 bit string address

If a question is placed on OPMISSLIST or REDOLIST Q [0] holds the

necessary linking information.

The topic code and problem difficulty scores are simple integers

within their respective fields in Q [1], as are the answer module number

and question format numbers in Q [2]. These question formats are

discussed below in more detail.

The hints that may be applicable to the student's reply to the question

are stored in a list.

hint list:

For example a division problem would have the

48

These four words would be linked in the X array and the eighteen
bit address of the first one would be placed in Q [3]. By convention,
the number placed in the first position of a hint list always tells the
system which hint module can be called to provide the student with the
correct answer, The hint list parameter in Q [3] is not used at the
present time,

When a student misses a question his reply may be stored in the
X array and the string address of it placed in Q [4]. Another incorrect
reply may also be noted and stored for future use., At the present time
little use is made of this historical information although some of the
hint modules may compare his current incorrect reply with an earlier
wrong answer and if they are the same then a comment on his
inattentiveness may be generated.

The generator, answer, and hiﬁt modules may adopt private
conventions on the way answers to a problem are to be transmitted from
one module to another. For instance, with addition, subtraction, and

multiplication the answer is a BCL string of digits and its string address

49

is stored in Q [5]. The division generator constructs a special two
word list in which the quotient is specified in the first word (i.e. the
first 6 characters) as an integer and the remainder is placed as an
integer in the second word (i.e. the next 6 characters). The string
address of this list is placed in Q [5].

The number of operands is specified as a simple integer in Q [5]
and the string address of sach operand is given using Q [6] and
additional words if needed.

The seven or more cells in the Q array that define a question may
be placed on a list which is stored in the X array. The queéestion as a
whole may then be manipulated as a compact entity (e.g. the string

address of this question may be added to OPMISSLIST or REDOLIST).

A.3 Format Specifications for Teletype Questions

The design of the actual formats to use in order to pose questions
on the teletype was separated from the main program in the following
manner:

Questions often amount to simply inserting specific operands into
an otherwise fixed format although the operands may vary in size, i.e.
number of characters. A convention has been adopted so the BCL string
for operand 1 has its string address placed in the first word of array
P (the parameter array), the second operand has its string address placed

in the second word of array P, and so forth.

50

The question generator specifies a particular format to use, say
F [3] for an addition problem having three operands. These formats are
defined on BCD cards and each card corresponds to one teletype line,
It will become apparent that formats defined in such a manner can be

changed with a minimum of effort.

FO3 ADD THESE NUMBERS
FO3 *¥P1% 4+ *P2% + *P3% =

the operands 2,45,19 would cause the teletype to print

ADD THESE NUMBERS
2 + 45 4+ 19 =

Format F [4] could be defined as

FO4 DO THE FOLLOWING (ADDITION) PROBLEM

FO4
FO4 %P1, 5R*
FO4 %P2 , 5R¥*
FO4 + *P3,5R%
FO4 e

and the three operands above would cause the following problem to
appear on the teletype:

DO THE FOLLOWING (ADDITION) PROBLEM

2
45
+ 19
*P1% says to insert the string for the first operand at that point.

*P1,5% says the field for the first operand will contain at most 5
characters,
P1,5R says the operand within the five character field should be

right-adjusted (L for left adjusted).

51

Normally the location of the left * of an operand placement
specification in the BCD card also determines its location on the
teletype output line, but this may be altered, for example %*60P1%
specifies the operand is to be inserted starting at column 60, regard-
less of the location of *60P1%* on the BCD card.

Multiline comments for feedback, general information, and other
purposes may be defined using C [1], C [2], ... in a way analogous
to F [1], F[2], ... For example, when the student answers a question
correctly on the first attempt the reinforcement comment that tells him
he is correct is randomly selected from a list. This random selection

factor helps minimize student boredom in such an environment,

52

Appendix B Student/Teacher Operation of COACH

1.

All messages to the computer that are typed on the teletype
must end with a left arrow (&—).
Assuming the log-~in process has been completed, i.e,

?BO ¢~
?LI #1704U0823 ¢ password » é—

and the program has been called
? ?EXECUTE WEXLER/COACH ¢
when it is ready to begin it will ask you for your name,
The program will present a list of possible course drills.,
Type in a separate message for each one you want.,
Type in a message PRACTICE <n} if desired, e.g. PRACTICE 2,
The computer will respond OK as each message is accepted,
When finished, type-in the message FIN and the computer
will then present problems.
In answering a problem, the entire answer must be typed-in as

one message, for example

The answer of fourteen must be typed-in as the digit 1
followed by the digit 4 followed by a left arrow ().

Thus the answer must be given in a left to right fashion.,

10,

53

If you make an error in typing and have not typed the end-of-
message symbol ¢«— , then type a space and the four letter
word TYPO and then «—. The teletype will position itself
on a new line and you may then type-in the correct message,
When you wish to quit, type in the message QUIT instead
of an answer,
When the computer types out

WEXLER/COACH ...EOJ.,. {end of job)
yvou should type-in the message

PLO ¢
in order to log-out,
If you wish to revise your course specifications and begin
again, type in the message RESTART instead of an answer,
In order to enter control mode, type in the message
CONTROLMODE instead of any expected response; to exit
from control mode and return to the former place in the
program, type the message RESUME, then give the response
that was expected by the program before you entered control

mode,
Unexpected Messages

HALT/LOAD ...

The system died.

54

Repeat the log-in and execute procedure, i.e.

?BO €—

?LI #1704U0823 ¢ password> <—

? ?EXECUTE WEXLER/COACH <—
RESTART INFORMATION UPDATED
The program has arranged to save certain information., If a
HALT/LOAD occurs it is possible to resume from this point.,
WEXLER/SLOT. .. REMOVED
Ignore this message. It has no significance for you.
#FROM SPO: ., or #FROM 1/2: ...
An information message of some kind has been sent to you.
You may make a reply by typing

?8S SPO: < any message) & or ?88 1/2: ¢any message » &—

55

Appendix C sample Teletype Qutput

FORM THE SUM
270
814

o > en o e w0 on es s

1084
EXCELLENT - YOU ARE RIGHT

FORM THE SUM
200
807

D an EY o an R an b D G

1707~

CORRECT

FORM TWE SUM
752
281

673~

YOUR ANSVER OF 673 IS INCORRECT

YOU ARE A LITTLE LOW

YOUR ANSWER DOES NOT HAVE ENOUGH NUMBERS
FORM THE SUM

752
921

@ KB G e ew oo ww g GH W

1673~

CORRECT

FORM THE SuUM
277
670

L X W

LY

GOOD - THAT IS THE RIGHT ANSWER

56

FORM THE SUM
644
486

- e e on G em D w

1130~
EXCELLENT - YOU ARE RIGHT

YOU HAVE MOVED UP TO LEVEL 3 PROBLEMS IN ADDITION

DO THE FOLLOWING PROBLEM
555 + 227 + 156 =

938+

VERY GOOD - THAT IS THE CORRECT ANSWER

FORM THE SUM
297
677

D G LD B GD an o G e

O (4o
CORRECT
ADD THE FOLLOWING NUMBERS
529
661
186

o axr e om e '

1376~

CORRECT

ADD THE FOLLOWING NUMBERS
529
661
ig86

= en 6w em o

1376~

VERY GOOD - THAT IS THE CORRECT ANSWER

Addition 2

57

ADD THE FOLLOWING NUMBERS
682
716
577

= ow ws e om

1975
EXCELLENT = YOU ARE RIGHT

FORM THE SUM
2442
47082

e R

7144
CORRECT
!
FORM THE SUM
6671
7704

B)

13375~

YOUR ANSWER OF 13375 IS INCORRECT
.YOUR ANSWER IS T0O LOV
ONE OF YOUR DIGITS IS WRONG

FORM THE Suw

6671
7704

R R R R

14375«
THAT IS RIGHT
FORM THE SUM

- 6780
7576

- e e e e wo e on G

14356«

VERY GOGD - THAT IS RIGHT

58

DO THE FOLLOWING (MULTIPLICATION) PROBLEM

3447
X 462

- - o e m

1592514«
CORRECT
DO THE FOLLOWING PROBLEM

4070200
- 461216

D o e wn e e

3608984«
GOOD - THAT IS THE RIGHT ANSWER
DO THE FOLLOWING PROBLEM

367 DIVIDED INTO 2261 =

3297

YOUR AWSWER OF 3.97 IS NOT CORRECT
YOU ARE JUST A LITTLE BIT LOW

DO THE FOLLGWING PROBLEM

567 DIVIBED INTO 2261 =

3984«

THE CORRECT ANSWER IS 3.988

YOUR ANSWER OF 3.984 1S NOT CORRECT
YOU ARE JUST A LITTLE BIT LOW

DO THE FOLLOWINGiPROBLEM

567 DIVIDED INTO 2261 =

399

THAT IS OBVICUSLY CORRECT

Nt Ve o 2y .

5y
ADD THESE NUMBERS

671

go4

878

491

695

3629«
CORRECT
DO THE FOLLOWING PROBLEM

4552305
- 75729

w0 oz o o an oy o

44876576

CORRECT

ADD THESE NUMBERS
761
581
696

678
940

e O GD D P G @

4056+
CORRECT
DO THE FOLLOWING PROBLEM

557 DIVIDED INTG 1532 =

2675045
CORRECT
DO THE FOLLOWING (MULTIPLICATION) PROGBLEM
824
X 773

on e o e e

636958«

VERY GOOD - THAT IS THE CORRECT ANSWER

60

Sample Monitor Printer Qutput

2#5HIMSNY 1038¥UD IHL ST LVHL = UULU

U9 AY3A 23

23g88e

SUNDJ3S 26°641 = 3WIL 0O/14 SUNUQ3S 42764 = 3Fwll u(SS3Jdudde U3Sdv i3
S PHE6 38888883338 83888
ﬂwm 96t 4+ 428 + §§%§ 883338388838
2#5131908d ONIMUIIUS dHL Od 8ss3sssss8881
SGNOJ3S 28°621 = 3WIL O/1 SUNDJ3S 62°¢€s = 3WIL ¥0SSIIU¥d (03Sdv13
-89 = 3M0I3S W3N804d 09 = JHOISMOT 021 s 3HOSIH 09 = WOWINIWn 99 = WNNIXYH
$#SNUTLINAY NI SW3g0dd € 13A37 0l d0 G3IN0OW JAYH NOA 882833383848

2#51HOTY 3¥V NOA = ININTIIXIT 83

Appendix D

SUNDJI3S £6°891 = 3WIL 0/1 SONOJ3S 00°1d = 3WIL 40SS3008d G3Sdv3

S0€T1 3338832832828 2283883¢¢8

&%Wﬂgﬂﬁﬁﬂiﬁﬂﬂ 8833383338813

i} PESOHY 8982388328333
2ESUL9 T¢238s528:353¢8

PESNNS JIHL WHO4d 3338833383813

SUNDI3S G191 = 3JWIL 071 SANDO3S £6°89 = JWIL H0SSIJUMd Q3Sdv13

09 = 3H092S W34904d 0¢ = JH0ISMOT g9 = JHUISIH LS = WAWINIW 09 = WAWIXYR
2#SHYIMONY LHDIY JHL ST AIVHL = (DUD 58853323883

SONQIAS 00 4¢l = 3INWIL Q71 SONGOAS 231°99 = IWIL HM0SSH90MHd (3Sdv13

D6 $8888833835382383328%8

P ancossmmna 5332888338353

#5049 $88888358548%8

YESlde $833288283:3838

2FSHNS JdHI WYU3d 353889313393

SUNQIZT gé°ehl = 3JIWIL O SAUNUOD3S 4v°E9 = 3WIL ¥0SS40Udd 03SdV3E

66 = 3400S W314uud 0f = 3H00SM07 09 = 3HUJOSIH 45 = WARINIW 09 = WAWIXVW
+#5>103d800 §e883¢t383388

SUNDBJ3S 82°SH#T = 3JIWIL 0/ SONDJ3S ¥4°19 = 3InIl #0S%300d¥d (35dV13

Addition 2

61

= 3409S W3I80ud 09 =

WOWININ 99

2#5H3MSNY T0F8Y00 IHL ST 1VHLI = UU0Y AY3aR "widivivyeed
SUNDD3S £9°40¢ = 3InlL 0/1 SUNUI3S 492y = dkil a(S$S3dJdbda G35dv3
3960 133883 tssssssess
-) EY 3 Jupupuppp ts3sss:s3sss
?#ES9w | 359332 :833¢
&IV §8328233542823138
IES6CS 3838338333588
2 #F>SUJERNN ONTKO TTOd JHL U0V i3s3 ssssis
SONQIJI3S 271°G0¢ = 3NIL 0/ SONUDES ep°98 = dwll 80SS34004Hg Q3Sdvi3
Y = IH0IS WITHLEd 09 = JH0ISMOTT 021 g JdYGISIH ¢4 = WNWINIK &2 = WNWIXYH
2#51038800 st iscsssz2s:88
SUNQI3S 24°10C = 3INIL 0/ SANGO4S v0°68 = 3Iwll 80$S3J308d U3S4vI3
29/4¢0 33838858888 :58382883
YEdoemeom T58838:88438
I£59y] 88833382838
2#251%9 Jsesasssses
B} 3¥S6ch $s2353548388¢8
2#F>S83HRAN DNIMOTTOS dHT TGV R I A
SANQI3S 0L°961 = IWIL 014 SONUDES €9°1Y = dhIl H0SS4J0Hd G3SdY13
24 = 44¥0J0S WIld0yd 09 = JHOISMUOT G217 = 3dUJISIH 44 = WIWINIW 84 = WAWIXVH
e ~ +#3103u409 388s538:8:313838
SUNQI3S 80°68Y = 3IWIL 078 SONDDAS 24°64 = 3Iwll H0SS$300dg 03Sdv13
Shi6 $E38:isssscs38¢8:5233
. e . VEdavnncnewes 55388383888
2£5449 $8e833388¢8¢¢
2¢5]684 $838338838838%
S#SHNS 3HL WHUd 38833388838
SONDJI3S 00°€81 = 3JWIL Qr1 SONUD3S €1%44 = 3nll ubSS3908e (U3Sdvid
c9 3803SM0T 023 sz 3YQISIH 09 z 2 WNWIXYW

Addition 2

SUGNGI3S €9°evE = 3Inll U/l SUNUDJAS 0¢°291 & Hhll 805530u¥c G154V i3

62

FAV¥S = 3JH023S W3A18Lsad Q02 = JH0ISMOT uez = 48U3SIH Gue = WOWINAW _9Ce = WhniXgh
2#SMUTT JI8 4704417 v LSO sV NOA sss3dssssss
2#3510388U0 LUN SI{ 46°8 Ju H3IMSNV 8NUA s838g3333833
o SONQJ3S Gu°ehe = JIWILl O/1 SUNUJO3S ¢G6°997 = 4wl u0SS3J08e U3Sdv 13
+/6°F 3838888335883 3338238
2#5= [9¢c c»zw GIUIATQ L9¢ IR AR EREERER!
S e PESAI N0 UNIMUTIICS dHL 00U 3885333383833
SUNQJIAS geoehwe = dWLL G/l SANUJIS 49°¢91 = HAnlf d0SS3IJ0va 035dv3
20z = X038 W3ITHOHd Q04 = JH0OSMUT Lee = 48098 IH 60c¢ = WOWINIW 902 = NOWLIXYW
PESUHIMENY LHOTY 3HL ST LVHi = U00Y 4333332833 “
SUNQI3S 26°1rve = 3INWIL 0Ori SUNUJIS €1°697 = dwWil d0SSaJdUu¥ae (G3$dV13 9
o
3nU6H0GE $ssisitsiiiiiisiis m
o
fs
R - YiSenucecaa $33533353833¢: <
2#25391C1vw - = $3335338383%8
: 2#300¢0400 REREEEREEE]
S#ESWHITEuEd UNIPUTITIWUE 3R OU HES S I I
SUNQJI3S £€9°1we = 3WIL O/1 SANUOES gv° 79y = 3Inhll 80SS3J08e (G3Sdv 13
781 = 44038 W3d0dd 6413 = AHUISKOTY g =z Ju{oSIH Cul = WWINIW ST = WOAWIXYH
2231035800 38858835888
SUNQIIS J6°0%WE = JWIL §/1 SUNUDES 67291 = JWIT 80553708e GISAV T3
SH1G6E6GCT st sss s esssesiage

.vﬁwgenunuﬁ
PESEYY X

R) o ¢wv~:nw . .
PESWITEUEd (NUTLy L0l INWI UNIRMUTTILU4 dHL UG

SUNDO3S E£9°6€8 = 3WIL 0/1 SONUD4S $6°291 = dWILl &0S8S320
JY0IS W3luusd 023 = 3J400SMO7T UG = J¥U0SIH €2} = WOWINIW 9¢ =

ve wolaa ca

oe aajco oe
w0 wuloe oo
oo cojos ae
o8 wojce ca
w9 sofnae va
9 oej{os ca
vo oulee aa
oo gojea o
oo eofes se
ov ¢l eo

[V

"

ot

1]
5.4
a

PN an]

DL«J
(Ta
0.
¥
d
(¥

63

#5104 80U5 et
. o SUNQO3S £S°60E = ANWIL 0/4 SUKUDAS L1471 .= 4hll 80S$S300be U45dy 13
P6c9t Esseisaisiisirscy
&%Wﬂ.ﬂsﬁﬁﬂﬂﬂﬂﬂ “““"nnuuunu
2#S RS SN

R #5469 IRRRRREEEEE N
»#>160 AN EENEE RN
#5844 - SRR
#5968 EEEEEREEEE
2ES{LY 888833838
S#EFSSudbknN ISIHIOUY HEEE]
SUNQJ3S 0%°8he = 3INIL O/i SUNDD3S 22°041 = 3WI1 H0SS3GY¥g G350v13

651 = 3400S W3T804d 061 = 3800SHOT G02 = J80ISTH SS1 = WAWINIW 097 = WinIXun
T »#51030800 AISNCIAG0 ST IVAT TiTTiiTeies
SUNDO3%S £€9°9%€ = 3WIL 0/ SUNUDAS ©2°691 = 4Hwll 80SS30UbD U3SdV 13
206°F 13888323t 3sss8g
¢mwu,p@mu_nwz».cucy>ﬁa 499 §83s2ss2833
PESWATNHUYL YUNIMUTITI04 4HI 00 s3s2sgcsiess

S . SUNGA3S Sd°ng = 3IWIL (071 SANU33S 8w °R91T = d4kid H0S54J0Udd (454913
20z = 34008 W3lalud 00¢ = 3H0ISMOT 09z = 4Y¥0OSIH 00e = pNwINIn 90¢ = WOwlAVix
S#FSMUT L1 470017 Y LSNP 34y NUA seszesssses
. 2#5103MH00 JUN SI yB6°E 4G YAMSNY &NUA ssssgzsssss
PESG56°C S1 HIMSNY LO38HUD IHL sessszsesss
SUNDJ3S 9w Etwe = JWIL 0/1 SUNUD3S S§°797 = JWI1 a0SS5008s U3I5av T3

R - IHYO°E $333:8883s83ss888
2#3% 1928 UUINI Q30IAIQ (96 SRR REREE
2FSnAlEudEd ONIMy LI0d 3HL D3 $8s3333338

Arithmetic 5

