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1. INTRODUCTION

The Monte Carlo method is generally defined as representing the solution

of a problem as a parameter of a hypothetical population, and using a random

sequence of numbers to construct a sample of the population, from which statis-

tical estimates of the parameter can be obtained.

Very often, the solution consists of a real number, which can be expressed
as the expected value of a random variable T with finite variance, on a proba-

bility-space (M,M,p):
Bl = [ w0 = e,
M

varlr] = m, 7= [ [w0 - e[* @< =
M

and T is then called a primary estimator for 6 . If points Cl, CZ’ K;3, ... are

sampled independently from (M, M, ), the secondary estimator ¢k’ defined

by the arithmetic mean
k

-1
o, (L6, )=k (L) , (2)
ko1 e2 k Zi=l i
has

£[¢k] = 6, var[qak] = k—l var[T] , (3)
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and converges in quadratic mean, in probability, and with probability one,
to 86, as k— « (by the weak and strong laws of large numbers: see,
e.g. [1], pp. 230 and 245.)

For example, if the problem consists of evaluating a real sum

& = Z f(s) (4)

s=1
where N is enormously large, so that the direct calculation of & by successive
additions is prohibitively laborious, and if no analytic means of reducing the
problem to manageable proportions are available, we may resort to the Monte
Carlo method. The simplest technique depends on choosing a real-valued
function p(s), defined on the summation-set S = {1, 2,...,N]}, whose partial

sums

an) = Z o(s) (5)

s=1
are known or calculable, and such that

0Os<sp(s)= 1 (se8) , (6)

Z p(s)= 1, (7)
S

and p(s) > 0 forany s in S at which f(s) # 0 . (The last condition is
rather important, but it is not usually mentioned.) If we define the subsets

of 8,

F=1{s:f(s)=0), G={s:p(s)=0}, R=8S G, (8)

where c denotes the complement; then the last condition is

F2 G. (9)




We now define the probability-space (M, M, ) by taking M to be 8, I\N/I

to be the class of all subsets of S, and (. to be given by

~

L (B) = Z pls)  (BeM); (10)
s € 4

that is, each point s of 8 is assigned the probability p(s); and the
estimator g is defined as

g(s) = f(s)/p(s) when s e€R, g(s)=1 when seG. (11
This satisfies the conditions (1). (The simplest choice of p is the uniform
distribution, with p(s) = 1/N for all s € S; and then g(s) = f(s); but this
may not be the most efficient choice.) To obtain the sample-points Ci’ we
may proceed in various ways. Sometimes a direct source of such points with
the chosen probabilities is available (this may be the reason for our choice of

p .) More often, we make use of a random generator of canonical type: this

is a device which is purported to generate a sequence of independent samples
of a random variable £ distributed uniformly over the real unit interval [0, 1].
We then define the corrésponding ¢ by

C(€) = n if q(n -1) = € < q(n), £(0) =) =1, (12)
where we take q(0) = 0 . (In the case of uniform p, this reduces to

LE = [NET+ 1, 0= ¢ <L gl)=1 (13)
where [x] denotes the largest integer not greater than x .)

By going to the limit, as N — =, we may extend the above technique to

the evaluation of infinite series and Riemann integrals, provided that appropriate

convergence-conditions are satisfied. In fact, it is fair to say that virtually



all applications of the Monte Carlo method, with the exception of certain
random search procedures, reduce basically to this technique, combined with
various numerical and analytic transformations and refinements.

However, in its most general form, the method has a much broader
range of application than might be inferred from this:

(i) The solution € may be a vector, a function [2], ora point in a
Fréchet space [3 , 4]; and the estimators will then take their values from a
suitable solution-space H , containing © .

(i1) The choice of even a simple primary estimator is very wide and can
profoundly influence the efficiency of the method. This question has been given
a great deal of consideration, and many ways of increasing the efficiency of
the estimators have been devised.

(iii) The primary estimators used in the course of a computation need not
all be the same; and a correlation may be introduced between them, to make
advantageous use of the information being acquired during the sampling. (This

is sequential Monte Carlo [5, 6].) Nor need the secondary estimators be

simple arithmetic means of the primary estimators.

(iv) In these circumstances, it is no longer necessary that the primary or
secondary estimators be unbiased (i.e. that they have expected value 6), so
long as the latter converge to 6 in some acceptable sense, as the size of the
sample tends to infinity.

(v) The population M, with its probability-structure (M, M, @) can

be very complicated; and the sampling of each point { from M will frequently




involve a lengthy computation, such as the tracing of a random walk in an
intricate and highly inhomogeneous space.

(vi) As was mentioned above, there are situations in which we cannot
think of the computation as any reasonable kind of averaging; but must rather

see it as a random search, which can always be viewed as either a minimization

or as zero-seeking, on a suitable function, subject to imposed conditions. In
this case, there are no primary estimators; but there are still secondary estimators,
converging (one hopes) to the required solufion e .

Taking these generalizations into account, we may give a more explicit
probabilistic definition of the Monte Carlo method as follows [3, 4]. We
define a suitable Fr&chet space H as our solution-space, in which points can

be represented by sequences of real numbers

co

a=[a] =[a]17

=[al,a2,a3,...], (14)
with the linear structure defined by

gry=I[x +v 1, px =[px ], 0=[0,00...7, (15

forall x and y in H and all real p, where 0 is the null vector; and with
the topology induced by the metric

dix, y) = Qx-y) » (1o)

where

Qx) = Z lcnlxn]/(l-!-lxnl) ) (17)
n=

with the c, all strictly positive and chn convergent (see [7] pp. 112-114,
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[8] pp. 133-142). We can now define a random variable of M in H as a

function ¢ mapping M into H, such that the set

o) = {£eM: (8) € V) (18)

is in M whenever V is a spherical neighborhood in H . (This definition
can usefully be extended to even more general spaces; but the essential ideas
are already exhibited in the space described above.) It follows that ¢ is a
random variable if and only if every component fn of its sequence-representation
is a real-valued random variable of M . (The representation is that of each
o(8) as f£(£) = [fn(f;) ]n’ forall ¢ in M .) The induced probability-space
(H, H, pu), where H is the class of all Borel subsets of H and pp‘ = p,cb—l s
is called the distribution of ¢ in H .

Let V be the set of all random variables of M in H, and give V a
topology by defining the convergence of a sequence & = [¢m1m in V (for
example, uniform convergence, pointwise’convergence, convergence with

probability one, or convergence in probability.) If @ sequence ¢ converges

to 6, under the adopted definition, we call it a Monte Carlo process for 6 .

If O is a practical device (such as a roulette-wheel, or a circuit
triggered by thermal or radioactive impulses) which constructs or selects points
of M in accordance with the probability-structure denoted by (M, M, p), we

~4

call it a random generator for (M, M, w) . The Monte Carlo procedure (Q, @)

for 6 then consists of generating a point t of M by means of the random

generator  , and computing a corresponding value ¢>t((;) in the process &,




far enough along the sequence to give the accuracy required. (The processes
which are used invariably require an amount of computation which increases
rapidly as the index t increases.)

It is clear that, for our purpose of estimating 6, we are only interested
in the distribution of the seguence [¢m(1;)]m in H, and not in the particular
probability-space (M, M, 1) and random sequence [<1>m]m from which it is
derived. It has been shown [9] that, given a sequence = = [gn]n of

independent random variables, each uniformly distributed in U = [0, 1] (so

that £ is in the canonical probability-space (L, L, n): the corresponding

canonical random generator is denoted by A ), and an arbitrary sequence

d= [¢m]m of random variables in H; we can construct a sequence ¥ of
random variables of the form q/m(t‘—;l, 52, ce ey &m), taking L into H , which
have the same joint probability-distribution in H as the cbm . Thus we may
put any Monte Carlo procedure into the canonical form (p, ¥) .

These definitions make the study of Monte Carlo processes a part of
the theory of probability, as it applies to stochastic processes. They treat
the Monte Carlo method as a class of techniques of statistical estimation —
as it has traditionally been approached — and its error-analysis is couched
in statistical terms. Typically, an answer 0=0( £ ) 1is given with a statement
such as "the probability, that the error exceeds g, is p(g)", the answer
being considered accurate if & and p(g) can be made simultaneously small.
This view of the method is predicated on the existence and availability of

random generators which produce random sequences of the required kind; for



the above statement means that the set A(e) of points { in M, vyielding
answers @ (¢ ) farther than € from the correct solution 8, has the
probability  [A(g)] = p(€) .

Currently, however, it is the almost universal practice to use, as
"random generators", devices (such as lists, decks of punched cards, or
programs executing numerical algorithms) which do not even pretend to have
more than a trace of true randomness (this randomness lies mainly in the choice
of a few parameters, usually only an initial value.) The sequences they yvield
are of two types. Those which have, for a considerable length at least, all the
more usually considered properties of randomly generated sequences, as tested

by standard statistical tests, are called pseudo-random; and are used in

general-purpose "random generators, " such as those usually provided in the
library of frequently-used subroutines which is part of the "software" of any
modern digital computer. The remaining sequences lay no general claim even
to "random behavior": but are, in certain specific and useful aspects (most
often, their density in the unit interval U), effectively "random", or even
"guper-random" (e.g., their uniformity is better than would be expected of a

randomly generated sequence.) They are termed quasi-random., These latter

sequences, appropriately used, can increase the efficiency of a Monte Carlo
procedure very appreciably.
It should be realized that it is irrelevant, and largely meaningless, to

ask whether a given finite sequence of numbers is "truly random." At best,
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it can be subjected to a battery of statistical tests, each of which only

vields the probability that a randomly generated sequence would deviate from
expectation by at least as much as does the given sequence, in the particular
respect being tested. Since we can neither prove that any particular process

or device is a priori random, nor test its output exhaustively, the search for
randomness is evidently futile. This would be very discouraging, were it not

for the fact that, when "random numbers" are used in practice, we generally
require only a few of the properties of randomness, and all others are immaterial.

Nevertheless, it is clearly not valid (without ad hoc justification) to use

error-estimates based on the probability that a given sequence &l, &2, {4;3, con
lies in a certain set, if it is sampled from a probability-space (L, L, \); when
we know very well that the sequence is, in fact, taken from an extremely
“small subset (often a single point) of L, with a probability-structure which is
often largely conjectural. Yet this is what is customarily done, and with
remarkable success! While a few results have been obtained, in the direction
of regularizing this situation [L0 - 15] by giving absolute, rigorous bounds for
the error of Monte Carlo integration in certain cases; the question remains open,
and evidently much further work is needed. A critical discussion of this peculiar

state of affairs is given by Zaremba [53].

2. RETROSPECT

2.1, Early work and general descriptions

The Monte Carlo method has been traced as far back as Babylonian and

Old Testament times [16 - 18]; and mention should be made of the early ideas
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due to Lord Rayleight [19] in 1899, 'Student' [20] in 1908, Courant, Friedrichs,
and Lewy [21] in 1928, Kolmogorov [22] in 1931, and Polya [23] in 1938,
However, the systematic use of the method — and its name — date back only
about 20-25 years, to the "Los Alamos School" of mathematicians and physicists,
and more especially to the work of von Neumann, Ulam, Metropolis, Kahn,
Fermi, and their collaborators [24, 25].

The only books on the subject are [4, 17, 31-33, 51]. (Of the last
two references, both translations of the same Russian text, the latter is pre-
ferable, as it has been revised and augmented by the original authors.) Other
general descriptions of the method may be found in [3, 16, 24 - 30], and an
extensive bibliography up to 1961 may be found in [34]. Ths most complete

bibliography available to date is in [4].

2.2. Variance-reducing techniques for evaluating sums and integrals

The basic technique for evaluating large or infinite sums, and integrals,
by the Monte Carlo method is described at the beginning of this survey. An
unbiased primary estimator T of the answer @ is defined (see (1) and (11) ),
and it is sampled repeatedly and independently to yield a convergent secondary
estimator ¢k, taking the form of a simple arithmetic mean (see (2) and (3).) In
view of the relations (3), it is clearly important to choose T so as to make
var[t] as small as possible, so long as this does not involve too much extra
computation in the evaluation of each sample-value of T . Thus the main

effort, in this branch of the sub“ject, has been directed to the invention of
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techniques for constructing estimators T with small variances. These tech~
niques are essentially the same for sums, infinite series, and integrals; so
that one may avoid the consideration of convergence-conditions, while
demonstrating the ideas behind the techniques, by describing them in the
case of a finite sum (4).

Sometimes we can find a function ¢(s) which approximates the summand
function f(s) in S = {1, 2,...,N}, and for which the sum over S is relatively

easily obtained. We shall call sucha ¢ an easy function. Then, since

6 = - 1
zs [f(s) - o(s)] + Zs P(s), (19)

& = k 20
ZS 9(s) (20)

where

is known, we may sample the estimator

f(s) - o(s

p(s)

u(s) = + & when s € R, u(s)=1 when s ¢ G, (21)

just as we did g{s) in the basic method, under the condition

Fq) = {s:f(s) = 9(s)} 2 G, (22)

instead of (9); and then, clearly,

2 2
E[u] =6, wvar[u] = }” [f(s;(;)w(S)] _Q [f(s)-cp(s)]} s (23)
-~R 'R

so that, if we can make |f(s) - ¢(s)| much smaller than |f(s)|, the

variance of u will be much smaller than that of g . This technique is

called correlated sampling or "control-variate sampling".
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Alternatively, if we can put
p(s) = 9(s)/@ , (24)
which is allowable if ¢(s) is of the same sign everywhere in S and
satisfies (22), then the estimator g becomes
v(s) = @ f(s)/o(s) when s € R, v(s) =1 when s € G, (25)
and again

2
E[v] =6, var[v]=® Z [_fc%)L -6t (26)
R

and the variance of v can be made much smaller than that of g by approxi-

mating f with @ closely enough. This technique is called importance-sampling.

The technique of stratified sampling (or "systematic sampling”) is a method o

sampling in which the set S is partitioned into disjoint subsets Sh (h=1,2,...,%k

so that
k
o=\ Gr , (27)
L= B
where
a= f(s) : (28)
Sh

and then each Gh is estimated separately by the Monte Carlo method (or,

sometimes, certain of the 6, can be evaluated by other means, such as

h
asymptotic approximation or direct computation.) If the "stratification” is
properly carried out, so as to reduce the variation of f within each set Sh R

and the sampling is appropriately chosen, a considerable reduction of variance

will result.
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These three technigues have long been known, and references to them
are scattered throughout the literature, including the general references given
above. Given an easy function ¢ approximating f, it may be asked, which
of the estimators, u in (2l), with uniform p(s) = /N, or v in (25), should

be used. It has been shown (see [35]) that

2
var [u] -var [v] = N >—‘ [f(s) - cp(s)]2 —E [f(sc)p(— )cp(s)] Z o(s)
fYR 5 S R

R

-~ 2
= N2 cov L(f(s) - 9(s)] , CP(S)] ) (29)
?(s)

where the covariance is calculated for uniform s in S . Therefore, if, in
particular, the approximation of f(s) by o(s) is "absolutely uniform"in S
(i.e. {f(s) - cp(s)l is approximately constant over S and for all values of
|o(s)| in 8), then correlated sampling is more efficient; while if the approxi-
mation is "relatively uniform" (i.e. lf(s) - cp(s)] is approximately proportional
to lcp(s)] in S8 ), then importance-sampling is preferable.

If f(s) changes signin S, then so will any reasonably good approxi-
mation ¢(s) to it, so that we cannot simply take (24) for our probability-

distribution. If @(s) > -B, a known lower bound, then we can sample

(®+ NB)[f(s) + B]
o(s) + B

- NB when s €R, w{(s) =1 when s e G, (30)

with the probability

p(s) = [@(s) + B]/(® + NB) , (31)

in a form of modified importance-sampling. However, this is not a very

efficient method if B is large. (An analogous trick can be applied if we have
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an upper bound for o(s), instead of a lower bound.) If @(s) has no known
bounds in S, we must abandon the use of importance-sampling, unless we

can give a practical interpretation of signed probabilities. Such an inter-

pretation has been given in [36], in terms of sampling two independent random
variables, whose expected values are the sums of f(s) over the subsets of
S in which it is respectively positive and negative. (Note that this inter-
pretation differs from the purely formal one proposed by Bartlett [37], which
would not seem to be useful in the present context.)

An interesting variation on importance-sampling has recently been
suggested by Powell and Swan [52], following an idea of Handscomb [ 46,

and below]; they call it weighted uniform sampling. The estimator used is

(in slightly more general form than they write)

W (508,00 ers) = /z s,) (32)
i=1

where g(s) is defined as in (11), <y(s) is defined similarly in terms of

¢ instead of f, and the 8, are sampled independently from S with
probability p(s). Since the numerator and denominator of (32) are unbiased
estimators of n6 and n®, respectively, it follows that Wn is a biased
estimator of 6/®, converging to 6/® in quadratic mean, in probability,
and with probability one. This technique replaces sampling from what may
be a complicated distribution defined by (s ) [see (24)], by sampling from

an arbitrarily chosen simple distribution p(s) [Powell and Swann simply take

p(s) to be uniform on S]. This technique provides another answer to




-15-

the question of what to do if f , and so any good ¢, changes signin S .
The technique of antithetic variates [38 - 44] is related to that of
correlated sampling; but, instead of subtracting an easy approximation ¢
from f, to yield a relatively little-varying estimator, we use f itself, by
averaging different segments of f(s), by means of a linear transformation.
This concept is due to Hammersley and Morton [38]. The method depends
on the smoothness of the function f and is usually discussed in the case
of the integration of a multiply~-differentiable function. For instance, if f(s)
is monotone, it is evident that the transformation
f(s) = [£(s)+ £(N - s)]/2 (33)
(the simplest of the family of transformations considered) will yield an
estimator T*(s) with @ much smaller variance than the original wvar[1] . The
method can be very powerful; but it is weakest when the function f is very
irregular (e.g. when one is evaluating a multi-dimensional integral in which
f varies rapidly in every direction.)
Correlated and importance sampling depend on knowing an easy function

® (s) which approximates the difficult functions f(s)in S . Suppose, instead,

that, having selected a probability-function p(s) and defined the function g(s)
as in (11), we can find a linearly independent set of easy functions Vi(s)
(i=1, 2, ...,n), such that

E[v,] =sti<s> p(s) = 0, (34)

and such that there is an unknown set of coefficients Xi’ for which



his) = g(s) = ) x9(s) (35)

i=1
is approximately constant in S . Then E [h] = 6 and (see [4]) var[h] is

minimized when the X satisfy

n
Zizlxi’%[vivj] = Elov] (=1, 2,...,m); (36)

and then h(s) is orthogonal to every Vi(s) and «/var[h] is the distance
d(g, L) from the function g(s) to the linear space spanned by the vi and a

constant function, say vo(s) = 1; relative to the scalar product
(g » g ) = Z
1’72 5 9,(s) g,(s) p(s) . (37)

Since the computation of E[ng] is of the same order of difficulty as
that of E[g] = 6, the exact optimum (36) must be replaced by an approximation.
It is natural to consider Monte Carlo approximations. We combine (36) with

X, = E[g], using (34), to yield

n
Z x, E[vv]=E[gv.] (=0, 1, 2,...,n) . (38)
j=0 1T T

The simplest Monte Carlo estimate of (38) is

n
Z ziv.(s.)—“-g(S.) (1=0,1,2,...,1n), (39)

. 1] ]

i=0
where the Sj are random points of S (and we have eliminated the common
factor vj(sj) from the jth equation). Since it is our assumption that the two
sides of each equation (39) vary similarly, it is reasonable, by the principle
of correlated sampling, to use the same Sj in estimating every term of each

equation.
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The estimator of x, = 6 is clearly z_, and, by Cramer's rule,

4] 0
ZO=ZO(SO’SL’SZ""’Sn):Ag/Al ) (40)
where
. v
g(so) VL(So) n(so)
Ag‘:A(g, Vl,VZ, oo.,‘vn)z : : : . (41)
g(sn) Vl(sn) . Vn(sn)

At first sight, we would sample the sj independently with probability p;
but then the non-linear estimator Z, would have an unknown constant bias.
It has been shown [4, 17, 45, 46] that this difficulty can be circumvented
in two ways. First, one may sample the sj with joint probability
D = D(s 8 )= AZ/E[AZ] ; (42)
0’"""’"n IEE L
when it turns out that

E_[z,] = 6 and var_[z]= [d(g, 1)]%, (43)

so that the exact minimum value of var[h] can be attained (at the expense
of using a more complicated sampling scheme than the sampling of h) .
Secondly, one may sample a rather large number m of independent

values Sy from S with probability p, and use them to form the more accurate

approximation
n m m |
Eizowi{ikzlvi(sk) vj(sk)} = }:kzlG(Sk) Vilsy) (=0, ..um)s (44)

to (36), yielding an estimator w_ of & which, though still biased, converges

0

to 6 with probability one, as m— «
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These two techniques may be given the name of implicit multi-correlated

sampling (or the E-Z-H method, after Frmakov, Zolotukhin, and Handscomb, who

devised them.) They have not yet seen much practical application; but they
appear to be well worth trying, when the complexity of the problem warrants the
considerable extra labor required to generate each estimate.

We now turn to a type of problem closely related to the straight summations (4)
hitherto envisaged. Suppose that a probability p(s) and a real-valued function

g(s) are defined on the set 8 = {1,2,...,N} . We seek the conditional expectation

of g(s), given that a certain condition C is satisfied by s, when s has the
unconditional probability p(s). We suppose that the probability of C (thatis,

> p(s)) is non-zero. [Analogous problems for S an infinite set can be

s:C holds
defined, and it is these which are generally considered in the literature; but the
introduction of Jacobians, Haar measure, and other analytic considerations can
be avoided by examining the finite form of the problem. |
The condition C is defined as follows. We define a function Q(s) on R

(see (8)), whose values are one-one transformations £t of R onto itself, and we
denote by T the group of such transformations generated from the set of all

values of C(s) by finite sequences of multiplications and inversions, in the usual

way. We suppose that C 1is homogeneous: if teT ,

0

(ts) =t C(s) . (45)

'~

Then every t € T is the value of g(s) for some s € R (for if some Q(s‘) =t',

~

_l L
then t = Q(Lft\" s').) Thus the set T is finite, since R is finite, and, if ]

denotes the identity-transformation of T and
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V={seR C(s)=1}, (46)
then, forall t e T ,
S(t) = {seRCs)=t]) = {tvivev]} ; (47)
and we have a one-one correspondence between the s € R and the ordered pairs
[t, v] with teT and veV, givenby

s=t vit = C(s), v=C(s) s . (48)

~

Given all this structure, we assume that the condition C takes the form

C(s) = t

Cls) = 1y (49)

It follows from our assumption that the probability of C lis

P(t,) =ZSQ0) o(s) :ZVp(iov) > 0, (50)

and that the required conditional expectation is

9= lo(s)| Qo) = o] =) als) pls)/PlLg) - (51)
P S(t
It can be seen from this that, if we select arbitrary probabilities g(s) > 0

on R and, foreach veV, Q(t,v) on T ; then, if s is sampled from R with

probability q(s), and we adopt the estimator

g(s)=gls)w (s), (52)
where
g el s, W) - p(s) QLGls) Cls)™ s (53)
a(s) P(t )
then
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The kind of situation in which this technique is applicable is when, for
instance, S is a multidimensional Euclidean space (this is the integral form of
the problem, of course) and the condition C fixes either the distance of s from
the origin, or the values of a subset of the coordinates of s . In the first example,
we would take T to be the multiplicative group of positive real numbers; and in
the second example, T would be the additive group of displacements in
the subspace related to the mentioned subset of coordinate directions.

This technique was named conditional Monte Carlo by Trotter and Tukey [47,

48], who invented it. See also [4, 17, 49, 50]. Its advantage is that it provides
a direct method of sampling for the solution 6, using every sample value obtained;

instead of the more obvious rejection technique, in which the estimator takes the

value g(s)/P(At_'o) if s, sampled from S with probability p(s), satisfies the
condition C; and the value zero (rejection) otherwise. If P(t 0) is small (and
especially in the integral case, when P(E'O) = 0 ), this method can be extremely
inefficient, while conditional Monte Carlo works well. The arbitrary probability-
functions q(s) and Q(t,v) supp'lement p(s) in providing the solver with flexibility
in devising a sampling scheme tailored to the particular properties of his problem.
We consider, finally, the problems which arise if 6 and the functions f(s)
take their values in a multidimensional space or a function-space, H. If H isa
field, all the foregoing methods carry over to this case without difficulty, except
for importance-sampling (unless the ideas of [36] or [52] will produce workable
sampling schemes.) Otherwise, one has to apply the real-function techniques to

each component of the solution, or at least to a '"representative and adequate"
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sample of these components. This sample itself could be a random one, leading
to a new kind of Monte Carlo sampling problem, not hitherto considered. Little

has been done on these questions (but see [2, 4].)

2.3. Technigues for solving linear equations.

One of the most fruitful fields for the application of the Monte Carlo

method is in the solution of linear equations. As in §2.2, we find essentially

the same techniques being applied to solve large algebraic systems, infinite

systems, and integral and differential equations; and again, to simplify the

presentation, we limit ourselves mainly to finite (though large) systems of
equations. Just as we limited our integrals in §! to be Riemann-integrals, so
that they could be expressed as the limits of discrete sums; so we now con-
sider only those infinite and continuous sets of equations which are expressible
as the limits of discrete approximations (see [55, 59,60]).

We begin by considering a non-singular system of equations

N
= = {1 .o 55
Soo1 B %s b (res {1, 2, N}) (55)

where the Ars and br are given real numbers, and the Xs are the unknowns
to be estimated, forming the solution-vector x . The non-singularity implies
that the Ars form a matrix A whose columns are linearly independent, so that
(55), which may be written Ax = b, will have the unique solution

X = A—L}g. (56)

~
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If (55) is put into the form (see (75)=(77) below)
x=a+ Hx, (57)

where the spectral radius (see (66) below) of H is less than one, we have

-1
3= (@-H a=3a+Hg+Ha+t...+Ha+...=5 _H"a, (58

~ ~ 2

and the Neumann series is absolutely convergent. If we write

_ m h
2n T =R & (%9}

x (componentwise) as m - », and we can set up iterative

~

we have X —
~m
schemes such as

X =a, (m > 0). (60)

za 4+ HX
~ ~~m-l

0
In many practical instances, the "known" quantities Ars and br’ or

Hrs and a. are themselves the result of lengthy calculations. An important

case is when we have more equations than unknowns; with experimental or

other errors making the system inconsistent, as well as overdetermined. We

then have a system of approximate equations
N ,
4 = 2, cees 6
Soo LysXs = Fy (weT=1{L2 QJ) (61)
with
Q > N, (62)

and we still assume that the columns of the matrix L are linearly independent.

If we decide to minimize the "sum of squares"
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, N 2 _ T _
Py {fu Zsal “us Xs} =(E-Lx)" QE -Lx, (63)

where the uou > 0 are diagonal elements of the diagonal matrix Q , as our
criterion of closeness of approximation in (61); it is easily verified that a

minimum is uniquely attained when X is the (unique) solution of (55), with

A = ZQ w L , or A = LTQL,
IS u=l "u Tur "us ~ ~ o~
(64)
and - b =352 w L f , orb =L Qf.
r u=l "u ur u ~ ~ o~

The resulting vector x 1is often called the least-squares solution of (61).

Related with problems of the form %;\c‘ = g , we find the eigenvalue
problems: to find the values of ) for which there exist non-null solutions
x to the system of equations

N
= = . 6
Zszl Ars xs A Xr (r € 8), or Ax X (65)

The spectral radius of Q is defined as

o) = sup {|a] : (IxAQAX = rx] (66)
and it is known (see [54-56]) that

pd) = lm [ a" e (67)

~

where the matrix-norm may be defined by
fal = sw fax]:lzl =13 (68)

where || x| ts the vector-norm. In fact, for a matrix A there is at least

one eigenvalue y, such that |j| = p(A); and it can be shown that, if y is
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unique (i.e. for every eigenvalue » #p, |r| <|p|) andif y is an arbitrary

vector whose projection on the Jordan subspace of A belonging to the eigenvalue

. (this is the subspace of Jordan vectors of A belonging to  , i.e. vectors

annihilated by some power of (A& - pl)) is not null; then there is an eigenvector z
belonging to y and an integer r = 0, such that
Amvamrp_mg, (69)

L d

in the sense that

2%y - W™zl /™2l = 0 as m— = (70)

We note also that, as a result of Gershgorin's theorem (see e.g. [57, 58, 63, 64]),
pR) = Ma¥es 5 es lArsl = G (71)

and, further, that,
if Ax = \x, then fA)Yx = fO)X, (72)

whenever the function f(A) either is rational (i.e. can be written as
-1

Pl (3) PZ(’A’), where Pl and P2 are polynomials and Pl(é) is invertible), or
is definable as a convergent Neumann series in A . This shows how we can

obtain other than the greatest eigenvalue of A by a process of iteration such
as (69): for instance, if A has real eigenvalues bounded away from a point

a, then (A - cz,IV)Z has positive eigenvalues and the largest eigenvalue of

2 2 2 2

{{GE) + |af] I-@A-al) } is (G +2G|al + Zw‘a - xa), where Ay is
the eigenvalue of A closest to o (the case o =0 is particularly simple);

and again, if we seek that eigenvalue ® of A, whose real part is algebraically

greatest, we find that we must iterate exp A = z:_o(l/m!)ﬁm , whose greatest
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eigenvalue has the magnitude exp(RRe w).
All the problems described above have solutions depending on the

evaluation of large matrix-products, each of whose elements consists of large

sums (or, more generally, infinite sums or integrals), of just the type that can
be estimated by the Monte Carlo method. According to the magnitude of the
problem, Monte Carlo processes may be introduced in several ways, leading
to a classification by "levels" ¢’ cemplexity (see [4,61].)

First, we consider situations in which the final equation to be solved takes

the form (55) or (65), with a moderate-sized N ; but in which the matrix ;15'

(and often also the vector b) is the result of @ number of arithmetic operations
excessively large for direct calculation. The example of the least-squares
solution of (61), where Q 1is very large, by (64) and (55), is typical. The pro-
cedure is then to compute a single Monte Carlo estimate of each component of
A (and b, if necessary), and then to apply classical numerical techniques of
direct elimination or iteration to the resulting approximate equation, to obtain

an estimate of the solution. We shall refer to this as a zeroth-level method.

Note that the resulting estimates of the solution will generally be biased: but
they will converge in probability (and usually with probability one), as the
estimates of the Ars and br converge,

The basic estimators involved are rather simple. For example, (64)

leads to estimators of the form
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= ’ r i 0
Irsu “u LurLus/prsu i prsu # ’
th = i = = 0 4
wi Ireu 1 if Preu 0 (and then LurLus ):
(73)
and Yu T %y Lurfu/pru if Pru A0
= ] i = 0 = 0
94 if pru (and then Lur fu \ ).

If u is sampled from T with probabilit or
P P ity p_, (or P_ ), then Yy (OF 9.,
is an unbiased estimator of Ars (or br’ respectively). In practice, good
primary estimators p and p_ would be derived from these basic g and
rs r rsu
gru , with due regard to the variance-reducing techniques discussed in §2.2,
and re accurat a i R .o s
nd mo curate secondary estimators cprs(ul uz, ukrs) and q)r(ul Uy, ,ukr)

would be obtained, usually (hitherto always) by forming the arithmetic means of
repeated independent samples of the corresponding primary estimators.

If we plan to solve the final equation, say (55), (57), or (65), by an
iterative scheme, it can be more convenient to use independent estimates of
the elements of the equation each time that they are needed. This leads to
unbiased estimates of the solution (which are generally easier to handle) and
eliminates storage-difficulties. The estimators are similar to those in the zeroth-
level method; but they are applied repeatedly. We shall classify this type of

procedure as a first-level method. [In [61], where these ideas were introduced,

both zeroth and first-level schemes were termed "first-level." ]
Given a problem of the form (57), whose solution can be written as the

Neumann series (58); when the order N is large, the components of the series
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are large sums, and, following a suggestion of J. von Neumann and S. M.
Ulam, one can construct a Monte Carlo method for estimating these sums,

in terms of random walks on the index-set § (see below)., It is clear that,

if the matrix elements occurring in the Neumann series are themselves large
sums of given numbers, one should be able to estimate them by zeroth or
first-level methods, within the von~-Neumann-Ulam scheme. This can indeed

be done [61], and such a scheme will be termed a second-level method.

Finally, certain procedures have been devised (see [61, 78]) for
sequentially improving the von-Neumann-Ulam scheme, and these also involve
the computation of large sums, arising from additional matrix-products. Here
again, it is clear that a new level of Monte Carlo computation can be invoked

to vield efficient schemes, which will be referred to as third-level methods.

For information on the classical direct and iterative methods, which
inspire and are combined with the Monte Carlo schemes described here, the
reader is referred, for example, to [62-66].

The fundamental method of von Neumann and Ulam was first published

by Forsythe and Leibler [67]. They consider the problem of inverting a matrix:

thus a matrix Neumann serles of the form
(I - I;I) = 3 H (74)

is to be evaluated, rather than the vector Neumann series (58) above. The
freatments of the series (58) and (74) are completely analogous, however.
[We observe, incidentally, that, given an equation (55), it can always

be put into the form (57); most simply by
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i
U
o

it
o

(75)

A~

and more generally by

B=1-MA, 2= Mb, (76)

where M is an arbitrary matrix. In particular, we may assume A to be
symmetric and positive-definite (as in the case of (64): in general, if not,
we can always premultiply the equation (55) by fl:\JT .} With this assumption,

all the eigenvalueg of .}\\_' will be real and positive, and we may take, for instance,
M = cI, withany 0<c< 2/G(A), (77)

to ensure that, by (71), p(H) = G(H) < 1.]
A random walk is defined on the "augmented index-set" S = {0,1,2,...,N}
(see [78]), the extra index-value 0 corresponding to a "stop." Here PLg

denotes the probability of transition from index r to index s (prO being denoted

) N
= ] - 0 i = 0 =
by pr Se=1 pr‘s > , with pos 505), with P # unless Hrs 0,

and each walk I =[r, S285s v S s 0] with r,8,..., S # 0 corresponds

l’
to precisely one term in the series (74). Exactly as in (l1), one uses the estimator
Hrs) Hsys,- - 'Hsm-lsm OsppS

Zz (') = (78)
rs prSl pslsz. .-psrn_lsmpsrn

(where the denominator is seen to be the probability of occurrence p("') of the
glven m-step random walk I" beginning at index r), for the component

[(L- g)-l]rs . This estimator can be shown to be unbiased if p(IiJr) <1, where

(79)
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In the analogous method for solving (57) by (58), the estimator for Xr would

be of the form (again unbiased if p(}i+) <1)

X (') = ST TC Rk S (80)
r PrsPsysp *** Psp_ sy Psy

and if (57) arises from prior formulae, such as (61), (64), and (75)-(77), then
the Hrs and aS in (80) should be replaced by estimators cprs and (pS
sampled in the zeroth or (more usually) first-level manners described above.
In order that the variances of the estimators (78) and (80) be finite, it is
necessary that P<§) <1, where

_ —
('191'5 B Krs - I_Ir:s/prs (81)

(this is discussed in [61].)

Some alternatives arise here. First, one may dispense with the "stop-
index" 0, and work in S » by fixing an arbitrary stopping rule, depending on
estimates of the rapidity of convergence of the Neumann series. (This leads to
a bias, but it should not be a serious one.) Secondly, instead of treating each
element of the Neumann series as an infinite sum, one may treat each element
as an infinite series of large sums; that is, one may evaluate each term by a
Monte Carlo method, and then sum them. A convenient version of this approach
was devised by Wasow [68], on the basis of ideas, first discussed by Courant,
Friedrichs, and Lewy [21], for the solution of elliptic differential and difference
equations; and similar ideas were studied independently by Curtiss [18]. In
[69], Wasow describes the form of his method applicable to matrix-inversion,

and compares its efficiency to the method of Forsythe and Leibler.
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In Wasow's method, one begins with an infiniterandom walk T' =
[r, S 1855 33, ...] beginning at index r and generated just as in the Forsythe-
Leibler method. (As far as the scoring procedure is concerned, the walk is effec-
tively made to terminate, either by fiat or by first-passage through the index 0,
by taking all H()s = 0: with all Hro =a =X = 0, the equation (57) remains
true over the augmented set.) The "score" after t steps, which corresponds to

the partial sum

ot m B t m _
2 BT o Gt o E"RC Re )
is taken to be
t HrSlHSlSZ Hsrn--lsm
ert(r)zy Prs . P P OspS * (83)
L m=0 Is|78182 *°* "Sm-15m
or
Hrs H . 0. H
1Hsys2 Sp—15
X (T) =Zt molmoa L (84)
m=0 Prs)Psysp *** Psp-15m

respectively; and satisfies simple recurrence -relations, which greatly facilitate
the computation.

Note that the same random walk, but now started at a random index SO s
sampled with probability dg o’ say, can be viewed in the reverse direction, to

yield scores such as

z (') = bssm Hsmem-1 "+ Msas1 Msysg Osgr (85)
ST
PsPSm-15m ”'pslszpsosl qSO

Sss Hsmsmo1 *°° Hs2s) Hspsg 2sg
ry = m mSm~-1 -, (86)

Psp Psm-15m *°° Ps1s2Psgs1 9sg

X, (
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) _yt 6ssp Hspmsm-1 *** Hsps) Hssq Osor ., (87)
srtt ! T/ q
m=0 Psm-1sm *** PsispPsys) 9s
T bss Hsmsm-1 - - Hsps) Hsysg 35y
T) = » (88)
st /.

Psm-15m ***PsispPsgs) Is

corresponding to the earlier scores for the transposed matrix-equation:

this approach is the dual or adjoint sampling of nuclear engineers.

Further treatments of these methods for various problems can be found in
references [70-74, 81-85]., More general classes of estimators are also defined
by these authors, especially by Page [73] and Muller [ 84, 85].

The question of how to ensure the conditions that

pEN <L oK) <L (89)

'~

(see (79) and (81)) is taken up in [61] for the case of the least-squares problem
(64), and a technique is proposed which is given the name of the Monte Carlo

Gram-Schmidt process of weak orthogonalization. First, we note that, if we

make the choice

Py = 1Bl / 5, 18y 50)

(which is always permissible and practically possible), then, by (71) and (81),

GlR = [GmE]®. (91)

i~ g

Next, we observe that (89) is satisfied if G(H) < l, and, more generally,

it follows that we can choose the Dpg SO that
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G(K) < o

Canrd

if G < a. (92)
Now, if H = I ~-cA , G(H) < o if and only if, forall r € &,

C S 4 |a | +]|1-ca | <a (93)

If we choose any o =< 1, then (93) implies
ad > 3o, |2 | (res) (94)

and

c < (1 + a)/GAH). (95)

[Since A is positive-definite, every Arr> 0. Add Arr to each side of (94) and

divide each side by ArrG(%)' This shows that (94) is equivalent to

-1 , -1
A <(L+a)/G(R). I 0<cA <1, (93) gives 5, [Arsl <A_-(l-ac =

O“Arr -(l -a)c (1 - CArr) which yields (94), since o = l; and so, since

c < Arr—l , (95) follows too. On the other hand, if CArr = 1, then (93) gives

(95) directly; and so, since Ar;l < ¢c, we get Ar;l <(Ll + O‘)/G(,AV)’ and hence
(94).] Contrariwise, if (94) and (95) hold, and we impose the condition that

-1
cz max ¢ Arr , (96)

which is possible, by (94) and (95); then ¢ Arr = 1 and (93) is implied by (95).

Alternatively, if ¢ min =1 -v with v < @, and cArr < 1; and if we

res Arr

replace ¢ in (94) by a smaller g = (a - 'v)/(L —v); then, by (94),

© Sgy Bl tl-ch <l-(-pleA <L-(-pl-y)<l-(l-a=a,

which is (93). When ¢ = 1, even without such conditions, we have, if
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c Arr < 1, that (94) implies (93) directly. Thus for o =1, (93) is equivalent
to (94) and (95) together.
Now, by (64), the relation (94) may be written

Q

Q
@ 2= %y Lur > Zs#r I Zu=1 Pu Lur Lus
or, in a scalar-product notation, (97)
~r

o Ly L) > 54 Lo L)

where /I\,{_ denotes the rth column of L . This may be looked upon as a

weak orthogonality condition. The procedure now consists of doing an approximate

Gram-Schmidt orthogonalization, in which the exact scalar products are replaced
by Monte Carlo estimates, with the strong likelihood that the resulting vectors
(columns of the new L-matrix) will be approximately orthogonal, enough to
satisfy (97). This technique is hest applied when the problem 1s a discretization
of an integral equation, because appeal is made to continuity by introducing a

scheme of grid-refinement.

The final, third level Monte Carlo method involves the concept of

sequential Monte Carlo, briefly mentioned in §1, This is defined in general

terms in [ 5, 6, 78] ([78] is the final revised form of the paper, which will appear
in [4].) Three workable sequential schemes are defined there, for the solution

of linear problems (55). The concept of "sequential analysis, " introduced by
Wald [76] and his co-workers, is mainly concerned with decision procedures

for terminating sampling, rather than with modification of the estimator and

sampling scheme. A two-stage scheme was briefly discussed by Marshall [75],
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But the full development of the method is found only in papers by Halton [3,5,6,
61,77,78].
The "first sequential method" [78] makes use of the fact that, if one

chooses the transition probabilities

prs - Hrs Xs / 2:t Hrt Xt (98)
(when this is allowable, e.g. when all Hrs’ a. and x  are of the same sign),
then the estimators of the form (84) have zero variance; that is, one obtains the

exact solution with probability one. This may be looked upon as a situation

similar to that in which importance-sampling was applied. What is done is to

conduct the computation is stages: at each stage, the X in (98) are replaced

by the best available estimates resulting from previous stages of the work.

(s)

~ ~
(All the prs are also multiplied by (1 - ib(s)) where is the stopping probability

adopted for stage s ). This ylelds a convergence in which the variance of the

current best estimate at stage s is bounded asymptotically by a multiple of

-2
s (p+l), where p is a non-negative parameter of the sampling scheme; so long

(s) 2(p+1)

. . —
as one uses stopping probabilities w of the order of s or less. The

"second sequential method" [78] uses the same approach; but now the Prq in (98)

la %)
(with the Xr replaced by their best estimates — without the factor (1 - w(s))) are

used in the scoring procedure (84), while another, arbitrary probability distribution

determines the random walk I' . This introduces a bias; but it can be shown that

the bias at stage s is bounded asymptotically by a multiple of s"D(p 1) and the

-2
corresponding variance is bounded asymptotically by a multiple of s (p+1) or

S—ZD(p+l)—l (whichever is the larger); where p is the same parameter as before,

and D is another parameter:
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N -1 —
. [maxieS {ijl]xi Hijx‘ - (1—__)pijl]~}

1 - max, o ll -

with —p-ij denoting the actual transition-probability in the random walks T .

There is thus convergence if

[1-=| <1 and D> 0. - (Loo)

The second method thus extends the idea of the first method to cases when the
expression (98) has variable sign.
The "third sequential method" [78] takes a different, rather simpler line,

reminiscent of correlated sampling. It uses the fact that, if X(S) denotes the

~

approximation to x obtained at stage s, so that X<S) =X - X(S) is the correction

required; then (57) vields

X(S) = ql8)y H l’.(s) . where ,Y.(S) _ 2+EX(S) ‘ZS(

~ ~

) (101

The basic random-walk techniques applied to (101) now yield estimates X(S) of

X(S) ,» and we take (s+1) = X(S) + X‘(S) . It can be shown that this method yields

~ ~

unbiased estimates of X , whose variances are bounded asymptotically by a

multiple of GS--l , Wwhere (see (71) and (81))

G = G(K/[!-G(EK]. (102)
There is thus a rapid (geometric) convergence whenever

G(K) < 1/2. (103)
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We note that, if we choose the probability (90), then (103) will hold if

G(H) < /2 ~ 0.707, (104)

and this will be achieved if, by (94) - (96) with o =1/2,

-1
maXI'GSAI‘I' = ¢ < L.7/G@R)

and (105)

0.7 A > S 4 |a | (es)

and these conditions can be satisfied (if necessary by appeal to weak
orthogonalization). Alternatively, we may require that

-1 L -1
0.3 max_ g Arr < ¢ < min { min__q A 1.7/G(A) ]

and (106)

A—l) A

-1
1-0.
(1-0.3¢c X, eg Pt T 4 Zs%r lArsl

(r € 8),

The ideas of sequential Monte Carlo developed in [5,6, 78] have led to
further work in three different directions: first, to a development of practical
means of applying the method to linear problems [61], including the application
of the "Monte Carlo Gram-Schmidt" technique to ensure the condition (103),
and the use of coarse-grid approximations to speed-up the process; secondly,
to a study of the stochastic convergence of general linear averages of sequences
[3, 77]; and finally to a development of a general formulation of Monte Carlo

procedures [3, 4].
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We turn finally to eigenvalue problems. Here, the most natural method
is to sample a random vector y, in the hope that it will have a non-null
projectionin the Jordan subspace belongingto the largest eigenvalue pn of
A (see (65) = (72)) (as indeed will be the case with probability one, for almost
all distributions of the vectors y .) At the "first level", we now operate on
Yy, repeatedly with A (or a Monte Carlo estimate of Q) and appeal to (69)
in the obvious way to find |, and the eigenvector z . At the "second level, " we

replace the evaluation of the product Am Y by a Monte Carlo estimate, such as

Arg, A ceo A y
rs) 's)sp Sm-15m YSm
Q. ()= (107)

(compare (80)), where 1 1is a walk on the original index-set S and m is
pre-assigned. (See also the discussion in [17].)

We saw that, to obtain the asymptotic behavior (69), we required, first,
that A have a unique eigenvalue of largest magnitude; that is, if the distinct
eigenvalues of A are >‘l = >‘2’ >\3, ...,xk (possibly complex), then
b‘il <|w| if i #1 (since A is real, this means that |, must be real); and
secondly, that y bea vector whose projection on the Jordan subspace of A

belonging to |, 1is non-null. Let x be an arbitrary vector such that 33 zZ A 0,

where z 1is the eigenvector of A belonging to y which appears in (69). Consider

-

the three expressions

A X)T mHY)/AmX)TAmX)

SmZ =(£‘, le m+lX)/ m X)’ % (108)
T m+l

Tm- X)/ X) .
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The first of these, Rm, is called the Rayleigh quotient; the second,

m+l m , ,
lSm[ = “(1}/ X“ / “A ,Y,“ glves an estimate of magnitude only (but since
(L must be real, under our assumptions, it is no great problem to discover
its sign; for instance, by observing a few values of Tm); and, in practice,
the third expression, Tm , represents the ratio of successive values of some
component of the iterated vector. By (70), it is clear that

R T, Syl Yiwls Tyop as m— e (109)

Note that, if we look at Tm(;\c‘) for x = El’ 32, o "’e“_N (where (ﬁe-r)s = 6rs)’
at least one ng 5% 0; so that the greatest of these ratios Tm('%r) will
certainly be asymptotic to . . Note, too, that all three expressions can be
approximated (with a bias which can be made arbitrarily small) by the ratios

of Monte Carlo estimators of the type (107): for example, Rm can be estimated

by the ratio

k [ v A \ A
SO nm ; S:Sg_[ Hmzo Sm+BSm+B+[ \ Yszm+l
Asg \ %7 Psy.ys Psm+pS /
a-i"a m+p°m+p+1 r=r
- | i (110)
kK I
| Ysg m qm BsmipSmiptl
k” Isg a=l ps p= O p5m+53m+5+1 Sem \
=1 L r=r
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where the Pi and ri' all represent independent random walks on S, started
at a random index 4 with probability dsq - (It is alternatively possible to
introduce a useful correlation (in the spirit of importance~sampling) by making

k = k' and Pi = ri‘ , for i=1,2,...,k.) An essentially similar estimator

to (110) is given by

(1)

k

L 2

£ ) Qsom (7 Qs gmanyr®h/ag,
j=1

: (111)

kl
1y 2)!
5 ) Qegn(r! g m () Vag

(1) (2)

where the walks Pj and Fj begin at a random index Sy = so(j) and the
l 1 1]
walks r§ ) and r§2) begin at a random index S'O = s'o(j), all walks being
1 1
independent (with the alternative k = k', PJ_(I) = rj(l) , rj(z) = rJ(Z) ,

o\ 1/
SO(J) = 50(3), as before.)

We observe that, by the Cauchy-Schwartz inequality

< . 11
R = 8| (112)
. H H .
If we further assume that A is normal (defined by A~ A =AA" ; or, since
T T

our A isreal, A'A = AA"), this is equivalent (see e.g. [57,58,63]) to
requiring that A be unitarily equivalent to a diagonal matrix, and this, in

turn, is easily seen to be a necessary and sufficient condition for the existence

of a complete orthogonal set of eigenvectors of A (if U is unitary and QH(/}JQ
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is diagonal, then the columns of U form such a set.) This implies that we

k
may uniquely express any y as a sum 2, (but

z. , Where Az
i=] &~ ~

2 TME

H 2
z, may be null for some 1 # l; though z #0) and Z; %<8y “51“ (note
that some of the 5’1 and >‘i may be complex; though A, y, pn= >‘l are real.)
Therefore
k k
m m m 2 - 2m 2
A= ) ofze I8P =) byl ed® . aw)
i=1 =1
and so
s | = lul - (114)

With (112), this means that lSml is a better approximation to |y |

| . . H
than is lle . On the other hand, if x z = gi and gl,v-‘ 0,

, w-R = A=l i ;o (115)

p T, =
3 AT e B

k m _ k 2 2
AR T U A P I PR WI BN
m
1

k
Zilx

so that, because b»i/lil <1 for i£1l, as m -+ »  we have the asymptotic

behavior described by

Zmllz | ©

k m | g
m -Tml S,Zizz P‘: 1;] e ‘Xil’ -R l ~§l , _L—L— mz lw-xgl» (116)

indicating that Rm converges towards |, twice as fast as does Tm . Thus,
finally, jSm] appears to be the best estimator of [p,l , of the three expressions

n (108), if A is normal, Rm and Sm take just about the same amount of work
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to compute (or estimate stochastically). The Monte Carlo estimate of Tm
takes half the time to give (roughly) half as many digits of accuracy as that

of Rm. This again indicates the advantage of Sm'

2.4 Applications of the Monte Carlo techniques.

We have now reviewed most of the principal techniques used in imple-
menting the Monte Carlo method. The vast majority of the literature referring
to the Monte Carlo method deals with the results of calculations which use the
method to solve practical problems; but most of these calculations are either
rather straightforward simulations, or direct applications of the techniques already
described. Many of them are rather primitive and artless.

It is not proposed, in the present survey, to do more than give passing
mention to these applications, referring the reader to the literature for all the
details. Only a small selection of representative papers will be mentioned
individually. (For a large number of references, see [4].)

Applications in physics are numerous. To a high-energy particle, a
nucleus appears rather as a large spherical region containing a randomly~
located set of smaller hard (non-intersecting) spherical particles. This model
has been applied to studies of the absorption of high-energy radiation [87]
and of intranuclear cascade-reactions [88,113] .

As has already been mentioned in connection with the discussion of

eigenvalue problems, the computation of atomic wave~-functions and elgenvalues




—-42 -

of energy by Monte Carlo methods has received considerable attention [68, 79, 80,
86, 89-91].

Statistical mechanics is a subject to which Monte Carlo methods apply
naturally, since it involves the averaging of global properties over very large
sets of configurations or states of given systems. This approach has been
applied to the computation of the thermodynamic properties (partition function,
equation of state) of various systems; such as classical gas-models [93, 114-122],
quantum-mechanical systems [95, 98], materials exhibiting long-range-order
(cooperative) phenomena [94, 96,97, 123-126], and long-chain coiling polymer
molecules (the problem of the "self-avoiding random walk") [27, 28,92, 106, 127-130] .
Mention should also be made of calculations of reaction kinetics [131l], and the
development of techniques for evaluating Wiener integrals [ 132-135],

The largest number of calculations has undoubtedly been performed in
connection with the design of nuclear weapons and reactors. This subject has
many tricks and devices of its own, and much of the work has never been
published, because of security-regulations. Problems are mainly of two kinds:
"shielding calculations", of the attenuation of radiation by its passage through
matter, and "criticality studies” which are of the eigenvalue type. (See [27,
99-105, 136].)

Monte Carlo simulation of a rather direct sort has been used in many
fields, such as the development of statistical tests [20], cell-population
studies [107,108], combinatorial problems [109], search and optimization

procedures [ 109, 137-140], operations research [26, 110, 111], and studies
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of signal-detection in the presence of random noise [L12].

2.5. Random, pseudo-random, and quasi-random seguences.

In §l, we defined a random generator {2 for a probability space (M, M, 1)

as a device which constructs or selects points of M in accordance with the
probability structure indicated by M and y . It was pointed out that, as is
proved in [9], an arbitrary random sequence @ = [cpm]m in the space H can
always be represented as a sequence of functions wm(gl, €2’ “eas gm) (m=1,2,3,...)
on (L, L, ) to H, where L = U is the infinite~-dimensional unit hypercube

whose points are sequences = = - S A of numbers in the unit
SEEFIRE

interval U = [0,1], and where L and ) denote the infinite product of Lebesgue > -

measures, which makes the gm independent and uniformly distributed in U .
Thus any Monte Carlo procedure may be put into the canonical form (A, ¥),

requiring only canonical random generators A associated with (L, L, A).

Since actual computations are carried out in finite terms, what is really

sought is a discrete random generator AD’ which generates discrete random

variables (e.g. finite sequences of digital "words" interpreted as fixed-point

or floating-point numbers) with a probability (LD, vaD’ >‘D) approximating

(L, L, »). For example, we may specify that we wish to be able to generate

up to 1012 independent "random numbers"”, each in the form of a 64-bit "word",
interpreted as a normalized floating-point number with binary mantissa

.1 = i ' - .. =
+0 b3b4 b52 a and binary exponent b54b55. b64

and b53 being the sign (0 = +) and first bit (1) of the mantissa and the sign

-B (the digits bl’ bz,

(1 = =) of the exponent.) To any given
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12 12
sequence of 64 x 10 ~ binary digits (of which 3 x 10 are predetermined
by the specified form above) we must assign a probability equal to the product
L2 ~-B-51 B .
of the 10  factors 2 for the numbers ¢ X 27, Not much attention has
been paid to the (usually rather small) effect of the use of discrete generators
A‘D instead of canonical generators A: it is assumed that this may be treated
as an aspect of the general problem of round-off and truncation errors. How-
y = 0 while

ever, since (L (LD) =1, it is clear that considerable bias

D D

could be introduced at times, and should be guarded against.

We have alluded in §1 to the adoption of deterministic pseudo-random

and quasi-random generators, and have indicated some of the theoretical and

practical difficulties involved. On the one hand, it is impossible to prove the
"true randomness" of a device; and it is not even desirable to require it; since
al} that is really needed is to get satisfactory answers to a class of problems.
On the other hand, one cannot apply statistical tests to deterministic sequences
and expect the resulting probabilistic " levels of significance" to have more

than a qualitative meaning. At best these tests give us crude empirical guides
as to the general suitability of the tested sequences for Monte Carlo computations.
Apparently nothing has been done to find a validation for such tests, when they
are applied to pseudo-random and quasi-random sequences. Nevertheless, the
literature continues to produce numerous tables of statistical test-results for

a variety of such sequences. A number of alternative approaches have also been
tried, for the evaluation of the usefulness of these sequences, and we shall

return to this question later.



-45-

First we should examine how one may generate an arbitrary sequence of
random variables, given a canonical random generator A . In its broadest
sense, this is the question of implementing any Monte Carlo method; but generally
part of the question is answered by the definition of the particular method. For
example, we may wish to estimate the integral j\bf(x) dx by sampling the esti-

a
mator v(n) =@ f(n )/¢(n), where & = Lbcp(x) dx, ¢(x) > 0 foralla = x= b,
and n is sampled from [a,b] with probability-density ¢(x)/®. This is done
repeatedly with independent sample-values My TgreeerNyr o and‘ yields a
sequence of secondary estimates dpk(n DU PYEERE nk) = k*l Z]i<=l V(Tli) converging
to the required answer. Thus the implementation problem reduces to that of
generating a sequence of independent random variables ul distributed with
density ¢(x)/®. Since the random variables g(gi) are independent whenever
thc-? Ei'i are independent, the question reduces further to that of generating a
single n - On the other hand, in the E-Z-H method, one samples several
random variables with a fairly complicated joint distribution (see (42)). There
is not much in the literature on the latter, more complicated and less common, problem.
There is some discussion in [4] and in [51], mainly of the basic, rather labor-
ious méthod of forming successive conditional probability-dis tributions of U
given q P UREETE: Pt and sampling from these univariate distributions as they
become known. The case of an arbitrarily autocorrelated sequence has also been
studied [51, 143]. However, the bulk of published work in this area deals with

methods of generating a single random variable with a given distribution, and

here some general principles and special techniques have been developed.
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General discussions will be found in [4, 7, 28, 31, 33, 51, 141, 142, 144-147]:
particular mention should be made of the pioneering paper of von Neumann [ 145],
of the extensive coverage by Jansson [141] and Kahn [31], and of the compre-
hensive bibliographies of Hull and Dobell [142] and Halton [4].

Of the general procedures, the first is the direct method, exemplified in

§1 by the relations (12) with (5). In general, if the required random variable
has the cumulative distribution function q(x) = ( {¢ € M: n(¢) <xJ}), we can,
in principle, invert the function g and define our random variables as g(£), where
¢ is canonical (uniformly distributed in U) and

glg) = inf {x: £ < q(x)]} . (117)
Clearly, w({¢ € U: g(¢) <x}) =o({g € U: inf {y: £ = a(v)} <x))

= w({g e Ut g = ax)}) = ax),

where ® 1is the Lebesgue measure (defining uniform distribution in U by

o{geU: g=ch=c, (118)
as reqﬁired for £); the second step being obtained from the fact that q is
a monotone non-decreasing function; and this shows that g(¢) has the same
distribution as is required of n - Except in specially simple cases, this
method can be very tedious; but it is convenient in sampling from small discrete
distributions, and can be the only feasible technique for sampling from empirical
distributions. Time can be saved by using the "binary-chopping" technique in
searching through a table of values of g(n) for the proper n(¢) (see (12)):

this consists of comparing £ first with q(nl), where n, is close to N/2;

1
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then with q(nz), where n. 1is close to N/4 if £ < q(nl) and close to 3N/4

2
it ¢ > q(nl); and so on, at each stage picking an index nr near the middle of

the interval of index-values to which n(g) has been restricted.

The second general procedure is the rejection technique invented by

von Neumann [145]: if n has probability-density p(x) = ¢ in [a, b],
sample independent canonical random values él and 52 and put n = cgz if
cgz < pla+ (b - a)gl); (119)
while if (119) is not satisfied, reject the pair gl, gz and pick a new,
independent pair {;'3, 64. The process continues until the inequality (119) is
satisfied and a value n = chm is accepted. The expected value of m will
be c(b - a), and the method will be efficient so long as this is not too much
larger than | , Butler [ 146] generalizes the method to multivariate distributions.
The following special scheme can be viewed as a kind of rejection technique:
if the required cumulative distribution function is q(x) = ql(x)qz(x) .o .qm(x)
and if each factor qi(x) has an inverse gi(g) as in (117), then take n =
max {gl(gl), G (E)s e gm(gm)). In the simplest case, every q(x) = x,
m

g,(€) = & and the distribution function of max{gl, Eoses gm) is x

The third general procedure is the composition technique, first described

by Butler [ 146 ] and developed for discrete compositions by Butcher [ 148] and
by Marsaglia and his collaborators [ 149, 150]. If p has a probability-density

o

p(x) = f_m py(x) dF(y), (120)
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we sample a value ~ of y from the distribution F(y) by one of the available
techniques, and then sample n with density pv (x), again by some suitable
scheme. The method lead to great efficiency if (see [17]) one arranges for
the cost-function [:O%‘Y dF(y) to be small, where TY is the cost-function
(e.g. the computational time for sampling a single number with density py(x))

for the parameter-value y . For example, Marsaglia, MacLaren, and Bray [ 150]

put, for the normal distribution (with positive x)

2
o) = (/272 e /2 22 p (x) + 2,000 +a,py(x)  (121)

where a =~ 0.96, a2 ~ 0,04, a3 ~ 0,003, pl(x) is a step-function approximation

to p(x) in [0, 3] with steps of 0.1, p,(x) is the saw-tooth-shaped correction

2

to p, in [0, 3], and pa(x) (invoked only about 1/400 of the time) is the tail

l
of p(x), with x > 3. Generation of random variables with density P, is very
fast, p2 somewhat slower, and p3 very slow.

Beside these general procedures, there are various special techniques;
these have been developed most extensively for the normal distribution,
especially by Box and Muller [151, 152], Butcher [148], and Marsaglia [ 149,
150]. For other special techniques, see [31, 141, 153 - 157],

Because of the technical difficulties of constructing and testing efficient

true random generators, and the general adoption of pseudo-random generators

instead, not too much effort has gone into the design of the former. However,
the more exact theoretical discussions tending to cast doubt on pseudo-random
generators may well revive this line of endeavour. Discussions may be found

in [33, 51, l4l].
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The earliest generators were typically based on gambling devices:
they were mechanical devices in which randomness was introduced by a
human operator. Among these, we may include ordinary cubic dice, decagonal
prisms and eicosahedral dice (see [141]), and coins or counters (all of which
are shaken or spun randomly, and tossed onto a flat horizontal surface to
see which of the faces, marked with digits, comes uppermost); and the many
pivoted devices which are spun and allowed to come to rest in a position
indicating a digit on a circular scale, from spin-the-bottle to the classic
roulette-wheel and ball after whose traditional home the Monte Carlo method
was named; and the various chance-selection processes, such as lotteries,
card-games, lucky-dips, and picking straws; and games in which objects are
tossed onto a surface marked so as to yield a digit where the object falls
(notably the famous needle of Buffon: see [158 — 161] and for extensions
[38, 158, 162, 163]). All of these devices are far too slow and unreliable for
use in connection with modern electronic computers.

More useful are various electrical and electronic devices, from the
automated roulettes of Kendall and Babington Smith [164, 165], and the RAND
Corporation [166, 167], to various electronic circuits [33, 51, 168, 169]
using thermal, shot-effect, and radioactive "noise." The three biggest problems
encountered in using these generators appear to be stability (and the need for
frequent testing), the non-repeatability of computations (unless all the numbers

used are stored), and speed.
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By far the most commonly used source of "random numbers" has been

the computer-algorithm generating a pseudo-random sequence. Originally,

with tongue in cheek or not, these were subjected to, and expected to pass,
precisely the same statistical tests as true random sequences; more recently
(see below), somewhat different criteria have been applied; but these generators
have always been thought of as general-purpose devices, whose output "looks
random". We refer once again to the general texts [4, 17, 32, 33, 51], more
especially to Jansson [141], and to review-papers [28, 29, 142, 144, 170 - L72],
in particular, to Hull and Dobell [142].

It appears that the first pseudo-random sequence was suggested by von
Neumann, Metropolis, and Ulam (to whom so much of the Monte Carlo method

is attributable): it is the middle-square method, given by the recurrence-relation

X 41" {[xnZ M3/2]/M} (L122)

(where [q] and {o} respectively denote the integer-part and fractional-part

of the number q ; so that o = [a] + {a)} and 0= {a} <1, with [a] an integer),
Thus, if M= RZt and Xn is expressed as a 2t -digit fraction to base R,
then an is got by squaring xn and forming a new 2t-digit fraction by
discarding the top and bottom t digits of the 4t-digit square (see [173, 174]).
Though some success was achieved with this method, it appears that degeneracy

to zero can occur in ways that are difficult to predict and the consensus seems

to be unfavorable. It was suggested that (122) be replaced by

*ne2 T {[annﬂ MS/Z]/M): (123)
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but no great improvement was found [170].
The next, and by far the most successful and popular method is due

to Lehmer [175], and is variously called the multiplicative -congruential,

power-residue, and Multiply ([176]: the imperative of the verb) method.

It is defined by

X " {xxn}, X = {xnxo} . (124)

where ) 1is a (large) integer. The greater part of the literature is related to

the study of this method.

We note that, if Xn is an s-digit fraction to base R, then Xn = RSX

n

is an integer, and (122) - (124) may be written as

_ 2, t N
Xn+l = [Xn /R’] (mod M),
X .= [xX_ /Rl (mod M), with M = R° 125
n+2 n n+l ’ ’ >( )
_ - .n . B~
and Xn+l = xXn, Xn =2y XO (mod M), with M = R,)

whence one may apply number-theory to the analysis of these sequences.

An easy generalization of (124) leads to the mixed-congruential method,

first mentioned in passing by Lehmer [175] and rediscovered by Franklin [176],

Coveyou[l177], and Rotenberg [178], and defined by

X 7 {xxn +6}, or Xn+lE Xt (mod M), (126)

where 6 = u/M and . is an integer. These sequences have also received

much theoretical and experimental discussion. We see that (126) yields
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n n
_ (0 A -l - -1
x = (kg + (53 Blor X = X, + (3———-))"_1 u (mod M). (127)

More general homogeneous or mixed linear congruencescan clearly be used,
with a general form

% e = Og¥n P Xty Xy T8 )

(128)

or , Xn+k = XOXn + >“1Xn+l +ooat k’k—anJrk-l +p (mod M),
and such methods (some also involving circular-shifting of digits) have been
investigated, but have not been widely adopted, because they do not seem to
vield improvements proportional to their greater complexity (see [179 - 182]).
The same may be true of a method for combining a number of relatively short
periodic sequences to yield a longer one (see [172, 183].) However, it may
be that they should be reconsidered more thoroughly.

If the A and 6 in (128) are taken tobe 0 or 1, we get an additive-

congruential or sum-residue method. The simplest of these is the Fibonacci

seguence,

X = {Fn/M) with Flio = Fo+F - (129)

Since the solutions of recurrences of the type (128) will generally produce

linear combinations of powers of constants, we see that such a method is
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asymptotic to a multiplicative-congruential method. For instance

B (—l-—'—[;r’-)n ~ A(%'\‘/:—b)n : (130)

2

n
r :A<Li_~/_}) .
n 2

The literature on Fibonacci sequences and other integer-sequences generated by
linear recurrences is vast, and a considerable new interest has arisen in these
sequences and their properties, because of the search for pseudo-random
sequences (see, for example, [15, 184 - 194].) The intention of the additive
congruential method was to substitute addition for (relatively slow) multiplication,
and still yield a sequence of multiplicative-congruential type. This was also

a motive in using mixed formulae (126) rather than (124), because the factors )
could be made very simple in the former, but not in the latter (see below.)

The question of the best choices for » and y in (124) and (126) is crucial,
and has been answered by a mixture of empiricism and number-theory. We refer
the reader to previously-mentioned books (especially Jansson [141]) and review-
papers, particularly those of Juncosa [171] and Hull and Dobell [142]; and also
to papers [177, 178, 195 - 198, 207 - 209, 211, 212]. The first criterion used
was that the recurrence-relation should generate a sequence (necessarily periodic

with period < M) with as large a period as possible. This is discussed in

[141, 142, 171, 172, 178, 195, 196]. Hull and Dobell [142] summarize the results
obtained, as follows:

(1) If o # 0, then the sequence has period M if: (a) p 1is relatively
prime to M, (b) for every prime factor p of M, = 1 (mod p), and (c) if

M is divisible by 4, p =1 (mod 4 ).
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ap a2

(i) If p =0 and I\/I=pl P,

.. pSOLS , then the maximum period
of the sequence (as ) varies) is the least common multiple of the maximum periods
for M = p?r (r=1,2,...,s8); and there exist values of ) for which all these
(s + 1) maximum periods are simultaneocusly attained.

(1i) If |, =0 and M = p% (p # 2), then the maximum period is (p - 1) pa—l ,
and it is attained for some 3 {such a 3 1is a "primitive root" for pa); the
same Is true if M = 2 and 4 (with maximum periods 1 and 2, attained when
» =1 and 3, respectively: hardly useful for pseudo-random sequences!); while
if M=2% (o = 3), the maximum period is ZCL—Z. In every case, XO must be
relatively prime to M .

(iv) In practice, only p = 2, 3,5 are of importance. (a) For M = 2%
(a0 2 3), » vields the maximum period of ZOL-Z if and only if ) = % 3 (mod 8).

(b) For p = 3, the maximum period 2 x 3% is attained if AE 2o0r5 (mod 9).

5, the maximum period 4 X 5% is attained if NE 2, £3, 8, or

H

(¢) For p
+12 (mod 25). (d) Finally, [by (&), (c), (i1), (iii)] for M = 10, 100, 1000, and
10 (= 4), the maximum periods 4, 20, 100, and 5 X lOa—z, respectively,

are attained if x =3or 7 (a=1), » =3, 23, 27, 47, 63, 67, 83, or 87 (o = 2),

1l

and A +3, £13, +27, +£37, +53, +67, +77, or £83 (mod 200) (a = 3).
(v) Conditions (b), (c), and (d) of (iv) are sufficient; but not necessary.

For example, if M = 10% (a = 3), we get maximum periods with ) = =11,

+19, +21, +29, +59, +61, +69, +91 (mod 200).

The earliest approach to testing the usefulness of pseudo-random sequences

was by way of statistical tests. We find these taking a prominent part in [141, 142,
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164 - 172, 179 - 183, 197, 198], and the same point of view is adopted in testing
the distribution of digits in transcendental numbers [199 - 203] and of coefficients
in continued fraction expansions ofalgebraic numbers [204]. As has been argued
before, the results of these tests should not be interpreted literally, in the terms
in which they are expressed in truly stochastic situations; but these results are
clearly of considerable relevance in judging the usefulness of pseudo-random
sequences. It would be most advantageous if their precise significance in a
deterministic situation could be clarified.

Among statistical tests which have been applied to pseudo-random sequences,
we may mention Kendall and Babington Smith's [165] "frequency test" (proportion
of occurrence of digit-values), "serial test" (proportion of occurrence of pairs
of digits), "poker test" (in blocks of four digits, occurrence of four of one kind,
three of one kind, two pairs, one pair, and all different digits), and "gap test"
(lengths of gaps between successive zeros), used in conjunction with the known
statistical expectations for a canonical random sequence, and with the )(2 test,
These tests, or slight variations on them,have remained standard in the literature.
Other parameters tested have been serial correlation, proportion of occurrence
of m-tuples with m > 2, notably by Mac Laren and Marsaglia [181], and lengths
of runs of the same digit; Greenwood's "coupon collector's test" (length of run
to obtain a given number of occurrences of one digit-value) [227], and Gruenberger's
"dz—test" (distribution of distances between points (gn, €n+l) and (€n+2’ €n+3)

in the unit square) [228] have also been applied.
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Two theoretical points may be made here. First, the acceptance of
a finite sequence of points from a random generator as a sample suitable

for a Monte Carlo calculation subsumes the concept of repeated independent

trials (it is on this basis the all Monte Carlo theory rests); so however impeccably
generated and well-behaved a sample may be, it can only be used once, if its
qualifications are not to be nullified. Thus, in principle, a list such as [165,
167] should be used only once, and similarly a pseudo-random algorithm should
be taken only once through its full period (only non-overlapping sections being
used). It may be argued that the same list might safely be employed in entirely
unrelated calculations; but this begs the crucial question of what calculations
are truly unrelated, in every way. Secondly, as is pointed out by Kendall [165],
every finite sequence, even if it is quite acceptable as a sample, will contain
subsequences which are clearly unrepresentative (i.e. in important respects
correspond to regions of the sample-space having very low probabilities) and
computationally undesirable. Thus, again, a sample will never be passed
unconditionally by any battery of statistical tests, even on their own criteria.
In addition, of course, every sequence, however well tested, will prove to be
unsuitable on some grounds or other; for example, in its less~significant digits
[181] or in a complicated sequential relationship [205, 206]. In some cases,
such failures can be theoretically explained, but generally only with hind-
sight [197, 206].

A number of more rigorous approaches to the judgment of pseudo-random

sequences have been tried, with varying degrees of success. The earliest of
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these was the asymptotic frequency approach. This will be found in [176, 177,

207 - 210]. Essentially, it appeals to the empirical concept of probability and
defines the probability of an event E with respect to a sequence & =
(€ €y 80 eee ] as

p(E) = l]IIlN_’OO VN(E)/N , (131)

where v_ (E) is the number of points among 51’ 52’ eeos which fall in

N En

the region corresponding to E . Thus p(E) is the asymptotic (or limiting)
frequency of the event E in the sequence £ . This point of view is ancient in
probability theory; but appears to have been first applied to pseudo-random
sequences by Coveyou [177]. His work, followed by further studies by Green-
berger [207, 208] and Jansson [142, 209], was initially applied to the explicit

computation of asymptotic serial correlations in mixed congruential generators,

in order to determine optimum constants ) and p .
Following the work of Bohl, Sierpifiski, Weyl, van der Corput, Koksma,

and others on uniform distribution modulo one (see [213 - 226]), Franklin [176]

adopted the following criterion. For a canonical random sequence :z = [gi ]:il ,

any subsequence of k numbers [¢ ] has probability

n+l’gn+2""’€n+k

Qe e e Oy of lying in the "hyperbrick" defined by
<g. <1 (1=12,...k). (132)

We say that an arbitrary sequence £ of points in U = [0,1] is k-equidistributed

if




58

p(E(OLl,OLZ,---,ak)):OLl Ctz---ak, (L33)
for every choice of Qs Qyr e e es Oy in [0, 1]; where p is defined by (131)
and E(al’ PR .,ak) is the event (132); and that £ is completely equi-

distributed if it is k-equidistributed for every integer k > 0. The analogous

definition for discrete variables (in L_: see above) is easily made. Franklin

D
obtained a considerable number of results on the equidistribution properties
(and related "equipartition" and serial-correlation properties) of various

pseudo-random sequences, including the Multiply sequences (124) and (126)

with 6 possibly irrational,and the related "polynomial sequences, "

= (P p-l P2, ..
x = (n" o+ c)n +c,n + + cp} (134)
with ¢ irrational, and
n
= e 135
x = {6, (135)
and the Weyl sequence
x = {nal . (136)

For example, we may mention that:

(1) a Multiply sequence may fail to be (1-) equidistributed even if
X, is transcendental;

(i1) no Multiply sequence is k-equidistributed for any k > 1;

(ii1) for any sequence (124) (with ) an integer), p(xn > X1 > Xn+2) =

- 1
-é— (IL+ 1) (the theoretical probability for a canonical random sequence is 5

)i
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(iv) fixing x_ and 6 in (126), write X = Xn(>‘); then, for all

k and al,az,-o-,o&k,

lim P(E, (as@yseees a) ) = oqa, e eay (137)

holds foralmostall xo, where Ex(al’ Qs oves ak) denotes the event (132)

with xn_l_i(x) replacing gnﬂ

(v) if (= ey Z is Riemann-integrable in the k~-dimensional

1722 K

unit cube (and Riemann-integrable along all line-segments in the cube), then,

for all k, for almost all XO s

.

. . L N—
llmx_)mllmN___)’oo N (n) X

=0
fl /,J /,,‘l
dz dz °° dz. f(2,,Z., «ees2,.); (138)
o 1 Jo T T2 k

Oy e ® L ()

n+l n+2

(vi) the sequence (135) is completely equidistributed for almost all
g > 1; and if it is k-equidistributed, then @ cannot be an algebraic
number of degree less than k; thus if it is completely equidistributed, 6
must be transcendental. This last result was taken up by Knuth [210], who
pointed out that there was no explicit ¢ for which {en} was known to be
completely equidistributed, nor was any other sequence known so to be:
he constructed such a sequence explicitly.

Let us put g = [O‘i]}‘(:l and V(@) = H]i(:l a; for the volume of the
region (132) defined by the k-dimensional point g . Let us re-number

the gi in the sequence £ and group them into k~tuples ’gn = [&ni]]iil s

with the double index (n, i) replacing the single index (n-L)k +1i, so
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that £ becomes a sequence [¢ n]::1 of points in Uk . Then we see that

(131) and (133) are equivalent to

lime Al = 0, (139)
where
Al = N vile) - Vig) s (140)

is the local discrepancy of the sequence [En]N 1 at the point ¢ , with
n= ~
VN(Q) denoting VN(E(al, Qyy v s ak)) for brevity. From this we may derive

various measures of the imperfection of equidistribution of the sequence in

k -

U
c/“N = - inf uk AN(g), (141)
uV’N = Sup_ _uk Agla) s (142)
Dy =sup ok |a(@] = max (M, 4, (143)
and
I = [fl do, fl da fl da, |& (oc)lz]l/2 (144)
N o Ady T2ty T TR

(e}
are respectively termed the minimum, maximum, extreme (or L ), and

mean-sguare {(or LZ) discrepancy [ @N was formerly called just the

"discrepancy", before the L2 -discrepancy (also termed the turpitude,
whence the notation) was introduced. ]

The sequence = is equidistributed in the k~dimensional unit hypercube
Uk if (139) holds for every g in Uk; and this entails that o«N, d’l’\I, o@N,

and TN all tend to zero as N — « ., However, the inadequacy of the
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asymptotic frequency approach lies in the fact that no account is taken of

how fast these quantities tend to zero. Now, for a true canonical random

sequence, VN('QL-') counts the number of successes in a series of N Bernoulli

trials with probability of success V(g); so that the probability that VN(QL) =T
N

is () [V(g)]r [1- V(Q)]N_r, and the mean values of A (q) and IAN(Q)[Z

are 0 and V(g) [l - V(g)]/N, respectively. It follows that

1 1 1
2
f docl f daz ...\[ dOLk EHAN(%H ]
0 0 0
2 2
1

2
| 1 1 alaz...ak - OLZ...OLk
dal doa2 dock N
0 0 0

= [(é—) —(lg) IN . (145)

zl—_l
|

Thus we would hope that TN for a pseudo-random sequence would diminish
at least as fast as a constant multiple of N“l/2 . The study of the behavior
of the discrepancies of sequences as function of N has had relatively little
attention (but see [5, 15, 17, 30, 53, 215, 220, 221, 229-233], and also
the computational results in [234].) We shall return to it below.

An approach which has proved to be of considerable value in determining

the usefulness of pseudo-random sequences, and which has led to the very

important concept of quasi-random sequences (sequences which are good

for certain classes of Monte Carlo calculations, but which lay no claim to

the appearance of randomness), is simply to examine the behavior of the error
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L _N
6N(f) ) lN Zn=1 f(enl’ Ena’ st gnk) —f

Odzlj;dzz...fdzkf(zl,zz,...,zk)l (146

0

in integrating certain classes of functions by applying the basic Monte Carlo
. - k .

technique, using the given sequence 2 of points in U . The simplest case

is when f£(z) is the characteristic function of the set E(g), and then 5N(f) ZIAN(%H .

It is clear that the class of functions may be extended to the finite linear combi-
nations of such characteristic functions without difficulty. Further, quite a lot of
work has been done on the behavior of 5N(f) when f is restricted by conditions
on the coefficients of its Fourier series. We refer to the work of Richtmyer [204,
235, 237], Peck [236], Hlawka [13, 14, 215], Jagerman [211], Zaremba [l5, 53],
and Coveyou and Macpherson [212]. Examples of the results obtained are:

(i) Peck [236] showed that, if ¢ . ={nal (1=1,2,...kin=123...)
where the a, are in a real algebraic field of degree (k + L), and if they are
linearly independent (over the rationals), while the Fourier coefficients of f,

defined by
400 +co 400 2mi{g,x.+g X, +++++q, X, )
Hz)= 3 % +++ 5 ald,q,....q)e L1 22 KR
o o o - 1" 2 k
=70 R Q7

satisfy the inequality

]a(ql, Qs v qk)[ < C/rnaleqj[kJrE , (148)

-1

for some finite C >0 and &€ > 0; then s (f) = O (N ).

N

(i1) Coveyou and Macpherson [212 ] have developed a novel line of attack,

which may be summarized as follows. Suppose that the &ni can only take the P
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values which are integer multiples of 1/P, with P an integer and 0 = gni <1,

Then we do not really hope to obtain an estimate of the integral of f(g) in U]< s
but only of its Riemann-approximation (for large P )
-k P-1  P-l p-1

a, g, a,
o =o0,0,..,0=p P50 T TS 22K
q=0 a,=0 q=0 ‘P F

| _ K o x
Write p = [pi]i=l’ g = [qi]izl’ and denote by J the set {0,1,2, ...,P-1}.

Then define

c(p) = p¥ Z etk f(P'lg)e‘zm(ﬂ‘g)/P ‘ (150)
where p-g = Z]i<=l piqi as usual; so that (149) is a particular case, and

f(P—lg) = ook c(p) LTHR /P (151)

[ The proof of (151) is straightforward, by direct elimination of the c(p) between
(150) and (151), and summation.] It now follows that, if the "asymptotic
frequency" p(E) defined in (131) is denoted by d(g) when E is the event that

-1
gzP q ., and if

Zwi(R-g)/P
b = d e 152
(R) Zgerk (@) , (152)
whence
- -2mi(p*q)/P
ok 29
d(g) =P ZEEIk b(p) e . (153)
v . -1 N .
then the "asymptotic expectation" of the Monte Carlo sum N 31 f(gﬂ) is

given by
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B[] = 3 (P9 dlg

k rd 4
Sqerk ZR"‘E 7k %,,e Tk c(p”) b(p™) e

ZB'GIk ZE”eIk c(p”) b(p™) 53, o ZEﬁIk c(p) b(p). (154)

From this it would appear that, if we assume that the Fourier coefficients (in
this finite sense) of £, c(p), diminish as lg[ increases, it will suffice that
the b(p) should be small only for small |p| # 0, with b(0) = Sqelk d(q) = !
(which is necessarily true in every case), in order that the error 5N(f) (in the
above discretized sense) be asymptotically small,

While this approach is basically sound, and leads to sensible criteria
for rejecting many sequences as obviously unsultable, it suffers from two
def;—:cts . It gives an inadequately worked-out, qualitative criterion for the
class of functions for which a given sequence is suitable (the criterion will

have to be that ZEEIk“[,Q,]C(’p‘) b(p) be small enough to be negligible: this

can be very stringent); and, like the other asymptotic arguments, it does
not discuss how fast the error converges to an acceptably small value.
However, further work along these lines may well be valuable; and these
authors have already imposed necessary sanctions on some classes of generators.
(1i1) Zaremba [ 15, 53], improving on some results of Hlawka [ 14], looks
at the functions(in our notation)
k
R(q) = O, , max (l, lqil) (155)

i=1

and
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n(g) = min {R(g:9#0, g-4= 0 (mod P)}, (156)
. . . ko, o
where P is a given integer, and g = [gi]izl is a vector with integer

components. He is concerned with approximating the integral
l i L
a(9) =J(; dzlj;dzz...f dzk f(zl,zz,...,zk) (157)

0

by means of the sum (see (147))

P_l Zi;]b f((rgl/P}’ {rgZ/P}a o6 ey {I‘gk/P}) = Zg {a(fg): %,gg 0 (mod P)}. (158)

He mainly considers the case of integration in the unit square (k = 2), and
explains that the only case of practical significance had g9y = l and
0 < 9, =9 < P with g relatively prime to P . For this case, he shows

that, if the Fourier coefficients of f satisfy the inequality

lata,. a,)| = K[Rapa)] | (159)

for some constants K> 0 and m 2 2, and P z 5; then

5(f) = lzq {alg): g# 0, g-g = 0 (modP)}|
= [qu’ a, {a(ql' q,): ‘qlk + lqzl >0, q +gq, =0 (mod P)}|
< K|3 {[R(ql,qz)]'m: la,|+|a,| > 0, a;+ga, = 0 (mod P)}]

ql.’ qz
2 2 2-m
< K [36 log P/p~ + 60/P" ] p

< K[36 (A+2)%1log P+ 60](A+2) , (160)
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where p = p(l, g) and A is the maximum coefficient in the (finite) continued-
fraction expansion of g/P (it having been shown that ¢ = P/(A + 2).) If

g=F or F while P =F (where the F are the Fibonacci numbers:
n-1 n-2 n n

F =0, TF

0 =L F

= Fn + F here agaln emerging as a useful subject for

1 n+2 n+l’

investigation), then p(l,g) = Fn-— , while otherwise p(1,q) = (10/29) P, In

2
n -
the former, preferable, special case, since Fn ~ T /«/—5, where T = (L+4/5)/2,

2 2 -2 -
5(8) <K [36 log F_/F” _, + 60/F_ ]/1‘.-':1“_2 =0 (nT (161)

as n-+» , This is equivalent to the asymptotic inequality
~m
5(f) < O(P " log P). (162)

Zaremba points out that the condition (159) holds if f(z) is periodic in each
zi , with period 1, and has every partial derivative of order less than m in

each zi , continuous and of bounded variation in the sense of Hardy and Krause
([53, 243]: see below). This condition is rather severe but can yleld very
accurate integration formulae, If f has continuous partial derivatives of the
required order in U2 , but they are not periodic, then a polynomial in z, and
z, can be found, whose integral in U2 is zero and such that all the relevant
partial derivatives of its sum with f are equal on opposite sides of the square
UZ, thus allowing extension to a periodic function, Zaremba has shown that
this yields a new kind of integration formula, of great efficiency. The ideas

can clearly be extended to k > 2 dimensions; though the result on Fibonacci

numbers does not generalize,
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Turning from restrictions on Fourier coefficients, we consider what may
be the most important approach of all, due to the work of Koksma [ 10, 215],
Bertrandias [ll], Haselgrove [12], Hlawka [13, 14, 215], and Zaremba [15, 53,
238, 239]. Consider the sequence & = [,gn]"l:l’=l in U . Then, by (140), (143),

and (146), with an integration by parts, we proceed formally (and justifiably)

to obtain that

! 1
oy(f) = [N : zﬁ___l f(e) - . dz f(z)| = lfo d [N"lvN(z)-ZJ f(z) |
1 1
= dA_(z)-f(z)] = A (z) - di(z)
[J, ¢4 =1, Ax l
l
supzeUlAN(z)l | df(z)| = By V(D) (163)

where V(f) is the total variation of f in U . This result is due to Koksma [10].

Hlawka [13] extended the result to any number of dimensions, and Zaremba [53,239]
has produced a simplified proof of this general result, and has presented a new
result in general form, which, for k = 1, is obtained by an application of the
Cauchy-Schwarz inequality to (163), namely, by (144), if £(z) has a first-

order derivative bounded in quadratic mean,
1
ot = lfo A(z) £7(2) dz |

. ) | , (164)
A 2 1/2 2 1/2
< A (z)]“ dz £2 (2)| © dz =d._w(f),
Uol w2l ) (fol | ) N

where
L

W(f) = (f [f'(z)[zdz) L2 o sup, oy |£7(2) | . (165)
0
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The general results are as follows. We consider f(z) on Uk and £ =]

The k-dimensional total variation of f in Uk in the sense of Vitali can

formally be written as

dk

f H 166
Ukl 2}122. .2y (z) l ( )

and this is rigorously defined by considering k partitions m, of U at points

1

- L ) < = = s & » i
0 X10<Xil< xini I i=1,2, , k), defining

{ )
(167)
by $(2)
Z
Z . ZoeedZ = 5 5 eee § Cp(z),
1 -
2 k z) "z, 2y
where the Xij occur in place of z; and the indices ji are omitted for
brevity, and then
n n n
k 1 2 k k
Vi) =sup_ . 05 s f(z)|. (168)
] 3 ¢ 0 » T - I ' Z Z . oZ ~
2 I N I T k

k
The function f is of bounded variation in the sense of Vitali if V (f) is finite.

It is said to be of bounded variation in the sense of Hardy and Krause, if Vk(f)

is finite and also Vh((p) is finite whenever h < k and ¢ is a function of h
variables obtained by fixing any (k - h) of the zi tobe 1. Let us now

write f for such a Cp , Where %, is any choice of h of the zi (there are
o
h

(E) such choices), and similarly let 9 and 9. denote the I and
1

N,G\l N, Oh

LZ discrepancies of the sequence = is the h-

oy = [én,ch]nﬂ’ where éﬂ»c

dimensional vector consisting of the h components of £n selected by O, -
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Then we have
s® = 3 s, B Vi) (169)

for functions f of bounded variation in the sense of Hardy and Krause, and

k il
ont® = B S0, S0, W an) (170)
where
h | h 2 h 1/2
W (f = (f D. f d z) , 171
(5,0 = \Jyn 1P0, o, | 4o 2 (a71)

with d};h z denoting the product of the dzi selected by o and Dlé

denoting partial differentiation, once each, with respect to each of these

h

same z, . Thus (170) holds for functions with all Do,h fcrh bounded in quadratic
mean (it suffices that Dk f be bounded in Uk.)
ZyZ,0 By

The aforementioned investigations of the discrepancies of sequences are

clearly very important to these criteria of the accuracy of quasi-Monte-Carlo

estimates, and it is interesting to seek sequences with the smallest possible

discrepancies. A theorem of Roth [2201 improving on investigations of
van der Corput [244] and Mrs. van Aardenne-Ehrenfest, states, in our notation,
that, for any k 2= 2, there is a constant Ck such that, for any sequence £ in

Uk and any integer N > 1,

TN > ckN“l (log N)(]“"l)/Z . (172)
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Davenport [221] proved, for k = 2 only, that (172) was optimal, in the sense

that it is false if Cp is made too large, even for arbitrarily large N . (The

same question for k > 2 is unsolved.) Using an idea of van der Corput [244 ],
Roth showed how a two-~dimensional sequence could be constructed, for which

D

< CN_l log N, for a suitable constant C, and since T = D this

N N N’
yields an upper bound for TN (for this particular sequence), corresponding
to the lower bound ¢ N“l (log N)l/2 from (172). On the basis of a suggestion

2

of Hammersley [30], Halton [230] generalized Roth's sequence to k dimensions
and obtained analogous upper bounds. These sequences are all based on the

radical-inverse function: any non-negative integer n is uniquely expressible

to base (or radix) R (an arbitrary integer) as

2 M
(nMnM—l" .nznlno)R =n, + an + nZR + ...t nMR ,  (173)

n =

where each digit n, = 0,1,2, ..., or (R-1), n, £0, M= [loan] . By reflecting

the digits in the radical point we obtain a unique fraction

_ _ -1 -2 -3 -M~1
(pR(n) = (0.nynn,.. .nM)R =nR " +nR T HnR T4 .+ R , (174)
the R-inverse of n, and clearly
0= qJR(n) < 1. {175)

Van der Corput's sequence is now expressible as

My

£ VAN DER CORPUT [¢, (]

(176)
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and Roth's sequence is

- _ 1
E ROTH = n/2 , §,(n) ; (177)

so that it consists of the set of points
t t t t t t
(L, 2 M M, M-l _1_) )
{(2 +22+... ZM, 5 + 22 +...+2M . (Vi) ti-Oorl . (178)

Hammersley's sequence is

N-1
HAMMERSLEY - | (/s CPRZ(H)’ CpR3(n)’ e CPRk(n) M=o

111

(179)

with R2 =2, R, =3, R, =5,..., successive primes. Halton [230] generalized
this to having the Ri all pairwise relatively prime, but not necessarily prime

numbers, and proposed the similar sequence

)

maon ~[ % (M0 P (7 bp () o B (N 080)

for which N need not be preassigned. He proved that constants Bk and Ck

exist, such that

-~ -1 k-1 - -1 k
B\ panmersrey) ¢ Sk eI N B(E pppgoy) © G N teg NI
(181)
. -1 k-1 i -1
T mammerstey © BN (g M7 TN marron) < B (og NI

The gap between the upper bounds (181) and Roth's lower bound (172) has been
the subject of conjectures, and partial answers were provided by Gabai [231]
and Haber [232] for the cases k =1, 2 (van der Corput and Roth sequences).
Halton and Zaremba [233] have obtained the most complete answers to date, for

the Roth sequence and a modificatian of it due to Zaremba. Zaremba's sequence

consists of the set of points (compare (178))
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{—L+t2+ +tM tM+tM_l+ +-El-)
2 E‘z‘ PR ZM E 2 22 . s . ZM

(182)
N PR T (U 1
(Vl)ti~0 or 1, t,i-2+(1) (ti 2)} .
(i.e. t’i::ti if 1 1is even, t’i =1 —1:1 if 1 1is odd.) For Roth's
sequence, they have proved that, when N = ZM,
1 -1 ] -1 4 -2
-0, . =1 Logto4
dtN ,N3MN +9N 9sMN, (183)

the maximum being attained at the two points

3,1 2, o3, L 2 -1
(4+12 SMSO+3SON R 4+1ZSO+3SMSON ),(184)
where
M
= (-1 = + 1 .,
sy = ¢ Y, sy = ¢ (185)
. . 1 L1 ,
(The only exceptions are: (i) dV’z =5 at (2‘, E) ;o (i) JV; occurs at
11
(—,“‘ only; (iii) aV, occurs at i, ) only.) Thus, for N = ZM and
2 2 8 4 4
Mz 2,
1 -1 13 -1 4 -2
ol e — - . 18
By (Zporg) =5 MN  +g N -5 5N (186)
Also, they have shown that
1/2
] (L2029 . 3L sl Ll L —2) -1
TN(:ROTH)“(MM tigpM*tg-1g MV +3gN -5 N N - (187)
The exact results give
Lol ¢ oLyt
SBN T N log,N, N g N log,N, (188)
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which agrees with the upper bound given by Roth [220] and Halton [230],
rather than with Roth's absolute lower bound (172). For Zaremba's sequence,
however, the situation is a little different. The exact results obtained by

Halton and Zaremba for N = ZM are:

_ L -1 (9. __L -1, L (2M-3-s_)/4 (3 L -2

M = MN +(50 o sM) N 45p (D) M 2+25M)N . (189)

attained at two points,
2,1 -1 2 1. .- 3 1. -1 3 1.~ _ h
(5+5N,5+5N) and (5 5N,5 5N)if M = 4m+l,
2_ L -—1_3_1_-1) (ii-l_Z_Lﬂ). )
(5 5N ,5+5N and 5~l—5N ' 5 5N if M = 4m+3,

and at four points, &(19(
9 1L L.l 2.2 -1) (u 1oL 13 2 —1). _
(20+4SO+5N,5+5N and 20+4SO 5N,5 5N if M = 4m+2,
9 . L 1L.-13 2 -1) (& L Lo -l _2___2__—1)1f1v1=4m+4.
(2o+4so N, g N TJand (ot syt N, FogN y,

1

!
(The only exceptions are: (i) 54(2 occurs at (—2*, -2—) only; (ii) 04{4 occurs at

1 |
(L —) and (i —) only.) Also, they proved that, when M = 2m,

47 2 4’ 2
1 -1 37 -1 12 -2
= — —— — TO— L 1
JI’N SMN "+ 0N a5, N (191)
attained at two points
3.1 L 3.7l 4 4 -l).
(4+850 20 °m " 5N s 5TE sy N [ (192)

and they strongly conjecture, on the basis of computational results (and hope

to prove in [233], now in preparation), that, when M = 2m+l,
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1oo-1 (587 L -1 (3 24 -2
A =3 MN +(4oo+so sm)N +(5 = sm)N , (193)

attained at every point whose coordinates are (in either order)

+ (1—%5 )N (194)

These coordinates are equal if m is even (sm =l)orif m=3, M=7, N =128,

giving a single maximum; otherwise there are two maxima. (The only exception

o (191) and (192) is: t/; = fg‘ at (‘3‘;, i) . The only exceptions to (193)
and (194) for M = 17 are: (1) cﬂoz =% at (—é—, é) ;o (1) c/‘p8 éi at (-55;, g—)
and (;73, ‘;-) ) Thus, for N = ZM and M = 4, certainly for M even
(probably for M odd also),

L - %MN_l + (%—g—— "4"16‘VM) N4 fs—wMN 2 (195)
where vM =1 if M= 3 (mod 4), VM = 0 otherwise; WM = -4, =3, +4, +13,

accordingas M= 0, 1, 2, 3 (mod 4), respectively. Finally, Halton and

Zaremba have proved that

1/2
~ 41 7 9 1 -1 1 -2 -1
T3 ¢ zaremsea) [192M+(128 128 Sw)"’"(az“Laz SM)N Nl N
These exact results give
1/2 1/2
1 -1 1 (5 -1
<9N ~% N log,N, TN~§(-3-) N (log,N) (197)

and though &)N still adheres to the upper bound of Roth and Halton, we see that

TN has the behavior of Roth's lower bound (172). We note that it is known
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that, 1f N = 20T,
L Lol
destcﬁfl’\I/2+2N : (198)
whence, by (191),
1 -1 163 -1 48 -2
< —— P .
J’N s SMN 45N S5 s, N (199)
so that there is no doubt about (197) at all.
In [15], Zaremba obtained some bounds for the extreme discrepancy
&)P of the sequence [( {r/P}, {rg/P})]rP:-(-Jl (see (158)): he shows that
log (A+1)P 1
Dy < 4 ( Plogatl) ) © P ° (200)
where A is defined as before; and when g =F or F and P=F ,
n-l n-2 n
QP < [ log (6F )+ l]/F ~ -Z—log P/P . (201)
He also proved the following useful general result: if 2 = [gn]:_o is
any sequence in U and Dv N denotes the extreme discrepancy of the
v+N-1
subsequence [g ] -y and if a constant d exists, such that for every V
and every N = P, we have
DV,N < d/N; (202)
then, for the sequence [(n/P, £ ) ]P -1 in U2
2 n n 0 2
&)P <= (d+1)//P. (203)

It is clear, from the foregoing results, that sequencés with satisfactorily

low discrepancies can be found, and that such sequences will be useful as
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quasi-random sequences for integrating functions which are, at least, of
bounded variation in the sense of Hardy and Krause in the unit hypercube

Uk . Of course, this can be extended to integrals in regions which are

easlly transformed into Uk ; but the condition of bounded variation is not
trivial. For example, one might be tempted to apply the error-bound (169)

or (170) to an integral of a well-behaved function in an oval-shaped region R,
by enclosing R in a unit cube Uk (with a trivial rescaling, if necessary)
and defining a new integrand equal to the old one in R, and to zero outside R .
However, this function will generally have its k-dimensional total variation
infinite. Indeed, Hlawka [13] was only able to obtain an error-bound for
5N(f) of the order of &)N"/k , and Zaremba [53, 238] was able to show a
simple case, of a function equal to 1 on one side of an oblique hyperplane
crossing Uk, and O on the other side, for which the sequence of points

-1
[ {ngi/P}]i(_l (n=0,1,2,...,(P-1)) gave an error of at least 1/.2(4:]4)k Pl/k,

-1/2

which is worse than the expected random error, Q(P . Thus problems of

great significance still remain.

3. PROSPECT

3,1, General discussion

Like numerical analysis in general, the study of the Monte Carlo
method has produced a bewildering hodge-podge of specialized techniques;

and it is only recently that certain underlying structures and regularities have
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begun to emerge. Although any proposal for future work necessarily suffers
from our ignorance of results yet to be obtained, certain general guide-lines have
become apparent.

First, it is clear that the subject is splitting into two distinct fields

of study. On the one hand, there is the study of the Monte Carlo method

proper as a branch of probability theory, with Monte Carlo processes forming

a class of convergent stochastic processes [3,77, 240, 242]. On the other

hand, recent investigations of the behavior of pseudo and quasi random sequences

have opened-up the study of the quasi-Monte-Carlo method as a branch of

numerical analysis, concerned principally with certain multi-dimensional

quadrature formulae [10, 13, 15,53, 176,212,220,230,232, 233, 235-239]. Because

of difficulties inherent in both of these approaches, it would seem that both will
continue to be studied, at least as heuristic guides, and neither should be
neglected in the pursuit of the other.

A second natural dichotomy of the subject is that into the studies of

Monte Carlo processes and of random generators. As was explained in § 1,

a Monte Carlo procedure may be thought of as the combination of a process &

with a generator Q ; and there is ample room for new developments in both areas,
as much in ad hoc techniques as in general principles.
The Monte Carlo method was developed for use on large electronic

digital computers, and although it can be applied to pencil-and-paper calculations
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[27,111], its exponents have always worked close to computers, both in judging
the usefulness of their techniques and in developing the theory of their subject.
The study of the Monte Carlo method is one of the best examples of the creative

use of computers as a research-tool, and it is to be hoped and expected that

future work will be in the same spirit. Incidentally, the study of the Monte
Carlo method draws on an extremely broad range of rﬁathematical disciplines,
from probability-theory to number-theory, and from mathematical analysis to
numerical analysis; so that it constitutes an excellent training-ground for
researchers in computer science and applied mathematics.

Trotter and Tukey said in 1954 [47] that "the only good Monte Carlos
are dead Monte Carlos;" and indeed it seems that whenever randomness can
be avoided, a better answer is obtained. This is the basis of the quasi-Monte-
Carlo method, and of all the methods of systematic sampling (stratified sampling,
antithetic variates [38-44]) and sequential sampling [5, 6, 78] . It appears,
therefore, that classical, deterministic numerical methods will ever be stepping
on the heels of Monte Carlo techniques; but there will always be problems too
large for the systematic treatments, and it is for these that we should try to
develop the Monte Carlo method. It may be that, one day, deterministic numerical
techniques will become so powerful that they will be able to handle any problem
to which the Monte Carlo method is suited; but that day is not yet in sight; and
meanwhile, the Monte Carlo method will continue to be used and developed, and

we shall learn a great deal in the process.
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3.2, Monte Carlo processes as stochastic processes.

The Monte Carlo method was originally invented as a statistical method
[4,17,19-26,29,32,33,51]; and the recent work of Halton [3-6, 9, 77] has
defined Monte Carlo processes as a class of stochastic processes @ = [¢m]m
converging to the constant ¢ in a suitable manner. The definition allows 6
and the ¢m to range in the Fréchet space defined in (14) - (17) of §1; and
more recent work has extended the solution-space H to be any separable

Fréchet space [240]. The points of such a space can be shown to be represented

by sequences

x =[x 1 = [xxx,...1 (204)

where, for each n, Xn is an element of a separable Banach space Xn . The

topology of H is then that induced by the metric (16), where

Q) = = e fix /0 =l (205)

withall ¢ >0, % c < =, and |x | denoting the norm of X_ .

n nn n*n n
Convergence in H 1is then equivalent to convergent in each component-space
Xn , and ¢ is a random variable in H if and only if each corresponding com-
ponent-function fn is a random variable in Xn . Since the theory of random
variables in separable Banach spaces is relatively well understood, the theory
can readily be extended to general separable Fréchet spaces, and most of the

important convergence-theorems will go through. Such a theory should be
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developed, in order to obtain a global treatment of the Monte Carlo solution
of problems in which the solution takes the form of a function, with an
inhomogeneous cost-function for errors. Some work on the convergence of
linear averages has already been done [242].

The theory is likely to have an application in the field of pattern-
recognition, where each sample-pattern may be thought of as a Monte Carlo
estimate of an idealized pattern.

The theory will also relate to that of random equations, and this relation-

ship should be investigated.

3.3. Analysis of the quasi-Monte-Carlo method.

The theory of the quasi-Monte-Carlo method, as it applies to integration
in k-dimensional unit hypercubes Uk , has been studied a little, notably by
Koksma [10], Hlawka [13, 14], and Zaremba [15, 53, 238, 239]. The theory of
other quasi-Monte-Carlo techniques is non-existent, and it is clearly desirable
that it should be developed.

Concomitant with this is the theory of quasi-random sequences. This,

too, is in its infancy [15, 53, 176, 212, 220, 230, 232, 233], and it is important that

a big effort be made to obtain values, or at least bounds, for the discrepancies

(Lm and LZ) of known pseudo and quasi random sequences. Such studies
should lead into a search for better quasi-random sequences.

Eventually, it should be possible to construct optimal quasi-random
sequences, given a definition of the class of problems to be solved with their

aid.
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Connected with this question is that of interpreting the meaning of
statistical test-parameters, when they are computed for deterministic, quasi-
random seguences of points.

Again, it is of interest to inquire whether a statistical theory of quasi-
Monte-Carlo calculations might not be possible, in which one averaged, not over

random sequences, but over classes of problems.

3.4, Monte Carlo techniques.

Although much has already been achieved in developing special Monte
Carlo techniques for solving particular problems, a great deal remains to bé done.
Existing techniques should be re-examined for possible improvements or new
applications.

The development of techniques for the generalized Monte Carlo processes
has hardly begun (see Frolov and Chentsov [2]), and the same is true of combi-

natorial problems (see Page [109]). Little has been done in random search and

optimization techniques [109, 111, 137-140], and there is clearly much to be
discovered here. Nothing of note has been done to apply the Monte Carlo ideas

to non-linear problems, except in cases of direct simulation of stochastic situ-

ations: this seems to be a very hard problem.

The general question of designing optimum estimators is an open one.

Little analysis has been done of non-linear secondary estimators, even. This

question leads into that of developing sequential Monte Carlo methods for

problems other than linear algebraic equations (see 82.3). One aspect which
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is now being examined is the sequential stratification of integrals [246].

Importance-sampling with gigned probabilities should be further studied,

and compared with biased methods such as weighted uniform sampling [52].

The E-Z-H method [ 45, 46] also deserves more study. Monte Carlo techniques

for multivariable interpolation and reduction [30] are yet to be fully developed.

Turning to linear algebraic equations, we find a wealth of existing

techniques. However, much of the detail remains to be worked out. Among
questions to be examined are the best allocation of effort to computing zeroth
and first level estimators, the adaptation of various types of iterative schemes
to second-level Monte Carlo computation, the elaboration of schemes of grid-
refinement in continuous problems, together with third-level sequential schemes
and the Monte Carlo Gram-Schmidt orthogonalization process. This last process
should be further explored for use as a conditioning method for classical compu-
tations.

In the study of eigenvalue problems, attention should be turned to the use

of various accelerated techniques, such as are given by Wilkinson [66], in
conjunction with the Monte Carlo method. Further study should also be made

of the more subtle methods of Kac, Donsker, Fortet, and Wasow [68,79,80, 86].

3.5, Random generators.

Here again, we find a wealth of open questions. First, if we are to
perform true Monte Carlo calculations, at least for problems for which no quasi-

Monte-Carlo theory is available, we must have true random generators; and
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much improvement of existing designs 1s required. Together with this engineering
problem, there is the statistical one of how best to test the output of such

generators for randomness.

The problem of generating arbitrary random sequences from canonical

ones still needs much attention. New techniques, both general and particular,
should be sought, and especially for generating sequences with complicated
joint distributions.

Turning to pseudo and gquasi random generators, we must first ask

whether it is possible or desirable to have built-in general-purpose pseudo-

random generators at all. If so, surely they should be tested in a much more
rational manner than hitherto; and maybe new, improved gen erators can be found.
Certain auxiliary quéstions arise. The effect of replacing continuous

random generators A by discrete generators j_ should be more closely examined.

D

Also [245], it has been pointed out that sample-variances are not of much use as

estimators of the error in a pseudo or quasi Monte Carlo scheme. Better estimators

must be found.

Finally, we return to the problems connected with quasi-random generators,

which have already been described in §3.3.

3.6, Summary.

In 8§3.2-3.5 above, we have briefly discussed the most likely develop-
ments in Monte Carlo research in the future. This discussion is best summarized

by posing a number of questions, which we hope that future work will answer.



84

(1) Can we obtain a theory of convergence, with weak and strong
laws of large numbers, for random variables taking their values in separable
Fréchet spaces?

(i1) Can the study of Monte Carlo estimates in separable Fréchet
spaces give a theory of global approximation for problems whose solutions
are functions in such spaces, and are there useful applications of such a theory?

(iii) When sampling functions, what constitutes a representative sample
of function-values ? If the points at which the function is evaluated are them-
selves random, how does this affect the behavior of the estimates obtained ?

(iv) Can one apply the generalized Monte Carlo theory to pattern

recognition problems ?

(v) Relate the generalized Monte Carlo theory to the theory of random
equations.
(vi) What can be said about quasi-Monte-Carlo estimates for finite-

dimensional integrals in general classes of domains, and for countable or
uncountable infinite-dimensional problems, such as random-walk averages and
Wiener integrals?

{vii) Obtain expressions, asymptotic forms, or at least upper bounds,
for the L2 and L~ discrepancies of quasi-random sequences in general use,
Failing this, give computational results on these discrepancies, and develop
programs to determine them for arbitrary sequences.

(viii) How should one set about constructing or improving quasi-random

sequences ? Are there best-possible quasi-random sequences, in any sense ?
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(ix) How are we to interpret the results of the standard statistical
tests, when they are applied to pseudo or quasi random sequences? What is
their relevance ?

(x) Can we develop a meaningful statistical theory of quasi-Monte-
Carlo estimates, based on sampling from populations of problems ?

(xi) Can existing Monte Carlo technigues be improved, extended, or
elaborated? Can we find better variance-reducing techniques ? Can we apply
the Monte Carlo method to new classes of problems; such as non-linear problems,
combinatorial problems, random search, optimization?

(xil) Can the design of Monte Carlo estimators be made more systematic
and aimed at an optimization procedure ?

(xiii) How can the idea of sequential Monte Carlo be extended, for
example to stratified sampling and to the computation of eigenvalues ?

(xiv) Can sampling with signed probabilities be made practical?

(xv) What is the best allocation of effort in obtaining zeroth and first
level estimators in linear algebraic problems ?

(xvi) Examine the Monte Carlo analogues of the various matrix iterative
schemes.

(xvii) Develop the schemes of grid-refinement in continuous problems
and Monte Carlo Gram-Schmidt orthogonalization, both in Monte Carlo computations
and in general matrix-calculations ? Can the latter be made the basis of a technique

for improving ill-conditioned systems ?
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(xviil) Develop new Monte Carlo elgenvalue and eigenvector techniques.

(xix) Develop fast, reliable true canonical random generators.

(xx%) How is the output of a true random generator to be tested?

(xxi) Develop fast, efficient methods for generating arbitrary random
variables and random sequences.

(xxiil) Can we have really useful general-purpose pseudo-random sequences ?
If so, find some new, better ones.

(xxiil) What is the effect of the discreteness of digital computers on the
results of Monte Carlo calculations ? What is the effect of using discrete random
generators AD instead of continuous éenerators A?

(xxiv) Since sample-variances give us little information, is there a way

of esti.iating the accuracy of quasi-Monte~-Carlo estimates ?
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