A PARAMETRIC METHOD FOR SEMI-DEFINITE
QUADRATIC PROGRAMS T

M. D. Grigoriadis (*)
K. Ritter (*%)

Computer Sciences Technical Report #14

March 1968

() Sponsored by the Department of Computer Sciences, University of Wisconsin,
under NSF Research Grant GP6070, ‘

(*) and IBM Corporation

(**#%) and Mathematics Research Center, United States Army, Madison, Wisconsin.

Presently at Mathematisches Institut , Technische Hochschule,Karlsruhe, W.
Germany.



ABSTRACT

This paper describes a parametric method for solving semi-definite
quadratic programs which seems to be well suited for problems with a
large number of constraints. All computations are performed by pivotal
operations on a tableau, or more efficiently on an inverse, whose size may
be considerably smaller when compared to other methods of solution. Up-
dating of this inverse is accomplished by elementary row and column operations.
Programming of the proposed algorithm for a computer is facilitated by the ability
to make efficient use of the product form of the inverse mechanism of most
commércially available linear programming systems. An existing solution
to a slightly perturbed problem, if available, may be used as a starting
solution for a new problem, with a possible substantial reduction of the required
computational effort. Finally,an obvious but rather important advantage of the
method is its use in post-optimality studies involving the requirements vector

and/or the linear part of the objective function.



1. INTRODUCTION

The Quadratic Programming problem (QP) is defined as:
Maximize

(1.1.1) Q(x) = c¢’x - L yex

subject to the constraints

(1.1.2) Ax

A
lon

(1.1.3) X

1%
[en)

where ¢ and x are n-vectors, C 1is an (n,n) - symmetric positive semi-
definite matrix, b is an m-vector and A an (m,n ) - matrix. g

In recent years, much attention has been focused on this problem
for two main reasons. Although in practice it is used much less frequently
than linear programming, quadratic programming has several important appli-
cations in business, science and engineering. These include ([ 18, 4, 6])
problems in portfolio selection, linear regression analysis with inegquality
constraints on the coefficients, maximization of consumer's utility in the
framework of classical COnsumIStion theory, profit maximization under
resource constraints, quadratic approximation of general convex programs,
computational methods of optimal control (minimum energy problems),
pattern recognition and others. In addition, being a special case of general
convex programs, the quadratic programming problem presents a most

desirable feature: the linearity of the objective function gradient. As a

1) The assumption of inequality constraints is not restrictive since Ax = b
may be represented by Ax = b and the additional constraint —ar;lH x =-B where
m m T
a4l = ‘Zl aj and B = 'zl (b)y
i=1 i=



result, the Kuhn-Tucker optimality conditions are linear with the additional
stipulation that only one of certain pairs of variables may be positive,
Algorithms for the solution of quadratic programming problems are abundant
in the recent literature on mathematical programming, see e.g. [2,4,5,9,10,
12,17,20]. Some of these methods handle the case of a semi-definite mafrix
C directly. Others however, insist on a definite C and can handle the semi-
definite case only by the perturbation technique first suggested by Barankin
and Dorfman [1]. In general, these methods have the use of the Kuhn-Tucker [ 8]
optimality conditions as an auxiliary problem and the application of a modified
simplex procedure in common. An initial feasible solution satisfying (1.1.2)-(l.1.
is required in most cases. However, if C is definite, instead of an initial
feasible solution,[9, 17] require C"1 or the equivalent amount of computation.
The auxiliary problem is then solved by simplex operations performed on tableaux
of size (m+n). Excellent reviews of the above methods may be found in [3, 4, 7]
and computational experiments on their relative efficiencies found in [11].

The computational experience with large quadratic programs is, despite
all the theoretical development, quite unimpressive when compared to that of
linear programming. The methods of Wolfe [18] and Beale [2] have been
programmed for large scale computers. Their implementation requires only
minor modifications of existing linear programming codes. However, the largest
problem solved by these programs, known to the authors, does not exceed 50

variables and 100 constraints.



In [13], Ritter proposes a parametric method for the definite case.

This technique amounts to first, obtaining the free maximum x_ and, if

0

X, is not feasible,enlarging the feasible domain so that X becomes a

feasible boundary point; and second, considering X, as a function of a
parameter, reducing this domain to its original definition (!.1.2)=(Ll.1,3)

by successive parametric steps. The method requires explicit definition of

the non-negativity restrictions (1.1.3), the inverse C—l and a prohibitive
amount of core storage for storing A as well as the partitioned form of an inverse
whose size varies between m+! and m+n. Furthermore, it cannot utilize the
capabilities of an existing linear programming code.

Limited computational experience with this algorithm however, has
shown that a parametric approach resembling [ 13] might be particularly
efficient if the obvious deficiencies listed above could be overcome. The
parametric method outlined in this paper is a generalization of the basic
idea presented in [13] to the semi-definite case. The non-negativity
restrictions (1.!l.3) are represented and handled implicitly. For problems
with m=n a constant tableau size of m+n, and for problems with m>n a
constant tableau size of 2n+! is used for all computations. The method
is particularly suited for use with the product form of the inverse mechanism
of existing LP codes after minor modifications. Updating of the inverse
is accomplished by elementary row and column operations. The most
important and obvious advantages of this method are its use for post-

optimality studies, i.e. varying the requirement vector b and/or the linear



part of the objective function, and its ability to utilize an existing solution
to a slightly perturbed problem as a starting solution.

In the next section the parametric quadratic programming problem is
defined and the basic features of the algorithm, to be detailed in section 3,
are summarized. In section 4, the computational aspects, in particular
those concerning pivot operations and the product form of the inverse, are
discussed. In section 5, the proposed algorithm is extended to post-
optimality analysis of quadratic programs. In the final section the validity

of the method is demonstrated.



2. THE PROBLEM

We consider a Parametric Quadratic Program (PQP) in which the linear
part of the objective function and the right hand side vector are linear

functions of a parameter g, i.e.

Maximize for all g with 9= g= ¢

1
(2.1.1) Qx(8)) = (c+ed)x - Tx'Cx
subject to:
(2.1.2) Ax = b+ 6f
(2.1.3) x z 0

where g, 9 define the specified parameter range and d, f are given or
predetermined n and m-vectors respectively. Clearly, the above problem
is equivalent to QP when g =0,

The Kuhn-Tucker necessary optimality conditions [ 8] for PQP state
that if x=x_ is én optimal solution to PQP for a particular ¢ =¢6_, then

0 0

there exist vectors u=u_ and v =v_ such that the following relations are

0 0
satisfied:
(2.2.1) Cx + Au - v = ¢ + eod
(2.2.2) Ax ty = b + gf
(2.2.3) v'x = 0
(2.2.4) u’y = 0

(2.2.5) x z 0



(2.2.6) y 2 0
(2.2.7) uz 0
(2.2.8) vz o0

where u, v are m and n-vectors of Lagrange multipliers or dual
variables, corresponding to (2.1.2) and (2.1.3) respectively, and y is
an m-vector of slack variables corresponding to (2.1.2). These conditions
are also sufficient in view of a positive semi-definite matrix C . The
relations (2.2.1) - (2.2.8) will be referred to as the "Auxiliary Problem" (AP).
We note that AP is linear except for (2.2.3) - (2.2.4) which are usually
referred to as the "complementary slackness" conditions. Assuming that a
solution to AP ‘is known for some ¢ = 90, our aim is to obtain subsequent
solutions for g < 90 , provided they exist, until ¢ is reduced to zero.
Thus, the corresponding solution will be optimal for QP .
An important aspect of the proposed algorithm is its ability to determine
off-normal conditions in QP or PQP from information available in the simplex

tableau of AP . Suppose for example QP or PQP for some g = @ have no

k 3

feasible solution. This fact may be determined from the corresponding AP by

a simple test. Similarly, if QP or PQP for some g = g, have no optimal

k

solution, or have an unbounded solution (provided that they have non-empty

feasible domains), this fact may be detected from the corresponding AP .



3, THE ALGORITHM

Our first step toward obtaining an optimal solution to a given QP is

to choose an x. and determine d, fand @ so that x

0 is an optimal

0

solution to PQP . We propose to begin with x0 = 0, If welet

(3.1.1) (d)

i
e
1t

i I 13 ooo,n
0 otherwise

I if (b), = O
(3.1.2) (f), = ' s i=1,...,m
0 otherwise

and choose

(3.1.3) 6 max {0,(c),, - (b),}; t=1,..0mij=1,...,m

0 i j

]

we have vectors d and f such that for g = 90, the point XO = 0 is an

optimal solution to PQP. Furthermore, if .= 0, then x_= 0 solves

0 0

QP as well as PQP . Assuming 90 > 0, we seek to obtain a solution to

QP by parametrically solving PQP for values of 6 < 90 until a solution,

if it exists, is obtained for & = 0. Such successive solutions are obtained

using simplex tableaux of the corresponding AP. The side conditions

(2.2.3) - (2.2.4) are handled by the proper choice of pivot. The pivot operation is
regarded as an exchange of an active constraint and an inactive one, or

as it is frequently portrayed, as an exchange of a basic slack variable

(corresponding to the inactive constraint) and a non-basic one (corresponding

to the active constraint). Thus, for 6 = 90 equations (2.2.2) give



yo = b+ gf; and Yo Z 0 due to the construction of the vector I .

Similarly, (2.2.1) implies that Vo = -(c + eod). Considering the construction

of the vector d by (3.1l.1), we have v_ z 0 . Therefore, x, =0, u =0,

0 0 0

Yy and Vo is a solution of AP for 6 = 90 . In the terminology of the

simplex method we regard v_ and Y, @s "basic" in the tableau of AP .

0

Before outlining the details of the proposed algorithm, we examine the
structure of AP and the composition of its basils at any parametric step
corresponding to 8 = 90 . We first note that since PQP has n variables,
at most n constraints of the form (2.1.2) are needed to determine the optimal
solution of PQP for any particular 6 . In terms of the definition of AP this
implies that at any time at most n components of u can be basic.,

Hence, we can assume that in each solution of AP at least (m-n) components
of y, corresponding to the inactive constraints, are basic. In degenerate cases,
some of these may be at zero level.

Based on the above observation, let us partition the rows of A in the
following fashion. Assume that for a particular @ = Qk = 90 we have p (gn)
active constraints of the form (2.!.2). Denote by Ac the (n+l, n) - submatrix
of A which includes the p active rows and (n-p+l) of the inactive ones.

These will be referred to as the "current" rows of A . Similarly, let A® denote
the (m-n-1, n) - submatrix of A, consisting of the remaining inactive con-
straint rows of A . These will be referred to as the "stand by" rows of A . The

. e c s
corresponding partitioning  of the vectors u and y gives (u,u’) and

(yc, ys) respectively. This is shown in Figure 1 .



c cg s s
X y u s v y Y : u , Y
— ! 7 I
n {| c A" ot aS 0 | = c+ed
t
ntl {| a° 0 0 I_Jl 0 0 | = b+ 6f°
m-n~-1 { AS 0 0 0 0 I | = b°+of°
L‘v — L — ‘-—\,-/J
n n+l n n+l m-n~1 m-n-1

Figure 1 - Matrix structure of Auxiliary Problem (AP)

We observe that since the rows of A® are all inactive, ys must be basic
and uS = 0. Therefore, all information on the solution of AP may essentially
be obtained from the (2n+l, 4n+l) - submatrix enclosed within dotted lines
in Figure ! . Since, at any time, As contains only inactive rows, we will
perform the necessary variable exchange (pivot) operations on the "Reduced

4

Auxiliary Problem" (RAP) defined as:

(3.2.1) cx + 2% - v = c+aod

(3.2.2) A®x + v¢ = b4 6f°
c C

(3.2.3) XU ,V,Y z 0

always taking into account the side conditions:

(3.2.4) vix = 0

(3.2.5) ¥y =o0 (and u®’y® =0).

. s
If, during the course of the algorithm a constraint in A~ becomes active,

then the current partitioning of A will be updated to include this constraint



c | ,
in A" in exchange for a currently inactive one in AC » wWhich is brought into AS.
This operatian, also handled.by pivoting, requires an effort almost equivalent to

an ordinary pivot step. The structure of the working basis at any parametric step

corresponding to g = Gk = 90 is given by:
X v LIC c
1k’ 1k’ 1k’ Yix
ci 7
Fcn 0 Ay 0 bop \ .
Ca T AICZ, 0 J n'p]
(3.3) Bk = c 2n+l
0
Ay 0 0 } a n+l
c
Azl 0 0 I J nt+l-q
. o

c c . .
where Xlk’ Vik Uy Vi denote the basic variables corresponding to the

basis Bk of RAP and where the following partitions have been used:

., C C
C C A A
11 12 11 12
C= ; A= | :
Coi Sy Ay A,
’ 7. / _ /oIy Cf_ . clocr, cr_ c/ ¢/
x’ = (xl,xz), v’ = (VI’VZ)’ u o= (ul,uz), Y (Yl,y 2)

Corresponding partitions of the right hand side are:

! / / / Iy . c C, _ cv/ L/ c/ c/
(¢ +ed)’ = (c] +ed, cj+od)); (b7 +6f) = (b7 '+ of |, b "+ 6f )

and of the inacgtive "stand-by" constraints:



Ll

In addition to the above, we define the following index sets for later
reference. Let J= {l,...,n ) be the index set corresponding to the variables

x, I=1{l,..., m} be the index set corresponding to the rows of A, and

c s . le s ,

I"c I, I"<I with I"uU I" =1 be the index sets corresponding to the rows
of AS and AS respectively. Furthermore let IBE J contain all indices of

the components of the p-vector x IC - IC contain those indices corresponding

1’ "B

to the active constraint rows or to the d-vector ulc . Similarly, let IB =7 - IB

be the indices corresponding to the (n-p)-vector vy and .I.(g = Ic - IC; be those

corresponding to the (n + 1 - g)-vector yci .

Using the above notation we may refer to the basic variables (with respect

C

to a basis Bk; 0 =9k) as (Xlk)j for je ]Bk; (Vlk)j for j e J‘Bk; (ulk)j for
j € Ic and (yc )y, for j e fc . We consider (ys), for j € I°  as
B, 1k'; B, k'] By

"implicitly basic" since they do not appear in the RAP basis but are basic in
the tableau of AP .

Now assume that for 6= ¢, an optimal solution xk(ek) has already

k

been obtained. We wish to determine the smallest 6, say 6 =9& s ek , such

that xk(e), 6. = 6 £ 6,, remains both feasible and optimal. Considering the

L= k

-1
(2n+l)-order RAP basis B, and its inverse B,  , we can express the current

k k
solution as:
g xlk(e) CL+ edl'
v . (8) c.+ 6ed
1 -1 2 2
(3.4.1) ck = Bk c c ; 8= Ok
ulk(e) b1+ ef1
c c c
ylk(e) b2+ QfZ,
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For convenience we write

(3.4.2) x,,(6) =p, +op,
(3.4.3) v, d6) = pytOp,
(3.4.4) ufk(e) = py + 0P
(3.4.5) yfk(e) = p, + 6P,

where the composition of the pj can be readily identified from (3.4.1). The
implicitly basic slack variables yi(e) corresponding to the "stand-by"

s
constraints A~ may be expressed as

S, . _ .8 S _ .S
yk(e) =b" + of Al Xlk(e)
or

S5

S, .\ _ S _ AS s _
y(6) = (0° = A7 p) + 0l ~A] p))

where we write for convenience:
(3.4.6) (6) = p, +6
L Yil91 = Py TOP g
At this point two questions must be answered. The first is that of

optimality: What is the smallest value of the parameter, say 6= .91 = ek ’

for which the optimality conditions

(3.5.1) v, (8)Z 0
(3.5.2) u‘fk(e) z 0

are satisfied? For (3.5.1), using (3.4.3),we have:
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~ (Py) (p,),
3.6.1‘ ' ;—_-—J—u‘— = _..__:3__L . C
( ) &'y e max ) (p4)' > 0 and j € IB

Similarly, for (3.5.2),using (3.4.4),we obtain:

6 ’\a" (p5) I (p5) —

3.6,2 R - ) 0 :

( ) 9£ (pé) ) max ~—-——-}—(p6)‘ | (p6)j > and j e ]Bk
H J ‘

Thus, for optimality, the smallest value of 6 is:

~ ~~F g
6, = max {9&’ ‘9&3

and p'o if ’é:t:‘é:;,
o= o

w" i 8,=6,

The second question consists of determining the smallest value of the

parameter, say 8= 5 = ek such that the feasibility conditions:

)

(3.7.1) % (e) 2 0
(3.7.2) y‘fk(e) 2 0
(3.7.3) yp(e) 2 0

are satisfied. For (3.7.1),using (3.4.2), we have

(p,) (p,),
oo L A o N -
(3.8.1) @L = (pz) . max (pz)j (pz)j > 0 and j e ]Bk
Y

Similarly, using (3.4.5)—(3.4.6) with (3.7.2)-(3.7.3) respectively:

(P,)p" (p,).
I A S| . _—C
(3.8.2) 9& = (pg)p" max (pg)j (pg)j > 0 and je IB

k
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and
(p ) " (p ).
(3.8.3) ’e\:ejz - z—i'g)‘)— =max { - '("B—'JS (plo). > 0 and jeI;
plo pll[ plo J' J k
Therefore, for feasibility the smallest value of ¢ is:
- - ~1 “n n
9&—- max {9&) 9&, e&}
and p' if ’éL= é?\(’:
p = ot 5= 8
"o, ”~ ~ na
if 9 =
P v %

Finally the smallest ¢ for which the present solution remains both optimal

and feasible is:

- M 1
(3.9) = max {'é:&, 9&}-— max {'é:‘t, By s By

%
The next step Is to investigate the nature of the AP basic solution
for 6= Q,e, - &> 0 forasmall € > 0. This is the crucial part in performing
a parametric step. Depending on which one of the five limiting values of
6 defines e& in (3.9), an appropriate basis change must be performed in
order to restore optimality or feasibility. Such a basis change has the usual
geometric interpretation. It entails updating the status of a constraint, be it
a non-negativity restriction or an ordinary constraint, from "active" to
"inactive" and vice-versa. As in parametric programming for linear programs,

such exchanges for a particular limiting value of 6, cause no change in the

current value of the objective function since both the entering and exiting



L5

variables are at zero level, In linear programming, there is considerable
flexibility in the choice of the entering variable. In our case, however,
once the exiting variable is defined by (3.6) or (3.8), the entering variable
is uniquely determined by (2.2.3)-(2.2.4). Such exchanges are performed
by pivot operations.

We now examine the types of pivot operations which will restore
feasibility (Case I) or optimality (Case II) for 6=6, - €. Characteristically,

2

in Case I we would like to reclassify a currently (i.e. for 6= 9&) "active"

constraint as "inactive", and in Case II a currently "inactive" constraint as

"active". Thus, one of the following operations would have to be performed

for 9:9«&:

Case I
(e& = 'é:&). The constraint to become inactive is a:

N

A

=7 = 6.)

(i) non-negativity restriction (9& 5 j:,/ «

—
By (3.6.2), we must have (v " = 0 for at least one | € IB .

lk)u K

In view of (2.2.3), we seek to replace (Vlk)@ by its complementary

variable (XZk)LL .

~ ~
(ii) ordinary constraint (6, = 6, =6, =6

E I P k)

c

From (3.6.1), we must have (uC ) =0 foratleastone p €1l .
Lk'y Bk

In view of (2.2.4) we seek to replace (ucl:k)LL by its complementary

c
variable (y,.) .
2k,



Case II

(6, =

£

(1)

(i1)

(iii)

16

5—6) . The constraint to become active is a:

non-negativity restriction (9&=?9& = ’é,;, = ek)

From (3.8.1), we must have '(Xlk)p = 0 for at least one p € IBk .

In view of (2.2.3) we seek to replace ( by its complementary

Xlk)p
)

variable (v

2k'p

ordinary constraint in N (e’t:/é =5 = o )

From (3.8.2), we must have (y(l:k) = 0 for at least one p € Ig .
P k
In view of (2,.2.4) we seek to replace (yfk) by its complementary
P

, c
variable (qu) 0 .

S - 1
i i = = <
ordinary constraint in A (9& 6& 8& < ek)

s
s : Bk
We recall that although y~ 1is not in the basis of RAP, it is always

From (3.8.3), we must have (y]s()p a0 for at least one pel

considered as basic in AP since AS is composed of only inactive
constraints. However, now that the pth constraint is AS will
become active, we must perform the following operations:

a) TUpdate the definition of the "current" and "stand~by"
constraints, i.e. update the sets Ic and IS » by defining
the pth constraint presently in A% as "current", in
exchange for an inactive constraint presently in A® s, say
the tth . Such a constraint will always be present in Ac

c
since not more than n of the (n+l) constraints in A
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may be active. The updated partitioning of A into

A® and A® defines a new RAP. It is obtained from the
current RAP by replacing the elements of the row corre-
sponding to the Tth constraint by the representation of
the pth constraint (which is to be made active) and

furthermore, by replacing the basic variable by

(ycllk)'r

the implicitly basic variable (y.) . One should note

s
k'p
that in the new RAP, the updated partitioning of y into

)

yc and ys requires that (y]S() be denoted by (y(l:k
p

This notational liberty should not cause confusion. In
the new RAP, (ycfk)’r is at zero level and must be removed
from the basis by (b) below.

b) We seek to replace the currently basic (y(fk)T by its

complementary variable (u This step is the same

7
1k P *
as (ii) above.

Any of the exchanges described above may be easily performed by a
"pivot operation". Lemma 2 in section 6 guarantees the non-positivity of
the pivot element. Thus, if the pivot element is negative, we perform one

pivot step so that the sought exchange of variables is accomplished. We

then return to (3.4.!). The mechanics of pivoting or, equivalently, updating
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the current inverse of the RAP basis, are outlined in section 4 . On the other
hand, if the pivot element is zero, the sought exchange of variables is more

complex and requires a pair of pivot steps. The existence of a pair of pivots

is demonstrated in Theorem 2., In the following paragraphs the question

of a zero pivot (in Cases I and II) and its remedy are discussed in detall.

Case I:

If the pivot element is zero, it can be shown (Lemma 3) that PQP has

an Infinite number of optimal solutions for @ = 9& . However, by means of

simple examples it may be shown that not all elements '}'{k of this infinite set
of optimal solutions need have the property that there exists a function
x(6) such that ik = Xk(e&) and x(8) are optimal solutions to PQP for some
interval 9p§ o= 9& with ep< 9& . The existence of a zero pivot indicates
that ;{.k does not have this property. In order to continue with our parametric

procedure we have to determine an optimal solution X,

there exists a function x(6) with the previous property.

(if it exists) for which

This is referred to, in this paper, as the "Search Procedure" which
is perhaps a misnomer since the term usually implies a more complicated
sequence of computations such as a one dimensional optimization procedure.

Our search procedure is defined as follows:
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For Case I - (i), where a non-negativity restriction is to become inactive,

i.e. (v = 0, we let &’ denote the [ th row of i ’ /A%
( -1k)u. n the matrix (C |, Co0 A5
c/ 1 2
AZZ) . Furthermore, we let sk and sk denote the first p and the last

(n + 1 - @) components of the vector ~B,

a , respectively,

For Case I - (ii), where an ordinary constraint is to become inactive,

i.e. (uc;k) =0, welet e denotean (n+ l)-vector which has 1| as its pth
3 K
~1 ~2
component and zero elsewhere. Let s, and s, denote the first p and the last

k k

(n +1 -q) components of the vector Bk e , respectively.
1L

Now we define the directions:

1
(sk, s) if Case I - (i) applies

(3.10,1) 5, =4
(Sk’ 0) 1if Case I - (ii) applies

where s is an (n - p)-vector with -1 as its th component and zero

elsewhere;
and

si if Case I - (i) applies
(3.10.2) Sk = ~ ’

Sk if Case I - (ii) applies

By Lemma 3, x()\) = Sc'k + A8y is optimal for all ) for which it remains

feasible. We wish to determine the smallest ) for which x()) is feasible.
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Since by construction of '§k sall the constraints active at ;{—k are satisfied by

x(\), = 0 , we have only to consider the following three cases:

a) the inactive constraints in A° must be satisfied,

i.e. we must have

c >
ylk(e&)+ Asy 2 0

which gives

c
(v, ),
(3.11.1) A = max - E-l—];—l— (sk) > 0 and jefg
j , k'j j k
the maximum occurring for some j = o) If Sy =0
for all j e—fc then ), = - ©
Bk s 1

b) the inactive non-negativity restrictions must be
satisfied, i.e. we must have:

(X, +25,) 2 0 forall jeIB

k k j K
or
(%),
(3.11.2) A, = max - == (s;,) > 0 and jeJ
2 J. G, k| B,
the maximum occurring for some j = a, - If (Ek)_ =0
J

for all j e ]Bk, then Ay =T e

c) the (inactive) constraints AS must be satisfied,
i.e. we must have:

S ,— — . < .S S
A(xk+ xsk) = b +e&f

or
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(yk)j S S
Ay = max - (A é‘k) < 0 and j e IB
j (A sk)j j k
the maximum occurring for some j = 03+ If (Asé"k) z 0
J
for all jeIS , then ), = - ®
B 2
k
We let
ol‘ . =
(3.12.1) 2= max s,y
(3.12.2) o = {cj | e =)
If A== o then there exists no optimal solution to QP (Theorem 1).

If a feasible solution to QP exists, then for g < 9& z 0, PQP (and QP)

has an unbounded solution. (Remark 2 in section 6).

If ~-»< ) = 0, then x =X(M=§k+>‘

K is an optimal solution to

Ek
PQP for o6 = 9'&, which can be used to continue the parametric procedure,
The transition from fk to }?k causes the gth constraint to become active
instead of the | th one. The complete solution of RAP, corresponding to
the optimal vector X, , can be obtained from the old one by means of a pair
of pivot operations (Theorem 2),

In terms of variable exchanges, we may say that in Case I-{i) we originally
sought to exchange (v lk)u by (X.lk) and found that this was not possible,

v
due to a zero pivot element. Now we can exchange

. c B






23

which if replaced by the pth constraint, insures that the so altered set

of active constraints is linearly independent and RAP has a solution ka(e)

: - S50 wi < . = i
for some interval eq = P = 6& with Gq 9& and ka(e&) Xk(e&)' This

procedure, which will be referred to as the "Constraint Replacement Procedure",
is outlined below.
Let the pth constraint be represented by:

‘'x = a’ ¢ s
(3.15.1) ax a)x; + a,x, = 5)

Since, by Lemma 2, the above constraint is linearly dependent on the active -

constraints at X, , there exists an (n-p)-vector z, anda g-vector z., such

k 1 2
that
al 0 Alcl, z,
(3.16.1) =
a -1 ac! z
2 12 2
Using the current partitioning (3.3) of Bk , it may be easily verified that
(0, zl/, zzl, 0) is the unique solution of the system z/Bk = (a{,az/, 0, 0).
-1
Hence, Bk being known, (zf, zé) can be determined conveniently from
’ 7 _ ’ _ 7 -1
(3'16'2‘) (0’213223 O) - (al’az’ 0’ O) Bk

With (z 1’, zé) known, Lemma 4 provides us with a simple test to identify

the u,th constraint to be made inactive or to detect that PQP has no

feasible solution for @ < Oy - Thus, if for z’= (0, Zl/’ ZZ,’ 0) ,

(3.17.1) (z). £ 0 forall jelIS ,
i By
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we conclude that no feasible solution to QP exists. On the other hand,

if z has at least one positive component, we obtain

(v,,) (v,,);
(3.18.1) vl Bkl L NS, £ 12y >0, and jeT
0 ( ) J (zl)j 1) Bk
)
@) (uf, )
) .
(3.18.2) vi o= ikbp oo K (z.). > 0, and j e I°
0 (Zl) : (22)' 2'j B
and ' 1 2
v, = min {vo, vo}
(3.18.3) oy =yl
p ={“1 Yoo
. .2
My if vo —-‘\IO

which identify the pth constraint to be made inactive.

We consider two cases, depending on whether (3,15, 1) is a "non-
negativity restriction" or an "ordinary constraint".

In Case II -~ (i) the pth non-negativity restriction, which is represented
by letting a, = 0, a, = (e)p in (3.15.1) and (3.16.2), is to become inactive.
However, the exchange of (Xlk)p by (VZk)p cannot be carried out due to a

zero pivot. Provided (3.17.1) is not satisfied, one of the following pair of

pivots, performed in the indicated order, is always possible (Theorem 2):

(3.19.1) (xlk)p by (v,y), and (x;,), by (Vzk)p fp=y
C C
(3.19.2) (%1)p PY (vy), and (u)}), by (Vzk)p o=y,

In Case II - (i1), the pth ordinary constraint, which is represented by

letting a; =a, and a, = aZp in (3.15.1) and (3.16.,2), is to become inactive.
p
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However, the exchange of (u(l:k)p by (ygk) cannot be accomplished due to
p

a zero pivot. Provided (3.17.1) is not satisfied, one of the following pair

of pivots is possible (Theorem 2)

c c : _
(3.20.1) (w[ ) by (v, and ey )y by (gl 4w =gy
c e} c c , _

Thus the appropriate pivot or pair of pivot steps, specified by Case I
or II above, is executed by updating the current inverse using the procedure
outlined in section 4 . The updated basis inverse is then used to continue
the algorithm from (3.4.1).

A concise summary of the parametric algorithm outlined in the previous

paragraphs is as follows:

Step 0. Use (3.1) to construct vectors d and f such that for 6= 60’ the

point x (6,.) = 0 is an optimal solution to PQP. Construct the basis B0

00)

— \ -1
by (3.3), define the sets J_ , J, , IC , _IC s Is and obtain B, . Let
B0 B0 BO BO BO 0

Gk-“- 90, Bk= BO and go to step | .

Step 1. If ek = 0, then B, 1is optimal and xk(O) is an optimal solution

k
to QP. Terminate. If Gk > 0, compute vectors pj; j=1,...,10 using
(3.4). Apply (3.6),(3.8) and (3.9) to obtain epé ek . Go to step 2. (See

Remark 3.1)
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.
2.1. (Case I{i)) If g, =6 , try to exchange (v ) by

L L lku

) . If the pivot is negative, perform one pivot step to obtain

(XZk W

B& , go to step 5. If the pivot is zero go to step 3. Upon return

(from step 3) perform one of the pairs of pivots (3.13.1), (3.13.2),
or after exchanging a constraint, perform the pair of pivots (3.13.3)

-1
to obtain B’e’ . Go to step 5 .

2.2. (Case I{i1)) If g = '5" , try to exchange (u

C C
W= 9 e BY g,

o
If the pivot is negative, perform one pivot step to obtain B; , go
to step 5. If the pivot is zero, go to step 3. Upon return (from
step 3) perform one of the pairs of pivots (3.14.1), (3.14.2), or

after exchanging a constraint, perform the pair of pivots (3.14. 3), to

-1
obtain B& . Go to step 5.

~
= 8

A by (v

2,3, (Case i)y Iif 6& , try to exchange (Xlk)p

If the pivot is negative, perform one pivot step to obtain B P go

Zk)p ‘

to step 5. If the pivot is zero, go to step 4, TUpon return (from

step 4) perform one of the pairs of pivots (3.19.1) or (3.19.2) to

—

obtain B& . Go to step 5.

. ~ “n C C
2.4, (Case II(i1)) If e&— 9&, try to exchange (Ylk)p by (qu)p .

If the pivot is negative, perform one pivot step to obtain B& s go
to step 5. If the pivot is zero, go to step 4, Upon return (from

step 4) perform one of the pairs of pivots (3.20.1) or (3.20.2) to

-]
obtain B& . Go to step 5.
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-~
2,5. (Case II(iii)) If e&= 9& , exchange the pth constraint
. s th ~
in A" by the = constraint in AC. This is accomplished by
-1
k -
c
Then, try to exchange (ylk)T by (uc;‘k)p » If the pivot is negative,

a special pivot step (see 4.1.4) and subsequent updating of B

& ]

is zero, go to step 4 . Uponreturn (from step 4) perform one of

perform one pivot step to obtain B go to step 5. If the pivot

the pairs of pivots (3.20.1) or (3.20.2) to obtain B;’ . Go to

step 5.
Step 3. ("Search procedure"). If entering from step (2.1), let §‘k = —B]Z (e)u .
If entering from step (2.2), let S, = --Bk (e)u +n " Compute A >\,2,>\,3 by

(3.11) and ), o by (3.12). If \ = -, no optimal solution to QP exists.
(If QP has a non-empty feasible domain, then ) = ~» implies that QP has

an unbounded solution). Terminate. If - <) £ 0, return.

Step 4. (" Constraint replacement procedure"). If entering from step (2.3),

let a.=0, a2=(e) . If entering from steps (2.4) or (2.5), let a,=a

1 p 17217 %27%p"
/- ;o Y -1 < . .C
Compute 2z (0,2 P 2% 0) = (a 1 a’y 0, O)Bk . If (z)j =0 forall je IBk s
4 2
then QP has no feasible solution. Terminate. If not, compute V}E), v 0 by

(3.18) and vo,u by (3.18.3). Return.

-1 -1 L
Step 5. Let 9k+l = 9& , Bk—l—l = B& and update the basic index sets to
obtain IB s *]:c R I; s _ig s I; . Let k+l — k and start the next
k+l k+1 k+l

Kl kel
parametric cycle at step 1,
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Remark 3.1

First suppose that 9‘& in (3.9) is determined by the fact that exactly

one of the variables (3.5.1), (3.5.2) or (3.7.1) = (3.7.3) becomes zero for

6 = 9’& . If the pivot element is negative or if, in the case of a zero pivot,

the constraint determined by the "Search Procedure”, or the "Constraint
Replacement Procedure” is unique, then it follows immediately that the pivot
operation, or the pair of pivot operations in the case of a zero pivot, gives a

i i i i i = = < .
basic solution which is valid for some interval GJL—H = p= 9& with 9&+1 9&

However, several basic variables of the current RAP may vanish for

6 = g . This case can be reduced to the above situation since one can choose

£s

the components of d and f in an appropriate way. For instance, if several
components of y?k and/or yi are zero we can increase all but one of the
corresponding components of f and obtain a case with exactly one vanishing
component of y(;k or yi . Similarly, if several components of Vi are zero
we can decrease all but one of the corresponding components of d . If several,
vanish, we can choose one of them, perform the

say n, components of x

1 1k

pivot operation dictated by the algorithm, and then decrease the component of
d corresponding to the new basic variable which then becomes positive. This
results in a case with (nl - 1) vanishing basic variables. Finally, if several

components of n are zero, we can choose one of them, perform the necessary

1k

pivot step and increase then the component of f corresponding to the new basic

variable.
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Clearly, any ambiguity caused by combinations of the above cases or
by the failure of the "Search Procedure” or the "Constraint Replacement
Procedure" to determine a unique constraint can be resolved in a similar way.

Without loss of generality we may therefore assume that Step 2 gives a
basic solution, the x-part of which is an optimal solution to PQP for some

i < < s .
interval 9&+1 = g = 9& with 81,+.1 < e& .
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4., COMPUTATIONAL ASPECTS

As indicated in section 3, all operations are performed on the matrix
of the "Reduced Auxiliary Problem” (RAP), which is shown in figure 2a for
and the corresponding partitioning induced by B

6 =6 Figure 2b depicts

k k'
the corresponding partitioning of the stand-by constraints. The matrix of the
"Auxiliary Problem" (AP) is obtained by considering figures 2a and 2b together.
For problems with m > > n, for which this method is primarily intended, the
size of the working matrix is decisively smaller than the (m + n)-order basis
commonly used by other algorithms, This reduction is enjoyed, of course,

at the expense of the "constraint replacement" operation discussed in section 3.
The relative merits of employing this reduced basis depend on the particular
structure of the constraint matrix, It is clear however, that for problems with

m < n the definition of AP and RAP coincide, and Case II(iii) of the algorithm

does not arise.

X v v U.C LlC c %
X o Fop 0 Vg o Vo 0 Y 0 Yop s Yy 0 Yop
cl CJ e
c, S, -1 o A7 A, 0 0]=c, +6d
C C 0 1 A% acs 0 0|=c +aed
21 22 12 22 . =% 2
C C C C
AT, A, 0 0 0 0 I 0 | = b} +ef|
C C
-AZI A, 0 0 0 0 0 I |=b,+ef,

Figure 2a - Partitioned form of RAP matrix.

C C S
X %o Vik o Vark Yk Yk Yk Yk Yk

[AS a® 0 0 0 0 0 0o I Jz b+ of>

Figure 2b - Partitioned form of the stand-by constraints.
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We now examine three basic computational tools to be used for

efficient programming of the proposed algorithm,

Pivot operations:

For all exchange operations the updating of the current inverse is
accomplished by the known rules of the revised simplex method. The inverse

-]
B, " is premultiplied by an "elementary matrix" denoted by E

K , L.e.

k+1

(4.1.1) B = E . B .

If we let (s, p) be the designated pivot position in the matrix of RAP, then

. “ . c
we define an "elementary column matrix," E

Kl as an identity matrix with

its sth column replaced by:

(4.1.2) Neal = —(—%""* - Cplsot y L o)y y ey (o) ang1
k+1 (hp)s (hp)S (hp)s (hp)s (h""““"""p)s
with
-1
(4.1.3) hp = Bk gp

where gp is the column of the RAP matrix shown in figure 238 , corresponding
to the variable entering the basis. Thus, to perform any variable exchange
operation, we identify gp and apply (4.1.3), (4.1.2) and (4.1.1) with

C
Epel = B

In order to perform the reclassification of a "stand-by" constraint as

"current" in Case II(ili-a), we define an "elementary row matrix", denoted by

E;_H, which is an identity matrix with its gth row replaced by



rrs

(4.1.4) Ngsr = (972 €

C#

where using our previous notation, the p-row vector g% = (aT

-a®’) and
p

e,’r is the 2n -~ p + 1)-row unit vector with the 1 in the position corresponding

c” th

c? S
to aT . The row vectors aT and a are the =
P

Ai’ respectively. Having constructed “1:4-'1 we then apply (4.1.1) with

and pth rows of Agl and

-1

r . . .

Ek+1 = Ek-i—l . It is easily seen that the effect of this transformation on Bk
th 5

is the replacement of the Tth row of A;l by the p row of A1 in Bk .

The product form of the inverse,

The operationsof exchanging variables or constraint rows are accomplished
by successively updating the (2n+l)-order inverse of the current basis. In
addition, in several instances during the algorithm, this inverse is used to
update a row or column vector (e.g. (3.4), (3.10), (3.16) ). These operations
may obviously be performed using the explicit form of B;l and by carrying out
(4.1.1) for each exchange as it occurs., However, it is also possible to
represent the inverse as the product of elementary matrices of the form Ec;f or

Esj , and rather than performing (4.1.1), the new E may be simply recorded

k+1
for later use. In practice, only the ﬂjc or T]? are recorded and used in all
succeeding computation. The product form of the inverse has been found
advantageous in organizing the revised simplex method for large computer
systems(z). The economy of storage space and computational effort which is
derived from its use is mainly based on the fact that large problems are

characterized by sparse arrays. We outline here the tools needed to implement

the proposed parametric algorithm using the product form of the inverse.

(2)

For an excellent account of this method see [3] or [19].
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We initiate the algorithm by letting X, = 0, which implies that

BO = BO =1 . Suppose now, that k exchanges have been performed starting

from the identity matrix, and that for each exchange the corresponding

elementary matrix has been saved. Then, we have

(4.2) B, = E .E  ...E

where Ej may be a column or row elementary matrix, For m = n, EJ_ = Ec;

for all j . However, since in practice m > > n we will probably have
Ej = Erj for some j . The Ej are saved by recording the type, i.e. C or 1,
the pivot index, i.e. s or T, and the vector ﬂ(; or ﬂ? depending on the

-1
type specified. Thus, to obtain Bk from B it suffices to append n}(;l

1

+1 k

or n;+l to the existing list of elementary vectors. There is no computation
of the form (4.1.1); there is merely an accumulation of information in a serial
fashion.

The transformation of a column vector gp (pivot column) by a single

Ej is given by:

c . _,c o
= (gp)i + (nj ) (gp)S for i #s, and = (nj)i (gp)S for i =s;
c
when E, =E.
(4.3) (Ej gp)i j j
2ntl .
= i = , for 1= T,
(gp)i for 1 # 7, and LLZ:L (n] N (gp)u o ;

when E, = Er.»
] J

Similarly, the transformation of a row vector g; by a single EJ, is given by:
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[ = (g ) for i# d Zrlel( ©y for i
= , for s, and = , = g;
9,4 uz=l gp)Ll (qJ )pL or s
when E, = EC .
y i J
(4.4) (g; ’EJ.)i S
_ C . _ C 5 .
=(gy); * (nj) (g)g for 1= 7, and = (ny)jlgg)gfor 1=,
- when E, = EI,. .
i

We note that the transformation of a row or column vector by an elementary column
or row matrix requires the calculation of only one inner product of order (2n+l).
The operation of updating a column ve ctor gp by the current inverse,

e.g. performing (4.1.3), is accomplished by the repeated use of (4.3) to form

c c r, .c c
(voo (E’“_l (E& (EJe,-l (...(Elgp)...))))...)))

(4.5) h = (E

in the "forward" order, i.e. in the order the Ej were generated. Hence, the
commonly used term "forward transformation". In the same way, the operation

for updating a row vector g; by the current inverse is:

C

- (S g€ c r
l

CE Ep_)ee ) BV EDE (). )E

.6 = (...
(4.6) hp (oo ((((aullg

computed in the "backward" order, i.e. in the order opposite from that in
which they were generated. Hence the term "backward transformation" .

The transformations (4.5), (4.6) are the most important basic tools to
be used in carrying out the parametricalgorithm ysing the product form of the
inverse. All of these transformation procedures are integral parts of most
commercially available linear programming codes and may be used for our
purposes. Slight modifications may be required to handle the case Ej = E§

for some of these codes.
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Reinversion

As successive parametric steps are performed, the number of recorded
elementary transformation vectors (7 -vectors) increases. This increase
effects the progress of calculations, both from the numerical accuracy and
algorithmic efficiency stand points. As the number of the y -vectors increases,
so does the effort required to perform a pivot-step, obtain the next parameter
value, and apply the "search" or "constraint replacement" procedures, etc.
Similarly, the effect of inherent truncation error which accumulates during the
forward and backward transformations may reach prohibitive levels. Qualitatively
speaking, the main problem here lies in the overall increase in the number of
non-zero elements representing the current inverse of the basis.

In such cases, the technique of "reinversion" is employed to re-define
the inverse of the current basis in terms of (2n+l) column n ~vectors. Recently,
reinversion techniques have been given a great deal of attention in connection
with large linear programming codes. In particular, the technique of triangularization
has been reported to minimize the number of non-zero elements in the n —vectors
after reinversion, when applied to sparse matrices. Discussion of this technique
and of its many variations is outside the scope of this paper. Nevertheless,
such efficient reinversion procedures are available as integral parts of most

commercial linear programming codes and may readily be used for our purposes.
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5. POST OPTIMALITY ANALYSIS

The optimal solution to a quadratic program of practical interest may
not provide the analyst with all the required information for an effective
solution of his problem. For example, the cost information and right hand
side vector may have some estimated or incorrect elements. It is desirable to
investigate the sensitivity of the model to such contingencies. Such informa-
tion is also useful in the economic interpretation of the dual solution in
marginal analysis, since its validity depends on the "ranges" over which
the optimal basis remains unaltered. Another instance when such information
is required is in short and long range planning, where it is necessary to in-
vestigate the nature of the solution by changing the cost and requirements
information as linear functions of a parameter.

The "ranges" over which the elements of the given vectors ¢ and b may
be altered, without causing @ change in the optimal basis, are a ready by-
product of the algorithm described in section 3.

Now, for parametric programming, let x_. be an optimal solution to QP ,

0

Ac and Ab be given 'change" vectors, and consider the problem:

Maximize
1
(5.1.1) (c+d.0cC)” x—é-x’ Cx
subject to
(5.1.2) Ax = b+ ¢.Ab

v
o

(5.1.3) X
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where solutions to (5.1) are required for all 0

A
=
A

. Construct vectors

d and f such that:

(5.2.1)

e
il

-(AC)i HE

I
e

-

noo,n’

1}

[
—
-

(5.2.2) (f)J "(Ab)J HE o oey My

choose eo = 1 and consider the PQP:

Maximize
l

(5.3.1) ((c +Ac)+ed)’x—'2—x’ Cx

subject to
(5.3.2) Ax = (b+ Ab) + of
(5.3.3) xz 0
forall 0= g = 90 . This is obviously equivalent to considering (5.1) for all
0=E¢=1.

Thus the algorithm of section 3 may be used for parametric programming

on the vectors ¢ and b, by a trivial modification of the given data.
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6. THEORETICAL JUSTIFICATION OF THE METHOD

In this section the validity of the algorithm will be demonstrated.
All discussions in this section are based on a simplified system

representing the RAP basis, which is written as:

X

C AI
(6.1) B =

A 0

where in terms of the notation introduced in (3. 3)

Cll ClZ A(l:l Afz
C = : A1= (active constraints)
CZl CZZ 0 -1
(6.2)
X = (x., X,) ;W= (uc, v.) .
I 2 1 1

The representation of the basis (6.1) is included in the following
partitioning of the RAP matrix where the ‘non-negativity restrictions have been

expressed explicitly:

uC v | n C n

S R U | Y2 o ¥ 0
cs

Cii S22 A :
Cc/

Cor Cop A I i

AL B ;

(6.3 | ___ ___ e e
0 -I I
C C
\ Ay By, I
-1 0 I
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where y? , y; are the slack variables corresponding to the non-negativity
restrictions. For a basic solution we have X, = 0, yg = 0 and the dotted
portion of (6.3) corresponds to (6.1). However, it also corresponds to
(3.3) since the columns of x2 can be removed with no effect,and the slack
variables yf and the inactive rows (Agl) may be appended with no effect
to the basic solution.

In the following discussion the term "constraint" will refer to "non-

negativity restrictions" and "ordinary constraints" alike.

Lemma |

— 1
Let Q(x(8)) = (c+ 6d)” x —Ex’ Cx . Suppose

is non=-singular and

x(0) = dl + 6d
(6.4.1)

w(e) =d3 + 6d

is the solution of:

Cx +AI w=c+ed
(6.4.2)

Alx = g-l— 9:‘..

then, for 6 =6

0
1) BQ_QS.(_QL) - g’ X +~£’ w
36 o Yo
9=90
2 o
2) d Qx(s)) = d’d. +£f° d
592 2 1 74

6=0¢
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where x,=d, + 6,d; and w, =d;+ 90d4

If C is positive semi-definite;then 4’ dz +—f'l d 20

4
Proof: Substituting (6.4.1) into (6.4.2) gives:
P ’ - Yy
Cdl +9Cd2+A1 d3+ eAl d4~c+ od
Ald1 +9Ale =b1 +9f1

forall 6. For =0 we have

Cdl+Ald3 c

Aldl = bl

Hence it follows that

' —
9(Cd2+Ald) = d

(6.4.3) 4

and Ald2 =fl

Now, using =x(8) from (6.4.1)

- _L ’ - pr A T __.l_ - 2
Q(x(g)) =c¢ dl - 2(:11 Cd1 + (c d2 +d d1 d1 CdZ) 6+ (d d2 2dZC'dZ)Q

and differentiating with respect to g:

M —' e EY P T ’ —
30 = C d2+d dl+dlCd2+(2d d2 d2 Cdz) 90 =
9=90

= C d2 +d (dl + 2d290) -d 5 (Cd1 + Cdzeo) =

- — - _ » —— el ’

= C d2+d (d1+2d290) dZ(c+ 90d+AlWO)
_ —/ » ,

= d (dl+ 90<:12)+d2.A1w0

= d° x +7I:’1W

0 0

where we have used (6.4.1) - (6.4.3).
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Next,differentiating

A = T o) + 7] wie)

and using (6.4.1) we obtain

2
PO L A ey o Ted e d s
= (@d, +ed"d, +T7d, +6f]d,)

96 d6
or
2
caelc3(0) I
2 R 2
J6 60, 1 4

If C is positive semi-definite Q(x(8)) is concave and therefore

T -
d d2+fld

A

4 O °

Remark 6,1

In order to put the above result in a form useful for proving Lemma 2 we

consider the two cases of pivoting below.

I) In Case I, for a particular 4 = 8& , we would like to exchange

(W);,L and (Y)u in the system:

(6.5.1) Cx+A1W+(W)uauf c+ Q&d
(6.5.2) Alx = bl + G&fl

‘ = (b) +g, .(f
(6.5.3) anx + (Y)u ( )UL 6, ()LL

where presently (y)LL = 0 is nonbasic and (W)u is a basic variable at zero

level. The current basic solution of (6.5.1) - (6.5.3) is given by:
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| X c + G«td
-l -1
(6.5.4) w, = Bk b1 +9){,fl - Bk eLL W)p,
() (b), + 6, (0,
where (y)u = 0 and
C A L au
Bk = .1—\1 0 0
a’ 0 0
For simplicity (6.5.4) may be written as:
X
(6.5.5) W, = g; ~h(v),
(W)u
and in particular
6.5.6 w = - (h
(6.5.6) W), = (g)), ~ 0y )

where (hl) , denoting the last component of hl , is the "pivot element"
W
in Case I .

Now consider (6.5.1) - (6.5.2) and

a’ x = (b) + 6 (f) - (y)
V! I 1) )

= — e / . )
If we let c-c+e& d, d=0, b1 = ((b1+e«l’, fl) , (b)LL+ 9&(f)u) s
f = eu and 6 = (y)LL , (6.5.6) and Lemma 1 give

2
(6.5.7) QX)) - ny) = o.
2 1
d6
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II) In Case II, for a particular 9=6,, we would like to exchange

£s
(y) by (w) in the system:
p P
(6.5.8) Cx +A7w + (w) a = c+g,d
1 PP L
(6.5.9) Alx = bl + e&fl
(6.5.10) a’x + (y) = (b) + g, (f)
p P p P
where presently (w) =0 is non-basic and (y)p is a basic variable at zero
level.

The current basic solution of (6.5.8) = (6.5.10) is given by:

x c+ e&d ap
~-1 ~-]
(6.5.11) w, = Bk bl + e&fl - Bk 0 (w)p
‘ b) +g,(f 0
) (0}, + 6, (),
where (w) = 0 and c A,l 0
Bk = Al 0 0
a” o0 1
- P

For simplicity, (6.5.11) may be written as

(6.5.12) w = g, -h, (W)

and in particular
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(6.5.13) () = (92)p - (hZ)p (w)

p
where (hZ)p , denoting the last component of hy , is the "pivot element"

in Case II.

Lemma 2

Consider Cases I and II of pivotal operations and the corresponding

systems (6.5.1) - (6.5.3) and (6.5.8) - (6.5.10) . Then, the following

properties hold:

A) The pivot element in both Cases I and II is non-positive.

B) If, inCase I, the pivot element is zero and cH and ’sz consist

of the first n components of 9, and hl respectively as defined by (6.5.5),

then, Q(sl - xsz) is either constant or a linear function of ) .

If, in Case II, the pivot element is zero, then, the constraint a‘px =

(b)p + 6 (f)p is linearly dependent on the constraints (6.5.9).

Proof:
Case I: The assertion follows immediately from (6.5.7).
Case II: It follows from the definition of gk and (6.5.11) = (6.5.13)

that -1

C Af1 ap'
(6.6.1) (hz)p = -(a‘, 0) ( )

P LS 0

lLet (v , Z ) be the unique solution of the system:

(6.6.2) |C A’ (v a

(6.6.3) kAl 0
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Substituting (v, z) into (6.6.1), premultiplying (6.6.2) by v’ and using (6.6.3) gives

By = - (@4 0) (:)= -V CT.

= 0. If V2V Cv=0,

Since C is positive semi-definite this implies (hz)p b

then CV =0 (See Lemma ! in [18]), which, by (6.6.2),means AI z=a .
p

Lemma 3

= 0, for
L el
6=0, . Let (x., wp, (Wk)u) be the solution of the RAP for 6 =6, and

Q(S?:'k) the corresponding value of the objective function of PQP. Furthermore,

Suppose the pivot element in Case I is zero, i.e., (hl)

let s, be the vector dafined by the "Search Procedure". Then,

k

- 1
_A_) Q(Xk+>‘sk) = Q(xk) {gr all » € B .
B) W.(0) = W forall ) € El .

Proof:
A) A review of the definition (3.10.,2) of é‘k shows that, using the
more explicit formulation (6.5.1) = (6.5.3) of RAP we can express (ik + xé’k)

in the form (sl - xsz), where 8 and s, consist of the first n components

of gl and hl respectively as defined by (6.5.5). Hence, Lemma 2 implies
that Q('}?k + Xé—k) is either constant or a linear function of )\ .
— _ 1 . ' _ .
Al (Xk + xsk) = ]o1 + GL fl for all » € E° implies Alsk = 0 . Hence,

using RAP (in particular (6.5.1)), we obtain:

(c+ g,d - Cx

A k)sz(Aw)s k)uauskzo

K W) TS, T v

since (w = 0 , This proves the first assertion.

K
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E) Since Q(xk + xsk) = Q(xk) s we have Sk Csk = 0 which implies

C‘E'k = 0., Hence C(Ek + x?k) = ka for all 3, and since the columns of A’l

are linearly independent, it follows from RAP that Wk is independent of .

Theorem 1

Let x

K= Xk(%) be an optimal solution to PQP for 9& > 0 . Suppose,

for g = 9& » Case I applies and the pivot element is zero.

If the "Search Procedure" yields ) = - «, then the original problem

QP has no optimal solution.

Proof

The assertion is clear, if PQ has no feasible solution, Let x_ be

0
an arbitrary feasible solution of PQ. By assumption,
X s = < g =
A(Xk+>“sk) = b+ Q&f and Xk+>‘sk' 0
hold for all » £ 0 . Therefore, A”s'k Z 0 and ’s“k = 0. Thus, AXO =b
and X 2 0 imply
el < - > <
(6.7.1) A(x0+>\sk) = b and x0+xsk= 0 forall » = 0.
From the definition of '§k and from Lemma 1 it follows that for g= Q/G
QX +15)) _
= - x Y = =0
3 =0 (c + QLd Cx. )Y s (W(elb))u

By the assumption of Case I we have that (W)M <0 for ¢< 9& . Hence,
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(6.7.2) (c* = Cx (0))” 5, = (w(0)), <O

Since by Lemma 3, for g= G«t s

2% QF, +2 5 _

0,
N2

it follows that 's,‘]z C's"k=0 . Hence, for g =0 we have

— 1 -
6. . - = e - s - s
(6.7.3) Q(XO+>\.Sk) c’xy =3 X% Cx, + (c Cx,) 5, A

= ¢’x -——l-x’ Cx.+c’s. A
0 270770 k

since 's";( Cé‘k = 0 implies CE'k =0 (Lemma lin [18]) If Cé'k =0, it
follows from (6.7.2) that c'é'k < 0., But then (6.7.1) and (6.7.3) show
that the objective function of QP can be made arbitrarily large over the

feasible domain.

Theorem 2

Let the designated pivot element be zero for some 6=26

&’M

the following cases:

A) Let the designated pivot step correspond to Case I, and assume

that the "Search Procedure" terminates with a finite ) < 0 corresponding

to a constraint which is to become active.

B) Let the designated pivot step correspond to Case II and assume

that the "Constraint Replacement Procedure" yields a presently active con-

straint to become inactive.
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Then, the exchanges of active and inactive constraints prescribed

by the "Search Procedure" or by the " Constraint Replacement Procedure" can

be accomplished by a pair of pivot steps.

Proof:
é) Consider the current form of RAP:
Cx+A1w+ala>l+a2c02 = c + e&d
A x = b. + 4 f
(6.8.1) 1 bl
ax + (y)l = o + eL a,
asx ), = Bt B

@ty =0 5 o, (y), =0

where al is the constraint to become inactive (Case I) and a, is the constraint

found by the "Search Procedure" to become active. Since the pivot is zero

a)l and (y)1 could not be exchanged. Then, the "Search Procedure" was applied

which indicated that (y)2 should leave and w, should enter the basis. We

would like to show that it is always possible to exchange ®y and ®, and

then (y)z and (y)l . Thus, we first show that the non-singular basis matrix

X b w ¥ wl ] (Y)Z

C Al al 0

Al 0 0 0
(6.8.2) e e e e e e

Fd

al 0 0 0

a2 0 0 1
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remains non=-singular when al is replaced by az in the column corresponding

to col , l.e. in

‘x sy W, W, (Y)2
( At a, o |
A 0 0 0
(6.8.3 \_-__
al 0 0 0

a%, 0 0 1 J
O 6 6 o
column @ is not a linear combination of the other columns

To this end,
we recall that according to the "Search Procedure":

C A% X, = X\ S, c +'6, d
(6.8.4) ! k kYo t for all » <0
A 0 W, - 2s b+, f
1 k k 1 FO|

where si_ = (EE, é\?{) consists of the appropriate components of h

1 as defined
by (6.5.5). Obviously s

K is in the null space of this matrix, i.e.

C A“ 5
(6.8.5) OLEL - o
Al 0 sk

Furthermore, since, by assumption, the "Search Procedure" terminated finitely

with a’zx as the first constraint to be encountered we know that:
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On the other hand, since (6.8.2) is a basis, the entire columns @, @ and
@ of (6.8.3) are linearly independent and (6.8,.3) is non-singular if and
only if column @ is not a linear combination of the remaining ones. We
have already shown the latter to be true for the upper part of the partitioning
in (6.8.3). It is obviously true for the entire (6.8.3). Then, the new basis
matrix is non-singular which implies that the pivot step for exchanging wl
and ®, is possible. Thus w. enters the basis at zero level.

2

To show that the second pivot, i.e. the exchange of (y)., and (y)l,

2

is possible we consider the basis matrix (6.8.3) where we would like to replace

the column designated as @ , by another unit vector corresponding to (y)l s

and have the new basis matrix

I

C Al a2 0

Al 0 0 0
(6.8.6) = | —m——mm————————

P

al 0 0 1

P

a2 0 0 0

O 6 0 ©

a

be non-singular. Since ( 2) is not linearly dependent on the columns of

0

c A’ " |
1) it follows that @ cannot be written as a linear combination of
A 0

]_ .
the columns in @,@ and @ . Thus (6.8.6) is non-singular, and the

exchange of (Y)Z by (Y)l is possible. Clearly, (y)l enters the basis at a

positive level,
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In order to show that w, becomes positive for g < g, , let

2

Gele). Wio), w,(6), v,(6)) and (R(6), W(B), w,(6). v,(6)) denote the basic
solution of (6.8.1) before and after the pair of pivot steps has been performed,

respectively. Let s, be the vector determined by the "Search Procedure”. Then,

k
considering (6.8.1) with x = EEk + ng and ¢ = 6, it can easily be shown that:
o = o PP
Alsk-—O, alsk>0,andazsk<0.

The first relation of (6.8.1) for the first basic solution, post-multiplied by E‘.k, is:

{c+6d~Cx(6))” s, = (A’W(B))* 5,

K 1 X + wl(e)als

k

It follows that, for g < 94,/ s

(c + ed)’é—k <0

since by the proof of Theorem 1, C §k = 0 and since furthermore wl(e) <0

for <o

" by the assvmptions of Case I .

Similarly, from the firs: relation of (6.8.1) for the second basic solution:

{(c+ 6d - Ck(8)) Sk = (Alw(e)) 81 + wz(e) az sk
for @ < €, >
cbz(e)a L S = (c + od) Sy < 0

But since a2 g. < (, we must have wz(e) >0 for g < e& .

B) Consider again (6.8.1) and assume that a. corresponds to the

2

constraint to become active (Case II). Since the pivot is zero, (y)2 and

w, could not be exchanged. Suppose the "Constraint Replacement Procedure”

f
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determined the constraint corresponding to a 1 to become inactive. By

arguments similar to those used under part A above it can be shown that

first ) and ®, and then (y)2 and (y)l can be exchanged by a pivot

operation.Lemma 4 below assures that for g < 9‘& » the new basic variables

W, and (y)l are non-negative.

3)

Lemma 4

Let C bea (n,n)-matrix, B a (m,n)-matrix whose rows are

linearly independent. Consider the equations

Cx +B”%u

C

Bx b +e6f ,

where ¢ is an n-vector while b and f are m-vectorsand 62 0 is a

scalar.

Denote the inverse of the matrix

C B’ 1\/Il Mz
by where M, = M7 .

B 0 M3 M4

Suppose, for 90 > 0, the above equations have a solution (xo(e), uO(F))

which has the following properties :

v

u.(6 0

0%
(6.9.1) d”x(g)) = a+6yB

d’xo(e) < g +6B for 6 > €,

3
)The proof of this Lemma may be found in [16].
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where the n-vector d is a linear combination of the columns of B”, i.e.,

d =B”z, while g and p are scalars.

1) If M3d = 0 the inequalities

Bx = b+ 6f

d’x = g+ 6B

are inconsistent for g < eo .

2) Suppose M3d has at least one positive component, Let,

for e:eo ,
(u,) (u,),
. 0k _ — 03
T (M3d)k = min { (M3d)j for all j with (M3d)j > 01].

Replace the kth rows of B by d” and denote the new matrix by B.

Furthermore, replace the kth component of b and f by o and B,

respectively, and denote the new vectors by b and f .

Then the columns of B are linearly independent and the system

Cx+§‘u

C
(6.902)

Bx g+9¥

1]

has a solution (xl(e), ul(e)) with the properties

ul(eo)?._- 0
Xl(eo) = x4(8)

b]:xl(e) < (b)k+ e(f)k for 6< 90

where bk denotes the kth rowof B .
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Remark 2

Theorem 1 and Lemma 4 state an important property of the algorithm
described in section 3, which allows the detection of off-normal conditions
present in QP or PQP by simple tests to be performed on RAP.

Thus, if, for some g =g, , the pivot in Case I is zero and A =,
it is immediately concluded that no optimal solution to PQP, for <o |,
and to QP exists. If, however, it is known a priori that QP has a non-
empty feasible domain, then the conclusion is that PQP, for g < 9£ , and
QP have unbounded solutions over their respective feasible domains. As a
further clarification, consider the case of an unbounded feasible domain and an
objective function whose value is bounded from above on this domain. Then, the
"Search Procedure" will yield a finite A and the normal course of the algorithm
is followed.

The existence of an empty feasible domain in PQP for g < 9& , and
hence for QP, is detected from RAP by a zero pivot element in Case II and

the failure of the "Constraint Replacement Procedure" evidenced by (3.17) or

by part 1 of Lemma 4 .

Theorem 3

The algorithm outlined in section 3 givesone of the following alternatives

after a finite number of steps:

a) an ;k = xk(O) which is an optimal solution to QP ,

b) the information that QP has no optimal solution.
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Proof:
In view of Remark 3.1 we may assume that at each parametric step,

we obtain an interval [ g k] with @ < 6y such that xk(e) = (xlk,O) with

k+1? @ k+1

Xlk given by (3.4.2) is the optimal solution of PQP for ¢ € [9k+l’ ek] .
The representation of xk(e) as function of @ 1is uniquely determined by the
set of active constraints. Therefore, there is only a finite number of different
functions xj(e) which represent the optimal solution to PQP for some interval
[ej-;—l’ ej] . Hence, the algorithm described in section 3 gives, after a finite

number of steps, an interval [g ek] and a corresponding optimal solution

k+1’

xk(e) to PQP such that either 0 € [6 k] or the algorithm fails for 6 < g

k+1° @ k-1

In the first case, xk(O) is an optimal solution to QP. The second case occurs
if the pivot element is zero. Thendepending on which case applies,either the
"Search Procedure” gives ) = - = or the "Constraint Replacement Procedure"

is unable to determine a constraint to become inactive. Both alternatives

indicate that QP has no optimal solution (Theorem 1, Lemma 4),
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