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NUMERICAL STUDIES OF VISCOUS, INCOMPRESSIBLE FLOW
FOR ARBITRARY REYNOLDS NUMBER

by

Donald Greenspan

1., Introduction

The development of the high speed digital computer has resulted
in extensive efforts to solve numerically fluid problems whose equations
of motion are the Navier-Stokes equations (see, e.g., references [1]-[5]
and the additional references contained therein). The interest in these
equations is founded not only on the fact that they incorporate boundary
layer phenomena, but also on the important observation that they result
from both microscopic and macroscopic approaches to viscous flow [6],
[7].

In this paper we will adapt a new numerical method [3] to study a
prototype problem of the circulation of a steady, viscous, incompressible
flow within a square boundary. Both the stream function and its normal
derivative will be prescribed on the boundary. The discussion will be
self contained and the numerical method will apply equally well to compar-
able boundary value problems. We will consider with equal ease cases in

which the Reynolds number is small (R = 10) and cases in which the




Reynolds number is large (R = 1,05) . If and when such steady state
flows exist, which is still usually an open matter, the method to be
described is vastly more economical and accurate than time dependent,
step-by-step methods. The power of our method is contained in the
structure of the difference equations which, for all R® , yield diagonally

dominant systems of linear algebraic equations.

2. Statement of the Analvtical Problem.

The problem to be considered can be formulated as follows. Let
the points (0, 0), (1,0), (1,1)and (0, ) be denoted by A, B, C and D,
respectively (seeFigure 2.1). Let S be the square whose vertices are
A, B, C, D and denote its interior by R. On R the equations of
motion to be satisfied are the two dimensional, steady state, Navier-

Stokes equations, that is
(2.1) Ay =-w

AV O Y o,
(2.2) B+ ® (S S S T 0

where y 1is the stream function, w» is the vorticity, and £ is the

Reynolds number. On S the boundary conditions tobe satisfied are

_ Yy
(2.3) v =0, 3% = 0 , on AD
(2.4) v =0, g‘f" =0 ) on AB
= Y
(2.5) y =0, 3% 0 , on BC
(2.6) v=0, ¥ - | oncD.

QY



The analytical problem is defined on R+ S by (2.1) - (2.6) and

is shown diagramatically in Figure 2.1.
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Figure 2.1

3. Difference Approximations.

Because the numerical method to be developed will be a finite
difference method, it will be convenient in this section to recall or

to develop several useful finite difference approximations.



First, for h > 0, consider the five points (x,v), (x+h,y), (%, y+h),
(x~h, v) and (x, y=h), numbered 0,1, 2, 3 and 4, respectively, in Figure 3.1.
For convenience, any function u(x,y) defined at a point numbered i will
be denoted at that point by ui . Now, if w(x,vy) is defined at the point
numbered 0 in Figure 3.1, then (2.1) can be approximated at 0 by the well

known [8] Poisson difference analogue

(3.1) ~4w0+4/1+w2+q/3+q/4=—h2w0.
2% (x,y+h)
3 0 1,
(x-h, y) (X, v) (x+h, v)
41 (x,y-h)

Figure 3.1



On the other hand, if ¥(x,vy) is defined at the points numbered 0, 1, 2, 3, 4

in Figure 3.1, then (2.2) can be approximated [3] as follows. Set

a = ¥ 7Y,
B o= v, - ¥,

and at the point numbered 0 in Figure 3.l approximate (2.2) by

g G _BR , o, BR. s =
(3.2a) (-4 5 2)w0+4>l+(l+ 2)VL>Z+(l+ 2)w3+»4_0,
if ¢ 20, Bz 0;
g -G, BR =Ry ot ot =
(3.2b) (-4 2+2)w0+(l 2)J31+(l+ 2)w2+n3+@4 0,

if g 20, <Oy

g B _BR, ER _ak -
(3.2¢) (4+2 2)J>0+J314J32+(l+2)a)3+(1 Z)as =0,

if ¢ <0, Bz 0

4+ QR @@_ = NS S < R
(3.2d) (=4 + T+ T wg+ (L =S5 o+, t g+ (1 yw, =0,

if ¢ <0, g<o.

Next, recall that for three points (x,vy), (x+h,y), (x+2h,y), numbered

0,1, 2, respectively, in Figure 3.2(a), one has the approximation [9]

L e
(3.3a) el P CE A AN

for three points (x,v), (x,y+h), (x,y+2h), numbered 0,1, 2, respectively,

in Figure 3.2(b), one has the approximation

(3.3b) 21, (=3Y, + 49 - ¥,)




for three points (x,v), (x-h,v), (x-2h,y), numbered 0,1, 2, respectively,

in Figure 3.2(c), one has the approximation

W = e By - )

(3.3¢) - 10 ™

and that for three points (X, v), (x,y-h), (x,y=-2h), numbered 0,1, 2,

respectively, in Figure 3.2(d), one has

1
(3.3d) ;3/;]0 = 5 Gy -4 rv,)

Finally, let us develop approximations for the Laplace operator

wxx + z//yy on S in terms of certain function values and normal derivatives.

0
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Figure 3.2
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x, y=h), numbered 0, 1,2, 4,

Consider the four points (x, y) (x+h, v), (%, y+h), {
vy to determine parameters

respectively, in Figure 3.3(a), and let us tr

Qgr Oy O Gy O such that
(3.4) (W ¥ ¥yy) 1o = @00 7 ap Yyt ooy ¥y T oag¥y T as (50 Lo -
In (3.4), expansion of ‘zpl, WZ and "q/4 into Taylor series about the

point numbered 0 and reorganization of terms implies

(WXX‘*‘ q}yy) lO =¥, (OLO +ay +a, t OL4)

T (hocl + oc5)

+ 1I/y (ha,, - ha4)

wxx 2 %
2 2
h% he
+wyy ( 2 OLZ * 2 OL4)
+ a o o o o P

In this latter equality, the setting of corresponding terms equal ylelds

1
(@]

ag ta; ta, tay

i
(@]

hal t oag

i
o

ha, - hay,

—a




the solution of which is
_ 4 2 _2
Ay = F2* 9T p2e %70 T p20 %5 7 Th
Thus one arrives at the following approximation:

4 2 1 1 2
(.5 Ve TV 0= RZ Yot 21tz Y2 " h2¥e " (?}%) Lo

Similarly, for the four points (x,Yv), (x+h,vy), (x, y+h), (x-h,y), numbered

0,1, 2,3, respectively, in Figure 3.3(b), one has

4 1 2 1 2 Y
3.5 = =T ~ + o= = - & .
( b) (wxx.‘-wyy)l() h q/0+h wl+h ZI/ZM}.h Y3 h(ay)i()'
for the four points (x,y), (X, y+h), (x-h,vy), (x,y-h), numbered 0,2, 3, 4,

respectively, in Figure 3.3(c), one has

4 1 2 1 2
(3.5¢) (""xxJ“wyy)lo: HZVotpZz ¥tz Vs TRz Vet @%)10‘

and for the four points (x,vy), (x+h,v), (x-h,v), (X, v-h), numbered

0,1, 3, 4, respectively, in Figure 3 .3(d), one has

4 1 1 2 2
(3.5d) W PV o= "RZ¥o TREVN TRZ V3 FRZ ¥a T (%)lo :

Note that the numbering of the points in Figure 3.3 is consistent

with that in Figure 3.1 .

4. The Numerical Method.

a I Lo

For a fixed positive integer n, set h =7, Starting at (0, 0) with
grid size h, construct and number in the usual way [ 8] the set of interior

grid points Rh and the set of boundary grid points Sh . To within some



preassigned tolerance €, we aim to find a solution “gu(k) of (3.1) on

Rh and a solution w(k) of (3.2a) - (3.2d) on Rh + Sh , subject to the

boundary restrictions on ¥, and we proceed as follows.

Denote by R those points of R1 whose distance from S is h,

h, 1 §

and denote by Rh > those points of R whose distance from S is greater

h
than h . Initially, set

(4.1) 1% = C , on Rh

(4.2) w = C2 » on Rh + Sh s

where Cl and C2 are constants. A modified over-relaxation procedure

which does not require much storage to obtain the desired result is then

applied as follows to yield w(l) from y/(o) and w(o) . On Rh’ set
1,0 0

(4.3) pth O = (0
—(1, 1) .

and on Rh ) generate ¥ by sweeping along each row of Rh 5 from

left to right, starting from the bottom row and proceeding to the top row, by

the recursion formula
= (L) _ , -l Ty e (L=l (L=, — (L) | = (L, d)

where 0 < rw <1 . After each such sweep, 1//(1’ J) is defined on Rh 5 by
the weighted average

(4.5) .W(l,j) = ¢y
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This inner iteration process continues until, for the given tolerance ¢,

one has

b

(4.6) W(l’k) _ w(l,k+l)1 < <

from which one defines on Rh >

1 1,k
(4.7) z{/( ) _ V/( )
1
In order to define 7,!/( ) on Rh L we apply (3.3a) - (3.3d) and
(2.3) - (2.6) in the following fashion. At each point of R of the

h, 1
form (ih, h), i=1,2,...,n-1, set (in the notation of Figure 3.2(b) )

(4.8a) MORG

Similarly, at each point of R

nol of the form (h, ih), i =2,3,...,n-2,

set (in the notation of Figure 3.2(a) )

(4.8b) y/L(L) - Y

while at each point of R of the form (l-h,ih), 1

i
oo
w
o]

1
(3%

h, 1

set (in the notation of Figure 3.2(c) )

(4.8¢) ‘hm - Y2

1: 2: ---:n—l- y

1

Finally, at each point of Rh | of the form (i h, 1-h), i

set (in the notation of Figure 3.2(d) )

(1)
(4.8d) 1//1(1) = % + f’%_
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1
(1) on all of R, .

Thus, (4.3) and (4.4a) - (4.4d) define vy h

(1)
on Rh + Sh as follows. On Sh s

use (2.1), (2.3)-(2.6) and (3.5a) - (3.5d) to yield at each point (1h, 0),

Next, proceed to construct »

i=0,1,2,...,n (in the notation of Figure 3.3(b) )

(4.9a) 71\(()1) )
h2
at each point (0, ih), i =1,2,...,n-1l, in the notation of Figure 3.3(a)
- _ _, (1)
(4-9b) @ 0 = Za(}/l ~ '
h2
at each point (1, ih), i = 1,2, ...,n-1l, in the notation of Figure 3.3(c)
(1)
(4.9¢) ® %) = —.2_7{/_3_
n2

and, at each point (ih, 1), i =0,1,2,...,n, in the notation of Figure 3 .3(d)

=1 _ 2z _ 5,0
(4.9d) 0 ~ h S
n2
One then defines w(l) on Sh by the weighted average formula
(4.10) w(l) = § 3)(0) + (1 - 5)"5(1) , 0= s5=1

We proceed next to determine w(l) orl Rh by again using a modified

over-relaxation procedure. At each point of Sh set

(1, 0) (1)

w = D
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while at each point of R.h set

L0 ()

Then generate W (1, 1) by sweeping along each row of R

h

starting from the bottom row and proceeding to the top row, by the recursion

from left to right,

formula

W3 Ioopo 5D g (L5eD
2

=LA oy,
(4.11) 0 = (1 rw)vo o 1 ) )

where 0 < r, < 2, where

R R
% = 4+ L al + %8
1 , B =20
Q. =
1 f
l+-2~lBl’B<O’
/l+@-o(, , o =0
QZ:% 2
1 , a <0
l+@5 , B =0
Q = 2
3
1 , B <0
1 , o= 0
Q =
4 1 + lal,a<0

2

and where, as defined previously,
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a =¥ T

B o= ¥, ¥,
After each such sweep, m(l’ i) is defined on Rh by the weighted average
(4.12) B I R PSP

where § is the same weight as that used in (4.10). This inner iteration

continues until, for the given tolerance €, one has

(4.13) ‘w(l’K) —w(l’KH)l < e ,

from which one defines on Rh

(4.14) PRO RN O

(2)

Proceed next to determine vy on R from w

h
) (0)

(1) (1)

and y in

(0)

was determined from W and ¢ . Then

(1) (2)

the same fashion as ¥y

construct w(z) on Rh + Sh from w in the same fashion as
(1) (0)

a was determined from

and
1

and y In the indicated fashion,

construct the finite sequences of outer iterates

SO @)
SO0 W@ )
which satisfy
W(m)"‘//(mﬂ)l < e , on Rh

(m) m(m+l)l < e , on Rh+Sh'
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(m)

m .
The discrete functions y and i)( ) are taken to be the numerical
approximations of ¥(x,y) and ®(x,y), respectively, after verifying

that they satisfy (3.1) and (3.2a)~(3.2d).

5. Examples.

We will attempt now to summarize the results of the large number
of examples run on the CDC 3600 at the University of Wisconsin.

In Figures 5.1 - 5.12 are shown graphically the streamlines and
equivorticity curves for ® =10, 100, 500, 1000, 3000, 100000 for the
set of parameter values h = 'él'o-, Cl = CZ =0, rw = 1.8, r,= l, £€=0.1,
6 =0.7. A tolerance of 10—'4 was taken for convergence of both inner and
outer iterations. The outer iterations for each of ® =10, 500, 1000, 3000,
100000 converged in fewer than ten minutes and the number of outer interations
required were, respectively, 10, 25, 20, 16, 14, The case R =100 was
allowed only twelve minutes of running time at the end of which 40 iterations

had elapsed and convergence to f:»-lO“4 had resulted.

It was clear that for convergence € and 6 depended on h . For
fixed C1 = C2 =0 and rw
Outer iteration convergence was achieved for h = é— , £ =¢§=0, but outer

1
iteration divergence resulted in every case for h = TO— , £=§5§=0, For

=1.8, rw = ], the following results were found.
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h = Ié—, outer iteration convergence was achieved with the choice £=5=0.1,
but outer iteration convergence was greatly accelerated as § was allowed
to increase. For h = EL—E)_’ all choices of ¢ = 0.1, 5 = 0.5 resulted in
outer iteration divergence. Further experimentation into the relationships
between ¢, 5, h, convergence,and divergence was deemed to be of great
interest but too costly to be run at the present time.

Occasionally, the method did not converge because an inner iteration
did not converge. When this happened, invariably the choice of ij was
at fault and a new choice was made after several trial values were tested.
The choices rw =1.8 and r, = 1 were finally decided upon because they
worked well uniformly, even though inner iteration convergence could often
be accelerated by different choices.

In cases where the outer iterations were diverging, no choices of

Cl and C2 ever resulted in convergence.

With regard to the physics of the problem, it should be observed
that Figures 5.7 - 5.12 indicate clearly that the vorticity is becoming
uniform in a large connected subregion of the given region, as was pre-

dicted theoretically by Batchelor [10].




16

Finally, it should be noted that we are documenting our computations
by the inclusion of the computer program in an appendix. This is absolutely
necessary if other workers in the field are to be able to duplicate our compu-
tations in order to verify or to refute our results. Such an omission in the paper
of Burggraf [1] caused us great consternation since our duplication of his
work for R = 0 vyielded divergence while he claimed convergence. In this
connection, therecent report of Smith [1l] proves theoretically that Burggraf's

method must diverge for all sufficiently small h .
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FIGURE 5.1 Streamlines for Reynolds number 10,
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- L=0.1000-
‘y:woqg
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FIGURE 5.2 Streamlines for Reynolds number 100
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Streamlines for Reynolds number 500
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FIGURE 5.4 Streamlines for Reynolds number 1000
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FIGURE 5.5 Streamlines for Reynolds number 3000
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FIGURE 5.6 -Streamlines for Reynolds number 100000
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FIGURE 5.9 Equivorticity curves for Reynolds number 500
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APPENDIX

PROGRAMMING VISCOUS, INCOMPRESSIBLE FLOW PROBLEMS

by M. McClellan

Definitions of Main Program Variables and Parameters

PSI = stream function vector

W = vorticity vector

XMAX, XMIN = extreme values of x for rectangular region
YMAX, YMIN = " " oy " " "

R = Reynold's number

H = grid size

OMEGAP = relaxation factor for PSI inner-iterations
OMEGAW = 1l 1 " W ] "
TOL = tolerance for both inner- and outer-iterations

XI = weighting factor for PSI

DELTA = " " W

M = number of vertical lines in the grid

N = " " horizontal ™ " " "

ITERMAX = maximum number of outer—iterations

ITERMAXP = " " " inner-iterations for PSI.

ITERMAXW = " " oo " W

TOLTEST = number of outer-iterations between tests for problem convergence
TOLTESTP = number of PSI inner-iterations between tests for convergence
TOLTESTW = number of W inner-iterations between tests for convergence
BPO = initial value of PSI in interior

BWO = " “orowor

BPl, BP2, BP3, BP4 = initial values of PSI on right, top, left and bottom boundary
lines, resp.

BW1L, BW2, BW3, BW4 = initial values of W on right, top, left and bottom

boundary lines, resp.




c

"

C
c

C
c

¢

READ IN

03

READ

905

906

907

PRINT PROBLEM

909

9091

1

1

1
2
3
4
5
6
6
7
8
9

NN

PROGRAM NS a
COMMNDNZL/ M N, MP NP, X
CUMMON/Z INIT/RPO,
NIMENSTON
TYPE [IMTEGER

N

MUMBER OF PROBLEMS,
READ 9n3, "PHUMS
FORMAT(1R)

ng 70 IPRO:=1,NPHURBS

IN PROBLEM PAFAMETERS,
READ 905,
FORMAT(4F5,F10,3F5,E10,2F5)
READ 906, MP
TOLTESTH
FORMAT(1015)
READ 907, BP0,
FORMAT(10F%)

H,m

PRINT 309, XMIN,

ITERMAXSR

FORMAT(lHl:ZOXJ13HPRDBLEM NQO
(UNTT SAUARE)
=,F5.2,3H

TN A CAVITY
20X, 12HRANGE DF X
20X, 12HRANGF OF Y
20X, GHTHERE ARE, 5,15+

ISING THF GRI{,
20X, 39HRELAXATION
20X, 33HREL AXATINN FACTOR
20X, 11HTOLERANCE =,E10.1
20X, I0HMAX [MUM MUMBFR (F
20X, 1 7HREYNOLDS JUMRER

PRINT 9091,

FLOW

[4CLUDING
FACTOR

DESCRIPTION AND
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XMAX g YMIN,Y
RPL1, kP2, P3,EP4,RW0,RWL,RA2,RW3,BW4,M1,N1
PSI(41,41),PSISAV(41,41),W(41,41),wSAV (41, 41).AUX(41 41)
TOLTEST,TOLTESTF,TOLTESTHW

FARAWV

FOR VORTICITY
/ 19%x,234 TOLERANGFE TEST CYCLE
ITERATIQONS
-’Flnot ) :
ITERMAXP, TOLTESTF, ITERMAXW, TOLTESTW, XI.DFLTA

FAORMAT(20X, 46HMAXIMUM TTERATIONS
20X, 48HTOLERANCE TEST CYCLE FCR

20X, 44HMEAX MM

ITERATIONS FCR

20X, 4AHTOl 2ERANCF TEST CYCLE FCR

(xI) FOR PSI
(NELTA)Y FNR

20X, 21HWELIGHT
20X, 22HWETGHT

I

=,F6.

1

2427 /67

MAX, H

YMIns XMAX , YMIN, YMAX, R, k, DMFGAP OMEPAN TOL,XI,OFLTA

NP, TTERMAX, TOLTEST, ITERMAXP, TOLTESTP ITERMAXM,

“P1,3P2,BP3,BP4,Ewl,BWlRN2,BN3I,BW4

ETERS.

XMAX, YMIN,YMAX N, M, H) OMEGAP ,OMEGAW, TOL, TOLTEST,

4,10X,58HNAVIER-STOKES EQUATIONS FOR

L/
TC,F6.2 /

SyFA 2,38 TC,F6,2 /
HOROZONTAL anND,I%,56H VERTICAL LINES COMPR =
ROLMEARY , /20X, 15HSTEP SIZE (M)
FOR STREAM.  FUNCTION

-
-y

Fa.2 /

=

F10.5 7/

=,F6,2 /

=,146 /

FOR PSI-ONLY CALCULATIOMS

21574 .

=;16 /

PSI-0ONMLY CAI CULATIONS =156
W=0ONMLY CALCULATIONS =

=ONLY CALCULATIOMS
2 /

:.FF‘,,? //)

COMPUTE ADNITIONAL PROZLEM PARAME TERS,

MlizM=1

N1=N-1

MZEM=-2

NgzN=2
RMAXS1.E+S
H2zHwH
CP1s1.,.0-0mEGAP
CP2=0,25+0MFGAP
CPR5=.5+*H
fw0l=z=1.0=-0MEGAW
Cu&s2,/H2
Cw7=2,/H

/

216 /
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P2=0,5+R

X111 ,-X1
NELTA1=1.0-0ELTA
TTER=ITOL=0

C INTTIALIZE VFCTURS # AMD PST,
CALL INIT(~,FST)
c PRINT INITIAL VECTORS w oayn pPST,
PRINT 911, {Ter,#mMax - e
911 FORMAT(//7/10%x,18HAT TTERATION NU,,16,20H MAYIMUM RESIDUAL =,E12.4
1 /20X,15RSTREAM FUNCTION
raLl pPeRT~AT(PST)
PRIMT 912
912 FOQRMAT(//20Xs9RVyNRTICITY )
FALL PRT™AT (w)

REGIN MAIN LCOP FOK OUTER TTFRATIONS,

o NeNeNe!

10 ITER=ITEH+1
ITOL=1TUL +1
TFCITOL LT. TOLTeST)Y 105,10
o) SAVE STRFEAM FunCTION FROM PREVIOLS QUTER ITERATION.
102 no 1021 J=2,n1
Ng 1021 I=2,%1

1021 AUX(1, ) =RSI0], )

105 RMAXP=z1,F94
ITERP=N

106 1T0LP=D

12 ITERP=[TFRE+1
ITOLP=1TALP+1

C COMPUTE ONE SwFEP OF [nNFR REGLON FOR STREAM FUNCTIOM,
N0 20 J=32,12
No 20 1=3%,12
PSISAV(T,J)=PSI(T,J) ,
20 PSTCT, )=CPLePSI(],J) +CP2#(FST(T1+1, )+PSI(I.,J+1)+FSI(1=1,J)
1+ PSI(L,Jd=1)+H2%4(],0))
TFCITOLP T. TOLTESTP)Y 24,28
C RECALCULATE STREAM FUNCTION IN IANFR RREGION USTNG WETGHTING,
24 NGO 241 Jz$sN2
np 241 [=3,Mm2
241 RSTIC1,J)=xTePSISAVII, J)+X[1#FST(1,.))
c ROTTOM INNER 80UNDARY LINE FOR STHREAM FUNCTION,
nn 21 1=2,M1
21 PSI(1,2)=.25*PS]1(],3)
C [ EFT AND RIGKT IMNHMFR 80OUNDARY LINES FOR STREA® FUNCTION.
Ng 22 J=3,N2
PS1(2,J)=.25*FS[(3,J)
22 PSI(M1,J)=z.25%PS1(M2,U)

C TOP INMER ®OUNDARY (INF FOR STRESMM FUNCTIOM,
nQ 23 1=2,x1

23 PST(T,N1)=.25«PST(1,*2)+rpP5
a0 TO 12

>

25 RAMAX1LP=0.10

o



C
c

c

c

c

C
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REFALCHUILATF STREAM FUNRTIONM,USING WEIGHTING, AND RESIDUALS

AN [NNER RFGTOMN,
NG 207 J=d.N2
DG 207 1=3,M2
PST(L,J)=X1*PSISAY(T, )+X[1+FSI(1,J)
RESz=AGSF(PSI(I, )=PSISAVII,J))
IF(RES .GT. RMAXIP) 206,207 . _ -

206 SMAX1P=RES
207 CCNTIHUE . -
POTTOM NNFR BOUNMUDARY LINE FNR STRFAM FUNCTION AND RESIDUALS.
nn 261 1=2.M1
PSIC0LN=RSI(1,2)
PSINEW=.25*RPS[(],3) o R e
PSI(T,2)=R5]vEn
RES=ARSFIPSINEW-PITOLD) , e
IF(RFS 6T, FMAXIR)Y 260,261
260 RyMAX1P=RES
261 CONTINUE
FEFT AND RIGHT [MMER BOUNDSARY LINES FOR STREAM FUNCTIOM AND RESIDS.

nQ 2R4 J=3,n?
PSIALD=PST(2, W)

PSINFuW=,25*PS1(3,.))
PET(2,.0)3PSIMEW

RESSAXSF(PSINEW-PSTOLD)
[F(RES JGT. F=AX1IP) 270,271 e e

270 RMAXLP=RFS
271 P310LN=PST(ML,d)

RIINFW=E,28¥PS[(42,J)
PST1(M1,J)=FSTHENR R
RESSARSF(PSIMEW=-FSIOLD)

IF(RFS LGT. FMAX1IP) 280,281

2R0 RMAX1P=RFS
281 CONTINUE s
TOP TNMER KUUNDARY LINF FOR STREAM FUNCTION AND RESIRUALS,
neg 291 I=2,M1
PSTOLN=PSI (N1}

PSINFu=,?22*RPS](],N2)+CP5 - . e

PSI(T,N1)sPSTakw
RESEZARSF(PSINEW=-PSIOLD)
TF(RFES 6T, RHYAXIP)Y 290,291
2940 RMAAX1IP=RES
291 CONTINUE

RMAXP=RMAX1P . e e e o

TEST MAXIMUM RESIDUAL OF STREAM FUNCTION FPR DIVERGEMCE,
[F(RMAXP,GT. 1.E+5 ) 32,35
32 PRINT G017, RMAXP, [TERP e
9017 FORMAT(// 76H *wxxwx  [IVFRGENCE IN PSI~0OnLY JTFRATIONS, FROBLEM AB
1ANDONED. MAX RESIDUAL sE12.4.8k AT JTER,I6 ) I e

PRINT 90169

9000 FORMAT(/ 20X,20HSTREAM FUNCTIOMN, PSI ) S

FALL PRTMAT(PSIT)
PRINT 9050

9050 FURMAT(/ 20Xs12HVORTICITY, W )
EALL PRTIMAT(w)

62 10 70




c

C
c
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TEST MAXIMUM RESTSUAL NF STREAM FUNCTION FOR CONVERGENCE.
1F STREAM FUNCTION HAS CNNVERGED FrR INNFR ITERATIONS,
TEST FOR CQUTER =~ITERATION FONVERCENCF,

35 TF(RMAXP.LF. TOL)Y 40,45
40 PRINT 915, ITERP,TOL,RMAXP,ITEFR .
915 FURMAT(/ 20r wxwww AT [TERATICN, 16,10k TOI ERANCF,F10,1,

1 34H SATISFIED wITH MAXIMYM RESITUAL =,E15.6.10H. FOR PSI(,15.1H)) _

IFCITOLLT. TULTFST)Y 80,405

40% PRINT Q009

c

c

c

C

fal L PRTMAT(REST)
IFCITER ET.1) GO0 TO 425
RMAX1=0,.9

AET MAX MUK CUTER =1TERATION KRESIDLAL FOR_STREAM FUNCTIOMN, e

na 42.J=2”\11
ng 421=2,M1
RESEARSF (PRI (I, ) =AUX(T,))
IF(RES CT. HrAX1) 41,47

41 RMAX1=RES

42 COMNTINMUE S
RMAX=RMAX]

425 1T0L=0
FRINT 9042, TTER,RMAY

9042 FURMAT( / 20 *%#x%x AT ITERATION,[6,20H MAXIMUM RESINUAL =,E15.6

1 ,19H FOR  ARGE PROBLEM. )
TEST QUTER-ITEFATINN RESIUUAL FOF TIVERGENCE.

TF(RMAX GT.1.5+% ) 432,435
432 PRINT 917, ="MAX,ITER

917 FEORMAT(// 44k DIVERGFNCE, RUN STrPPEN ulTH MaX RESIDUAL =,E12.4,
1 R AT ITER,16 )
MpENRod
PRINT 9009

CALL PRIMAT(FST)
FRINT @(®n
CALL PRT™MAT (W)
G0 TO 70
TEST OQUTFR=ITERATION RESIDUAL FORF rONVFRGEMCE.

435 IF(RMAX JLE. TOL) 440,445 S S U

440 PRINT 6440, [TFR,TAL,RMAX

944n FURMAT( / Z20H wwwsx AT [TERAT[ON,[&,10H TOLERANCE,EL10,1,
1 3aH SATISFIFD A~LTH MAXIMUM RESIFUAL =,E12.6 /)
MPENP=2]
PRINT 9009

caLlL PRTMAT(PSI) e

PRINT 90580
CALL PRTIMAT(w)
GO T 70
TEST IF mMAXItUM NMyMHER OF 0JTER [TERATIOMS EXCEEDED,
445 TFCITRER LGF, [TERMAX) 647,50
947 PRINT 213, rbAX,[TER

G913 FORMAT(//S7H =wx+x MAX[MUM NUMBFR OF ITERATTIONS USED. MAX RESTDUA
1L =,F12.4,84 AT 1TER,I6 )
MPzNP2d
PRINT 9009
rALL PPTMATIFST)
PRINT 9050 e . S

ALl PRIMAT(W)
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Q000

C
c

c

c
C

45
47
901

50

507

34

GO Tn 70
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TEST IF MAXIMUM NUMRFR OF INNER ITERATIONS EXCEEDED FOR STREAM FN.

IFCITERP.GE. ITERMAXP) 47,106
PRINT 9013, RMAXP,ITFRP

I FORMAT(// R1H *xwes MAXIMUM NUMEER OF ITERATIONS USED FOR PSI-0ONL.
1Y ITFRATIONS. MAX RESINUAL =,E12.4,8H AT ITER,16 )

ME=ENP=1

PRINT Q009

Calll PRTMAT(FST)
PRINT 90=0

CALL PRTMAT (W)
G0 Tn 70

nERIM INNER-ITERATIONS FOR VORTICITY,

RMAXW=1.E91

FOMPUTFE VORTICITY ON BOUNDARY LSINEG werGHTING.

TUP ANN ROTTOM SCUNDARIES.
ne 5072 I=1,™

WOTsN)SDELTA*w (], M) =NELTAL*CWEH(PSTI(I,NL)~H)

P al1,1)=DELTA*W (], 1) -NELTAL*CLEPR](],2)
JEFT AND RIGHT BOUNDARIES.
nn 5074 J=2,M1
Al1sJ)=DELTA*W (L, J)~DELTAL*ChE*PS1(2,.)

5074 WM, J)y=DELTA*n{M,y JY-NELTAL*CKS«PST(M1,.J)

505

506

51
52

53

55
56

TTERW=C
TTOLW=D

COMPUTE RELAXATION COEFFICIEMTS FOR VORTICITY

FOMPUTFE ONF SWEEP OF VORTICITY IN INTERICOR,.

ITERWaILTERA*L . et e

[T W=TTRL e+

Lo 62 J=2,81

N 62 1=2,M1
HSAV(I,Jdd=sw(lad)
ASPST(T+1,0)=~PSI{I=1,U)
REPSTI(lsJ+1)=PSI{],d=1)
R2A=R2*A

R2R=P2*[

IF(A JGE. N,2)%1,55
TF(B ,GE. 0.)52,53
fd0z4,0+R2A+R2R
CulsCld=1.0
(:l\2=1_..*R?A
Cwdz1,0+R2EK

30 70 A0
CH0=4,N+R2A-R2R
Culzfwdazl U
CW2=1,0+R24
fAl1=1,0~R2R

co T0 A0

TF(BR .GE. N.1564,57
Cwllzd ,N=-R2L+R2R
Cwl=CwP=1,0

Du3=s1,0+R2E ‘ - , s+ e e

nW4s1,0-R24

I

INTERIQR,
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50 TN &0 e
57 N4, 0-R2A-R 2R

CW2sCuw3d=1.1

Catl=1,0=RJR

Cwd=1,0-R24 e

60 CHl=DMEGAN/CH{ e
62 Wl =Nl (T, J)+C 0w (Ml 1wk (T4, J)+CW2ew (] ,J+1)+CW3®W(1=1,)
1 + CWgrwl(ls,Jd=1))
IFCITOLA oL Ts TOLTFSTW)Y A2R,63
C RECOMPUTE VORTICITY IN InTERIQR LSING WEIGHTING,
625 N0 A2R J=2s N1
o428 [=2,.n1
628 WlTaJ)YsUFRLTA*ASAV(L, J)+0FLTALI=L(1,.))
50 TO S04

o
C PECOMPUTE VURTICITY,USING WEIGRTING, AND RESIDUALS IN INTERIOR.
63 RivAX1w=0.1

N 6% J=2.M1
N 6% 122,41
W{lyd)swhEwsNELTACWSAVIT, DTELTAL»W (], )
RES=ABSF (W Eh=25AV(],J))
[F(RES fT.nMAX1v) Ad,R5

64 AMAXLW=RFS

65 CanNTINUE
PMAXMzRMAXT W

a9 ]
1
i

C TEST VARTICITY FOx INMNFRe-[TERATICN DIVERGENCE,
IF(RMAXW.GT . 1oE+5 ) 665,066
665 PRINT 96AS, KrtAxw, |TFRS
9668 FOPMAT(// 55K #x*xwx DIVERGENCFE IN wW=0MLY [TERATIONS. MAX RES[DUAL

1 s,E12.4,8% AT [TER,T6 )
AP =ziNPel
RRIINT 90Ny
rALL PRTMAT(FST)
PRINT Q0%Q
CALL PRIMAT (%) e I
A0 TO 70
C TEST VNARTICITY FOR IMNER=-ITERATICNY CONVERGEFNCE
666 JTF(RMAXA L& TOLIET,675
67 PRINT QUA7, TTERW,TOL,~MAXW,1TER
gne7 FNARMATL( / 20H #rwww AT ITERATICN, (6,10 TO ERANCR,FLI0,1,
1 344 SATISFIED AITH MAXxIMyM RESITUAL =,E15.6,8H FOR W, 15,1H) /)
TECITol JEB. 0) 673,10
673 PRINT Q050
CALL RRTMAT (W)
50 TN 10 -
C TEST IF MAXIvUM NUMBER OF TANER=-ITFRATIONS EXCFEDED FOR VORTICITY.
675% IFCITFRY GE.ITERMAXY) 677.:.5058
677 PRINT Q677 » rRMAXW, [TERW
QK77 FORMAT(// 79H #wdxs MAXIMUIM NUMRER OF ITERATINONS USED FOR W=-ONLY
1TITERATIONS, MaX RESIDUAL =,812.,4,84 AT [TER,16 )
MPsNP=1
PRINT QU9
cCalLl PRTMAT(PS]) - i .
PRINT Q050




i ; e

i 12427467
Calbl PRTMAT ()

G
c END OF MAIN LOCP
70 CUNTINUE
STCP
EAD
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